|  | /* | 
|  | * NAND Flash Controller Device Driver | 
|  | * Copyright © 2009-2010, Intel Corporation and its suppliers. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms and conditions of the GNU General Public License, | 
|  | * version 2, as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, write to the Free Software Foundation, Inc., | 
|  | * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #include "denali.h" | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | /* We define a module parameter that allows the user to override | 
|  | * the hardware and decide what timing mode should be used. | 
|  | */ | 
|  | #define NAND_DEFAULT_TIMINGS	-1 | 
|  |  | 
|  | static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; | 
|  | module_param(onfi_timing_mode, int, S_IRUGO); | 
|  | MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting." | 
|  | " -1 indicates use default timings"); | 
|  |  | 
|  | #define DENALI_NAND_NAME    "denali-nand" | 
|  |  | 
|  | /* We define a macro here that combines all interrupts this driver uses into | 
|  | * a single constant value, for convenience. */ | 
|  | #define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \ | 
|  | INTR_STATUS__ECC_TRANSACTION_DONE | \ | 
|  | INTR_STATUS__ECC_ERR | \ | 
|  | INTR_STATUS__PROGRAM_FAIL | \ | 
|  | INTR_STATUS__LOAD_COMP | \ | 
|  | INTR_STATUS__PROGRAM_COMP | \ | 
|  | INTR_STATUS__TIME_OUT | \ | 
|  | INTR_STATUS__ERASE_FAIL | \ | 
|  | INTR_STATUS__RST_COMP | \ | 
|  | INTR_STATUS__ERASE_COMP) | 
|  |  | 
|  | /* indicates whether or not the internal value for the flash bank is | 
|  | * valid or not */ | 
|  | #define CHIP_SELECT_INVALID	-1 | 
|  |  | 
|  | #define SUPPORT_8BITECC		1 | 
|  |  | 
|  | /* This macro divides two integers and rounds fractional values up | 
|  | * to the nearest integer value. */ | 
|  | #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) | 
|  |  | 
|  | /* this macro allows us to convert from an MTD structure to our own | 
|  | * device context (denali) structure. | 
|  | */ | 
|  | #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd) | 
|  |  | 
|  | /* These constants are defined by the driver to enable common driver | 
|  | * configuration options. */ | 
|  | #define SPARE_ACCESS		0x41 | 
|  | #define MAIN_ACCESS		0x42 | 
|  | #define MAIN_SPARE_ACCESS	0x43 | 
|  |  | 
|  | #define DENALI_READ	0 | 
|  | #define DENALI_WRITE	0x100 | 
|  |  | 
|  | /* types of device accesses. We can issue commands and get status */ | 
|  | #define COMMAND_CYCLE	0 | 
|  | #define ADDR_CYCLE	1 | 
|  | #define STATUS_CYCLE	2 | 
|  |  | 
|  | /* this is a helper macro that allows us to | 
|  | * format the bank into the proper bits for the controller */ | 
|  | #define BANK(x) ((x) << 24) | 
|  |  | 
|  | /* List of platforms this NAND controller has be integrated into */ | 
|  | static const struct pci_device_id denali_pci_ids[] = { | 
|  | { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 }, | 
|  | { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST }, | 
|  | { /* end: all zeroes */ } | 
|  | }; | 
|  |  | 
|  | /* forward declarations */ | 
|  | static void clear_interrupts(struct denali_nand_info *denali); | 
|  | static uint32_t wait_for_irq(struct denali_nand_info *denali, | 
|  | uint32_t irq_mask); | 
|  | static void denali_irq_enable(struct denali_nand_info *denali, | 
|  | uint32_t int_mask); | 
|  | static uint32_t read_interrupt_status(struct denali_nand_info *denali); | 
|  |  | 
|  | /* Certain operations for the denali NAND controller use | 
|  | * an indexed mode to read/write data. The operation is | 
|  | * performed by writing the address value of the command | 
|  | * to the device memory followed by the data. This function | 
|  | * abstracts this common operation. | 
|  | */ | 
|  | static void index_addr(struct denali_nand_info *denali, | 
|  | uint32_t address, uint32_t data) | 
|  | { | 
|  | iowrite32(address, denali->flash_mem); | 
|  | iowrite32(data, denali->flash_mem + 0x10); | 
|  | } | 
|  |  | 
|  | /* Perform an indexed read of the device */ | 
|  | static void index_addr_read_data(struct denali_nand_info *denali, | 
|  | uint32_t address, uint32_t *pdata) | 
|  | { | 
|  | iowrite32(address, denali->flash_mem); | 
|  | *pdata = ioread32(denali->flash_mem + 0x10); | 
|  | } | 
|  |  | 
|  | /* We need to buffer some data for some of the NAND core routines. | 
|  | * The operations manage buffering that data. */ | 
|  | static void reset_buf(struct denali_nand_info *denali) | 
|  | { | 
|  | denali->buf.head = denali->buf.tail = 0; | 
|  | } | 
|  |  | 
|  | static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) | 
|  | { | 
|  | BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf)); | 
|  | denali->buf.buf[denali->buf.tail++] = byte; | 
|  | } | 
|  |  | 
|  | /* reads the status of the device */ | 
|  | static void read_status(struct denali_nand_info *denali) | 
|  | { | 
|  | uint32_t cmd = 0x0; | 
|  |  | 
|  | /* initialize the data buffer to store status */ | 
|  | reset_buf(denali); | 
|  |  | 
|  | cmd = ioread32(denali->flash_reg + WRITE_PROTECT); | 
|  | if (cmd) | 
|  | write_byte_to_buf(denali, NAND_STATUS_WP); | 
|  | else | 
|  | write_byte_to_buf(denali, 0); | 
|  | } | 
|  |  | 
|  | /* resets a specific device connected to the core */ | 
|  | static void reset_bank(struct denali_nand_info *denali) | 
|  | { | 
|  | uint32_t irq_status = 0; | 
|  | uint32_t irq_mask = INTR_STATUS__RST_COMP | | 
|  | INTR_STATUS__TIME_OUT; | 
|  |  | 
|  | clear_interrupts(denali); | 
|  |  | 
|  | iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET); | 
|  |  | 
|  | irq_status = wait_for_irq(denali, irq_mask); | 
|  |  | 
|  | if (irq_status & INTR_STATUS__TIME_OUT) | 
|  | dev_err(denali->dev, "reset bank failed.\n"); | 
|  | } | 
|  |  | 
|  | /* Reset the flash controller */ | 
|  | static uint16_t denali_nand_reset(struct denali_nand_info *denali) | 
|  | { | 
|  | uint32_t i; | 
|  |  | 
|  | dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", | 
|  | __FILE__, __LINE__, __func__); | 
|  |  | 
|  | for (i = 0 ; i < denali->max_banks; i++) | 
|  | iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, | 
|  | denali->flash_reg + INTR_STATUS(i)); | 
|  |  | 
|  | for (i = 0 ; i < denali->max_banks; i++) { | 
|  | iowrite32(1 << i, denali->flash_reg + DEVICE_RESET); | 
|  | while (!(ioread32(denali->flash_reg + | 
|  | INTR_STATUS(i)) & | 
|  | (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))) | 
|  | cpu_relax(); | 
|  | if (ioread32(denali->flash_reg + INTR_STATUS(i)) & | 
|  | INTR_STATUS__TIME_OUT) | 
|  | dev_dbg(denali->dev, | 
|  | "NAND Reset operation timed out on bank %d\n", i); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < denali->max_banks; i++) | 
|  | iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, | 
|  | denali->flash_reg + INTR_STATUS(i)); | 
|  |  | 
|  | return PASS; | 
|  | } | 
|  |  | 
|  | /* this routine calculates the ONFI timing values for a given mode and | 
|  | * programs the clocking register accordingly. The mode is determined by | 
|  | * the get_onfi_nand_para routine. | 
|  | */ | 
|  | static void nand_onfi_timing_set(struct denali_nand_info *denali, | 
|  | uint16_t mode) | 
|  | { | 
|  | uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; | 
|  | uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; | 
|  | uint16_t Treh[6] = {30, 15, 15, 10, 10, 7}; | 
|  | uint16_t Trc[6] = {100, 50, 35, 30, 25, 20}; | 
|  | uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15}; | 
|  | uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5}; | 
|  | uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25}; | 
|  | uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70}; | 
|  | uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100}; | 
|  | uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100}; | 
|  | uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60}; | 
|  | uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15}; | 
|  |  | 
|  | uint16_t TclsRising = 1; | 
|  | uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid; | 
|  | uint16_t dv_window = 0; | 
|  | uint16_t en_lo, en_hi; | 
|  | uint16_t acc_clks; | 
|  | uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; | 
|  |  | 
|  | dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", | 
|  | __FILE__, __LINE__, __func__); | 
|  |  | 
|  | en_lo = CEIL_DIV(Trp[mode], CLK_X); | 
|  | en_hi = CEIL_DIV(Treh[mode], CLK_X); | 
|  | #if ONFI_BLOOM_TIME | 
|  | if ((en_hi * CLK_X) < (Treh[mode] + 2)) | 
|  | en_hi++; | 
|  | #endif | 
|  |  | 
|  | if ((en_lo + en_hi) * CLK_X < Trc[mode]) | 
|  | en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X); | 
|  |  | 
|  | if ((en_lo + en_hi) < CLK_MULTI) | 
|  | en_lo += CLK_MULTI - en_lo - en_hi; | 
|  |  | 
|  | while (dv_window < 8) { | 
|  | data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode]; | 
|  |  | 
|  | data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode]; | 
|  |  | 
|  | data_invalid = | 
|  | data_invalid_rhoh < | 
|  | data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh; | 
|  |  | 
|  | dv_window = data_invalid - Trea[mode]; | 
|  |  | 
|  | if (dv_window < 8) | 
|  | en_lo++; | 
|  | } | 
|  |  | 
|  | acc_clks = CEIL_DIV(Trea[mode], CLK_X); | 
|  |  | 
|  | while (((acc_clks * CLK_X) - Trea[mode]) < 3) | 
|  | acc_clks++; | 
|  |  | 
|  | if ((data_invalid - acc_clks * CLK_X) < 2) | 
|  | dev_warn(denali->dev, "%s, Line %d: Warning!\n", | 
|  | __FILE__, __LINE__); | 
|  |  | 
|  | addr_2_data = CEIL_DIV(Tadl[mode], CLK_X); | 
|  | re_2_we = CEIL_DIV(Trhw[mode], CLK_X); | 
|  | re_2_re = CEIL_DIV(Trhz[mode], CLK_X); | 
|  | we_2_re = CEIL_DIV(Twhr[mode], CLK_X); | 
|  | cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X); | 
|  | if (!TclsRising) | 
|  | cs_cnt = CEIL_DIV(Tcs[mode], CLK_X); | 
|  | if (cs_cnt == 0) | 
|  | cs_cnt = 1; | 
|  |  | 
|  | if (Tcea[mode]) { | 
|  | while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode]) | 
|  | cs_cnt++; | 
|  | } | 
|  |  | 
|  | #if MODE5_WORKAROUND | 
|  | if (mode == 5) | 
|  | acc_clks = 5; | 
|  | #endif | 
|  |  | 
|  | /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ | 
|  | if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) && | 
|  | (ioread32(denali->flash_reg + DEVICE_ID) == 0x88)) | 
|  | acc_clks = 6; | 
|  |  | 
|  | iowrite32(acc_clks, denali->flash_reg + ACC_CLKS); | 
|  | iowrite32(re_2_we, denali->flash_reg + RE_2_WE); | 
|  | iowrite32(re_2_re, denali->flash_reg + RE_2_RE); | 
|  | iowrite32(we_2_re, denali->flash_reg + WE_2_RE); | 
|  | iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA); | 
|  | iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); | 
|  | iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); | 
|  | iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT); | 
|  | } | 
|  |  | 
|  | /* queries the NAND device to see what ONFI modes it supports. */ | 
|  | static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) | 
|  | { | 
|  | int i; | 
|  | /* we needn't to do a reset here because driver has already | 
|  | * reset all the banks before | 
|  | * */ | 
|  | if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) & | 
|  | ONFI_TIMING_MODE__VALUE)) | 
|  | return FAIL; | 
|  |  | 
|  | for (i = 5; i > 0; i--) { | 
|  | if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & | 
|  | (0x01 << i)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | nand_onfi_timing_set(denali, i); | 
|  |  | 
|  | /* By now, all the ONFI devices we know support the page cache */ | 
|  | /* rw feature. So here we enable the pipeline_rw_ahead feature */ | 
|  | /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */ | 
|  | /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */ | 
|  |  | 
|  | return PASS; | 
|  | } | 
|  |  | 
|  | static void get_samsung_nand_para(struct denali_nand_info *denali, | 
|  | uint8_t device_id) | 
|  | { | 
|  | if (device_id == 0xd3) { /* Samsung K9WAG08U1A */ | 
|  | /* Set timing register values according to datasheet */ | 
|  | iowrite32(5, denali->flash_reg + ACC_CLKS); | 
|  | iowrite32(20, denali->flash_reg + RE_2_WE); | 
|  | iowrite32(12, denali->flash_reg + WE_2_RE); | 
|  | iowrite32(14, denali->flash_reg + ADDR_2_DATA); | 
|  | iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT); | 
|  | iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT); | 
|  | iowrite32(2, denali->flash_reg + CS_SETUP_CNT); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void get_toshiba_nand_para(struct denali_nand_info *denali) | 
|  | { | 
|  | uint32_t tmp; | 
|  |  | 
|  | /* Workaround to fix a controller bug which reports a wrong */ | 
|  | /* spare area size for some kind of Toshiba NAND device */ | 
|  | if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && | 
|  | (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { | 
|  | iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); | 
|  | tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) * | 
|  | ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); | 
|  | iowrite32(tmp, | 
|  | denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); | 
|  | #if SUPPORT_15BITECC | 
|  | iowrite32(15, denali->flash_reg + ECC_CORRECTION); | 
|  | #elif SUPPORT_8BITECC | 
|  | iowrite32(8, denali->flash_reg + ECC_CORRECTION); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | static void get_hynix_nand_para(struct denali_nand_info *denali, | 
|  | uint8_t device_id) | 
|  | { | 
|  | uint32_t main_size, spare_size; | 
|  |  | 
|  | switch (device_id) { | 
|  | case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ | 
|  | case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ | 
|  | iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK); | 
|  | iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); | 
|  | iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); | 
|  | main_size = 4096 * | 
|  | ioread32(denali->flash_reg + DEVICES_CONNECTED); | 
|  | spare_size = 224 * | 
|  | ioread32(denali->flash_reg + DEVICES_CONNECTED); | 
|  | iowrite32(main_size, | 
|  | denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); | 
|  | iowrite32(spare_size, | 
|  | denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); | 
|  | iowrite32(0, denali->flash_reg + DEVICE_WIDTH); | 
|  | #if SUPPORT_15BITECC | 
|  | iowrite32(15, denali->flash_reg + ECC_CORRECTION); | 
|  | #elif SUPPORT_8BITECC | 
|  | iowrite32(8, denali->flash_reg + ECC_CORRECTION); | 
|  | #endif | 
|  | break; | 
|  | default: | 
|  | dev_warn(denali->dev, | 
|  | "Spectra: Unknown Hynix NAND (Device ID: 0x%x)." | 
|  | "Will use default parameter values instead.\n", | 
|  | device_id); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* determines how many NAND chips are connected to the controller. Note for | 
|  | * Intel CE4100 devices we don't support more than one device. | 
|  | */ | 
|  | static void find_valid_banks(struct denali_nand_info *denali) | 
|  | { | 
|  | uint32_t id[denali->max_banks]; | 
|  | int i; | 
|  |  | 
|  | denali->total_used_banks = 1; | 
|  | for (i = 0; i < denali->max_banks; i++) { | 
|  | index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90); | 
|  | index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0); | 
|  | index_addr_read_data(denali, | 
|  | (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]); | 
|  |  | 
|  | dev_dbg(denali->dev, | 
|  | "Return 1st ID for bank[%d]: %x\n", i, id[i]); | 
|  |  | 
|  | if (i == 0) { | 
|  | if (!(id[i] & 0x0ff)) | 
|  | break; /* WTF? */ | 
|  | } else { | 
|  | if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) | 
|  | denali->total_used_banks++; | 
|  | else | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (denali->platform == INTEL_CE4100) { | 
|  | /* Platform limitations of the CE4100 device limit | 
|  | * users to a single chip solution for NAND. | 
|  | * Multichip support is not enabled. | 
|  | */ | 
|  | if (denali->total_used_banks != 1) { | 
|  | dev_err(denali->dev, | 
|  | "Sorry, Intel CE4100 only supports " | 
|  | "a single NAND device.\n"); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  | dev_dbg(denali->dev, | 
|  | "denali->total_used_banks: %d\n", denali->total_used_banks); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use the configuration feature register to determine the maximum number of | 
|  | * banks that the hardware supports. | 
|  | */ | 
|  | static void detect_max_banks(struct denali_nand_info *denali) | 
|  | { | 
|  | uint32_t features = ioread32(denali->flash_reg + FEATURES); | 
|  |  | 
|  | denali->max_banks = 2 << (features & FEATURES__N_BANKS); | 
|  | } | 
|  |  | 
|  | static void detect_partition_feature(struct denali_nand_info *denali) | 
|  | { | 
|  | /* For MRST platform, denali->fwblks represent the | 
|  | * number of blocks firmware is taken, | 
|  | * FW is in protect partition and MTD driver has no | 
|  | * permission to access it. So let driver know how many | 
|  | * blocks it can't touch. | 
|  | * */ | 
|  | if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { | 
|  | if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) & | 
|  | PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) { | 
|  | denali->fwblks = | 
|  | ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) & | 
|  | MIN_MAX_BANK__MIN_VALUE) * | 
|  | denali->blksperchip) | 
|  | + | 
|  | (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) & | 
|  | MIN_BLK_ADDR__VALUE); | 
|  | } else | 
|  | denali->fwblks = SPECTRA_START_BLOCK; | 
|  | } else | 
|  | denali->fwblks = SPECTRA_START_BLOCK; | 
|  | } | 
|  |  | 
|  | static uint16_t denali_nand_timing_set(struct denali_nand_info *denali) | 
|  | { | 
|  | uint16_t status = PASS; | 
|  | uint32_t id_bytes[5], addr; | 
|  | uint8_t i, maf_id, device_id; | 
|  |  | 
|  | dev_dbg(denali->dev, | 
|  | "%s, Line %d, Function: %s\n", | 
|  | __FILE__, __LINE__, __func__); | 
|  |  | 
|  | /* Use read id method to get device ID and other | 
|  | * params. For some NAND chips, controller can't | 
|  | * report the correct device ID by reading from | 
|  | * DEVICE_ID register | 
|  | * */ | 
|  | addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); | 
|  | index_addr(denali, (uint32_t)addr | 0, 0x90); | 
|  | index_addr(denali, (uint32_t)addr | 1, 0); | 
|  | for (i = 0; i < 5; i++) | 
|  | index_addr_read_data(denali, addr | 2, &id_bytes[i]); | 
|  | maf_id = id_bytes[0]; | 
|  | device_id = id_bytes[1]; | 
|  |  | 
|  | if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & | 
|  | ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ | 
|  | if (FAIL == get_onfi_nand_para(denali)) | 
|  | return FAIL; | 
|  | } else if (maf_id == 0xEC) { /* Samsung NAND */ | 
|  | get_samsung_nand_para(denali, device_id); | 
|  | } else if (maf_id == 0x98) { /* Toshiba NAND */ | 
|  | get_toshiba_nand_para(denali); | 
|  | } else if (maf_id == 0xAD) { /* Hynix NAND */ | 
|  | get_hynix_nand_para(denali, device_id); | 
|  | } | 
|  |  | 
|  | dev_info(denali->dev, | 
|  | "Dump timing register values:" | 
|  | "acc_clks: %d, re_2_we: %d, re_2_re: %d\n" | 
|  | "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n" | 
|  | "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", | 
|  | ioread32(denali->flash_reg + ACC_CLKS), | 
|  | ioread32(denali->flash_reg + RE_2_WE), | 
|  | ioread32(denali->flash_reg + RE_2_RE), | 
|  | ioread32(denali->flash_reg + WE_2_RE), | 
|  | ioread32(denali->flash_reg + ADDR_2_DATA), | 
|  | ioread32(denali->flash_reg + RDWR_EN_LO_CNT), | 
|  | ioread32(denali->flash_reg + RDWR_EN_HI_CNT), | 
|  | ioread32(denali->flash_reg + CS_SETUP_CNT)); | 
|  |  | 
|  | find_valid_banks(denali); | 
|  |  | 
|  | detect_partition_feature(denali); | 
|  |  | 
|  | /* If the user specified to override the default timings | 
|  | * with a specific ONFI mode, we apply those changes here. | 
|  | */ | 
|  | if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) | 
|  | nand_onfi_timing_set(denali, onfi_timing_mode); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void denali_set_intr_modes(struct denali_nand_info *denali, | 
|  | uint16_t INT_ENABLE) | 
|  | { | 
|  | dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", | 
|  | __FILE__, __LINE__, __func__); | 
|  |  | 
|  | if (INT_ENABLE) | 
|  | iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE); | 
|  | else | 
|  | iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE); | 
|  | } | 
|  |  | 
|  | /* validation function to verify that the controlling software is making | 
|  | * a valid request | 
|  | */ | 
|  | static inline bool is_flash_bank_valid(int flash_bank) | 
|  | { | 
|  | return (flash_bank >= 0 && flash_bank < 4); | 
|  | } | 
|  |  | 
|  | static void denali_irq_init(struct denali_nand_info *denali) | 
|  | { | 
|  | uint32_t int_mask = 0; | 
|  | int i; | 
|  |  | 
|  | /* Disable global interrupts */ | 
|  | denali_set_intr_modes(denali, false); | 
|  |  | 
|  | int_mask = DENALI_IRQ_ALL; | 
|  |  | 
|  | /* Clear all status bits */ | 
|  | for (i = 0; i < denali->max_banks; ++i) | 
|  | iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i)); | 
|  |  | 
|  | denali_irq_enable(denali, int_mask); | 
|  | } | 
|  |  | 
|  | static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali) | 
|  | { | 
|  | denali_set_intr_modes(denali, false); | 
|  | free_irq(irqnum, denali); | 
|  | } | 
|  |  | 
|  | static void denali_irq_enable(struct denali_nand_info *denali, | 
|  | uint32_t int_mask) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < denali->max_banks; ++i) | 
|  | iowrite32(int_mask, denali->flash_reg + INTR_EN(i)); | 
|  | } | 
|  |  | 
|  | /* This function only returns when an interrupt that this driver cares about | 
|  | * occurs. This is to reduce the overhead of servicing interrupts | 
|  | */ | 
|  | static inline uint32_t denali_irq_detected(struct denali_nand_info *denali) | 
|  | { | 
|  | return read_interrupt_status(denali) & DENALI_IRQ_ALL; | 
|  | } | 
|  |  | 
|  | /* Interrupts are cleared by writing a 1 to the appropriate status bit */ | 
|  | static inline void clear_interrupt(struct denali_nand_info *denali, | 
|  | uint32_t irq_mask) | 
|  | { | 
|  | uint32_t intr_status_reg = 0; | 
|  |  | 
|  | intr_status_reg = INTR_STATUS(denali->flash_bank); | 
|  |  | 
|  | iowrite32(irq_mask, denali->flash_reg + intr_status_reg); | 
|  | } | 
|  |  | 
|  | static void clear_interrupts(struct denali_nand_info *denali) | 
|  | { | 
|  | uint32_t status = 0x0; | 
|  | spin_lock_irq(&denali->irq_lock); | 
|  |  | 
|  | status = read_interrupt_status(denali); | 
|  | clear_interrupt(denali, status); | 
|  |  | 
|  | denali->irq_status = 0x0; | 
|  | spin_unlock_irq(&denali->irq_lock); | 
|  | } | 
|  |  | 
|  | static uint32_t read_interrupt_status(struct denali_nand_info *denali) | 
|  | { | 
|  | uint32_t intr_status_reg = 0; | 
|  |  | 
|  | intr_status_reg = INTR_STATUS(denali->flash_bank); | 
|  |  | 
|  | return ioread32(denali->flash_reg + intr_status_reg); | 
|  | } | 
|  |  | 
|  | /* This is the interrupt service routine. It handles all interrupts | 
|  | * sent to this device. Note that on CE4100, this is a shared | 
|  | * interrupt. | 
|  | */ | 
|  | static irqreturn_t denali_isr(int irq, void *dev_id) | 
|  | { | 
|  | struct denali_nand_info *denali = dev_id; | 
|  | uint32_t irq_status = 0x0; | 
|  | irqreturn_t result = IRQ_NONE; | 
|  |  | 
|  | spin_lock(&denali->irq_lock); | 
|  |  | 
|  | /* check to see if a valid NAND chip has | 
|  | * been selected. | 
|  | */ | 
|  | if (is_flash_bank_valid(denali->flash_bank)) { | 
|  | /* check to see if controller generated | 
|  | * the interrupt, since this is a shared interrupt */ | 
|  | irq_status = denali_irq_detected(denali); | 
|  | if (irq_status != 0) { | 
|  | /* handle interrupt */ | 
|  | /* first acknowledge it */ | 
|  | clear_interrupt(denali, irq_status); | 
|  | /* store the status in the device context for someone | 
|  | to read */ | 
|  | denali->irq_status |= irq_status; | 
|  | /* notify anyone who cares that it happened */ | 
|  | complete(&denali->complete); | 
|  | /* tell the OS that we've handled this */ | 
|  | result = IRQ_HANDLED; | 
|  | } | 
|  | } | 
|  | spin_unlock(&denali->irq_lock); | 
|  | return result; | 
|  | } | 
|  | #define BANK(x) ((x) << 24) | 
|  |  | 
|  | static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) | 
|  | { | 
|  | unsigned long comp_res = 0; | 
|  | uint32_t intr_status = 0; | 
|  | bool retry = false; | 
|  | unsigned long timeout = msecs_to_jiffies(1000); | 
|  |  | 
|  | do { | 
|  | comp_res = | 
|  | wait_for_completion_timeout(&denali->complete, timeout); | 
|  | spin_lock_irq(&denali->irq_lock); | 
|  | intr_status = denali->irq_status; | 
|  |  | 
|  | if (intr_status & irq_mask) { | 
|  | denali->irq_status &= ~irq_mask; | 
|  | spin_unlock_irq(&denali->irq_lock); | 
|  | /* our interrupt was detected */ | 
|  | break; | 
|  | } else { | 
|  | /* these are not the interrupts you are looking for - | 
|  | * need to wait again */ | 
|  | spin_unlock_irq(&denali->irq_lock); | 
|  | retry = true; | 
|  | } | 
|  | } while (comp_res != 0); | 
|  |  | 
|  | if (comp_res == 0) { | 
|  | /* timeout */ | 
|  | printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n", | 
|  | intr_status, irq_mask); | 
|  |  | 
|  | intr_status = 0; | 
|  | } | 
|  | return intr_status; | 
|  | } | 
|  |  | 
|  | /* This helper function setups the registers for ECC and whether or not | 
|  | * the spare area will be transferred. */ | 
|  | static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, | 
|  | bool transfer_spare) | 
|  | { | 
|  | int ecc_en_flag = 0, transfer_spare_flag = 0; | 
|  |  | 
|  | /* set ECC, transfer spare bits if needed */ | 
|  | ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; | 
|  | transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; | 
|  |  | 
|  | /* Enable spare area/ECC per user's request. */ | 
|  | iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE); | 
|  | iowrite32(transfer_spare_flag, | 
|  | denali->flash_reg + TRANSFER_SPARE_REG); | 
|  | } | 
|  |  | 
|  | /* sends a pipeline command operation to the controller. See the Denali NAND | 
|  | * controller's user guide for more information (section 4.2.3.6). | 
|  | */ | 
|  | static int denali_send_pipeline_cmd(struct denali_nand_info *denali, | 
|  | bool ecc_en, | 
|  | bool transfer_spare, | 
|  | int access_type, | 
|  | int op) | 
|  | { | 
|  | int status = PASS; | 
|  | uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0, | 
|  | irq_mask = 0; | 
|  |  | 
|  | if (op == DENALI_READ) | 
|  | irq_mask = INTR_STATUS__LOAD_COMP; | 
|  | else if (op == DENALI_WRITE) | 
|  | irq_mask = 0; | 
|  | else | 
|  | BUG(); | 
|  |  | 
|  | setup_ecc_for_xfer(denali, ecc_en, transfer_spare); | 
|  |  | 
|  | /* clear interrupts */ | 
|  | clear_interrupts(denali); | 
|  |  | 
|  | addr = BANK(denali->flash_bank) | denali->page; | 
|  |  | 
|  | if (op == DENALI_WRITE && access_type != SPARE_ACCESS) { | 
|  | cmd = MODE_01 | addr; | 
|  | iowrite32(cmd, denali->flash_mem); | 
|  | } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) { | 
|  | /* read spare area */ | 
|  | cmd = MODE_10 | addr; | 
|  | index_addr(denali, (uint32_t)cmd, access_type); | 
|  |  | 
|  | cmd = MODE_01 | addr; | 
|  | iowrite32(cmd, denali->flash_mem); | 
|  | } else if (op == DENALI_READ) { | 
|  | /* setup page read request for access type */ | 
|  | cmd = MODE_10 | addr; | 
|  | index_addr(denali, (uint32_t)cmd, access_type); | 
|  |  | 
|  | /* page 33 of the NAND controller spec indicates we should not | 
|  | use the pipeline commands in Spare area only mode. So we | 
|  | don't. | 
|  | */ | 
|  | if (access_type == SPARE_ACCESS) { | 
|  | cmd = MODE_01 | addr; | 
|  | iowrite32(cmd, denali->flash_mem); | 
|  | } else { | 
|  | index_addr(denali, (uint32_t)cmd, | 
|  | 0x2000 | op | page_count); | 
|  |  | 
|  | /* wait for command to be accepted | 
|  | * can always use status0 bit as the | 
|  | * mask is identical for each | 
|  | * bank. */ | 
|  | irq_status = wait_for_irq(denali, irq_mask); | 
|  |  | 
|  | if (irq_status == 0) { | 
|  | dev_err(denali->dev, | 
|  | "cmd, page, addr on timeout " | 
|  | "(0x%x, 0x%x, 0x%x)\n", | 
|  | cmd, denali->page, addr); | 
|  | status = FAIL; | 
|  | } else { | 
|  | cmd = MODE_01 | addr; | 
|  | iowrite32(cmd, denali->flash_mem); | 
|  | } | 
|  | } | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* helper function that simply writes a buffer to the flash */ | 
|  | static int write_data_to_flash_mem(struct denali_nand_info *denali, | 
|  | const uint8_t *buf, | 
|  | int len) | 
|  | { | 
|  | uint32_t i = 0, *buf32; | 
|  |  | 
|  | /* verify that the len is a multiple of 4. see comment in | 
|  | * read_data_from_flash_mem() */ | 
|  | BUG_ON((len % 4) != 0); | 
|  |  | 
|  | /* write the data to the flash memory */ | 
|  | buf32 = (uint32_t *)buf; | 
|  | for (i = 0; i < len / 4; i++) | 
|  | iowrite32(*buf32++, denali->flash_mem + 0x10); | 
|  | return i*4; /* intent is to return the number of bytes read */ | 
|  | } | 
|  |  | 
|  | /* helper function that simply reads a buffer from the flash */ | 
|  | static int read_data_from_flash_mem(struct denali_nand_info *denali, | 
|  | uint8_t *buf, | 
|  | int len) | 
|  | { | 
|  | uint32_t i = 0, *buf32; | 
|  |  | 
|  | /* we assume that len will be a multiple of 4, if not | 
|  | * it would be nice to know about it ASAP rather than | 
|  | * have random failures... | 
|  | * This assumption is based on the fact that this | 
|  | * function is designed to be used to read flash pages, | 
|  | * which are typically multiples of 4... | 
|  | */ | 
|  |  | 
|  | BUG_ON((len % 4) != 0); | 
|  |  | 
|  | /* transfer the data from the flash */ | 
|  | buf32 = (uint32_t *)buf; | 
|  | for (i = 0; i < len / 4; i++) | 
|  | *buf32++ = ioread32(denali->flash_mem + 0x10); | 
|  | return i*4; /* intent is to return the number of bytes read */ | 
|  | } | 
|  |  | 
|  | /* writes OOB data to the device */ | 
|  | static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) | 
|  | { | 
|  | struct denali_nand_info *denali = mtd_to_denali(mtd); | 
|  | uint32_t irq_status = 0; | 
|  | uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP | | 
|  | INTR_STATUS__PROGRAM_FAIL; | 
|  | int status = 0; | 
|  |  | 
|  | denali->page = page; | 
|  |  | 
|  | if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, | 
|  | DENALI_WRITE) == PASS) { | 
|  | write_data_to_flash_mem(denali, buf, mtd->oobsize); | 
|  |  | 
|  | /* wait for operation to complete */ | 
|  | irq_status = wait_for_irq(denali, irq_mask); | 
|  |  | 
|  | if (irq_status == 0) { | 
|  | dev_err(denali->dev, "OOB write failed\n"); | 
|  | status = -EIO; | 
|  | } | 
|  | } else { | 
|  | dev_err(denali->dev, "unable to send pipeline command\n"); | 
|  | status = -EIO; | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* reads OOB data from the device */ | 
|  | static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) | 
|  | { | 
|  | struct denali_nand_info *denali = mtd_to_denali(mtd); | 
|  | uint32_t irq_mask = INTR_STATUS__LOAD_COMP, | 
|  | irq_status = 0, addr = 0x0, cmd = 0x0; | 
|  |  | 
|  | denali->page = page; | 
|  |  | 
|  | if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, | 
|  | DENALI_READ) == PASS) { | 
|  | read_data_from_flash_mem(denali, buf, mtd->oobsize); | 
|  |  | 
|  | /* wait for command to be accepted | 
|  | * can always use status0 bit as the mask is identical for each | 
|  | * bank. */ | 
|  | irq_status = wait_for_irq(denali, irq_mask); | 
|  |  | 
|  | if (irq_status == 0) | 
|  | dev_err(denali->dev, "page on OOB timeout %d\n", | 
|  | denali->page); | 
|  |  | 
|  | /* We set the device back to MAIN_ACCESS here as I observed | 
|  | * instability with the controller if you do a block erase | 
|  | * and the last transaction was a SPARE_ACCESS. Block erase | 
|  | * is reliable (according to the MTD test infrastructure) | 
|  | * if you are in MAIN_ACCESS. | 
|  | */ | 
|  | addr = BANK(denali->flash_bank) | denali->page; | 
|  | cmd = MODE_10 | addr; | 
|  | index_addr(denali, (uint32_t)cmd, MAIN_ACCESS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* this function examines buffers to see if they contain data that | 
|  | * indicate that the buffer is part of an erased region of flash. | 
|  | */ | 
|  | bool is_erased(uint8_t *buf, int len) | 
|  | { | 
|  | int i = 0; | 
|  | for (i = 0; i < len; i++) | 
|  | if (buf[i] != 0xFF) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | #define ECC_SECTOR_SIZE 512 | 
|  |  | 
|  | #define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12) | 
|  | #define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET)) | 
|  | #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK) | 
|  | #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE)) | 
|  | #define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8) | 
|  | #define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) | 
|  |  | 
|  | static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, | 
|  | uint32_t irq_status, unsigned int *max_bitflips) | 
|  | { | 
|  | bool check_erased_page = false; | 
|  | unsigned int bitflips = 0; | 
|  |  | 
|  | if (irq_status & INTR_STATUS__ECC_ERR) { | 
|  | /* read the ECC errors. we'll ignore them for now */ | 
|  | uint32_t err_address = 0, err_correction_info = 0; | 
|  | uint32_t err_byte = 0, err_sector = 0, err_device = 0; | 
|  | uint32_t err_correction_value = 0; | 
|  | denali_set_intr_modes(denali, false); | 
|  |  | 
|  | do { | 
|  | err_address = ioread32(denali->flash_reg + | 
|  | ECC_ERROR_ADDRESS); | 
|  | err_sector = ECC_SECTOR(err_address); | 
|  | err_byte = ECC_BYTE(err_address); | 
|  |  | 
|  | err_correction_info = ioread32(denali->flash_reg + | 
|  | ERR_CORRECTION_INFO); | 
|  | err_correction_value = | 
|  | ECC_CORRECTION_VALUE(err_correction_info); | 
|  | err_device = ECC_ERR_DEVICE(err_correction_info); | 
|  |  | 
|  | if (ECC_ERROR_CORRECTABLE(err_correction_info)) { | 
|  | /* If err_byte is larger than ECC_SECTOR_SIZE, | 
|  | * means error happened in OOB, so we ignore | 
|  | * it. It's no need for us to correct it | 
|  | * err_device is represented the NAND error | 
|  | * bits are happened in if there are more | 
|  | * than one NAND connected. | 
|  | * */ | 
|  | if (err_byte < ECC_SECTOR_SIZE) { | 
|  | int offset; | 
|  | offset = (err_sector * | 
|  | ECC_SECTOR_SIZE + | 
|  | err_byte) * | 
|  | denali->devnum + | 
|  | err_device; | 
|  | /* correct the ECC error */ | 
|  | buf[offset] ^= err_correction_value; | 
|  | denali->mtd.ecc_stats.corrected++; | 
|  | bitflips++; | 
|  | } | 
|  | } else { | 
|  | /* if the error is not correctable, need to | 
|  | * look at the page to see if it is an erased | 
|  | * page. if so, then it's not a real ECC error | 
|  | * */ | 
|  | check_erased_page = true; | 
|  | } | 
|  | } while (!ECC_LAST_ERR(err_correction_info)); | 
|  | /* Once handle all ecc errors, controller will triger | 
|  | * a ECC_TRANSACTION_DONE interrupt, so here just wait | 
|  | * for a while for this interrupt | 
|  | * */ | 
|  | while (!(read_interrupt_status(denali) & | 
|  | INTR_STATUS__ECC_TRANSACTION_DONE)) | 
|  | cpu_relax(); | 
|  | clear_interrupts(denali); | 
|  | denali_set_intr_modes(denali, true); | 
|  | } | 
|  | *max_bitflips = bitflips; | 
|  | return check_erased_page; | 
|  | } | 
|  |  | 
|  | /* programs the controller to either enable/disable DMA transfers */ | 
|  | static void denali_enable_dma(struct denali_nand_info *denali, bool en) | 
|  | { | 
|  | uint32_t reg_val = 0x0; | 
|  |  | 
|  | if (en) | 
|  | reg_val = DMA_ENABLE__FLAG; | 
|  |  | 
|  | iowrite32(reg_val, denali->flash_reg + DMA_ENABLE); | 
|  | ioread32(denali->flash_reg + DMA_ENABLE); | 
|  | } | 
|  |  | 
|  | /* setups the HW to perform the data DMA */ | 
|  | static void denali_setup_dma(struct denali_nand_info *denali, int op) | 
|  | { | 
|  | uint32_t mode = 0x0; | 
|  | const int page_count = 1; | 
|  | dma_addr_t addr = denali->buf.dma_buf; | 
|  |  | 
|  | mode = MODE_10 | BANK(denali->flash_bank); | 
|  |  | 
|  | /* DMA is a four step process */ | 
|  |  | 
|  | /* 1. setup transfer type and # of pages */ | 
|  | index_addr(denali, mode | denali->page, 0x2000 | op | page_count); | 
|  |  | 
|  | /* 2. set memory high address bits 23:8 */ | 
|  | index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200); | 
|  |  | 
|  | /* 3. set memory low address bits 23:8 */ | 
|  | index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300); | 
|  |  | 
|  | /* 4.  interrupt when complete, burst len = 64 bytes*/ | 
|  | index_addr(denali, mode | 0x14000, 0x2400); | 
|  | } | 
|  |  | 
|  | /* writes a page. user specifies type, and this function handles the | 
|  | * configuration details. */ | 
|  | static int write_page(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | const uint8_t *buf, bool raw_xfer) | 
|  | { | 
|  | struct denali_nand_info *denali = mtd_to_denali(mtd); | 
|  |  | 
|  | dma_addr_t addr = denali->buf.dma_buf; | 
|  | size_t size = denali->mtd.writesize + denali->mtd.oobsize; | 
|  |  | 
|  | uint32_t irq_status = 0; | 
|  | uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP | | 
|  | INTR_STATUS__PROGRAM_FAIL; | 
|  |  | 
|  | /* if it is a raw xfer, we want to disable ecc, and send | 
|  | * the spare area. | 
|  | * !raw_xfer - enable ecc | 
|  | * raw_xfer - transfer spare | 
|  | */ | 
|  | setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer); | 
|  |  | 
|  | /* copy buffer into DMA buffer */ | 
|  | memcpy(denali->buf.buf, buf, mtd->writesize); | 
|  |  | 
|  | if (raw_xfer) { | 
|  | /* transfer the data to the spare area */ | 
|  | memcpy(denali->buf.buf + mtd->writesize, | 
|  | chip->oob_poi, | 
|  | mtd->oobsize); | 
|  | } | 
|  |  | 
|  | dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE); | 
|  |  | 
|  | clear_interrupts(denali); | 
|  | denali_enable_dma(denali, true); | 
|  |  | 
|  | denali_setup_dma(denali, DENALI_WRITE); | 
|  |  | 
|  | /* wait for operation to complete */ | 
|  | irq_status = wait_for_irq(denali, irq_mask); | 
|  |  | 
|  | if (irq_status == 0) { | 
|  | dev_err(denali->dev, | 
|  | "timeout on write_page (type = %d)\n", | 
|  | raw_xfer); | 
|  | denali->status = | 
|  | (irq_status & INTR_STATUS__PROGRAM_FAIL) ? | 
|  | NAND_STATUS_FAIL : PASS; | 
|  | } | 
|  |  | 
|  | denali_enable_dma(denali, false); | 
|  | dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* NAND core entry points */ | 
|  |  | 
|  | /* this is the callback that the NAND core calls to write a page. Since | 
|  | * writing a page with ECC or without is similar, all the work is done | 
|  | * by write_page above. | 
|  | * */ | 
|  | static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | const uint8_t *buf, int oob_required) | 
|  | { | 
|  | /* for regular page writes, we let HW handle all the ECC | 
|  | * data written to the device. */ | 
|  | return write_page(mtd, chip, buf, false); | 
|  | } | 
|  |  | 
|  | /* This is the callback that the NAND core calls to write a page without ECC. | 
|  | * raw access is similar to ECC page writes, so all the work is done in the | 
|  | * write_page() function above. | 
|  | */ | 
|  | static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | const uint8_t *buf, int oob_required) | 
|  | { | 
|  | /* for raw page writes, we want to disable ECC and simply write | 
|  | whatever data is in the buffer. */ | 
|  | return write_page(mtd, chip, buf, true); | 
|  | } | 
|  |  | 
|  | static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | int page) | 
|  | { | 
|  | return write_oob_data(mtd, chip->oob_poi, page); | 
|  | } | 
|  |  | 
|  | static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | int page) | 
|  | { | 
|  | read_oob_data(mtd, chip->oob_poi, page); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | uint8_t *buf, int oob_required, int page) | 
|  | { | 
|  | unsigned int max_bitflips; | 
|  | struct denali_nand_info *denali = mtd_to_denali(mtd); | 
|  |  | 
|  | dma_addr_t addr = denali->buf.dma_buf; | 
|  | size_t size = denali->mtd.writesize + denali->mtd.oobsize; | 
|  |  | 
|  | uint32_t irq_status = 0; | 
|  | uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE | | 
|  | INTR_STATUS__ECC_ERR; | 
|  | bool check_erased_page = false; | 
|  |  | 
|  | if (page != denali->page) { | 
|  | dev_err(denali->dev, "IN %s: page %d is not" | 
|  | " equal to denali->page %d, investigate!!", | 
|  | __func__, page, denali->page); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | setup_ecc_for_xfer(denali, true, false); | 
|  |  | 
|  | denali_enable_dma(denali, true); | 
|  | dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE); | 
|  |  | 
|  | clear_interrupts(denali); | 
|  | denali_setup_dma(denali, DENALI_READ); | 
|  |  | 
|  | /* wait for operation to complete */ | 
|  | irq_status = wait_for_irq(denali, irq_mask); | 
|  |  | 
|  | dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE); | 
|  |  | 
|  | memcpy(buf, denali->buf.buf, mtd->writesize); | 
|  |  | 
|  | check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips); | 
|  | denali_enable_dma(denali, false); | 
|  |  | 
|  | if (check_erased_page) { | 
|  | read_oob_data(&denali->mtd, chip->oob_poi, denali->page); | 
|  |  | 
|  | /* check ECC failures that may have occurred on erased pages */ | 
|  | if (check_erased_page) { | 
|  | if (!is_erased(buf, denali->mtd.writesize)) | 
|  | denali->mtd.ecc_stats.failed++; | 
|  | if (!is_erased(buf, denali->mtd.oobsize)) | 
|  | denali->mtd.ecc_stats.failed++; | 
|  | } | 
|  | } | 
|  | return max_bitflips; | 
|  | } | 
|  |  | 
|  | static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | uint8_t *buf, int oob_required, int page) | 
|  | { | 
|  | struct denali_nand_info *denali = mtd_to_denali(mtd); | 
|  |  | 
|  | dma_addr_t addr = denali->buf.dma_buf; | 
|  | size_t size = denali->mtd.writesize + denali->mtd.oobsize; | 
|  |  | 
|  | uint32_t irq_status = 0; | 
|  | uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP; | 
|  |  | 
|  | if (page != denali->page) { | 
|  | dev_err(denali->dev, "IN %s: page %d is not" | 
|  | " equal to denali->page %d, investigate!!", | 
|  | __func__, page, denali->page); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | setup_ecc_for_xfer(denali, false, true); | 
|  | denali_enable_dma(denali, true); | 
|  |  | 
|  | dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE); | 
|  |  | 
|  | clear_interrupts(denali); | 
|  | denali_setup_dma(denali, DENALI_READ); | 
|  |  | 
|  | /* wait for operation to complete */ | 
|  | irq_status = wait_for_irq(denali, irq_mask); | 
|  |  | 
|  | dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE); | 
|  |  | 
|  | denali_enable_dma(denali, false); | 
|  |  | 
|  | memcpy(buf, denali->buf.buf, mtd->writesize); | 
|  | memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static uint8_t denali_read_byte(struct mtd_info *mtd) | 
|  | { | 
|  | struct denali_nand_info *denali = mtd_to_denali(mtd); | 
|  | uint8_t result = 0xff; | 
|  |  | 
|  | if (denali->buf.head < denali->buf.tail) | 
|  | result = denali->buf.buf[denali->buf.head++]; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void denali_select_chip(struct mtd_info *mtd, int chip) | 
|  | { | 
|  | struct denali_nand_info *denali = mtd_to_denali(mtd); | 
|  |  | 
|  | spin_lock_irq(&denali->irq_lock); | 
|  | denali->flash_bank = chip; | 
|  | spin_unlock_irq(&denali->irq_lock); | 
|  | } | 
|  |  | 
|  | static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) | 
|  | { | 
|  | struct denali_nand_info *denali = mtd_to_denali(mtd); | 
|  | int status = denali->status; | 
|  | denali->status = 0; | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void denali_erase(struct mtd_info *mtd, int page) | 
|  | { | 
|  | struct denali_nand_info *denali = mtd_to_denali(mtd); | 
|  |  | 
|  | uint32_t cmd = 0x0, irq_status = 0; | 
|  |  | 
|  | /* clear interrupts */ | 
|  | clear_interrupts(denali); | 
|  |  | 
|  | /* setup page read request for access type */ | 
|  | cmd = MODE_10 | BANK(denali->flash_bank) | page; | 
|  | index_addr(denali, (uint32_t)cmd, 0x1); | 
|  |  | 
|  | /* wait for erase to complete or failure to occur */ | 
|  | irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP | | 
|  | INTR_STATUS__ERASE_FAIL); | 
|  |  | 
|  | denali->status = (irq_status & INTR_STATUS__ERASE_FAIL) ? | 
|  | NAND_STATUS_FAIL : PASS; | 
|  | } | 
|  |  | 
|  | static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, | 
|  | int page) | 
|  | { | 
|  | struct denali_nand_info *denali = mtd_to_denali(mtd); | 
|  | uint32_t addr, id; | 
|  | int i; | 
|  |  | 
|  | switch (cmd) { | 
|  | case NAND_CMD_PAGEPROG: | 
|  | break; | 
|  | case NAND_CMD_STATUS: | 
|  | read_status(denali); | 
|  | break; | 
|  | case NAND_CMD_READID: | 
|  | case NAND_CMD_PARAM: | 
|  | reset_buf(denali); | 
|  | /*sometimes ManufactureId read from register is not right | 
|  | * e.g. some of Micron MT29F32G08QAA MLC NAND chips | 
|  | * So here we send READID cmd to NAND insteand | 
|  | * */ | 
|  | addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); | 
|  | index_addr(denali, (uint32_t)addr | 0, 0x90); | 
|  | index_addr(denali, (uint32_t)addr | 1, 0); | 
|  | for (i = 0; i < 5; i++) { | 
|  | index_addr_read_data(denali, | 
|  | (uint32_t)addr | 2, | 
|  | &id); | 
|  | write_byte_to_buf(denali, id); | 
|  | } | 
|  | break; | 
|  | case NAND_CMD_READ0: | 
|  | case NAND_CMD_SEQIN: | 
|  | denali->page = page; | 
|  | break; | 
|  | case NAND_CMD_RESET: | 
|  | reset_bank(denali); | 
|  | break; | 
|  | case NAND_CMD_READOOB: | 
|  | /* TODO: Read OOB data */ | 
|  | break; | 
|  | default: | 
|  | printk(KERN_ERR ": unsupported command" | 
|  | " received 0x%x\n", cmd); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* stubs for ECC functions not used by the NAND core */ | 
|  | static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, | 
|  | uint8_t *ecc_code) | 
|  | { | 
|  | struct denali_nand_info *denali = mtd_to_denali(mtd); | 
|  | dev_err(denali->dev, | 
|  | "denali_ecc_calculate called unexpectedly\n"); | 
|  | BUG(); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, | 
|  | uint8_t *read_ecc, uint8_t *calc_ecc) | 
|  | { | 
|  | struct denali_nand_info *denali = mtd_to_denali(mtd); | 
|  | dev_err(denali->dev, | 
|  | "denali_ecc_correct called unexpectedly\n"); | 
|  | BUG(); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static void denali_ecc_hwctl(struct mtd_info *mtd, int mode) | 
|  | { | 
|  | struct denali_nand_info *denali = mtd_to_denali(mtd); | 
|  | dev_err(denali->dev, | 
|  | "denali_ecc_hwctl called unexpectedly\n"); | 
|  | BUG(); | 
|  | } | 
|  | /* end NAND core entry points */ | 
|  |  | 
|  | /* Initialization code to bring the device up to a known good state */ | 
|  | static void denali_hw_init(struct denali_nand_info *denali) | 
|  | { | 
|  | /* tell driver how many bit controller will skip before | 
|  | * writing ECC code in OOB, this register may be already | 
|  | * set by firmware. So we read this value out. | 
|  | * if this value is 0, just let it be. | 
|  | * */ | 
|  | denali->bbtskipbytes = ioread32(denali->flash_reg + | 
|  | SPARE_AREA_SKIP_BYTES); | 
|  | detect_max_banks(denali); | 
|  | denali_nand_reset(denali); | 
|  | iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED); | 
|  | iowrite32(CHIP_EN_DONT_CARE__FLAG, | 
|  | denali->flash_reg + CHIP_ENABLE_DONT_CARE); | 
|  |  | 
|  | iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER); | 
|  |  | 
|  | /* Should set value for these registers when init */ | 
|  | iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); | 
|  | iowrite32(1, denali->flash_reg + ECC_ENABLE); | 
|  | denali_nand_timing_set(denali); | 
|  | denali_irq_init(denali); | 
|  | } | 
|  |  | 
|  | /* Althogh controller spec said SLC ECC is forceb to be 4bit, | 
|  | * but denali controller in MRST only support 15bit and 8bit ECC | 
|  | * correction | 
|  | * */ | 
|  | #define ECC_8BITS	14 | 
|  | static struct nand_ecclayout nand_8bit_oob = { | 
|  | .eccbytes = 14, | 
|  | }; | 
|  |  | 
|  | #define ECC_15BITS	26 | 
|  | static struct nand_ecclayout nand_15bit_oob = { | 
|  | .eccbytes = 26, | 
|  | }; | 
|  |  | 
|  | static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; | 
|  | static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; | 
|  |  | 
|  | static struct nand_bbt_descr bbt_main_descr = { | 
|  | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
|  | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | 
|  | .offs =	8, | 
|  | .len = 4, | 
|  | .veroffs = 12, | 
|  | .maxblocks = 4, | 
|  | .pattern = bbt_pattern, | 
|  | }; | 
|  |  | 
|  | static struct nand_bbt_descr bbt_mirror_descr = { | 
|  | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
|  | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | 
|  | .offs =	8, | 
|  | .len = 4, | 
|  | .veroffs = 12, | 
|  | .maxblocks = 4, | 
|  | .pattern = mirror_pattern, | 
|  | }; | 
|  |  | 
|  | /* initialize driver data structures */ | 
|  | void denali_drv_init(struct denali_nand_info *denali) | 
|  | { | 
|  | denali->idx = 0; | 
|  |  | 
|  | /* setup interrupt handler */ | 
|  | /* the completion object will be used to notify | 
|  | * the callee that the interrupt is done */ | 
|  | init_completion(&denali->complete); | 
|  |  | 
|  | /* the spinlock will be used to synchronize the ISR | 
|  | * with any element that might be access shared | 
|  | * data (interrupt status) */ | 
|  | spin_lock_init(&denali->irq_lock); | 
|  |  | 
|  | /* indicate that MTD has not selected a valid bank yet */ | 
|  | denali->flash_bank = CHIP_SELECT_INVALID; | 
|  |  | 
|  | /* initialize our irq_status variable to indicate no interrupts */ | 
|  | denali->irq_status = 0; | 
|  | } | 
|  |  | 
|  | /* driver entry point */ | 
|  | static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) | 
|  | { | 
|  | int ret = -ENODEV; | 
|  | resource_size_t csr_base, mem_base; | 
|  | unsigned long csr_len, mem_len; | 
|  | struct denali_nand_info *denali; | 
|  |  | 
|  | denali = kzalloc(sizeof(*denali), GFP_KERNEL); | 
|  | if (!denali) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = pci_enable_device(dev); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "Spectra: pci_enable_device failed.\n"); | 
|  | goto failed_alloc_memery; | 
|  | } | 
|  |  | 
|  | if (id->driver_data == INTEL_CE4100) { | 
|  | /* Due to a silicon limitation, we can only support | 
|  | * ONFI timing mode 1 and below. | 
|  | */ | 
|  | if (onfi_timing_mode < -1 || onfi_timing_mode > 1) { | 
|  | printk(KERN_ERR "Intel CE4100 only supports" | 
|  | " ONFI timing mode 1 or below\n"); | 
|  | ret = -EINVAL; | 
|  | goto failed_enable_dev; | 
|  | } | 
|  | denali->platform = INTEL_CE4100; | 
|  | mem_base = pci_resource_start(dev, 0); | 
|  | mem_len = pci_resource_len(dev, 1); | 
|  | csr_base = pci_resource_start(dev, 1); | 
|  | csr_len = pci_resource_len(dev, 1); | 
|  | } else { | 
|  | denali->platform = INTEL_MRST; | 
|  | csr_base = pci_resource_start(dev, 0); | 
|  | csr_len = pci_resource_len(dev, 0); | 
|  | mem_base = pci_resource_start(dev, 1); | 
|  | mem_len = pci_resource_len(dev, 1); | 
|  | if (!mem_len) { | 
|  | mem_base = csr_base + csr_len; | 
|  | mem_len = csr_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Is 32-bit DMA supported? */ | 
|  | ret = dma_set_mask(&dev->dev, DMA_BIT_MASK(32)); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "Spectra: no usable DMA configuration\n"); | 
|  | goto failed_enable_dev; | 
|  | } | 
|  | denali->buf.dma_buf = dma_map_single(&dev->dev, denali->buf.buf, | 
|  | DENALI_BUF_SIZE, | 
|  | DMA_BIDIRECTIONAL); | 
|  |  | 
|  | if (dma_mapping_error(&dev->dev, denali->buf.dma_buf)) { | 
|  | dev_err(&dev->dev, "Spectra: failed to map DMA buffer\n"); | 
|  | goto failed_enable_dev; | 
|  | } | 
|  |  | 
|  | pci_set_master(dev); | 
|  | denali->dev = &dev->dev; | 
|  | denali->mtd.dev.parent = &dev->dev; | 
|  |  | 
|  | ret = pci_request_regions(dev, DENALI_NAND_NAME); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "Spectra: Unable to request memory regions\n"); | 
|  | goto failed_dma_map; | 
|  | } | 
|  |  | 
|  | denali->flash_reg = ioremap_nocache(csr_base, csr_len); | 
|  | if (!denali->flash_reg) { | 
|  | printk(KERN_ERR "Spectra: Unable to remap memory region\n"); | 
|  | ret = -ENOMEM; | 
|  | goto failed_req_regions; | 
|  | } | 
|  |  | 
|  | denali->flash_mem = ioremap_nocache(mem_base, mem_len); | 
|  | if (!denali->flash_mem) { | 
|  | printk(KERN_ERR "Spectra: ioremap_nocache failed!"); | 
|  | ret = -ENOMEM; | 
|  | goto failed_remap_reg; | 
|  | } | 
|  |  | 
|  | denali_hw_init(denali); | 
|  | denali_drv_init(denali); | 
|  |  | 
|  | /* denali_isr register is done after all the hardware | 
|  | * initilization is finished*/ | 
|  | if (request_irq(dev->irq, denali_isr, IRQF_SHARED, | 
|  | DENALI_NAND_NAME, denali)) { | 
|  | printk(KERN_ERR "Spectra: Unable to allocate IRQ\n"); | 
|  | ret = -ENODEV; | 
|  | goto failed_remap_mem; | 
|  | } | 
|  |  | 
|  | /* now that our ISR is registered, we can enable interrupts */ | 
|  | denali_set_intr_modes(denali, true); | 
|  |  | 
|  | pci_set_drvdata(dev, denali); | 
|  |  | 
|  | denali->mtd.name = "denali-nand"; | 
|  | denali->mtd.owner = THIS_MODULE; | 
|  | denali->mtd.priv = &denali->nand; | 
|  |  | 
|  | /* register the driver with the NAND core subsystem */ | 
|  | denali->nand.select_chip = denali_select_chip; | 
|  | denali->nand.cmdfunc = denali_cmdfunc; | 
|  | denali->nand.read_byte = denali_read_byte; | 
|  | denali->nand.waitfunc = denali_waitfunc; | 
|  |  | 
|  | /* scan for NAND devices attached to the controller | 
|  | * this is the first stage in a two step process to register | 
|  | * with the nand subsystem */ | 
|  | if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) { | 
|  | ret = -ENXIO; | 
|  | goto failed_req_irq; | 
|  | } | 
|  |  | 
|  | /* MTD supported page sizes vary by kernel. We validate our | 
|  | * kernel supports the device here. | 
|  | */ | 
|  | if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) { | 
|  | ret = -ENODEV; | 
|  | printk(KERN_ERR "Spectra: device size not supported by this " | 
|  | "version of MTD."); | 
|  | goto failed_req_irq; | 
|  | } | 
|  |  | 
|  | /* support for multi nand | 
|  | * MTD known nothing about multi nand, | 
|  | * so we should tell it the real pagesize | 
|  | * and anything necessery | 
|  | */ | 
|  | denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED); | 
|  | denali->nand.chipsize <<= (denali->devnum - 1); | 
|  | denali->nand.page_shift += (denali->devnum - 1); | 
|  | denali->nand.pagemask = (denali->nand.chipsize >> | 
|  | denali->nand.page_shift) - 1; | 
|  | denali->nand.bbt_erase_shift += (denali->devnum - 1); | 
|  | denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift; | 
|  | denali->nand.chip_shift += (denali->devnum - 1); | 
|  | denali->mtd.writesize <<= (denali->devnum - 1); | 
|  | denali->mtd.oobsize <<= (denali->devnum - 1); | 
|  | denali->mtd.erasesize <<= (denali->devnum - 1); | 
|  | denali->mtd.size = denali->nand.numchips * denali->nand.chipsize; | 
|  | denali->bbtskipbytes *= denali->devnum; | 
|  |  | 
|  | /* second stage of the NAND scan | 
|  | * this stage requires information regarding ECC and | 
|  | * bad block management. */ | 
|  |  | 
|  | /* Bad block management */ | 
|  | denali->nand.bbt_td = &bbt_main_descr; | 
|  | denali->nand.bbt_md = &bbt_mirror_descr; | 
|  |  | 
|  | /* skip the scan for now until we have OOB read and write support */ | 
|  | denali->nand.bbt_options |= NAND_BBT_USE_FLASH; | 
|  | denali->nand.options |= NAND_SKIP_BBTSCAN; | 
|  | denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME; | 
|  |  | 
|  | /* Denali Controller only support 15bit and 8bit ECC in MRST, | 
|  | * so just let controller do 15bit ECC for MLC and 8bit ECC for | 
|  | * SLC if possible. | 
|  | * */ | 
|  | if (denali->nand.cellinfo & 0xc && | 
|  | (denali->mtd.oobsize > (denali->bbtskipbytes + | 
|  | ECC_15BITS * (denali->mtd.writesize / | 
|  | ECC_SECTOR_SIZE)))) { | 
|  | /* if MLC OOB size is large enough, use 15bit ECC*/ | 
|  | denali->nand.ecc.strength = 15; | 
|  | denali->nand.ecc.layout = &nand_15bit_oob; | 
|  | denali->nand.ecc.bytes = ECC_15BITS; | 
|  | iowrite32(15, denali->flash_reg + ECC_CORRECTION); | 
|  | } else if (denali->mtd.oobsize < (denali->bbtskipbytes + | 
|  | ECC_8BITS * (denali->mtd.writesize / | 
|  | ECC_SECTOR_SIZE))) { | 
|  | printk(KERN_ERR "Your NAND chip OOB is not large enough to" | 
|  | " contain 8bit ECC correction codes"); | 
|  | goto failed_req_irq; | 
|  | } else { | 
|  | denali->nand.ecc.strength = 8; | 
|  | denali->nand.ecc.layout = &nand_8bit_oob; | 
|  | denali->nand.ecc.bytes = ECC_8BITS; | 
|  | iowrite32(8, denali->flash_reg + ECC_CORRECTION); | 
|  | } | 
|  |  | 
|  | denali->nand.ecc.bytes *= denali->devnum; | 
|  | denali->nand.ecc.strength *= denali->devnum; | 
|  | denali->nand.ecc.layout->eccbytes *= | 
|  | denali->mtd.writesize / ECC_SECTOR_SIZE; | 
|  | denali->nand.ecc.layout->oobfree[0].offset = | 
|  | denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes; | 
|  | denali->nand.ecc.layout->oobfree[0].length = | 
|  | denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes - | 
|  | denali->bbtskipbytes; | 
|  |  | 
|  | /* Let driver know the total blocks number and | 
|  | * how many blocks contained by each nand chip. | 
|  | * blksperchip will help driver to know how many | 
|  | * blocks is taken by FW. | 
|  | * */ | 
|  | denali->totalblks = denali->mtd.size >> | 
|  | denali->nand.phys_erase_shift; | 
|  | denali->blksperchip = denali->totalblks / denali->nand.numchips; | 
|  |  | 
|  | /* These functions are required by the NAND core framework, otherwise, | 
|  | * the NAND core will assert. However, we don't need them, so we'll stub | 
|  | * them out. */ | 
|  | denali->nand.ecc.calculate = denali_ecc_calculate; | 
|  | denali->nand.ecc.correct = denali_ecc_correct; | 
|  | denali->nand.ecc.hwctl = denali_ecc_hwctl; | 
|  |  | 
|  | /* override the default read operations */ | 
|  | denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum; | 
|  | denali->nand.ecc.read_page = denali_read_page; | 
|  | denali->nand.ecc.read_page_raw = denali_read_page_raw; | 
|  | denali->nand.ecc.write_page = denali_write_page; | 
|  | denali->nand.ecc.write_page_raw = denali_write_page_raw; | 
|  | denali->nand.ecc.read_oob = denali_read_oob; | 
|  | denali->nand.ecc.write_oob = denali_write_oob; | 
|  | denali->nand.erase_cmd = denali_erase; | 
|  |  | 
|  | if (nand_scan_tail(&denali->mtd)) { | 
|  | ret = -ENXIO; | 
|  | goto failed_req_irq; | 
|  | } | 
|  |  | 
|  | ret = mtd_device_register(&denali->mtd, NULL, 0); | 
|  | if (ret) { | 
|  | dev_err(&dev->dev, "Spectra: Failed to register MTD: %d\n", | 
|  | ret); | 
|  | goto failed_req_irq; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | failed_req_irq: | 
|  | denali_irq_cleanup(dev->irq, denali); | 
|  | failed_remap_mem: | 
|  | iounmap(denali->flash_mem); | 
|  | failed_remap_reg: | 
|  | iounmap(denali->flash_reg); | 
|  | failed_req_regions: | 
|  | pci_release_regions(dev); | 
|  | failed_dma_map: | 
|  | dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE, | 
|  | DMA_BIDIRECTIONAL); | 
|  | failed_enable_dev: | 
|  | pci_disable_device(dev); | 
|  | failed_alloc_memery: | 
|  | kfree(denali); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* driver exit point */ | 
|  | static void denali_pci_remove(struct pci_dev *dev) | 
|  | { | 
|  | struct denali_nand_info *denali = pci_get_drvdata(dev); | 
|  |  | 
|  | nand_release(&denali->mtd); | 
|  |  | 
|  | denali_irq_cleanup(dev->irq, denali); | 
|  |  | 
|  | iounmap(denali->flash_reg); | 
|  | iounmap(denali->flash_mem); | 
|  | pci_release_regions(dev); | 
|  | pci_disable_device(dev); | 
|  | dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE, | 
|  | DMA_BIDIRECTIONAL); | 
|  | pci_set_drvdata(dev, NULL); | 
|  | kfree(denali); | 
|  | } | 
|  |  | 
|  | MODULE_DEVICE_TABLE(pci, denali_pci_ids); | 
|  |  | 
|  | static struct pci_driver denali_pci_driver = { | 
|  | .name = DENALI_NAND_NAME, | 
|  | .id_table = denali_pci_ids, | 
|  | .probe = denali_pci_probe, | 
|  | .remove = denali_pci_remove, | 
|  | }; | 
|  |  | 
|  | module_pci_driver(denali_pci_driver); |