|  | #include "amd64_edac.h" | 
|  | #include <asm/amd_nb.h> | 
|  |  | 
|  | static struct edac_pci_ctl_info *amd64_ctl_pci; | 
|  |  | 
|  | static int report_gart_errors; | 
|  | module_param(report_gart_errors, int, 0644); | 
|  |  | 
|  | /* | 
|  | * Set by command line parameter. If BIOS has enabled the ECC, this override is | 
|  | * cleared to prevent re-enabling the hardware by this driver. | 
|  | */ | 
|  | static int ecc_enable_override; | 
|  | module_param(ecc_enable_override, int, 0644); | 
|  |  | 
|  | static struct msr __percpu *msrs; | 
|  |  | 
|  | /* | 
|  | * count successfully initialized driver instances for setup_pci_device() | 
|  | */ | 
|  | static atomic_t drv_instances = ATOMIC_INIT(0); | 
|  |  | 
|  | /* Per-node driver instances */ | 
|  | static struct mem_ctl_info **mcis; | 
|  | static struct ecc_settings **ecc_stngs; | 
|  |  | 
|  | /* | 
|  | * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing | 
|  | * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- | 
|  | * or higher value'. | 
|  | * | 
|  | *FIXME: Produce a better mapping/linearisation. | 
|  | */ | 
|  | struct scrubrate { | 
|  | u32 scrubval;           /* bit pattern for scrub rate */ | 
|  | u32 bandwidth;          /* bandwidth consumed (bytes/sec) */ | 
|  | } scrubrates[] = { | 
|  | { 0x01, 1600000000UL}, | 
|  | { 0x02, 800000000UL}, | 
|  | { 0x03, 400000000UL}, | 
|  | { 0x04, 200000000UL}, | 
|  | { 0x05, 100000000UL}, | 
|  | { 0x06, 50000000UL}, | 
|  | { 0x07, 25000000UL}, | 
|  | { 0x08, 12284069UL}, | 
|  | { 0x09, 6274509UL}, | 
|  | { 0x0A, 3121951UL}, | 
|  | { 0x0B, 1560975UL}, | 
|  | { 0x0C, 781440UL}, | 
|  | { 0x0D, 390720UL}, | 
|  | { 0x0E, 195300UL}, | 
|  | { 0x0F, 97650UL}, | 
|  | { 0x10, 48854UL}, | 
|  | { 0x11, 24427UL}, | 
|  | { 0x12, 12213UL}, | 
|  | { 0x13, 6101UL}, | 
|  | { 0x14, 3051UL}, | 
|  | { 0x15, 1523UL}, | 
|  | { 0x16, 761UL}, | 
|  | { 0x00, 0UL},        /* scrubbing off */ | 
|  | }; | 
|  |  | 
|  | static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, | 
|  | u32 *val, const char *func) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | err = pci_read_config_dword(pdev, offset, val); | 
|  | if (err) | 
|  | amd64_warn("%s: error reading F%dx%03x.\n", | 
|  | func, PCI_FUNC(pdev->devfn), offset); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, | 
|  | u32 val, const char *func) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | err = pci_write_config_dword(pdev, offset, val); | 
|  | if (err) | 
|  | amd64_warn("%s: error writing to F%dx%03x.\n", | 
|  | func, PCI_FUNC(pdev->devfn), offset); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * | 
|  | * Depending on the family, F2 DCT reads need special handling: | 
|  | * | 
|  | * K8: has a single DCT only | 
|  | * | 
|  | * F10h: each DCT has its own set of regs | 
|  | *	DCT0 -> F2x040.. | 
|  | *	DCT1 -> F2x140.. | 
|  | * | 
|  | * F15h: we select which DCT we access using F1x10C[DctCfgSel] | 
|  | * | 
|  | */ | 
|  | static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, | 
|  | const char *func) | 
|  | { | 
|  | if (addr >= 0x100) | 
|  | return -EINVAL; | 
|  |  | 
|  | return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); | 
|  | } | 
|  |  | 
|  | static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, | 
|  | const char *func) | 
|  | { | 
|  | return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Select DCT to which PCI cfg accesses are routed | 
|  | */ | 
|  | static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct) | 
|  | { | 
|  | u32 reg = 0; | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); | 
|  | reg &= 0xfffffffe; | 
|  | reg |= dct; | 
|  | amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); | 
|  | } | 
|  |  | 
|  | static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, | 
|  | const char *func) | 
|  | { | 
|  | u8 dct  = 0; | 
|  |  | 
|  | if (addr >= 0x140 && addr <= 0x1a0) { | 
|  | dct   = 1; | 
|  | addr -= 0x100; | 
|  | } | 
|  |  | 
|  | f15h_select_dct(pvt, dct); | 
|  |  | 
|  | return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Memory scrubber control interface. For K8, memory scrubbing is handled by | 
|  | * hardware and can involve L2 cache, dcache as well as the main memory. With | 
|  | * F10, this is extended to L3 cache scrubbing on CPU models sporting that | 
|  | * functionality. | 
|  | * | 
|  | * This causes the "units" for the scrubbing speed to vary from 64 byte blocks | 
|  | * (dram) over to cache lines. This is nasty, so we will use bandwidth in | 
|  | * bytes/sec for the setting. | 
|  | * | 
|  | * Currently, we only do dram scrubbing. If the scrubbing is done in software on | 
|  | * other archs, we might not have access to the caches directly. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * scan the scrub rate mapping table for a close or matching bandwidth value to | 
|  | * issue. If requested is too big, then use last maximum value found. | 
|  | */ | 
|  | static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate) | 
|  | { | 
|  | u32 scrubval; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * map the configured rate (new_bw) to a value specific to the AMD64 | 
|  | * memory controller and apply to register. Search for the first | 
|  | * bandwidth entry that is greater or equal than the setting requested | 
|  | * and program that. If at last entry, turn off DRAM scrubbing. | 
|  | */ | 
|  | for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { | 
|  | /* | 
|  | * skip scrub rates which aren't recommended | 
|  | * (see F10 BKDG, F3x58) | 
|  | */ | 
|  | if (scrubrates[i].scrubval < min_rate) | 
|  | continue; | 
|  |  | 
|  | if (scrubrates[i].bandwidth <= new_bw) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * if no suitable bandwidth found, turn off DRAM scrubbing | 
|  | * entirely by falling back to the last element in the | 
|  | * scrubrates array. | 
|  | */ | 
|  | } | 
|  |  | 
|  | scrubval = scrubrates[i].scrubval; | 
|  |  | 
|  | pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F); | 
|  |  | 
|  | if (scrubval) | 
|  | return scrubrates[i].bandwidth; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | u32 min_scrubrate = 0x5; | 
|  |  | 
|  | if (boot_cpu_data.x86 == 0xf) | 
|  | min_scrubrate = 0x0; | 
|  |  | 
|  | /* F15h Erratum #505 */ | 
|  | if (boot_cpu_data.x86 == 0x15) | 
|  | f15h_select_dct(pvt, 0); | 
|  |  | 
|  | return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate); | 
|  | } | 
|  |  | 
|  | static int amd64_get_scrub_rate(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | u32 scrubval = 0; | 
|  | int i, retval = -EINVAL; | 
|  |  | 
|  | /* F15h Erratum #505 */ | 
|  | if (boot_cpu_data.x86 == 0x15) | 
|  | f15h_select_dct(pvt, 0); | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); | 
|  |  | 
|  | scrubval = scrubval & 0x001F; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { | 
|  | if (scrubrates[i].scrubval == scrubval) { | 
|  | retval = scrubrates[i].bandwidth; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns true if the SysAddr given by sys_addr matches the | 
|  | * DRAM base/limit associated with node_id | 
|  | */ | 
|  | static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, | 
|  | unsigned nid) | 
|  | { | 
|  | u64 addr; | 
|  |  | 
|  | /* The K8 treats this as a 40-bit value.  However, bits 63-40 will be | 
|  | * all ones if the most significant implemented address bit is 1. | 
|  | * Here we discard bits 63-40.  See section 3.4.2 of AMD publication | 
|  | * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 | 
|  | * Application Programming. | 
|  | */ | 
|  | addr = sys_addr & 0x000000ffffffffffull; | 
|  |  | 
|  | return ((addr >= get_dram_base(pvt, nid)) && | 
|  | (addr <= get_dram_limit(pvt, nid))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to map a SysAddr to a node. On success, return a pointer to the | 
|  | * mem_ctl_info structure for the node that the SysAddr maps to. | 
|  | * | 
|  | * On failure, return NULL. | 
|  | */ | 
|  | static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, | 
|  | u64 sys_addr) | 
|  | { | 
|  | struct amd64_pvt *pvt; | 
|  | unsigned node_id; | 
|  | u32 intlv_en, bits; | 
|  |  | 
|  | /* | 
|  | * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section | 
|  | * 3.4.4.2) registers to map the SysAddr to a node ID. | 
|  | */ | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | /* | 
|  | * The value of this field should be the same for all DRAM Base | 
|  | * registers.  Therefore we arbitrarily choose to read it from the | 
|  | * register for node 0. | 
|  | */ | 
|  | intlv_en = dram_intlv_en(pvt, 0); | 
|  |  | 
|  | if (intlv_en == 0) { | 
|  | for (node_id = 0; node_id < DRAM_RANGES; node_id++) { | 
|  | if (amd64_base_limit_match(pvt, sys_addr, node_id)) | 
|  | goto found; | 
|  | } | 
|  | goto err_no_match; | 
|  | } | 
|  |  | 
|  | if (unlikely((intlv_en != 0x01) && | 
|  | (intlv_en != 0x03) && | 
|  | (intlv_en != 0x07))) { | 
|  | amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bits = (((u32) sys_addr) >> 12) & intlv_en; | 
|  |  | 
|  | for (node_id = 0; ; ) { | 
|  | if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) | 
|  | break;	/* intlv_sel field matches */ | 
|  |  | 
|  | if (++node_id >= DRAM_RANGES) | 
|  | goto err_no_match; | 
|  | } | 
|  |  | 
|  | /* sanity test for sys_addr */ | 
|  | if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) { | 
|  | amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" | 
|  | "range for node %d with node interleaving enabled.\n", | 
|  | __func__, sys_addr, node_id); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | found: | 
|  | return edac_mc_find((int)node_id); | 
|  |  | 
|  | err_no_match: | 
|  | debugf2("sys_addr 0x%lx doesn't match any node\n", | 
|  | (unsigned long)sys_addr); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * compute the CS base address of the @csrow on the DRAM controller @dct. | 
|  | * For details see F2x[5C:40] in the processor's BKDG | 
|  | */ | 
|  | static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, | 
|  | u64 *base, u64 *mask) | 
|  | { | 
|  | u64 csbase, csmask, base_bits, mask_bits; | 
|  | u8 addr_shift; | 
|  |  | 
|  | if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { | 
|  | csbase		= pvt->csels[dct].csbases[csrow]; | 
|  | csmask		= pvt->csels[dct].csmasks[csrow]; | 
|  | base_bits	= GENMASK(21, 31) | GENMASK(9, 15); | 
|  | mask_bits	= GENMASK(21, 29) | GENMASK(9, 15); | 
|  | addr_shift	= 4; | 
|  | } else { | 
|  | csbase		= pvt->csels[dct].csbases[csrow]; | 
|  | csmask		= pvt->csels[dct].csmasks[csrow >> 1]; | 
|  | addr_shift	= 8; | 
|  |  | 
|  | if (boot_cpu_data.x86 == 0x15) | 
|  | base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13); | 
|  | else | 
|  | base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13); | 
|  | } | 
|  |  | 
|  | *base  = (csbase & base_bits) << addr_shift; | 
|  |  | 
|  | *mask  = ~0ULL; | 
|  | /* poke holes for the csmask */ | 
|  | *mask &= ~(mask_bits << addr_shift); | 
|  | /* OR them in */ | 
|  | *mask |= (csmask & mask_bits) << addr_shift; | 
|  | } | 
|  |  | 
|  | #define for_each_chip_select(i, dct, pvt) \ | 
|  | for (i = 0; i < pvt->csels[dct].b_cnt; i++) | 
|  |  | 
|  | #define chip_select_base(i, dct, pvt) \ | 
|  | pvt->csels[dct].csbases[i] | 
|  |  | 
|  | #define for_each_chip_select_mask(i, dct, pvt) \ | 
|  | for (i = 0; i < pvt->csels[dct].m_cnt; i++) | 
|  |  | 
|  | /* | 
|  | * @input_addr is an InputAddr associated with the node given by mci. Return the | 
|  | * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). | 
|  | */ | 
|  | static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) | 
|  | { | 
|  | struct amd64_pvt *pvt; | 
|  | int csrow; | 
|  | u64 base, mask; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | for_each_chip_select(csrow, 0, pvt) { | 
|  | if (!csrow_enabled(csrow, 0, pvt)) | 
|  | continue; | 
|  |  | 
|  | get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); | 
|  |  | 
|  | mask = ~mask; | 
|  |  | 
|  | if ((input_addr & mask) == (base & mask)) { | 
|  | debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n", | 
|  | (unsigned long)input_addr, csrow, | 
|  | pvt->mc_node_id); | 
|  |  | 
|  | return csrow; | 
|  | } | 
|  | } | 
|  | debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n", | 
|  | (unsigned long)input_addr, pvt->mc_node_id); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) | 
|  | * for the node represented by mci. Info is passed back in *hole_base, | 
|  | * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if | 
|  | * info is invalid. Info may be invalid for either of the following reasons: | 
|  | * | 
|  | * - The revision of the node is not E or greater.  In this case, the DRAM Hole | 
|  | *   Address Register does not exist. | 
|  | * | 
|  | * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, | 
|  | *   indicating that its contents are not valid. | 
|  | * | 
|  | * The values passed back in *hole_base, *hole_offset, and *hole_size are | 
|  | * complete 32-bit values despite the fact that the bitfields in the DHAR | 
|  | * only represent bits 31-24 of the base and offset values. | 
|  | */ | 
|  | int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, | 
|  | u64 *hole_offset, u64 *hole_size) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | u64 base; | 
|  |  | 
|  | /* only revE and later have the DRAM Hole Address Register */ | 
|  | if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) { | 
|  | debugf1("  revision %d for node %d does not support DHAR\n", | 
|  | pvt->ext_model, pvt->mc_node_id); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* valid for Fam10h and above */ | 
|  | if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) { | 
|  | debugf1("  Dram Memory Hoisting is DISABLED on this system\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!dhar_valid(pvt)) { | 
|  | debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n", | 
|  | pvt->mc_node_id); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* This node has Memory Hoisting */ | 
|  |  | 
|  | /* +------------------+--------------------+--------------------+----- | 
|  | * | memory           | DRAM hole          | relocated          | | 
|  | * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     | | 
|  | * |                  |                    | DRAM hole          | | 
|  | * |                  |                    | [0x100000000,      | | 
|  | * |                  |                    |  (0x100000000+     | | 
|  | * |                  |                    |   (0xffffffff-x))] | | 
|  | * +------------------+--------------------+--------------------+----- | 
|  | * | 
|  | * Above is a diagram of physical memory showing the DRAM hole and the | 
|  | * relocated addresses from the DRAM hole.  As shown, the DRAM hole | 
|  | * starts at address x (the base address) and extends through address | 
|  | * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the | 
|  | * addresses in the hole so that they start at 0x100000000. | 
|  | */ | 
|  |  | 
|  | base = dhar_base(pvt); | 
|  |  | 
|  | *hole_base = base; | 
|  | *hole_size = (0x1ull << 32) - base; | 
|  |  | 
|  | if (boot_cpu_data.x86 > 0xf) | 
|  | *hole_offset = f10_dhar_offset(pvt); | 
|  | else | 
|  | *hole_offset = k8_dhar_offset(pvt); | 
|  |  | 
|  | debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", | 
|  | pvt->mc_node_id, (unsigned long)*hole_base, | 
|  | (unsigned long)*hole_offset, (unsigned long)*hole_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); | 
|  |  | 
|  | /* | 
|  | * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is | 
|  | * assumed that sys_addr maps to the node given by mci. | 
|  | * | 
|  | * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section | 
|  | * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a | 
|  | * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, | 
|  | * then it is also involved in translating a SysAddr to a DramAddr. Sections | 
|  | * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. | 
|  | * These parts of the documentation are unclear. I interpret them as follows: | 
|  | * | 
|  | * When node n receives a SysAddr, it processes the SysAddr as follows: | 
|  | * | 
|  | * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM | 
|  | *    Limit registers for node n. If the SysAddr is not within the range | 
|  | *    specified by the base and limit values, then node n ignores the Sysaddr | 
|  | *    (since it does not map to node n). Otherwise continue to step 2 below. | 
|  | * | 
|  | * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is | 
|  | *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within | 
|  | *    the range of relocated addresses (starting at 0x100000000) from the DRAM | 
|  | *    hole. If not, skip to step 3 below. Else get the value of the | 
|  | *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the | 
|  | *    offset defined by this value from the SysAddr. | 
|  | * | 
|  | * 3. Obtain the base address for node n from the DRAMBase field of the DRAM | 
|  | *    Base register for node n. To obtain the DramAddr, subtract the base | 
|  | *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70). | 
|  | */ | 
|  | static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; | 
|  | int ret = 0; | 
|  |  | 
|  | dram_base = get_dram_base(pvt, pvt->mc_node_id); | 
|  |  | 
|  | ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, | 
|  | &hole_size); | 
|  | if (!ret) { | 
|  | if ((sys_addr >= (1ull << 32)) && | 
|  | (sys_addr < ((1ull << 32) + hole_size))) { | 
|  | /* use DHAR to translate SysAddr to DramAddr */ | 
|  | dram_addr = sys_addr - hole_offset; | 
|  |  | 
|  | debugf2("using DHAR to translate SysAddr 0x%lx to " | 
|  | "DramAddr 0x%lx\n", | 
|  | (unsigned long)sys_addr, | 
|  | (unsigned long)dram_addr); | 
|  |  | 
|  | return dram_addr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Translate the SysAddr to a DramAddr as shown near the start of | 
|  | * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8 | 
|  | * only deals with 40-bit values.  Therefore we discard bits 63-40 of | 
|  | * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we | 
|  | * discard are all 1s.  Otherwise the bits we discard are all 0s.  See | 
|  | * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture | 
|  | * Programmer's Manual Volume 1 Application Programming. | 
|  | */ | 
|  | dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base; | 
|  |  | 
|  | debugf2("using DRAM Base register to translate SysAddr 0x%lx to " | 
|  | "DramAddr 0x%lx\n", (unsigned long)sys_addr, | 
|  | (unsigned long)dram_addr); | 
|  | return dram_addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @intlv_en is the value of the IntlvEn field from a DRAM Base register | 
|  | * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used | 
|  | * for node interleaving. | 
|  | */ | 
|  | static int num_node_interleave_bits(unsigned intlv_en) | 
|  | { | 
|  | static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; | 
|  | int n; | 
|  |  | 
|  | BUG_ON(intlv_en > 7); | 
|  | n = intlv_shift_table[intlv_en]; | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* Translate the DramAddr given by @dram_addr to an InputAddr. */ | 
|  | static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) | 
|  | { | 
|  | struct amd64_pvt *pvt; | 
|  | int intlv_shift; | 
|  | u64 input_addr; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | /* | 
|  | * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) | 
|  | * concerning translating a DramAddr to an InputAddr. | 
|  | */ | 
|  | intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); | 
|  | input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) + | 
|  | (dram_addr & 0xfff); | 
|  |  | 
|  | debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", | 
|  | intlv_shift, (unsigned long)dram_addr, | 
|  | (unsigned long)input_addr); | 
|  |  | 
|  | return input_addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is | 
|  | * assumed that @sys_addr maps to the node given by mci. | 
|  | */ | 
|  | static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) | 
|  | { | 
|  | u64 input_addr; | 
|  |  | 
|  | input_addr = | 
|  | dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); | 
|  |  | 
|  | debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n", | 
|  | (unsigned long)sys_addr, (unsigned long)input_addr); | 
|  |  | 
|  | return input_addr; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * @input_addr is an InputAddr associated with the node represented by mci. | 
|  | * Translate @input_addr to a DramAddr and return the result. | 
|  | */ | 
|  | static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr) | 
|  | { | 
|  | struct amd64_pvt *pvt; | 
|  | unsigned node_id, intlv_shift; | 
|  | u64 bits, dram_addr; | 
|  | u32 intlv_sel; | 
|  |  | 
|  | /* | 
|  | * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) | 
|  | * shows how to translate a DramAddr to an InputAddr. Here we reverse | 
|  | * this procedure. When translating from a DramAddr to an InputAddr, the | 
|  | * bits used for node interleaving are discarded.  Here we recover these | 
|  | * bits from the IntlvSel field of the DRAM Limit register (section | 
|  | * 3.4.4.2) for the node that input_addr is associated with. | 
|  | */ | 
|  | pvt = mci->pvt_info; | 
|  | node_id = pvt->mc_node_id; | 
|  |  | 
|  | BUG_ON(node_id > 7); | 
|  |  | 
|  | intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); | 
|  | if (intlv_shift == 0) { | 
|  | debugf1("    InputAddr 0x%lx translates to DramAddr of " | 
|  | "same value\n",	(unsigned long)input_addr); | 
|  |  | 
|  | return input_addr; | 
|  | } | 
|  |  | 
|  | bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) + | 
|  | (input_addr & 0xfff); | 
|  |  | 
|  | intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1); | 
|  | dram_addr = bits + (intlv_sel << 12); | 
|  |  | 
|  | debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx " | 
|  | "(%d node interleave bits)\n", (unsigned long)input_addr, | 
|  | (unsigned long)dram_addr, intlv_shift); | 
|  |  | 
|  | return dram_addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @dram_addr is a DramAddr that maps to the node represented by mci. Convert | 
|  | * @dram_addr to a SysAddr. | 
|  | */ | 
|  | static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | u64 hole_base, hole_offset, hole_size, base, sys_addr; | 
|  | int ret = 0; | 
|  |  | 
|  | ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, | 
|  | &hole_size); | 
|  | if (!ret) { | 
|  | if ((dram_addr >= hole_base) && | 
|  | (dram_addr < (hole_base + hole_size))) { | 
|  | sys_addr = dram_addr + hole_offset; | 
|  |  | 
|  | debugf1("using DHAR to translate DramAddr 0x%lx to " | 
|  | "SysAddr 0x%lx\n", (unsigned long)dram_addr, | 
|  | (unsigned long)sys_addr); | 
|  |  | 
|  | return sys_addr; | 
|  | } | 
|  | } | 
|  |  | 
|  | base     = get_dram_base(pvt, pvt->mc_node_id); | 
|  | sys_addr = dram_addr + base; | 
|  |  | 
|  | /* | 
|  | * The sys_addr we have computed up to this point is a 40-bit value | 
|  | * because the k8 deals with 40-bit values.  However, the value we are | 
|  | * supposed to return is a full 64-bit physical address.  The AMD | 
|  | * x86-64 architecture specifies that the most significant implemented | 
|  | * address bit through bit 63 of a physical address must be either all | 
|  | * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a | 
|  | * 64-bit value below.  See section 3.4.2 of AMD publication 24592: | 
|  | * AMD x86-64 Architecture Programmer's Manual Volume 1 Application | 
|  | * Programming. | 
|  | */ | 
|  | sys_addr |= ~((sys_addr & (1ull << 39)) - 1); | 
|  |  | 
|  | debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n", | 
|  | pvt->mc_node_id, (unsigned long)dram_addr, | 
|  | (unsigned long)sys_addr); | 
|  |  | 
|  | return sys_addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @input_addr is an InputAddr associated with the node given by mci. Translate | 
|  | * @input_addr to a SysAddr. | 
|  | */ | 
|  | static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci, | 
|  | u64 input_addr) | 
|  | { | 
|  | return dram_addr_to_sys_addr(mci, | 
|  | input_addr_to_dram_addr(mci, input_addr)); | 
|  | } | 
|  |  | 
|  | /* Map the Error address to a PAGE and PAGE OFFSET. */ | 
|  | static inline void error_address_to_page_and_offset(u64 error_address, | 
|  | u32 *page, u32 *offset) | 
|  | { | 
|  | *page = (u32) (error_address >> PAGE_SHIFT); | 
|  | *offset = ((u32) error_address) & ~PAGE_MASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address | 
|  | * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers | 
|  | * of a node that detected an ECC memory error.  mci represents the node that | 
|  | * the error address maps to (possibly different from the node that detected | 
|  | * the error).  Return the number of the csrow that sys_addr maps to, or -1 on | 
|  | * error. | 
|  | */ | 
|  | static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) | 
|  | { | 
|  | int csrow; | 
|  |  | 
|  | csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); | 
|  |  | 
|  | if (csrow == -1) | 
|  | amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " | 
|  | "address 0x%lx\n", (unsigned long)sys_addr); | 
|  | return csrow; | 
|  | } | 
|  |  | 
|  | static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); | 
|  |  | 
|  | /* | 
|  | * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs | 
|  | * are ECC capable. | 
|  | */ | 
|  | static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt) | 
|  | { | 
|  | u8 bit; | 
|  | unsigned long edac_cap = EDAC_FLAG_NONE; | 
|  |  | 
|  | bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F) | 
|  | ? 19 | 
|  | : 17; | 
|  |  | 
|  | if (pvt->dclr0 & BIT(bit)) | 
|  | edac_cap = EDAC_FLAG_SECDED; | 
|  |  | 
|  | return edac_cap; | 
|  | } | 
|  |  | 
|  | static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8); | 
|  |  | 
|  | static void amd64_dump_dramcfg_low(u32 dclr, int chan) | 
|  | { | 
|  | debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); | 
|  |  | 
|  | debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n", | 
|  | (dclr & BIT(16)) ?  "un" : "", | 
|  | (dclr & BIT(19)) ? "yes" : "no"); | 
|  |  | 
|  | debugf1("  PAR/ERR parity: %s\n", | 
|  | (dclr & BIT(8)) ?  "enabled" : "disabled"); | 
|  |  | 
|  | if (boot_cpu_data.x86 == 0x10) | 
|  | debugf1("  DCT 128bit mode width: %s\n", | 
|  | (dclr & BIT(11)) ?  "128b" : "64b"); | 
|  |  | 
|  | debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", | 
|  | (dclr & BIT(12)) ?  "yes" : "no", | 
|  | (dclr & BIT(13)) ?  "yes" : "no", | 
|  | (dclr & BIT(14)) ?  "yes" : "no", | 
|  | (dclr & BIT(15)) ?  "yes" : "no"); | 
|  | } | 
|  |  | 
|  | /* Display and decode various NB registers for debug purposes. */ | 
|  | static void dump_misc_regs(struct amd64_pvt *pvt) | 
|  | { | 
|  | debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); | 
|  |  | 
|  | debugf1("  NB two channel DRAM capable: %s\n", | 
|  | (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); | 
|  |  | 
|  | debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n", | 
|  | (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", | 
|  | (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); | 
|  |  | 
|  | amd64_dump_dramcfg_low(pvt->dclr0, 0); | 
|  |  | 
|  | debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); | 
|  |  | 
|  | debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, " | 
|  | "offset: 0x%08x\n", | 
|  | pvt->dhar, dhar_base(pvt), | 
|  | (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt) | 
|  | : f10_dhar_offset(pvt)); | 
|  |  | 
|  | debugf1("  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); | 
|  |  | 
|  | amd64_debug_display_dimm_sizes(pvt, 0); | 
|  |  | 
|  | /* everything below this point is Fam10h and above */ | 
|  | if (boot_cpu_data.x86 == 0xf) | 
|  | return; | 
|  |  | 
|  | amd64_debug_display_dimm_sizes(pvt, 1); | 
|  |  | 
|  | amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4")); | 
|  |  | 
|  | /* Only if NOT ganged does dclr1 have valid info */ | 
|  | if (!dct_ganging_enabled(pvt)) | 
|  | amd64_dump_dramcfg_low(pvt->dclr1, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] | 
|  | */ | 
|  | static void prep_chip_selects(struct amd64_pvt *pvt) | 
|  | { | 
|  | if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { | 
|  | pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; | 
|  | pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; | 
|  | } else { | 
|  | pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; | 
|  | pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers | 
|  | */ | 
|  | static void read_dct_base_mask(struct amd64_pvt *pvt) | 
|  | { | 
|  | int cs; | 
|  |  | 
|  | prep_chip_selects(pvt); | 
|  |  | 
|  | for_each_chip_select(cs, 0, pvt) { | 
|  | int reg0   = DCSB0 + (cs * 4); | 
|  | int reg1   = DCSB1 + (cs * 4); | 
|  | u32 *base0 = &pvt->csels[0].csbases[cs]; | 
|  | u32 *base1 = &pvt->csels[1].csbases[cs]; | 
|  |  | 
|  | if (!amd64_read_dct_pci_cfg(pvt, reg0, base0)) | 
|  | debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n", | 
|  | cs, *base0, reg0); | 
|  |  | 
|  | if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt)) | 
|  | continue; | 
|  |  | 
|  | if (!amd64_read_dct_pci_cfg(pvt, reg1, base1)) | 
|  | debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n", | 
|  | cs, *base1, reg1); | 
|  | } | 
|  |  | 
|  | for_each_chip_select_mask(cs, 0, pvt) { | 
|  | int reg0   = DCSM0 + (cs * 4); | 
|  | int reg1   = DCSM1 + (cs * 4); | 
|  | u32 *mask0 = &pvt->csels[0].csmasks[cs]; | 
|  | u32 *mask1 = &pvt->csels[1].csmasks[cs]; | 
|  |  | 
|  | if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0)) | 
|  | debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n", | 
|  | cs, *mask0, reg0); | 
|  |  | 
|  | if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt)) | 
|  | continue; | 
|  |  | 
|  | if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1)) | 
|  | debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n", | 
|  | cs, *mask1, reg1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs) | 
|  | { | 
|  | enum mem_type type; | 
|  |  | 
|  | /* F15h supports only DDR3 */ | 
|  | if (boot_cpu_data.x86 >= 0x15) | 
|  | type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3; | 
|  | else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) { | 
|  | if (pvt->dchr0 & DDR3_MODE) | 
|  | type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3; | 
|  | else | 
|  | type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; | 
|  | } else { | 
|  | type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; | 
|  | } | 
|  |  | 
|  | amd64_info("CS%d: %s\n", cs, edac_mem_types[type]); | 
|  |  | 
|  | return type; | 
|  | } | 
|  |  | 
|  | /* Get the number of DCT channels the memory controller is using. */ | 
|  | static int k8_early_channel_count(struct amd64_pvt *pvt) | 
|  | { | 
|  | int flag; | 
|  |  | 
|  | if (pvt->ext_model >= K8_REV_F) | 
|  | /* RevF (NPT) and later */ | 
|  | flag = pvt->dclr0 & WIDTH_128; | 
|  | else | 
|  | /* RevE and earlier */ | 
|  | flag = pvt->dclr0 & REVE_WIDTH_128; | 
|  |  | 
|  | /* not used */ | 
|  | pvt->dclr1 = 0; | 
|  |  | 
|  | return (flag) ? 2 : 1; | 
|  | } | 
|  |  | 
|  | /* On F10h and later ErrAddr is MC4_ADDR[47:1] */ | 
|  | static u64 get_error_address(struct mce *m) | 
|  | { | 
|  | struct cpuinfo_x86 *c = &boot_cpu_data; | 
|  | u64 addr; | 
|  | u8 start_bit = 1; | 
|  | u8 end_bit   = 47; | 
|  |  | 
|  | if (c->x86 == 0xf) { | 
|  | start_bit = 3; | 
|  | end_bit   = 39; | 
|  | } | 
|  |  | 
|  | addr = m->addr & GENMASK(start_bit, end_bit); | 
|  |  | 
|  | /* | 
|  | * Erratum 637 workaround | 
|  | */ | 
|  | if (c->x86 == 0x15) { | 
|  | struct amd64_pvt *pvt; | 
|  | u64 cc6_base, tmp_addr; | 
|  | u32 tmp; | 
|  | u8 mce_nid, intlv_en; | 
|  |  | 
|  | if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7) | 
|  | return addr; | 
|  |  | 
|  | mce_nid	= amd_get_nb_id(m->extcpu); | 
|  | pvt	= mcis[mce_nid]->pvt_info; | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); | 
|  | intlv_en = tmp >> 21 & 0x7; | 
|  |  | 
|  | /* add [47:27] + 3 trailing bits */ | 
|  | cc6_base  = (tmp & GENMASK(0, 20)) << 3; | 
|  |  | 
|  | /* reverse and add DramIntlvEn */ | 
|  | cc6_base |= intlv_en ^ 0x7; | 
|  |  | 
|  | /* pin at [47:24] */ | 
|  | cc6_base <<= 24; | 
|  |  | 
|  | if (!intlv_en) | 
|  | return cc6_base | (addr & GENMASK(0, 23)); | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); | 
|  |  | 
|  | /* faster log2 */ | 
|  | tmp_addr  = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1); | 
|  |  | 
|  | /* OR DramIntlvSel into bits [14:12] */ | 
|  | tmp_addr |= (tmp & GENMASK(21, 23)) >> 9; | 
|  |  | 
|  | /* add remaining [11:0] bits from original MC4_ADDR */ | 
|  | tmp_addr |= addr & GENMASK(0, 11); | 
|  |  | 
|  | return cc6_base | tmp_addr; | 
|  | } | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) | 
|  | { | 
|  | struct cpuinfo_x86 *c = &boot_cpu_data; | 
|  | int off = range << 3; | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo); | 
|  | amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); | 
|  |  | 
|  | if (c->x86 == 0xf) | 
|  | return; | 
|  |  | 
|  | if (!dram_rw(pvt, range)) | 
|  | return; | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi); | 
|  | amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); | 
|  |  | 
|  | /* Factor in CC6 save area by reading dst node's limit reg */ | 
|  | if (c->x86 == 0x15) { | 
|  | struct pci_dev *f1 = NULL; | 
|  | u8 nid = dram_dst_node(pvt, range); | 
|  | u32 llim; | 
|  |  | 
|  | f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1)); | 
|  | if (WARN_ON(!f1)) | 
|  | return; | 
|  |  | 
|  | amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); | 
|  |  | 
|  | pvt->ranges[range].lim.lo &= GENMASK(0, 15); | 
|  |  | 
|  | /* {[39:27],111b} */ | 
|  | pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; | 
|  |  | 
|  | pvt->ranges[range].lim.hi &= GENMASK(0, 7); | 
|  |  | 
|  | /* [47:40] */ | 
|  | pvt->ranges[range].lim.hi |= llim >> 13; | 
|  |  | 
|  | pci_dev_put(f1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, | 
|  | u16 syndrome) | 
|  | { | 
|  | struct mem_ctl_info *src_mci; | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | int channel, csrow; | 
|  | u32 page, offset; | 
|  |  | 
|  | error_address_to_page_and_offset(sys_addr, &page, &offset); | 
|  |  | 
|  | /* | 
|  | * Find out which node the error address belongs to. This may be | 
|  | * different from the node that detected the error. | 
|  | */ | 
|  | src_mci = find_mc_by_sys_addr(mci, sys_addr); | 
|  | if (!src_mci) { | 
|  | amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", | 
|  | (unsigned long)sys_addr); | 
|  | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, | 
|  | page, offset, syndrome, | 
|  | -1, -1, -1, | 
|  | EDAC_MOD_STR, | 
|  | "failed to map error addr to a node", | 
|  | NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Now map the sys_addr to a CSROW */ | 
|  | csrow = sys_addr_to_csrow(src_mci, sys_addr); | 
|  | if (csrow < 0) { | 
|  | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, | 
|  | page, offset, syndrome, | 
|  | -1, -1, -1, | 
|  | EDAC_MOD_STR, | 
|  | "failed to map error addr to a csrow", | 
|  | NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* CHIPKILL enabled */ | 
|  | if (pvt->nbcfg & NBCFG_CHIPKILL) { | 
|  | channel = get_channel_from_ecc_syndrome(mci, syndrome); | 
|  | if (channel < 0) { | 
|  | /* | 
|  | * Syndrome didn't map, so we don't know which of the | 
|  | * 2 DIMMs is in error. So we need to ID 'both' of them | 
|  | * as suspect. | 
|  | */ | 
|  | amd64_mc_warn(src_mci, "unknown syndrome 0x%04x - " | 
|  | "possible error reporting race\n", | 
|  | syndrome); | 
|  | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, | 
|  | page, offset, syndrome, | 
|  | csrow, -1, -1, | 
|  | EDAC_MOD_STR, | 
|  | "unknown syndrome - possible error reporting race", | 
|  | NULL); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * non-chipkill ecc mode | 
|  | * | 
|  | * The k8 documentation is unclear about how to determine the | 
|  | * channel number when using non-chipkill memory.  This method | 
|  | * was obtained from email communication with someone at AMD. | 
|  | * (Wish the email was placed in this comment - norsk) | 
|  | */ | 
|  | channel = ((sys_addr & BIT(3)) != 0); | 
|  | } | 
|  |  | 
|  | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, src_mci, | 
|  | page, offset, syndrome, | 
|  | csrow, channel, -1, | 
|  | EDAC_MOD_STR, "", NULL); | 
|  | } | 
|  |  | 
|  | static int ddr2_cs_size(unsigned i, bool dct_width) | 
|  | { | 
|  | unsigned shift = 0; | 
|  |  | 
|  | if (i <= 2) | 
|  | shift = i; | 
|  | else if (!(i & 0x1)) | 
|  | shift = i >> 1; | 
|  | else | 
|  | shift = (i + 1) >> 1; | 
|  |  | 
|  | return 128 << (shift + !!dct_width); | 
|  | } | 
|  |  | 
|  | static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, | 
|  | unsigned cs_mode) | 
|  | { | 
|  | u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; | 
|  |  | 
|  | if (pvt->ext_model >= K8_REV_F) { | 
|  | WARN_ON(cs_mode > 11); | 
|  | return ddr2_cs_size(cs_mode, dclr & WIDTH_128); | 
|  | } | 
|  | else if (pvt->ext_model >= K8_REV_D) { | 
|  | unsigned diff; | 
|  | WARN_ON(cs_mode > 10); | 
|  |  | 
|  | /* | 
|  | * the below calculation, besides trying to win an obfuscated C | 
|  | * contest, maps cs_mode values to DIMM chip select sizes. The | 
|  | * mappings are: | 
|  | * | 
|  | * cs_mode	CS size (mb) | 
|  | * =======	============ | 
|  | * 0		32 | 
|  | * 1		64 | 
|  | * 2		128 | 
|  | * 3		128 | 
|  | * 4		256 | 
|  | * 5		512 | 
|  | * 6		256 | 
|  | * 7		512 | 
|  | * 8		1024 | 
|  | * 9		1024 | 
|  | * 10		2048 | 
|  | * | 
|  | * Basically, it calculates a value with which to shift the | 
|  | * smallest CS size of 32MB. | 
|  | * | 
|  | * ddr[23]_cs_size have a similar purpose. | 
|  | */ | 
|  | diff = cs_mode/3 + (unsigned)(cs_mode > 5); | 
|  |  | 
|  | return 32 << (cs_mode - diff); | 
|  | } | 
|  | else { | 
|  | WARN_ON(cs_mode > 6); | 
|  | return 32 << cs_mode; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the number of DCT channels in use. | 
|  | * | 
|  | * Return: | 
|  | *	number of Memory Channels in operation | 
|  | * Pass back: | 
|  | *	contents of the DCL0_LOW register | 
|  | */ | 
|  | static int f1x_early_channel_count(struct amd64_pvt *pvt) | 
|  | { | 
|  | int i, j, channels = 0; | 
|  |  | 
|  | /* On F10h, if we are in 128 bit mode, then we are using 2 channels */ | 
|  | if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128)) | 
|  | return 2; | 
|  |  | 
|  | /* | 
|  | * Need to check if in unganged mode: In such, there are 2 channels, | 
|  | * but they are not in 128 bit mode and thus the above 'dclr0' status | 
|  | * bit will be OFF. | 
|  | * | 
|  | * Need to check DCT0[0] and DCT1[0] to see if only one of them has | 
|  | * their CSEnable bit on. If so, then SINGLE DIMM case. | 
|  | */ | 
|  | debugf0("Data width is not 128 bits - need more decoding\n"); | 
|  |  | 
|  | /* | 
|  | * Check DRAM Bank Address Mapping values for each DIMM to see if there | 
|  | * is more than just one DIMM present in unganged mode. Need to check | 
|  | * both controllers since DIMMs can be placed in either one. | 
|  | */ | 
|  | for (i = 0; i < 2; i++) { | 
|  | u32 dbam = (i ? pvt->dbam1 : pvt->dbam0); | 
|  |  | 
|  | for (j = 0; j < 4; j++) { | 
|  | if (DBAM_DIMM(j, dbam) > 0) { | 
|  | channels++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (channels > 2) | 
|  | channels = 2; | 
|  |  | 
|  | amd64_info("MCT channel count: %d\n", channels); | 
|  |  | 
|  | return channels; | 
|  | } | 
|  |  | 
|  | static int ddr3_cs_size(unsigned i, bool dct_width) | 
|  | { | 
|  | unsigned shift = 0; | 
|  | int cs_size = 0; | 
|  |  | 
|  | if (i == 0 || i == 3 || i == 4) | 
|  | cs_size = -1; | 
|  | else if (i <= 2) | 
|  | shift = i; | 
|  | else if (i == 12) | 
|  | shift = 7; | 
|  | else if (!(i & 0x1)) | 
|  | shift = i >> 1; | 
|  | else | 
|  | shift = (i + 1) >> 1; | 
|  |  | 
|  | if (cs_size != -1) | 
|  | cs_size = (128 * (1 << !!dct_width)) << shift; | 
|  |  | 
|  | return cs_size; | 
|  | } | 
|  |  | 
|  | static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, | 
|  | unsigned cs_mode) | 
|  | { | 
|  | u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; | 
|  |  | 
|  | WARN_ON(cs_mode > 11); | 
|  |  | 
|  | if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) | 
|  | return ddr3_cs_size(cs_mode, dclr & WIDTH_128); | 
|  | else | 
|  | return ddr2_cs_size(cs_mode, dclr & WIDTH_128); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * F15h supports only 64bit DCT interfaces | 
|  | */ | 
|  | static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, | 
|  | unsigned cs_mode) | 
|  | { | 
|  | WARN_ON(cs_mode > 12); | 
|  |  | 
|  | return ddr3_cs_size(cs_mode, false); | 
|  | } | 
|  |  | 
|  | static void read_dram_ctl_register(struct amd64_pvt *pvt) | 
|  | { | 
|  |  | 
|  | if (boot_cpu_data.x86 == 0xf) | 
|  | return; | 
|  |  | 
|  | if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) { | 
|  | debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", | 
|  | pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); | 
|  |  | 
|  | debugf0("  DCTs operate in %s mode.\n", | 
|  | (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); | 
|  |  | 
|  | if (!dct_ganging_enabled(pvt)) | 
|  | debugf0("  Address range split per DCT: %s\n", | 
|  | (dct_high_range_enabled(pvt) ? "yes" : "no")); | 
|  |  | 
|  | debugf0("  data interleave for ECC: %s, " | 
|  | "DRAM cleared since last warm reset: %s\n", | 
|  | (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), | 
|  | (dct_memory_cleared(pvt) ? "yes" : "no")); | 
|  |  | 
|  | debugf0("  channel interleave: %s, " | 
|  | "interleave bits selector: 0x%x\n", | 
|  | (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), | 
|  | dct_sel_interleave_addr(pvt)); | 
|  | } | 
|  |  | 
|  | amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory | 
|  | * Interleaving Modes. | 
|  | */ | 
|  | static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, | 
|  | bool hi_range_sel, u8 intlv_en) | 
|  | { | 
|  | u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; | 
|  |  | 
|  | if (dct_ganging_enabled(pvt)) | 
|  | return 0; | 
|  |  | 
|  | if (hi_range_sel) | 
|  | return dct_sel_high; | 
|  |  | 
|  | /* | 
|  | * see F2x110[DctSelIntLvAddr] - channel interleave mode | 
|  | */ | 
|  | if (dct_interleave_enabled(pvt)) { | 
|  | u8 intlv_addr = dct_sel_interleave_addr(pvt); | 
|  |  | 
|  | /* return DCT select function: 0=DCT0, 1=DCT1 */ | 
|  | if (!intlv_addr) | 
|  | return sys_addr >> 6 & 1; | 
|  |  | 
|  | if (intlv_addr & 0x2) { | 
|  | u8 shift = intlv_addr & 0x1 ? 9 : 6; | 
|  | u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; | 
|  |  | 
|  | return ((sys_addr >> shift) & 1) ^ temp; | 
|  | } | 
|  |  | 
|  | return (sys_addr >> (12 + hweight8(intlv_en))) & 1; | 
|  | } | 
|  |  | 
|  | if (dct_high_range_enabled(pvt)) | 
|  | return ~dct_sel_high & 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Convert the sys_addr to the normalized DCT address */ | 
|  | static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range, | 
|  | u64 sys_addr, bool hi_rng, | 
|  | u32 dct_sel_base_addr) | 
|  | { | 
|  | u64 chan_off; | 
|  | u64 dram_base		= get_dram_base(pvt, range); | 
|  | u64 hole_off		= f10_dhar_offset(pvt); | 
|  | u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16; | 
|  |  | 
|  | if (hi_rng) { | 
|  | /* | 
|  | * if | 
|  | * base address of high range is below 4Gb | 
|  | * (bits [47:27] at [31:11]) | 
|  | * DRAM address space on this DCT is hoisted above 4Gb	&& | 
|  | * sys_addr > 4Gb | 
|  | * | 
|  | *	remove hole offset from sys_addr | 
|  | * else | 
|  | *	remove high range offset from sys_addr | 
|  | */ | 
|  | if ((!(dct_sel_base_addr >> 16) || | 
|  | dct_sel_base_addr < dhar_base(pvt)) && | 
|  | dhar_valid(pvt) && | 
|  | (sys_addr >= BIT_64(32))) | 
|  | chan_off = hole_off; | 
|  | else | 
|  | chan_off = dct_sel_base_off; | 
|  | } else { | 
|  | /* | 
|  | * if | 
|  | * we have a valid hole		&& | 
|  | * sys_addr > 4Gb | 
|  | * | 
|  | *	remove hole | 
|  | * else | 
|  | *	remove dram base to normalize to DCT address | 
|  | */ | 
|  | if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) | 
|  | chan_off = hole_off; | 
|  | else | 
|  | chan_off = dram_base; | 
|  | } | 
|  |  | 
|  | return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * checks if the csrow passed in is marked as SPARED, if so returns the new | 
|  | * spare row | 
|  | */ | 
|  | static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) | 
|  | { | 
|  | int tmp_cs; | 
|  |  | 
|  | if (online_spare_swap_done(pvt, dct) && | 
|  | csrow == online_spare_bad_dramcs(pvt, dct)) { | 
|  |  | 
|  | for_each_chip_select(tmp_cs, dct, pvt) { | 
|  | if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { | 
|  | csrow = tmp_cs; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return csrow; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Iterate over the DRAM DCT "base" and "mask" registers looking for a | 
|  | * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' | 
|  | * | 
|  | * Return: | 
|  | *	-EINVAL:  NOT FOUND | 
|  | *	0..csrow = Chip-Select Row | 
|  | */ | 
|  | static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct) | 
|  | { | 
|  | struct mem_ctl_info *mci; | 
|  | struct amd64_pvt *pvt; | 
|  | u64 cs_base, cs_mask; | 
|  | int cs_found = -EINVAL; | 
|  | int csrow; | 
|  |  | 
|  | mci = mcis[nid]; | 
|  | if (!mci) | 
|  | return cs_found; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct); | 
|  |  | 
|  | for_each_chip_select(csrow, dct, pvt) { | 
|  | if (!csrow_enabled(csrow, dct, pvt)) | 
|  | continue; | 
|  |  | 
|  | get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); | 
|  |  | 
|  | debugf1("    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", | 
|  | csrow, cs_base, cs_mask); | 
|  |  | 
|  | cs_mask = ~cs_mask; | 
|  |  | 
|  | debugf1("    (InputAddr & ~CSMask)=0x%llx " | 
|  | "(CSBase & ~CSMask)=0x%llx\n", | 
|  | (in_addr & cs_mask), (cs_base & cs_mask)); | 
|  |  | 
|  | if ((in_addr & cs_mask) == (cs_base & cs_mask)) { | 
|  | cs_found = f10_process_possible_spare(pvt, dct, csrow); | 
|  |  | 
|  | debugf1(" MATCH csrow=%d\n", cs_found); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return cs_found; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is | 
|  | * swapped with a region located at the bottom of memory so that the GPU can use | 
|  | * the interleaved region and thus two channels. | 
|  | */ | 
|  | static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) | 
|  | { | 
|  | u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; | 
|  |  | 
|  | if (boot_cpu_data.x86 == 0x10) { | 
|  | /* only revC3 and revE have that feature */ | 
|  | if (boot_cpu_data.x86_model < 4 || | 
|  | (boot_cpu_data.x86_model < 0xa && | 
|  | boot_cpu_data.x86_mask < 3)) | 
|  | return sys_addr; | 
|  | } | 
|  |  | 
|  | amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg); | 
|  |  | 
|  | if (!(swap_reg & 0x1)) | 
|  | return sys_addr; | 
|  |  | 
|  | swap_base	= (swap_reg >> 3) & 0x7f; | 
|  | swap_limit	= (swap_reg >> 11) & 0x7f; | 
|  | rgn_size	= (swap_reg >> 20) & 0x7f; | 
|  | tmp_addr	= sys_addr >> 27; | 
|  |  | 
|  | if (!(sys_addr >> 34) && | 
|  | (((tmp_addr >= swap_base) && | 
|  | (tmp_addr <= swap_limit)) || | 
|  | (tmp_addr < rgn_size))) | 
|  | return sys_addr ^ (u64)swap_base << 27; | 
|  |  | 
|  | return sys_addr; | 
|  | } | 
|  |  | 
|  | /* For a given @dram_range, check if @sys_addr falls within it. */ | 
|  | static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, | 
|  | u64 sys_addr, int *nid, int *chan_sel) | 
|  | { | 
|  | int cs_found = -EINVAL; | 
|  | u64 chan_addr; | 
|  | u32 dct_sel_base; | 
|  | u8 channel; | 
|  | bool high_range = false; | 
|  |  | 
|  | u8 node_id    = dram_dst_node(pvt, range); | 
|  | u8 intlv_en   = dram_intlv_en(pvt, range); | 
|  | u32 intlv_sel = dram_intlv_sel(pvt, range); | 
|  |  | 
|  | debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", | 
|  | range, sys_addr, get_dram_limit(pvt, range)); | 
|  |  | 
|  | if (dhar_valid(pvt) && | 
|  | dhar_base(pvt) <= sys_addr && | 
|  | sys_addr < BIT_64(32)) { | 
|  | amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", | 
|  | sys_addr); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) | 
|  | return -EINVAL; | 
|  |  | 
|  | sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); | 
|  |  | 
|  | dct_sel_base = dct_sel_baseaddr(pvt); | 
|  |  | 
|  | /* | 
|  | * check whether addresses >= DctSelBaseAddr[47:27] are to be used to | 
|  | * select between DCT0 and DCT1. | 
|  | */ | 
|  | if (dct_high_range_enabled(pvt) && | 
|  | !dct_ganging_enabled(pvt) && | 
|  | ((sys_addr >> 27) >= (dct_sel_base >> 11))) | 
|  | high_range = true; | 
|  |  | 
|  | channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); | 
|  |  | 
|  | chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, | 
|  | high_range, dct_sel_base); | 
|  |  | 
|  | /* Remove node interleaving, see F1x120 */ | 
|  | if (intlv_en) | 
|  | chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | | 
|  | (chan_addr & 0xfff); | 
|  |  | 
|  | /* remove channel interleave */ | 
|  | if (dct_interleave_enabled(pvt) && | 
|  | !dct_high_range_enabled(pvt) && | 
|  | !dct_ganging_enabled(pvt)) { | 
|  |  | 
|  | if (dct_sel_interleave_addr(pvt) != 1) { | 
|  | if (dct_sel_interleave_addr(pvt) == 0x3) | 
|  | /* hash 9 */ | 
|  | chan_addr = ((chan_addr >> 10) << 9) | | 
|  | (chan_addr & 0x1ff); | 
|  | else | 
|  | /* A[6] or hash 6 */ | 
|  | chan_addr = ((chan_addr >> 7) << 6) | | 
|  | (chan_addr & 0x3f); | 
|  | } else | 
|  | /* A[12] */ | 
|  | chan_addr = ((chan_addr >> 13) << 12) | | 
|  | (chan_addr & 0xfff); | 
|  | } | 
|  |  | 
|  | debugf1("   Normalized DCT addr: 0x%llx\n", chan_addr); | 
|  |  | 
|  | cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); | 
|  |  | 
|  | if (cs_found >= 0) { | 
|  | *nid = node_id; | 
|  | *chan_sel = channel; | 
|  | } | 
|  | return cs_found; | 
|  | } | 
|  |  | 
|  | static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr, | 
|  | int *node, int *chan_sel) | 
|  | { | 
|  | int cs_found = -EINVAL; | 
|  | unsigned range; | 
|  |  | 
|  | for (range = 0; range < DRAM_RANGES; range++) { | 
|  |  | 
|  | if (!dram_rw(pvt, range)) | 
|  | continue; | 
|  |  | 
|  | if ((get_dram_base(pvt, range)  <= sys_addr) && | 
|  | (get_dram_limit(pvt, range) >= sys_addr)) { | 
|  |  | 
|  | cs_found = f1x_match_to_this_node(pvt, range, | 
|  | sys_addr, node, | 
|  | chan_sel); | 
|  | if (cs_found >= 0) | 
|  | break; | 
|  | } | 
|  | } | 
|  | return cs_found; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps | 
|  | * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). | 
|  | * | 
|  | * The @sys_addr is usually an error address received from the hardware | 
|  | * (MCX_ADDR). | 
|  | */ | 
|  | static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, | 
|  | u16 syndrome) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | u32 page, offset; | 
|  | int nid, csrow, chan = 0; | 
|  |  | 
|  | error_address_to_page_and_offset(sys_addr, &page, &offset); | 
|  |  | 
|  | csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan); | 
|  |  | 
|  | if (csrow < 0) { | 
|  | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, | 
|  | page, offset, syndrome, | 
|  | -1, -1, -1, | 
|  | EDAC_MOD_STR, | 
|  | "failed to map error addr to a csrow", | 
|  | NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need the syndromes for channel detection only when we're | 
|  | * ganged. Otherwise @chan should already contain the channel at | 
|  | * this point. | 
|  | */ | 
|  | if (dct_ganging_enabled(pvt)) | 
|  | chan = get_channel_from_ecc_syndrome(mci, syndrome); | 
|  |  | 
|  | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, | 
|  | page, offset, syndrome, | 
|  | csrow, chan, -1, | 
|  | EDAC_MOD_STR, "", NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * debug routine to display the memory sizes of all logical DIMMs and its | 
|  | * CSROWs | 
|  | */ | 
|  | static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) | 
|  | { | 
|  | int dimm, size0, size1, factor = 0; | 
|  | u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; | 
|  | u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0; | 
|  |  | 
|  | if (boot_cpu_data.x86 == 0xf) { | 
|  | if (pvt->dclr0 & WIDTH_128) | 
|  | factor = 1; | 
|  |  | 
|  | /* K8 families < revF not supported yet */ | 
|  | if (pvt->ext_model < K8_REV_F) | 
|  | return; | 
|  | else | 
|  | WARN_ON(ctrl != 0); | 
|  | } | 
|  |  | 
|  | dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0; | 
|  | dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases | 
|  | : pvt->csels[0].csbases; | 
|  |  | 
|  | debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam); | 
|  |  | 
|  | edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); | 
|  |  | 
|  | /* Dump memory sizes for DIMM and its CSROWs */ | 
|  | for (dimm = 0; dimm < 4; dimm++) { | 
|  |  | 
|  | size0 = 0; | 
|  | if (dcsb[dimm*2] & DCSB_CS_ENABLE) | 
|  | size0 = pvt->ops->dbam_to_cs(pvt, ctrl, | 
|  | DBAM_DIMM(dimm, dbam)); | 
|  |  | 
|  | size1 = 0; | 
|  | if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE) | 
|  | size1 = pvt->ops->dbam_to_cs(pvt, ctrl, | 
|  | DBAM_DIMM(dimm, dbam)); | 
|  |  | 
|  | amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", | 
|  | dimm * 2,     size0 << factor, | 
|  | dimm * 2 + 1, size1 << factor); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct amd64_family_type amd64_family_types[] = { | 
|  | [K8_CPUS] = { | 
|  | .ctl_name = "K8", | 
|  | .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, | 
|  | .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC, | 
|  | .ops = { | 
|  | .early_channel_count	= k8_early_channel_count, | 
|  | .map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow, | 
|  | .dbam_to_cs		= k8_dbam_to_chip_select, | 
|  | .read_dct_pci_cfg	= k8_read_dct_pci_cfg, | 
|  | } | 
|  | }, | 
|  | [F10_CPUS] = { | 
|  | .ctl_name = "F10h", | 
|  | .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, | 
|  | .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC, | 
|  | .ops = { | 
|  | .early_channel_count	= f1x_early_channel_count, | 
|  | .map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow, | 
|  | .dbam_to_cs		= f10_dbam_to_chip_select, | 
|  | .read_dct_pci_cfg	= f10_read_dct_pci_cfg, | 
|  | } | 
|  | }, | 
|  | [F15_CPUS] = { | 
|  | .ctl_name = "F15h", | 
|  | .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1, | 
|  | .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3, | 
|  | .ops = { | 
|  | .early_channel_count	= f1x_early_channel_count, | 
|  | .map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow, | 
|  | .dbam_to_cs		= f15_dbam_to_chip_select, | 
|  | .read_dct_pci_cfg	= f15_read_dct_pci_cfg, | 
|  | } | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static struct pci_dev *pci_get_related_function(unsigned int vendor, | 
|  | unsigned int device, | 
|  | struct pci_dev *related) | 
|  | { | 
|  | struct pci_dev *dev = NULL; | 
|  |  | 
|  | dev = pci_get_device(vendor, device, dev); | 
|  | while (dev) { | 
|  | if ((dev->bus->number == related->bus->number) && | 
|  | (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) | 
|  | break; | 
|  | dev = pci_get_device(vendor, device, dev); | 
|  | } | 
|  |  | 
|  | return dev; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are tables of eigenvectors (one per line) which can be used for the | 
|  | * construction of the syndrome tables. The modified syndrome search algorithm | 
|  | * uses those to find the symbol in error and thus the DIMM. | 
|  | * | 
|  | * Algorithm courtesy of Ross LaFetra from AMD. | 
|  | */ | 
|  | static u16 x4_vectors[] = { | 
|  | 0x2f57, 0x1afe, 0x66cc, 0xdd88, | 
|  | 0x11eb, 0x3396, 0x7f4c, 0xeac8, | 
|  | 0x0001, 0x0002, 0x0004, 0x0008, | 
|  | 0x1013, 0x3032, 0x4044, 0x8088, | 
|  | 0x106b, 0x30d6, 0x70fc, 0xe0a8, | 
|  | 0x4857, 0xc4fe, 0x13cc, 0x3288, | 
|  | 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, | 
|  | 0x1f39, 0x251e, 0xbd6c, 0x6bd8, | 
|  | 0x15c1, 0x2a42, 0x89ac, 0x4758, | 
|  | 0x2b03, 0x1602, 0x4f0c, 0xca08, | 
|  | 0x1f07, 0x3a0e, 0x6b04, 0xbd08, | 
|  | 0x8ba7, 0x465e, 0x244c, 0x1cc8, | 
|  | 0x2b87, 0x164e, 0x642c, 0xdc18, | 
|  | 0x40b9, 0x80de, 0x1094, 0x20e8, | 
|  | 0x27db, 0x1eb6, 0x9dac, 0x7b58, | 
|  | 0x11c1, 0x2242, 0x84ac, 0x4c58, | 
|  | 0x1be5, 0x2d7a, 0x5e34, 0xa718, | 
|  | 0x4b39, 0x8d1e, 0x14b4, 0x28d8, | 
|  | 0x4c97, 0xc87e, 0x11fc, 0x33a8, | 
|  | 0x8e97, 0x497e, 0x2ffc, 0x1aa8, | 
|  | 0x16b3, 0x3d62, 0x4f34, 0x8518, | 
|  | 0x1e2f, 0x391a, 0x5cac, 0xf858, | 
|  | 0x1d9f, 0x3b7a, 0x572c, 0xfe18, | 
|  | 0x15f5, 0x2a5a, 0x5264, 0xa3b8, | 
|  | 0x1dbb, 0x3b66, 0x715c, 0xe3f8, | 
|  | 0x4397, 0xc27e, 0x17fc, 0x3ea8, | 
|  | 0x1617, 0x3d3e, 0x6464, 0xb8b8, | 
|  | 0x23ff, 0x12aa, 0xab6c, 0x56d8, | 
|  | 0x2dfb, 0x1ba6, 0x913c, 0x7328, | 
|  | 0x185d, 0x2ca6, 0x7914, 0x9e28, | 
|  | 0x171b, 0x3e36, 0x7d7c, 0xebe8, | 
|  | 0x4199, 0x82ee, 0x19f4, 0x2e58, | 
|  | 0x4807, 0xc40e, 0x130c, 0x3208, | 
|  | 0x1905, 0x2e0a, 0x5804, 0xac08, | 
|  | 0x213f, 0x132a, 0xadfc, 0x5ba8, | 
|  | 0x19a9, 0x2efe, 0xb5cc, 0x6f88, | 
|  | }; | 
|  |  | 
|  | static u16 x8_vectors[] = { | 
|  | 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, | 
|  | 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, | 
|  | 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, | 
|  | 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, | 
|  | 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, | 
|  | 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, | 
|  | 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, | 
|  | 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, | 
|  | 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, | 
|  | 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, | 
|  | 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, | 
|  | 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, | 
|  | 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, | 
|  | 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, | 
|  | 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, | 
|  | 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, | 
|  | 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, | 
|  | 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, | 
|  | 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, | 
|  | }; | 
|  |  | 
|  | static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs, | 
|  | unsigned v_dim) | 
|  | { | 
|  | unsigned int i, err_sym; | 
|  |  | 
|  | for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { | 
|  | u16 s = syndrome; | 
|  | unsigned v_idx =  err_sym * v_dim; | 
|  | unsigned v_end = (err_sym + 1) * v_dim; | 
|  |  | 
|  | /* walk over all 16 bits of the syndrome */ | 
|  | for (i = 1; i < (1U << 16); i <<= 1) { | 
|  |  | 
|  | /* if bit is set in that eigenvector... */ | 
|  | if (v_idx < v_end && vectors[v_idx] & i) { | 
|  | u16 ev_comp = vectors[v_idx++]; | 
|  |  | 
|  | /* ... and bit set in the modified syndrome, */ | 
|  | if (s & i) { | 
|  | /* remove it. */ | 
|  | s ^= ev_comp; | 
|  |  | 
|  | if (!s) | 
|  | return err_sym; | 
|  | } | 
|  |  | 
|  | } else if (s & i) | 
|  | /* can't get to zero, move to next symbol */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | debugf0("syndrome(%x) not found\n", syndrome); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int map_err_sym_to_channel(int err_sym, int sym_size) | 
|  | { | 
|  | if (sym_size == 4) | 
|  | switch (err_sym) { | 
|  | case 0x20: | 
|  | case 0x21: | 
|  | return 0; | 
|  | break; | 
|  | case 0x22: | 
|  | case 0x23: | 
|  | return 1; | 
|  | break; | 
|  | default: | 
|  | return err_sym >> 4; | 
|  | break; | 
|  | } | 
|  | /* x8 symbols */ | 
|  | else | 
|  | switch (err_sym) { | 
|  | /* imaginary bits not in a DIMM */ | 
|  | case 0x10: | 
|  | WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", | 
|  | err_sym); | 
|  | return -1; | 
|  | break; | 
|  |  | 
|  | case 0x11: | 
|  | return 0; | 
|  | break; | 
|  | case 0x12: | 
|  | return 1; | 
|  | break; | 
|  | default: | 
|  | return err_sym >> 3; | 
|  | break; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | int err_sym = -1; | 
|  |  | 
|  | if (pvt->ecc_sym_sz == 8) | 
|  | err_sym = decode_syndrome(syndrome, x8_vectors, | 
|  | ARRAY_SIZE(x8_vectors), | 
|  | pvt->ecc_sym_sz); | 
|  | else if (pvt->ecc_sym_sz == 4) | 
|  | err_sym = decode_syndrome(syndrome, x4_vectors, | 
|  | ARRAY_SIZE(x4_vectors), | 
|  | pvt->ecc_sym_sz); | 
|  | else { | 
|  | amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); | 
|  | return err_sym; | 
|  | } | 
|  |  | 
|  | return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR | 
|  | * ADDRESS and process. | 
|  | */ | 
|  | static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | u64 sys_addr; | 
|  | u16 syndrome; | 
|  |  | 
|  | /* Ensure that the Error Address is VALID */ | 
|  | if (!(m->status & MCI_STATUS_ADDRV)) { | 
|  | amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n"); | 
|  | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, | 
|  | 0, 0, 0, | 
|  | -1, -1, -1, | 
|  | EDAC_MOD_STR, | 
|  | "HW has no ERROR_ADDRESS available", | 
|  | NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | sys_addr = get_error_address(m); | 
|  | syndrome = extract_syndrome(m->status); | 
|  |  | 
|  | amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr); | 
|  |  | 
|  | pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome); | 
|  | } | 
|  |  | 
|  | /* Handle any Un-correctable Errors (UEs) */ | 
|  | static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m) | 
|  | { | 
|  | struct mem_ctl_info *log_mci, *src_mci = NULL; | 
|  | int csrow; | 
|  | u64 sys_addr; | 
|  | u32 page, offset; | 
|  |  | 
|  | log_mci = mci; | 
|  |  | 
|  | if (!(m->status & MCI_STATUS_ADDRV)) { | 
|  | amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n"); | 
|  | edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, | 
|  | 0, 0, 0, | 
|  | -1, -1, -1, | 
|  | EDAC_MOD_STR, | 
|  | "HW has no ERROR_ADDRESS available", | 
|  | NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | sys_addr = get_error_address(m); | 
|  | error_address_to_page_and_offset(sys_addr, &page, &offset); | 
|  |  | 
|  | /* | 
|  | * Find out which node the error address belongs to. This may be | 
|  | * different from the node that detected the error. | 
|  | */ | 
|  | src_mci = find_mc_by_sys_addr(mci, sys_addr); | 
|  | if (!src_mci) { | 
|  | amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n", | 
|  | (unsigned long)sys_addr); | 
|  | edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, | 
|  | page, offset, 0, | 
|  | -1, -1, -1, | 
|  | EDAC_MOD_STR, | 
|  | "ERROR ADDRESS NOT mapped to a MC", NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | log_mci = src_mci; | 
|  |  | 
|  | csrow = sys_addr_to_csrow(log_mci, sys_addr); | 
|  | if (csrow < 0) { | 
|  | amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n", | 
|  | (unsigned long)sys_addr); | 
|  | edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, | 
|  | page, offset, 0, | 
|  | -1, -1, -1, | 
|  | EDAC_MOD_STR, | 
|  | "ERROR ADDRESS NOT mapped to CS", | 
|  | NULL); | 
|  | } else { | 
|  | edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, | 
|  | page, offset, 0, | 
|  | csrow, -1, -1, | 
|  | EDAC_MOD_STR, "", NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci, | 
|  | struct mce *m) | 
|  | { | 
|  | u16 ec = EC(m->status); | 
|  | u8 xec = XEC(m->status, 0x1f); | 
|  | u8 ecc_type = (m->status >> 45) & 0x3; | 
|  |  | 
|  | /* Bail early out if this was an 'observed' error */ | 
|  | if (PP(ec) == NBSL_PP_OBS) | 
|  | return; | 
|  |  | 
|  | /* Do only ECC errors */ | 
|  | if (xec && xec != F10_NBSL_EXT_ERR_ECC) | 
|  | return; | 
|  |  | 
|  | if (ecc_type == 2) | 
|  | amd64_handle_ce(mci, m); | 
|  | else if (ecc_type == 1) | 
|  | amd64_handle_ue(mci, m); | 
|  | } | 
|  |  | 
|  | void amd64_decode_bus_error(int node_id, struct mce *m) | 
|  | { | 
|  | __amd64_decode_bus_error(mcis[node_id], m); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use pvt->F2 which contains the F2 CPU PCI device to get the related | 
|  | * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error. | 
|  | */ | 
|  | static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id) | 
|  | { | 
|  | /* Reserve the ADDRESS MAP Device */ | 
|  | pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2); | 
|  | if (!pvt->F1) { | 
|  | amd64_err("error address map device not found: " | 
|  | "vendor %x device 0x%x (broken BIOS?)\n", | 
|  | PCI_VENDOR_ID_AMD, f1_id); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Reserve the MISC Device */ | 
|  | pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2); | 
|  | if (!pvt->F3) { | 
|  | pci_dev_put(pvt->F1); | 
|  | pvt->F1 = NULL; | 
|  |  | 
|  | amd64_err("error F3 device not found: " | 
|  | "vendor %x device 0x%x (broken BIOS?)\n", | 
|  | PCI_VENDOR_ID_AMD, f3_id); | 
|  |  | 
|  | return -ENODEV; | 
|  | } | 
|  | debugf1("F1: %s\n", pci_name(pvt->F1)); | 
|  | debugf1("F2: %s\n", pci_name(pvt->F2)); | 
|  | debugf1("F3: %s\n", pci_name(pvt->F3)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_mc_sibling_devs(struct amd64_pvt *pvt) | 
|  | { | 
|  | pci_dev_put(pvt->F1); | 
|  | pci_dev_put(pvt->F3); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retrieve the hardware registers of the memory controller (this includes the | 
|  | * 'Address Map' and 'Misc' device regs) | 
|  | */ | 
|  | static void read_mc_regs(struct amd64_pvt *pvt) | 
|  | { | 
|  | struct cpuinfo_x86 *c = &boot_cpu_data; | 
|  | u64 msr_val; | 
|  | u32 tmp; | 
|  | unsigned range; | 
|  |  | 
|  | /* | 
|  | * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since | 
|  | * those are Read-As-Zero | 
|  | */ | 
|  | rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); | 
|  | debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem); | 
|  |  | 
|  | /* check first whether TOP_MEM2 is enabled */ | 
|  | rdmsrl(MSR_K8_SYSCFG, msr_val); | 
|  | if (msr_val & (1U << 21)) { | 
|  | rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); | 
|  | debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2); | 
|  | } else | 
|  | debugf0("  TOP_MEM2 disabled.\n"); | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); | 
|  |  | 
|  | read_dram_ctl_register(pvt); | 
|  |  | 
|  | for (range = 0; range < DRAM_RANGES; range++) { | 
|  | u8 rw; | 
|  |  | 
|  | /* read settings for this DRAM range */ | 
|  | read_dram_base_limit_regs(pvt, range); | 
|  |  | 
|  | rw = dram_rw(pvt, range); | 
|  | if (!rw) | 
|  | continue; | 
|  |  | 
|  | debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", | 
|  | range, | 
|  | get_dram_base(pvt, range), | 
|  | get_dram_limit(pvt, range)); | 
|  |  | 
|  | debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", | 
|  | dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", | 
|  | (rw & 0x1) ? "R" : "-", | 
|  | (rw & 0x2) ? "W" : "-", | 
|  | dram_intlv_sel(pvt, range), | 
|  | dram_dst_node(pvt, range)); | 
|  | } | 
|  |  | 
|  | read_dct_base_mask(pvt); | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); | 
|  | amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0); | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); | 
|  |  | 
|  | amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0); | 
|  | amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0); | 
|  |  | 
|  | if (!dct_ganging_enabled(pvt)) { | 
|  | amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1); | 
|  | amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1); | 
|  | } | 
|  |  | 
|  | pvt->ecc_sym_sz = 4; | 
|  |  | 
|  | if (c->x86 >= 0x10) { | 
|  | amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); | 
|  | amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1); | 
|  |  | 
|  | /* F10h, revD and later can do x8 ECC too */ | 
|  | if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25)) | 
|  | pvt->ecc_sym_sz = 8; | 
|  | } | 
|  | dump_misc_regs(pvt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE: CPU Revision Dependent code | 
|  | * | 
|  | * Input: | 
|  | *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) | 
|  | *	k8 private pointer to --> | 
|  | *			DRAM Bank Address mapping register | 
|  | *			node_id | 
|  | *			DCL register where dual_channel_active is | 
|  | * | 
|  | * The DBAM register consists of 4 sets of 4 bits each definitions: | 
|  | * | 
|  | * Bits:	CSROWs | 
|  | * 0-3		CSROWs 0 and 1 | 
|  | * 4-7		CSROWs 2 and 3 | 
|  | * 8-11		CSROWs 4 and 5 | 
|  | * 12-15	CSROWs 6 and 7 | 
|  | * | 
|  | * Values range from: 0 to 15 | 
|  | * The meaning of the values depends on CPU revision and dual-channel state, | 
|  | * see relevant BKDG more info. | 
|  | * | 
|  | * The memory controller provides for total of only 8 CSROWs in its current | 
|  | * architecture. Each "pair" of CSROWs normally represents just one DIMM in | 
|  | * single channel or two (2) DIMMs in dual channel mode. | 
|  | * | 
|  | * The following code logic collapses the various tables for CSROW based on CPU | 
|  | * revision. | 
|  | * | 
|  | * Returns: | 
|  | *	The number of PAGE_SIZE pages on the specified CSROW number it | 
|  | *	encompasses | 
|  | * | 
|  | */ | 
|  | static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr) | 
|  | { | 
|  | u32 cs_mode, nr_pages; | 
|  | u32 dbam = dct ? pvt->dbam1 : pvt->dbam0; | 
|  |  | 
|  | /* | 
|  | * The math on this doesn't look right on the surface because x/2*4 can | 
|  | * be simplified to x*2 but this expression makes use of the fact that | 
|  | * it is integral math where 1/2=0. This intermediate value becomes the | 
|  | * number of bits to shift the DBAM register to extract the proper CSROW | 
|  | * field. | 
|  | */ | 
|  | cs_mode =  (dbam >> ((csrow_nr / 2) * 4)) & 0xF; | 
|  |  | 
|  | nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT); | 
|  |  | 
|  | debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode); | 
|  | debugf0("    nr_pages/channel= %u  channel-count = %d\n", | 
|  | nr_pages, pvt->channel_count); | 
|  |  | 
|  | return nr_pages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the array of csrow attribute instances, based on the values | 
|  | * from pci config hardware registers. | 
|  | */ | 
|  | static int init_csrows(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct csrow_info *csrow; | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  | u64 base, mask; | 
|  | u32 val; | 
|  | int i, j, empty = 1; | 
|  | enum mem_type mtype; | 
|  | enum edac_type edac_mode; | 
|  | int nr_pages = 0; | 
|  |  | 
|  | amd64_read_pci_cfg(pvt->F3, NBCFG, &val); | 
|  |  | 
|  | pvt->nbcfg = val; | 
|  |  | 
|  | debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", | 
|  | pvt->mc_node_id, val, | 
|  | !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); | 
|  |  | 
|  | for_each_chip_select(i, 0, pvt) { | 
|  | csrow = &mci->csrows[i]; | 
|  |  | 
|  | if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) { | 
|  | debugf1("----CSROW %d EMPTY for node %d\n", i, | 
|  | pvt->mc_node_id); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | debugf1("----CSROW %d VALID for MC node %d\n", | 
|  | i, pvt->mc_node_id); | 
|  |  | 
|  | empty = 0; | 
|  | if (csrow_enabled(i, 0, pvt)) | 
|  | nr_pages = amd64_csrow_nr_pages(pvt, 0, i); | 
|  | if (csrow_enabled(i, 1, pvt)) | 
|  | nr_pages += amd64_csrow_nr_pages(pvt, 1, i); | 
|  |  | 
|  | get_cs_base_and_mask(pvt, i, 0, &base, &mask); | 
|  | /* 8 bytes of resolution */ | 
|  |  | 
|  | mtype = amd64_determine_memory_type(pvt, i); | 
|  |  | 
|  | debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i); | 
|  | debugf1("    nr_pages: %u\n", nr_pages * pvt->channel_count); | 
|  |  | 
|  | /* | 
|  | * determine whether CHIPKILL or JUST ECC or NO ECC is operating | 
|  | */ | 
|  | if (pvt->nbcfg & NBCFG_ECC_ENABLE) | 
|  | edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ? | 
|  | EDAC_S4ECD4ED : EDAC_SECDED; | 
|  | else | 
|  | edac_mode = EDAC_NONE; | 
|  |  | 
|  | for (j = 0; j < pvt->channel_count; j++) { | 
|  | csrow->channels[j].dimm->mtype = mtype; | 
|  | csrow->channels[j].dimm->edac_mode = edac_mode; | 
|  | csrow->channels[j].dimm->nr_pages = nr_pages; | 
|  | } | 
|  | } | 
|  |  | 
|  | return empty; | 
|  | } | 
|  |  | 
|  | /* get all cores on this DCT */ | 
|  | static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | if (amd_get_nb_id(cpu) == nid) | 
|  | cpumask_set_cpu(cpu, mask); | 
|  | } | 
|  |  | 
|  | /* check MCG_CTL on all the cpus on this node */ | 
|  | static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid) | 
|  | { | 
|  | cpumask_var_t mask; | 
|  | int cpu, nbe; | 
|  | bool ret = false; | 
|  |  | 
|  | if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { | 
|  | amd64_warn("%s: Error allocating mask\n", __func__); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | get_cpus_on_this_dct_cpumask(mask, nid); | 
|  |  | 
|  | rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); | 
|  |  | 
|  | for_each_cpu(cpu, mask) { | 
|  | struct msr *reg = per_cpu_ptr(msrs, cpu); | 
|  | nbe = reg->l & MSR_MCGCTL_NBE; | 
|  |  | 
|  | debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", | 
|  | cpu, reg->q, | 
|  | (nbe ? "enabled" : "disabled")); | 
|  |  | 
|  | if (!nbe) | 
|  | goto out; | 
|  | } | 
|  | ret = true; | 
|  |  | 
|  | out: | 
|  | free_cpumask_var(mask); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on) | 
|  | { | 
|  | cpumask_var_t cmask; | 
|  | int cpu; | 
|  |  | 
|  | if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { | 
|  | amd64_warn("%s: error allocating mask\n", __func__); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | get_cpus_on_this_dct_cpumask(cmask, nid); | 
|  |  | 
|  | rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); | 
|  |  | 
|  | for_each_cpu(cpu, cmask) { | 
|  |  | 
|  | struct msr *reg = per_cpu_ptr(msrs, cpu); | 
|  |  | 
|  | if (on) { | 
|  | if (reg->l & MSR_MCGCTL_NBE) | 
|  | s->flags.nb_mce_enable = 1; | 
|  |  | 
|  | reg->l |= MSR_MCGCTL_NBE; | 
|  | } else { | 
|  | /* | 
|  | * Turn off NB MCE reporting only when it was off before | 
|  | */ | 
|  | if (!s->flags.nb_mce_enable) | 
|  | reg->l &= ~MSR_MCGCTL_NBE; | 
|  | } | 
|  | } | 
|  | wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); | 
|  |  | 
|  | free_cpumask_var(cmask); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid, | 
|  | struct pci_dev *F3) | 
|  | { | 
|  | bool ret = true; | 
|  | u32 value, mask = 0x3;		/* UECC/CECC enable */ | 
|  |  | 
|  | if (toggle_ecc_err_reporting(s, nid, ON)) { | 
|  | amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | amd64_read_pci_cfg(F3, NBCTL, &value); | 
|  |  | 
|  | s->old_nbctl   = value & mask; | 
|  | s->nbctl_valid = true; | 
|  |  | 
|  | value |= mask; | 
|  | amd64_write_pci_cfg(F3, NBCTL, value); | 
|  |  | 
|  | amd64_read_pci_cfg(F3, NBCFG, &value); | 
|  |  | 
|  | debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", | 
|  | nid, value, !!(value & NBCFG_ECC_ENABLE)); | 
|  |  | 
|  | if (!(value & NBCFG_ECC_ENABLE)) { | 
|  | amd64_warn("DRAM ECC disabled on this node, enabling...\n"); | 
|  |  | 
|  | s->flags.nb_ecc_prev = 0; | 
|  |  | 
|  | /* Attempt to turn on DRAM ECC Enable */ | 
|  | value |= NBCFG_ECC_ENABLE; | 
|  | amd64_write_pci_cfg(F3, NBCFG, value); | 
|  |  | 
|  | amd64_read_pci_cfg(F3, NBCFG, &value); | 
|  |  | 
|  | if (!(value & NBCFG_ECC_ENABLE)) { | 
|  | amd64_warn("Hardware rejected DRAM ECC enable," | 
|  | "check memory DIMM configuration.\n"); | 
|  | ret = false; | 
|  | } else { | 
|  | amd64_info("Hardware accepted DRAM ECC Enable\n"); | 
|  | } | 
|  | } else { | 
|  | s->flags.nb_ecc_prev = 1; | 
|  | } | 
|  |  | 
|  | debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", | 
|  | nid, value, !!(value & NBCFG_ECC_ENABLE)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid, | 
|  | struct pci_dev *F3) | 
|  | { | 
|  | u32 value, mask = 0x3;		/* UECC/CECC enable */ | 
|  |  | 
|  |  | 
|  | if (!s->nbctl_valid) | 
|  | return; | 
|  |  | 
|  | amd64_read_pci_cfg(F3, NBCTL, &value); | 
|  | value &= ~mask; | 
|  | value |= s->old_nbctl; | 
|  |  | 
|  | amd64_write_pci_cfg(F3, NBCTL, value); | 
|  |  | 
|  | /* restore previous BIOS DRAM ECC "off" setting we force-enabled */ | 
|  | if (!s->flags.nb_ecc_prev) { | 
|  | amd64_read_pci_cfg(F3, NBCFG, &value); | 
|  | value &= ~NBCFG_ECC_ENABLE; | 
|  | amd64_write_pci_cfg(F3, NBCFG, value); | 
|  | } | 
|  |  | 
|  | /* restore the NB Enable MCGCTL bit */ | 
|  | if (toggle_ecc_err_reporting(s, nid, OFF)) | 
|  | amd64_warn("Error restoring NB MCGCTL settings!\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * EDAC requires that the BIOS have ECC enabled before | 
|  | * taking over the processing of ECC errors. A command line | 
|  | * option allows to force-enable hardware ECC later in | 
|  | * enable_ecc_error_reporting(). | 
|  | */ | 
|  | static const char *ecc_msg = | 
|  | "ECC disabled in the BIOS or no ECC capability, module will not load.\n" | 
|  | " Either enable ECC checking or force module loading by setting " | 
|  | "'ecc_enable_override'.\n" | 
|  | " (Note that use of the override may cause unknown side effects.)\n"; | 
|  |  | 
|  | static bool ecc_enabled(struct pci_dev *F3, u8 nid) | 
|  | { | 
|  | u32 value; | 
|  | u8 ecc_en = 0; | 
|  | bool nb_mce_en = false; | 
|  |  | 
|  | amd64_read_pci_cfg(F3, NBCFG, &value); | 
|  |  | 
|  | ecc_en = !!(value & NBCFG_ECC_ENABLE); | 
|  | amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled")); | 
|  |  | 
|  | nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid); | 
|  | if (!nb_mce_en) | 
|  | amd64_notice("NB MCE bank disabled, set MSR " | 
|  | "0x%08x[4] on node %d to enable.\n", | 
|  | MSR_IA32_MCG_CTL, nid); | 
|  |  | 
|  | if (!ecc_en || !nb_mce_en) { | 
|  | amd64_notice("%s", ecc_msg); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) + | 
|  | ARRAY_SIZE(amd64_inj_attrs) + | 
|  | 1]; | 
|  |  | 
|  | struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } }; | 
|  |  | 
|  | static void set_mc_sysfs_attrs(struct mem_ctl_info *mci) | 
|  | { | 
|  | unsigned int i = 0, j = 0; | 
|  |  | 
|  | for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++) | 
|  | sysfs_attrs[i] = amd64_dbg_attrs[i]; | 
|  |  | 
|  | if (boot_cpu_data.x86 >= 0x10) | 
|  | for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++) | 
|  | sysfs_attrs[i] = amd64_inj_attrs[j]; | 
|  |  | 
|  | sysfs_attrs[i] = terminator; | 
|  |  | 
|  | mci->mc_driver_sysfs_attributes = sysfs_attrs; | 
|  | } | 
|  |  | 
|  | static void setup_mci_misc_attrs(struct mem_ctl_info *mci, | 
|  | struct amd64_family_type *fam) | 
|  | { | 
|  | struct amd64_pvt *pvt = mci->pvt_info; | 
|  |  | 
|  | mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; | 
|  | mci->edac_ctl_cap	= EDAC_FLAG_NONE; | 
|  |  | 
|  | if (pvt->nbcap & NBCAP_SECDED) | 
|  | mci->edac_ctl_cap |= EDAC_FLAG_SECDED; | 
|  |  | 
|  | if (pvt->nbcap & NBCAP_CHIPKILL) | 
|  | mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; | 
|  |  | 
|  | mci->edac_cap		= amd64_determine_edac_cap(pvt); | 
|  | mci->mod_name		= EDAC_MOD_STR; | 
|  | mci->mod_ver		= EDAC_AMD64_VERSION; | 
|  | mci->ctl_name		= fam->ctl_name; | 
|  | mci->dev_name		= pci_name(pvt->F2); | 
|  | mci->ctl_page_to_phys	= NULL; | 
|  |  | 
|  | /* memory scrubber interface */ | 
|  | mci->set_sdram_scrub_rate = amd64_set_scrub_rate; | 
|  | mci->get_sdram_scrub_rate = amd64_get_scrub_rate; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns a pointer to the family descriptor on success, NULL otherwise. | 
|  | */ | 
|  | static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt) | 
|  | { | 
|  | u8 fam = boot_cpu_data.x86; | 
|  | struct amd64_family_type *fam_type = NULL; | 
|  |  | 
|  | switch (fam) { | 
|  | case 0xf: | 
|  | fam_type		= &amd64_family_types[K8_CPUS]; | 
|  | pvt->ops		= &amd64_family_types[K8_CPUS].ops; | 
|  | break; | 
|  |  | 
|  | case 0x10: | 
|  | fam_type		= &amd64_family_types[F10_CPUS]; | 
|  | pvt->ops		= &amd64_family_types[F10_CPUS].ops; | 
|  | break; | 
|  |  | 
|  | case 0x15: | 
|  | fam_type		= &amd64_family_types[F15_CPUS]; | 
|  | pvt->ops		= &amd64_family_types[F15_CPUS].ops; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | amd64_err("Unsupported family!\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | pvt->ext_model = boot_cpu_data.x86_model >> 4; | 
|  |  | 
|  | amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name, | 
|  | (fam == 0xf ? | 
|  | (pvt->ext_model >= K8_REV_F  ? "revF or later " | 
|  | : "revE or earlier ") | 
|  | : ""), pvt->mc_node_id); | 
|  | return fam_type; | 
|  | } | 
|  |  | 
|  | static int amd64_init_one_instance(struct pci_dev *F2) | 
|  | { | 
|  | struct amd64_pvt *pvt = NULL; | 
|  | struct amd64_family_type *fam_type = NULL; | 
|  | struct mem_ctl_info *mci = NULL; | 
|  | struct edac_mc_layer layers[2]; | 
|  | int err = 0, ret; | 
|  | u8 nid = get_node_id(F2); | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); | 
|  | if (!pvt) | 
|  | goto err_ret; | 
|  |  | 
|  | pvt->mc_node_id	= nid; | 
|  | pvt->F2 = F2; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | fam_type = amd64_per_family_init(pvt); | 
|  | if (!fam_type) | 
|  | goto err_free; | 
|  |  | 
|  | ret = -ENODEV; | 
|  | err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id); | 
|  | if (err) | 
|  | goto err_free; | 
|  |  | 
|  | read_mc_regs(pvt); | 
|  |  | 
|  | /* | 
|  | * We need to determine how many memory channels there are. Then use | 
|  | * that information for calculating the size of the dynamic instance | 
|  | * tables in the 'mci' structure. | 
|  | */ | 
|  | ret = -EINVAL; | 
|  | pvt->channel_count = pvt->ops->early_channel_count(pvt); | 
|  | if (pvt->channel_count < 0) | 
|  | goto err_siblings; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; | 
|  | layers[0].size = pvt->csels[0].b_cnt; | 
|  | layers[0].is_virt_csrow = true; | 
|  | layers[1].type = EDAC_MC_LAYER_CHANNEL; | 
|  | layers[1].size = pvt->channel_count; | 
|  | layers[1].is_virt_csrow = false; | 
|  | mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0); | 
|  | if (!mci) | 
|  | goto err_siblings; | 
|  |  | 
|  | mci->pvt_info = pvt; | 
|  | mci->dev = &pvt->F2->dev; | 
|  |  | 
|  | setup_mci_misc_attrs(mci, fam_type); | 
|  |  | 
|  | if (init_csrows(mci)) | 
|  | mci->edac_cap = EDAC_FLAG_NONE; | 
|  |  | 
|  | set_mc_sysfs_attrs(mci); | 
|  |  | 
|  | ret = -ENODEV; | 
|  | if (edac_mc_add_mc(mci)) { | 
|  | debugf1("failed edac_mc_add_mc()\n"); | 
|  | goto err_add_mc; | 
|  | } | 
|  |  | 
|  | /* register stuff with EDAC MCE */ | 
|  | if (report_gart_errors) | 
|  | amd_report_gart_errors(true); | 
|  |  | 
|  | amd_register_ecc_decoder(amd64_decode_bus_error); | 
|  |  | 
|  | mcis[nid] = mci; | 
|  |  | 
|  | atomic_inc(&drv_instances); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_add_mc: | 
|  | edac_mc_free(mci); | 
|  |  | 
|  | err_siblings: | 
|  | free_mc_sibling_devs(pvt); | 
|  |  | 
|  | err_free: | 
|  | kfree(pvt); | 
|  |  | 
|  | err_ret: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __devinit amd64_probe_one_instance(struct pci_dev *pdev, | 
|  | const struct pci_device_id *mc_type) | 
|  | { | 
|  | u8 nid = get_node_id(pdev); | 
|  | struct pci_dev *F3 = node_to_amd_nb(nid)->misc; | 
|  | struct ecc_settings *s; | 
|  | int ret = 0; | 
|  |  | 
|  | ret = pci_enable_device(pdev); | 
|  | if (ret < 0) { | 
|  | debugf0("ret=%d\n", ret); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); | 
|  | if (!s) | 
|  | goto err_out; | 
|  |  | 
|  | ecc_stngs[nid] = s; | 
|  |  | 
|  | if (!ecc_enabled(F3, nid)) { | 
|  | ret = -ENODEV; | 
|  |  | 
|  | if (!ecc_enable_override) | 
|  | goto err_enable; | 
|  |  | 
|  | amd64_warn("Forcing ECC on!\n"); | 
|  |  | 
|  | if (!enable_ecc_error_reporting(s, nid, F3)) | 
|  | goto err_enable; | 
|  | } | 
|  |  | 
|  | ret = amd64_init_one_instance(pdev); | 
|  | if (ret < 0) { | 
|  | amd64_err("Error probing instance: %d\n", nid); | 
|  | restore_ecc_error_reporting(s, nid, F3); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | err_enable: | 
|  | kfree(s); | 
|  | ecc_stngs[nid] = NULL; | 
|  |  | 
|  | err_out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __devexit amd64_remove_one_instance(struct pci_dev *pdev) | 
|  | { | 
|  | struct mem_ctl_info *mci; | 
|  | struct amd64_pvt *pvt; | 
|  | u8 nid = get_node_id(pdev); | 
|  | struct pci_dev *F3 = node_to_amd_nb(nid)->misc; | 
|  | struct ecc_settings *s = ecc_stngs[nid]; | 
|  |  | 
|  | /* Remove from EDAC CORE tracking list */ | 
|  | mci = edac_mc_del_mc(&pdev->dev); | 
|  | if (!mci) | 
|  | return; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | restore_ecc_error_reporting(s, nid, F3); | 
|  |  | 
|  | free_mc_sibling_devs(pvt); | 
|  |  | 
|  | /* unregister from EDAC MCE */ | 
|  | amd_report_gart_errors(false); | 
|  | amd_unregister_ecc_decoder(amd64_decode_bus_error); | 
|  |  | 
|  | kfree(ecc_stngs[nid]); | 
|  | ecc_stngs[nid] = NULL; | 
|  |  | 
|  | /* Free the EDAC CORE resources */ | 
|  | mci->pvt_info = NULL; | 
|  | mcis[nid] = NULL; | 
|  |  | 
|  | kfree(pvt); | 
|  | edac_mc_free(mci); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This table is part of the interface for loading drivers for PCI devices. The | 
|  | * PCI core identifies what devices are on a system during boot, and then | 
|  | * inquiry this table to see if this driver is for a given device found. | 
|  | */ | 
|  | static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = { | 
|  | { | 
|  | .vendor		= PCI_VENDOR_ID_AMD, | 
|  | .device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, | 
|  | .subvendor	= PCI_ANY_ID, | 
|  | .subdevice	= PCI_ANY_ID, | 
|  | .class		= 0, | 
|  | .class_mask	= 0, | 
|  | }, | 
|  | { | 
|  | .vendor		= PCI_VENDOR_ID_AMD, | 
|  | .device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM, | 
|  | .subvendor	= PCI_ANY_ID, | 
|  | .subdevice	= PCI_ANY_ID, | 
|  | .class		= 0, | 
|  | .class_mask	= 0, | 
|  | }, | 
|  | { | 
|  | .vendor		= PCI_VENDOR_ID_AMD, | 
|  | .device		= PCI_DEVICE_ID_AMD_15H_NB_F2, | 
|  | .subvendor	= PCI_ANY_ID, | 
|  | .subdevice	= PCI_ANY_ID, | 
|  | .class		= 0, | 
|  | .class_mask	= 0, | 
|  | }, | 
|  |  | 
|  | {0, } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(pci, amd64_pci_table); | 
|  |  | 
|  | static struct pci_driver amd64_pci_driver = { | 
|  | .name		= EDAC_MOD_STR, | 
|  | .probe		= amd64_probe_one_instance, | 
|  | .remove		= __devexit_p(amd64_remove_one_instance), | 
|  | .id_table	= amd64_pci_table, | 
|  | }; | 
|  |  | 
|  | static void setup_pci_device(void) | 
|  | { | 
|  | struct mem_ctl_info *mci; | 
|  | struct amd64_pvt *pvt; | 
|  |  | 
|  | if (amd64_ctl_pci) | 
|  | return; | 
|  |  | 
|  | mci = mcis[0]; | 
|  | if (mci) { | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  | amd64_ctl_pci = | 
|  | edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR); | 
|  |  | 
|  | if (!amd64_ctl_pci) { | 
|  | pr_warning("%s(): Unable to create PCI control\n", | 
|  | __func__); | 
|  |  | 
|  | pr_warning("%s(): PCI error report via EDAC not set\n", | 
|  | __func__); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init amd64_edac_init(void) | 
|  | { | 
|  | int err = -ENODEV; | 
|  |  | 
|  | printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION); | 
|  |  | 
|  | opstate_init(); | 
|  |  | 
|  | if (amd_cache_northbridges() < 0) | 
|  | goto err_ret; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL); | 
|  | ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL); | 
|  | if (!(mcis && ecc_stngs)) | 
|  | goto err_free; | 
|  |  | 
|  | msrs = msrs_alloc(); | 
|  | if (!msrs) | 
|  | goto err_free; | 
|  |  | 
|  | err = pci_register_driver(&amd64_pci_driver); | 
|  | if (err) | 
|  | goto err_pci; | 
|  |  | 
|  | err = -ENODEV; | 
|  | if (!atomic_read(&drv_instances)) | 
|  | goto err_no_instances; | 
|  |  | 
|  | setup_pci_device(); | 
|  | return 0; | 
|  |  | 
|  | err_no_instances: | 
|  | pci_unregister_driver(&amd64_pci_driver); | 
|  |  | 
|  | err_pci: | 
|  | msrs_free(msrs); | 
|  | msrs = NULL; | 
|  |  | 
|  | err_free: | 
|  | kfree(mcis); | 
|  | mcis = NULL; | 
|  |  | 
|  | kfree(ecc_stngs); | 
|  | ecc_stngs = NULL; | 
|  |  | 
|  | err_ret: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __exit amd64_edac_exit(void) | 
|  | { | 
|  | if (amd64_ctl_pci) | 
|  | edac_pci_release_generic_ctl(amd64_ctl_pci); | 
|  |  | 
|  | pci_unregister_driver(&amd64_pci_driver); | 
|  |  | 
|  | kfree(ecc_stngs); | 
|  | ecc_stngs = NULL; | 
|  |  | 
|  | kfree(mcis); | 
|  | mcis = NULL; | 
|  |  | 
|  | msrs_free(msrs); | 
|  | msrs = NULL; | 
|  | } | 
|  |  | 
|  | module_init(amd64_edac_init); | 
|  | module_exit(amd64_edac_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " | 
|  | "Dave Peterson, Thayne Harbaugh"); | 
|  | MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " | 
|  | EDAC_AMD64_VERSION); | 
|  |  | 
|  | module_param(edac_op_state, int, 0444); | 
|  | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |