|  | /* | 
|  | * NXP LPC32XX NAND SLC driver | 
|  | * | 
|  | * Authors: | 
|  | *    Kevin Wells <kevin.wells@nxp.com> | 
|  | *    Roland Stigge <stigge@antcom.de> | 
|  | * | 
|  | * Copyright © 2011 NXP Semiconductors | 
|  | * Copyright © 2012 Roland Stigge | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/mtd/nand_ecc.h> | 
|  | #include <linux/gpio.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_mtd.h> | 
|  | #include <linux/of_gpio.h> | 
|  | #include <linux/amba/pl08x.h> | 
|  |  | 
|  | #define LPC32XX_MODNAME		"lpc32xx-nand" | 
|  |  | 
|  | /********************************************************************** | 
|  | * SLC NAND controller register offsets | 
|  | **********************************************************************/ | 
|  |  | 
|  | #define SLC_DATA(x)		(x + 0x000) | 
|  | #define SLC_ADDR(x)		(x + 0x004) | 
|  | #define SLC_CMD(x)		(x + 0x008) | 
|  | #define SLC_STOP(x)		(x + 0x00C) | 
|  | #define SLC_CTRL(x)		(x + 0x010) | 
|  | #define SLC_CFG(x)		(x + 0x014) | 
|  | #define SLC_STAT(x)		(x + 0x018) | 
|  | #define SLC_INT_STAT(x)		(x + 0x01C) | 
|  | #define SLC_IEN(x)		(x + 0x020) | 
|  | #define SLC_ISR(x)		(x + 0x024) | 
|  | #define SLC_ICR(x)		(x + 0x028) | 
|  | #define SLC_TAC(x)		(x + 0x02C) | 
|  | #define SLC_TC(x)		(x + 0x030) | 
|  | #define SLC_ECC(x)		(x + 0x034) | 
|  | #define SLC_DMA_DATA(x)		(x + 0x038) | 
|  |  | 
|  | /********************************************************************** | 
|  | * slc_ctrl register definitions | 
|  | **********************************************************************/ | 
|  | #define SLCCTRL_SW_RESET	(1 << 2) /* Reset the NAND controller bit */ | 
|  | #define SLCCTRL_ECC_CLEAR	(1 << 1) /* Reset ECC bit */ | 
|  | #define SLCCTRL_DMA_START	(1 << 0) /* Start DMA channel bit */ | 
|  |  | 
|  | /********************************************************************** | 
|  | * slc_cfg register definitions | 
|  | **********************************************************************/ | 
|  | #define SLCCFG_CE_LOW		(1 << 5) /* Force CE low bit */ | 
|  | #define SLCCFG_DMA_ECC		(1 << 4) /* Enable DMA ECC bit */ | 
|  | #define SLCCFG_ECC_EN		(1 << 3) /* ECC enable bit */ | 
|  | #define SLCCFG_DMA_BURST	(1 << 2) /* DMA burst bit */ | 
|  | #define SLCCFG_DMA_DIR		(1 << 1) /* DMA write(0)/read(1) bit */ | 
|  | #define SLCCFG_WIDTH		(1 << 0) /* External device width, 0=8bit */ | 
|  |  | 
|  | /********************************************************************** | 
|  | * slc_stat register definitions | 
|  | **********************************************************************/ | 
|  | #define SLCSTAT_DMA_FIFO	(1 << 2) /* DMA FIFO has data bit */ | 
|  | #define SLCSTAT_SLC_FIFO	(1 << 1) /* SLC FIFO has data bit */ | 
|  | #define SLCSTAT_NAND_READY	(1 << 0) /* NAND device is ready bit */ | 
|  |  | 
|  | /********************************************************************** | 
|  | * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions | 
|  | **********************************************************************/ | 
|  | #define SLCSTAT_INT_TC		(1 << 1) /* Transfer count bit */ | 
|  | #define SLCSTAT_INT_RDY_EN	(1 << 0) /* Ready interrupt bit */ | 
|  |  | 
|  | /********************************************************************** | 
|  | * slc_tac register definitions | 
|  | **********************************************************************/ | 
|  | /* Clock setting for RDY write sample wait time in 2*n clocks */ | 
|  | #define SLCTAC_WDR(n)		(((n) & 0xF) << 28) | 
|  | /* Write pulse width in clock cycles, 1 to 16 clocks */ | 
|  | #define SLCTAC_WWIDTH(n)	(((n) & 0xF) << 24) | 
|  | /* Write hold time of control and data signals, 1 to 16 clocks */ | 
|  | #define SLCTAC_WHOLD(n)		(((n) & 0xF) << 20) | 
|  | /* Write setup time of control and data signals, 1 to 16 clocks */ | 
|  | #define SLCTAC_WSETUP(n)	(((n) & 0xF) << 16) | 
|  | /* Clock setting for RDY read sample wait time in 2*n clocks */ | 
|  | #define SLCTAC_RDR(n)		(((n) & 0xF) << 12) | 
|  | /* Read pulse width in clock cycles, 1 to 16 clocks */ | 
|  | #define SLCTAC_RWIDTH(n)	(((n) & 0xF) << 8) | 
|  | /* Read hold time of control and data signals, 1 to 16 clocks */ | 
|  | #define SLCTAC_RHOLD(n)		(((n) & 0xF) << 4) | 
|  | /* Read setup time of control and data signals, 1 to 16 clocks */ | 
|  | #define SLCTAC_RSETUP(n)	(((n) & 0xF) << 0) | 
|  |  | 
|  | /********************************************************************** | 
|  | * slc_ecc register definitions | 
|  | **********************************************************************/ | 
|  | /* ECC line party fetch macro */ | 
|  | #define SLCECC_TO_LINEPAR(n)	(((n) >> 6) & 0x7FFF) | 
|  | #define SLCECC_TO_COLPAR(n)	((n) & 0x3F) | 
|  |  | 
|  | /* | 
|  | * DMA requires storage space for the DMA local buffer and the hardware ECC | 
|  | * storage area. The DMA local buffer is only used if DMA mapping fails | 
|  | * during runtime. | 
|  | */ | 
|  | #define LPC32XX_DMA_DATA_SIZE		4096 | 
|  | #define LPC32XX_ECC_SAVE_SIZE		((4096 / 256) * 4) | 
|  |  | 
|  | /* Number of bytes used for ECC stored in NAND per 256 bytes */ | 
|  | #define LPC32XX_SLC_DEV_ECC_BYTES	3 | 
|  |  | 
|  | /* | 
|  | * If the NAND base clock frequency can't be fetched, this frequency will be | 
|  | * used instead as the base. This rate is used to setup the timing registers | 
|  | * used for NAND accesses. | 
|  | */ | 
|  | #define LPC32XX_DEF_BUS_RATE		133250000 | 
|  |  | 
|  | /* Milliseconds for DMA FIFO timeout (unlikely anyway) */ | 
|  | #define LPC32XX_DMA_TIMEOUT		100 | 
|  |  | 
|  | /* | 
|  | * NAND ECC Layout for small page NAND devices | 
|  | * Note: For large and huge page devices, the default layouts are used | 
|  | */ | 
|  | static struct nand_ecclayout lpc32xx_nand_oob_16 = { | 
|  | .eccbytes = 6, | 
|  | .eccpos = {10, 11, 12, 13, 14, 15}, | 
|  | .oobfree = { | 
|  | { .offset = 0, .length = 4 }, | 
|  | { .offset = 6, .length = 4 }, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; | 
|  | static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; | 
|  |  | 
|  | /* | 
|  | * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6 | 
|  | * Note: Large page devices used the default layout | 
|  | */ | 
|  | static struct nand_bbt_descr bbt_smallpage_main_descr = { | 
|  | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
|  | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | 
|  | .offs =	0, | 
|  | .len = 4, | 
|  | .veroffs = 6, | 
|  | .maxblocks = 4, | 
|  | .pattern = bbt_pattern | 
|  | }; | 
|  |  | 
|  | static struct nand_bbt_descr bbt_smallpage_mirror_descr = { | 
|  | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
|  | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | 
|  | .offs =	0, | 
|  | .len = 4, | 
|  | .veroffs = 6, | 
|  | .maxblocks = 4, | 
|  | .pattern = mirror_pattern | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * NAND platform configuration structure | 
|  | */ | 
|  | struct lpc32xx_nand_cfg_slc { | 
|  | uint32_t wdr_clks; | 
|  | uint32_t wwidth; | 
|  | uint32_t whold; | 
|  | uint32_t wsetup; | 
|  | uint32_t rdr_clks; | 
|  | uint32_t rwidth; | 
|  | uint32_t rhold; | 
|  | uint32_t rsetup; | 
|  | bool use_bbt; | 
|  | unsigned wp_gpio; | 
|  | struct mtd_partition *parts; | 
|  | unsigned num_parts; | 
|  | }; | 
|  |  | 
|  | struct lpc32xx_nand_host { | 
|  | struct nand_chip	nand_chip; | 
|  | struct clk		*clk; | 
|  | struct mtd_info		mtd; | 
|  | void __iomem		*io_base; | 
|  | struct lpc32xx_nand_cfg_slc *ncfg; | 
|  |  | 
|  | struct completion	comp; | 
|  | struct dma_chan		*dma_chan; | 
|  | uint32_t		dma_buf_len; | 
|  | struct dma_slave_config	dma_slave_config; | 
|  | struct scatterlist	sgl; | 
|  |  | 
|  | /* | 
|  | * DMA and CPU addresses of ECC work area and data buffer | 
|  | */ | 
|  | uint32_t		*ecc_buf; | 
|  | uint8_t			*data_buf; | 
|  | dma_addr_t		io_base_dma; | 
|  | }; | 
|  |  | 
|  | static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) | 
|  | { | 
|  | uint32_t clkrate, tmp; | 
|  |  | 
|  | /* Reset SLC controller */ | 
|  | writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base)); | 
|  | udelay(1000); | 
|  |  | 
|  | /* Basic setup */ | 
|  | writel(0, SLC_CFG(host->io_base)); | 
|  | writel(0, SLC_IEN(host->io_base)); | 
|  | writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN), | 
|  | SLC_ICR(host->io_base)); | 
|  |  | 
|  | /* Get base clock for SLC block */ | 
|  | clkrate = clk_get_rate(host->clk); | 
|  | if (clkrate == 0) | 
|  | clkrate = LPC32XX_DEF_BUS_RATE; | 
|  |  | 
|  | /* Compute clock setup values */ | 
|  | tmp = SLCTAC_WDR(host->ncfg->wdr_clks) | | 
|  | SLCTAC_WWIDTH(1 + (clkrate / host->ncfg->wwidth)) | | 
|  | SLCTAC_WHOLD(1 + (clkrate / host->ncfg->whold)) | | 
|  | SLCTAC_WSETUP(1 + (clkrate / host->ncfg->wsetup)) | | 
|  | SLCTAC_RDR(host->ncfg->rdr_clks) | | 
|  | SLCTAC_RWIDTH(1 + (clkrate / host->ncfg->rwidth)) | | 
|  | SLCTAC_RHOLD(1 + (clkrate / host->ncfg->rhold)) | | 
|  | SLCTAC_RSETUP(1 + (clkrate / host->ncfg->rsetup)); | 
|  | writel(tmp, SLC_TAC(host->io_base)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Hardware specific access to control lines | 
|  | */ | 
|  | static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, | 
|  | unsigned int ctrl) | 
|  | { | 
|  | uint32_t tmp; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct lpc32xx_nand_host *host = chip->priv; | 
|  |  | 
|  | /* Does CE state need to be changed? */ | 
|  | tmp = readl(SLC_CFG(host->io_base)); | 
|  | if (ctrl & NAND_NCE) | 
|  | tmp |= SLCCFG_CE_LOW; | 
|  | else | 
|  | tmp &= ~SLCCFG_CE_LOW; | 
|  | writel(tmp, SLC_CFG(host->io_base)); | 
|  |  | 
|  | if (cmd != NAND_CMD_NONE) { | 
|  | if (ctrl & NAND_CLE) | 
|  | writel(cmd, SLC_CMD(host->io_base)); | 
|  | else | 
|  | writel(cmd, SLC_ADDR(host->io_base)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the Device Ready pin | 
|  | */ | 
|  | static int lpc32xx_nand_device_ready(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct lpc32xx_nand_host *host = chip->priv; | 
|  | int rdy = 0; | 
|  |  | 
|  | if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0) | 
|  | rdy = 1; | 
|  |  | 
|  | return rdy; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable NAND write protect | 
|  | */ | 
|  | static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) | 
|  | { | 
|  | gpio_set_value(host->ncfg->wp_gpio, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable NAND write protect | 
|  | */ | 
|  | static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) | 
|  | { | 
|  | gpio_set_value(host->ncfg->wp_gpio, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepares SLC for transfers with H/W ECC enabled | 
|  | */ | 
|  | static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode) | 
|  | { | 
|  | /* Hardware ECC is enabled automatically in hardware as needed */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculates the ECC for the data | 
|  | */ | 
|  | static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd, | 
|  | const unsigned char *buf, | 
|  | unsigned char *code) | 
|  | { | 
|  | /* | 
|  | * ECC is calculated automatically in hardware during syndrome read | 
|  | * and write operations, so it doesn't need to be calculated here. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read a single byte from NAND device | 
|  | */ | 
|  | static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct lpc32xx_nand_host *host = chip->priv; | 
|  |  | 
|  | return (uint8_t)readl(SLC_DATA(host->io_base)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Simple device read without ECC | 
|  | */ | 
|  | static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct lpc32xx_nand_host *host = chip->priv; | 
|  |  | 
|  | /* Direct device read with no ECC */ | 
|  | while (len-- > 0) | 
|  | *buf++ = (uint8_t)readl(SLC_DATA(host->io_base)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Simple device write without ECC | 
|  | */ | 
|  | static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct lpc32xx_nand_host *host = chip->priv; | 
|  |  | 
|  | /* Direct device write with no ECC */ | 
|  | while (len-- > 0) | 
|  | writel((uint32_t)*buf++, SLC_DATA(host->io_base)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify data in buffer to data on device | 
|  | */ | 
|  | static int lpc32xx_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct lpc32xx_nand_host *host = chip->priv; | 
|  | int i; | 
|  |  | 
|  | /* DATA register must be read as 32 bits or it will fail */ | 
|  | for (i = 0; i < len; i++) { | 
|  | if (buf[i] != (uint8_t)readl(SLC_DATA(host->io_base))) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the OOB data from the device without ECC using FIFO method | 
|  | */ | 
|  | static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, int page) | 
|  | { | 
|  | chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); | 
|  | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write the OOB data to the device without ECC using FIFO method | 
|  | */ | 
|  | static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, int page) | 
|  | { | 
|  | int status; | 
|  |  | 
|  | chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); | 
|  | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  |  | 
|  | /* Send command to program the OOB data */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | 
|  |  | 
|  | status = chip->waitfunc(mtd, chip); | 
|  |  | 
|  | return status & NAND_STATUS_FAIL ? -EIO : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fills in the ECC fields in the OOB buffer with the hardware generated ECC | 
|  | */ | 
|  | static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < (count * 3); i += 3) { | 
|  | uint32_t ce = ecc[i / 3]; | 
|  | ce = ~(ce << 2) & 0xFFFFFF; | 
|  | spare[i + 2] = (uint8_t)(ce & 0xFF); | 
|  | ce >>= 8; | 
|  | spare[i + 1] = (uint8_t)(ce & 0xFF); | 
|  | ce >>= 8; | 
|  | spare[i] = (uint8_t)(ce & 0xFF); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void lpc32xx_dma_complete_func(void *completion) | 
|  | { | 
|  | complete(completion); | 
|  | } | 
|  |  | 
|  | static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma, | 
|  | void *mem, int len, enum dma_transfer_direction dir) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct lpc32xx_nand_host *host = chip->priv; | 
|  | struct dma_async_tx_descriptor *desc; | 
|  | int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; | 
|  | int res; | 
|  |  | 
|  | host->dma_slave_config.direction = dir; | 
|  | host->dma_slave_config.src_addr = dma; | 
|  | host->dma_slave_config.dst_addr = dma; | 
|  | host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
|  | host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
|  | host->dma_slave_config.src_maxburst = 4; | 
|  | host->dma_slave_config.dst_maxburst = 4; | 
|  | /* DMA controller does flow control: */ | 
|  | host->dma_slave_config.device_fc = false; | 
|  | if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { | 
|  | dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | sg_init_one(&host->sgl, mem, len); | 
|  |  | 
|  | res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (res != 1) { | 
|  | dev_err(mtd->dev.parent, "Failed to map sg list\n"); | 
|  | return -ENXIO; | 
|  | } | 
|  | desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, | 
|  | flags); | 
|  | if (!desc) { | 
|  | dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); | 
|  | goto out1; | 
|  | } | 
|  |  | 
|  | init_completion(&host->comp); | 
|  | desc->callback = lpc32xx_dma_complete_func; | 
|  | desc->callback_param = &host->comp; | 
|  |  | 
|  | dmaengine_submit(desc); | 
|  | dma_async_issue_pending(host->dma_chan); | 
|  |  | 
|  | wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000)); | 
|  |  | 
|  | dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, | 
|  | DMA_BIDIRECTIONAL); | 
|  |  | 
|  | return 0; | 
|  | out1: | 
|  | dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, | 
|  | DMA_BIDIRECTIONAL); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DMA read/write transfers with ECC support | 
|  | */ | 
|  | static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages, | 
|  | int read) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct lpc32xx_nand_host *host = chip->priv; | 
|  | int i, status = 0; | 
|  | unsigned long timeout; | 
|  | int res; | 
|  | enum dma_transfer_direction dir = | 
|  | read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; | 
|  | uint8_t *dma_buf; | 
|  | bool dma_mapped; | 
|  |  | 
|  | if ((void *)buf <= high_memory) { | 
|  | dma_buf = buf; | 
|  | dma_mapped = true; | 
|  | } else { | 
|  | dma_buf = host->data_buf; | 
|  | dma_mapped = false; | 
|  | if (!read) | 
|  | memcpy(host->data_buf, buf, mtd->writesize); | 
|  | } | 
|  |  | 
|  | if (read) { | 
|  | writel(readl(SLC_CFG(host->io_base)) | | 
|  | SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | | 
|  | SLCCFG_DMA_BURST, SLC_CFG(host->io_base)); | 
|  | } else { | 
|  | writel((readl(SLC_CFG(host->io_base)) | | 
|  | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) & | 
|  | ~SLCCFG_DMA_DIR, | 
|  | SLC_CFG(host->io_base)); | 
|  | } | 
|  |  | 
|  | /* Clear initial ECC */ | 
|  | writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base)); | 
|  |  | 
|  | /* Transfer size is data area only */ | 
|  | writel(mtd->writesize, SLC_TC(host->io_base)); | 
|  |  | 
|  | /* Start transfer in the NAND controller */ | 
|  | writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START, | 
|  | SLC_CTRL(host->io_base)); | 
|  |  | 
|  | for (i = 0; i < chip->ecc.steps; i++) { | 
|  | /* Data */ | 
|  | res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma), | 
|  | dma_buf + i * chip->ecc.size, | 
|  | mtd->writesize / chip->ecc.steps, dir); | 
|  | if (res) | 
|  | return res; | 
|  |  | 
|  | /* Always _read_ ECC */ | 
|  | if (i == chip->ecc.steps - 1) | 
|  | break; | 
|  | if (!read) /* ECC availability delayed on write */ | 
|  | udelay(10); | 
|  | res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma), | 
|  | &host->ecc_buf[i], 4, DMA_DEV_TO_MEM); | 
|  | if (res) | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * According to NXP, the DMA can be finished here, but the NAND | 
|  | * controller may still have buffered data. After porting to using the | 
|  | * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty) | 
|  | * appears to be always true, according to tests. Keeping the check for | 
|  | * safety reasons for now. | 
|  | */ | 
|  | if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) { | 
|  | dev_warn(mtd->dev.parent, "FIFO not empty!\n"); | 
|  | timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT); | 
|  | while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) && | 
|  | time_before(jiffies, timeout)) | 
|  | cpu_relax(); | 
|  | if (!time_before(jiffies, timeout)) { | 
|  | dev_err(mtd->dev.parent, "FIFO held data too long\n"); | 
|  | status = -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Read last calculated ECC value */ | 
|  | if (!read) | 
|  | udelay(10); | 
|  | host->ecc_buf[chip->ecc.steps - 1] = | 
|  | readl(SLC_ECC(host->io_base)); | 
|  |  | 
|  | /* Flush DMA */ | 
|  | dmaengine_terminate_all(host->dma_chan); | 
|  |  | 
|  | if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO || | 
|  | readl(SLC_TC(host->io_base))) { | 
|  | /* Something is left in the FIFO, something is wrong */ | 
|  | dev_err(mtd->dev.parent, "DMA FIFO failure\n"); | 
|  | status = -EIO; | 
|  | } | 
|  |  | 
|  | /* Stop DMA & HW ECC */ | 
|  | writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START, | 
|  | SLC_CTRL(host->io_base)); | 
|  | writel(readl(SLC_CFG(host->io_base)) & | 
|  | ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | | 
|  | SLCCFG_DMA_BURST), SLC_CFG(host->io_base)); | 
|  |  | 
|  | if (!dma_mapped && read) | 
|  | memcpy(buf, host->data_buf, mtd->writesize); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the data and OOB data from the device, use ECC correction with the | 
|  | * data, disable ECC for the OOB data | 
|  | */ | 
|  | static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, uint8_t *buf, | 
|  | int oob_required, int page) | 
|  | { | 
|  | struct lpc32xx_nand_host *host = chip->priv; | 
|  | int stat, i, status; | 
|  | uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE]; | 
|  |  | 
|  | /* Issue read command */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); | 
|  |  | 
|  | /* Read data and oob, calculate ECC */ | 
|  | status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1); | 
|  |  | 
|  | /* Get OOB data */ | 
|  | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  |  | 
|  | /* Convert to stored ECC format */ | 
|  | lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps); | 
|  |  | 
|  | /* Pointer to ECC data retrieved from NAND spare area */ | 
|  | oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0]; | 
|  |  | 
|  | for (i = 0; i < chip->ecc.steps; i++) { | 
|  | stat = chip->ecc.correct(mtd, buf, oobecc, | 
|  | &tmpecc[i * chip->ecc.bytes]); | 
|  | if (stat < 0) | 
|  | mtd->ecc_stats.failed++; | 
|  | else | 
|  | mtd->ecc_stats.corrected += stat; | 
|  |  | 
|  | buf += chip->ecc.size; | 
|  | oobecc += chip->ecc.bytes; | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the data and OOB data from the device, no ECC correction with the | 
|  | * data or OOB data | 
|  | */ | 
|  | static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, | 
|  | uint8_t *buf, int oob_required, | 
|  | int page) | 
|  | { | 
|  | /* Issue read command */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); | 
|  |  | 
|  | /* Raw reads can just use the FIFO interface */ | 
|  | chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); | 
|  | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write the data and OOB data to the device, use ECC with the data, | 
|  | * disable ECC for the OOB data | 
|  | */ | 
|  | static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, | 
|  | const uint8_t *buf, int oob_required) | 
|  | { | 
|  | struct lpc32xx_nand_host *host = chip->priv; | 
|  | uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0]; | 
|  | int error; | 
|  |  | 
|  | /* Write data, calculate ECC on outbound data */ | 
|  | error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * The calculated ECC needs some manual work done to it before | 
|  | * committing it to NAND. Process the calculated ECC and place | 
|  | * the resultant values directly into the OOB buffer. */ | 
|  | lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps); | 
|  |  | 
|  | /* Write ECC data to device */ | 
|  | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write the data and OOB data to the device, no ECC correction with the | 
|  | * data or OOB data | 
|  | */ | 
|  | static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, | 
|  | const uint8_t *buf, | 
|  | int oob_required) | 
|  | { | 
|  | /* Raw writes can just use the FIFO interface */ | 
|  | chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); | 
|  | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool lpc32xx_dma_filter(struct dma_chan *chan, void *param) | 
|  | { | 
|  | struct pl08x_dma_chan *ch = | 
|  | container_of(chan, struct pl08x_dma_chan, chan); | 
|  |  | 
|  | /* In LPC32xx's PL080 DMA wiring, the SLC NAND DMA signal is #1 */ | 
|  | if (ch->cd->min_signal == 1) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host) | 
|  | { | 
|  | struct mtd_info *mtd = &host->mtd; | 
|  | dma_cap_mask_t mask; | 
|  |  | 
|  | dma_cap_zero(mask); | 
|  | dma_cap_set(DMA_SLAVE, mask); | 
|  | host->dma_chan = dma_request_channel(mask, lpc32xx_dma_filter, NULL); | 
|  | if (!host->dma_chan) { | 
|  | dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_OF | 
|  | static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev) | 
|  | { | 
|  | struct lpc32xx_nand_cfg_slc *pdata; | 
|  | struct device_node *np = dev->of_node; | 
|  |  | 
|  | pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); | 
|  | if (!pdata) { | 
|  | dev_err(dev, "could not allocate memory for platform data\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | of_property_read_u32(np, "nxp,wdr-clks", &pdata->wdr_clks); | 
|  | of_property_read_u32(np, "nxp,wwidth", &pdata->wwidth); | 
|  | of_property_read_u32(np, "nxp,whold", &pdata->whold); | 
|  | of_property_read_u32(np, "nxp,wsetup", &pdata->wsetup); | 
|  | of_property_read_u32(np, "nxp,rdr-clks", &pdata->rdr_clks); | 
|  | of_property_read_u32(np, "nxp,rwidth", &pdata->rwidth); | 
|  | of_property_read_u32(np, "nxp,rhold", &pdata->rhold); | 
|  | of_property_read_u32(np, "nxp,rsetup", &pdata->rsetup); | 
|  |  | 
|  | if (!pdata->wdr_clks || !pdata->wwidth || !pdata->whold || | 
|  | !pdata->wsetup || !pdata->rdr_clks || !pdata->rwidth || | 
|  | !pdata->rhold || !pdata->rsetup) { | 
|  | dev_err(dev, "chip parameters not specified correctly\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | pdata->use_bbt = of_get_nand_on_flash_bbt(np); | 
|  | pdata->wp_gpio = of_get_named_gpio_flags(np, "gpios", 0, NULL); | 
|  |  | 
|  | return pdata; | 
|  | } | 
|  | #else | 
|  | static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Probe for NAND controller | 
|  | */ | 
|  | static int __devinit lpc32xx_nand_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct lpc32xx_nand_host *host; | 
|  | struct mtd_info *mtd; | 
|  | struct nand_chip *chip; | 
|  | struct resource *rc; | 
|  | struct mtd_part_parser_data ppdata = {}; | 
|  | int res; | 
|  |  | 
|  | rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | if (rc == NULL) { | 
|  | dev_err(&pdev->dev, "No memory resource found for device\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* Allocate memory for the device structure (and zero it) */ | 
|  | host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); | 
|  | if (!host) { | 
|  | dev_err(&pdev->dev, "failed to allocate device structure\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | host->io_base_dma = rc->start; | 
|  |  | 
|  | host->io_base = devm_request_and_ioremap(&pdev->dev, rc); | 
|  | if (host->io_base == NULL) { | 
|  | dev_err(&pdev->dev, "ioremap failed\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (pdev->dev.of_node) | 
|  | host->ncfg = lpc32xx_parse_dt(&pdev->dev); | 
|  | else | 
|  | host->ncfg = pdev->dev.platform_data; | 
|  | if (!host->ncfg) { | 
|  | dev_err(&pdev->dev, "Missing platform data\n"); | 
|  | return -ENOENT; | 
|  | } | 
|  | if (gpio_request(host->ncfg->wp_gpio, "NAND WP")) { | 
|  | dev_err(&pdev->dev, "GPIO not available\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  | lpc32xx_wp_disable(host); | 
|  |  | 
|  | mtd = &host->mtd; | 
|  | chip = &host->nand_chip; | 
|  | chip->priv = host; | 
|  | mtd->priv = chip; | 
|  | mtd->owner = THIS_MODULE; | 
|  | mtd->dev.parent = &pdev->dev; | 
|  |  | 
|  | /* Get NAND clock */ | 
|  | host->clk = clk_get(&pdev->dev, NULL); | 
|  | if (IS_ERR(host->clk)) { | 
|  | dev_err(&pdev->dev, "Clock failure\n"); | 
|  | res = -ENOENT; | 
|  | goto err_exit1; | 
|  | } | 
|  | clk_enable(host->clk); | 
|  |  | 
|  | /* Set NAND IO addresses and command/ready functions */ | 
|  | chip->IO_ADDR_R = SLC_DATA(host->io_base); | 
|  | chip->IO_ADDR_W = SLC_DATA(host->io_base); | 
|  | chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; | 
|  | chip->dev_ready = lpc32xx_nand_device_ready; | 
|  | chip->chip_delay = 20; /* 20us command delay time */ | 
|  |  | 
|  | /* Init NAND controller */ | 
|  | lpc32xx_nand_setup(host); | 
|  |  | 
|  | platform_set_drvdata(pdev, host); | 
|  |  | 
|  | /* NAND callbacks for LPC32xx SLC hardware */ | 
|  | chip->ecc.mode = NAND_ECC_HW_SYNDROME; | 
|  | chip->read_byte = lpc32xx_nand_read_byte; | 
|  | chip->read_buf = lpc32xx_nand_read_buf; | 
|  | chip->write_buf = lpc32xx_nand_write_buf; | 
|  | chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome; | 
|  | chip->ecc.read_page = lpc32xx_nand_read_page_syndrome; | 
|  | chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome; | 
|  | chip->ecc.write_page = lpc32xx_nand_write_page_syndrome; | 
|  | chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome; | 
|  | chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome; | 
|  | chip->ecc.calculate = lpc32xx_nand_ecc_calculate; | 
|  | chip->ecc.correct = nand_correct_data; | 
|  | chip->ecc.strength = 1; | 
|  | chip->ecc.hwctl = lpc32xx_nand_ecc_enable; | 
|  | chip->verify_buf = lpc32xx_verify_buf; | 
|  |  | 
|  | /* bitflip_threshold's default is defined as ecc_strength anyway. | 
|  | * Unfortunately, it is set only later at add_mtd_device(). Meanwhile | 
|  | * being 0, it causes bad block table scanning errors in | 
|  | * nand_scan_tail(), so preparing it here already. */ | 
|  | mtd->bitflip_threshold = chip->ecc.strength; | 
|  |  | 
|  | /* | 
|  | * Allocate a large enough buffer for a single huge page plus | 
|  | * extra space for the spare area and ECC storage area | 
|  | */ | 
|  | host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE; | 
|  | host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len, | 
|  | GFP_KERNEL); | 
|  | if (host->data_buf == NULL) { | 
|  | dev_err(&pdev->dev, "Error allocating memory\n"); | 
|  | res = -ENOMEM; | 
|  | goto err_exit2; | 
|  | } | 
|  |  | 
|  | res = lpc32xx_nand_dma_setup(host); | 
|  | if (res) { | 
|  | res = -EIO; | 
|  | goto err_exit2; | 
|  | } | 
|  |  | 
|  | /* Find NAND device */ | 
|  | if (nand_scan_ident(mtd, 1, NULL)) { | 
|  | res = -ENXIO; | 
|  | goto err_exit3; | 
|  | } | 
|  |  | 
|  | /* OOB and ECC CPU and DMA work areas */ | 
|  | host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE); | 
|  |  | 
|  | /* | 
|  | * Small page FLASH has a unique OOB layout, but large and huge | 
|  | * page FLASH use the standard layout. Small page FLASH uses a | 
|  | * custom BBT marker layout. | 
|  | */ | 
|  | if (mtd->writesize <= 512) | 
|  | chip->ecc.layout = &lpc32xx_nand_oob_16; | 
|  |  | 
|  | /* These sizes remain the same regardless of page size */ | 
|  | chip->ecc.size = 256; | 
|  | chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES; | 
|  | chip->ecc.prepad = chip->ecc.postpad = 0; | 
|  |  | 
|  | /* Avoid extra scan if using BBT, setup BBT support */ | 
|  | if (host->ncfg->use_bbt) { | 
|  | chip->options |= NAND_SKIP_BBTSCAN; | 
|  | chip->bbt_options |= NAND_BBT_USE_FLASH; | 
|  |  | 
|  | /* | 
|  | * Use a custom BBT marker setup for small page FLASH that | 
|  | * won't interfere with the ECC layout. Large and huge page | 
|  | * FLASH use the standard layout. | 
|  | */ | 
|  | if (mtd->writesize <= 512) { | 
|  | chip->bbt_td = &bbt_smallpage_main_descr; | 
|  | chip->bbt_md = &bbt_smallpage_mirror_descr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fills out all the uninitialized function pointers with the defaults | 
|  | */ | 
|  | if (nand_scan_tail(mtd)) { | 
|  | res = -ENXIO; | 
|  | goto err_exit3; | 
|  | } | 
|  |  | 
|  | /* Standard layout in FLASH for bad block tables */ | 
|  | if (host->ncfg->use_bbt) { | 
|  | if (nand_default_bbt(mtd) < 0) | 
|  | dev_err(&pdev->dev, | 
|  | "Error initializing default bad block tables\n"); | 
|  | } | 
|  |  | 
|  | mtd->name = "nxp_lpc3220_slc"; | 
|  | ppdata.of_node = pdev->dev.of_node; | 
|  | res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts, | 
|  | host->ncfg->num_parts); | 
|  | if (!res) | 
|  | return res; | 
|  |  | 
|  | nand_release(mtd); | 
|  |  | 
|  | err_exit3: | 
|  | dma_release_channel(host->dma_chan); | 
|  | err_exit2: | 
|  | clk_disable(host->clk); | 
|  | clk_put(host->clk); | 
|  | platform_set_drvdata(pdev, NULL); | 
|  | err_exit1: | 
|  | lpc32xx_wp_enable(host); | 
|  | gpio_free(host->ncfg->wp_gpio); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove NAND device. | 
|  | */ | 
|  | static int __devexit lpc32xx_nand_remove(struct platform_device *pdev) | 
|  | { | 
|  | uint32_t tmp; | 
|  | struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); | 
|  | struct mtd_info *mtd = &host->mtd; | 
|  |  | 
|  | nand_release(mtd); | 
|  | dma_release_channel(host->dma_chan); | 
|  |  | 
|  | /* Force CE high */ | 
|  | tmp = readl(SLC_CTRL(host->io_base)); | 
|  | tmp &= ~SLCCFG_CE_LOW; | 
|  | writel(tmp, SLC_CTRL(host->io_base)); | 
|  |  | 
|  | clk_disable(host->clk); | 
|  | clk_put(host->clk); | 
|  | platform_set_drvdata(pdev, NULL); | 
|  | lpc32xx_wp_enable(host); | 
|  | gpio_free(host->ncfg->wp_gpio); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int lpc32xx_nand_resume(struct platform_device *pdev) | 
|  | { | 
|  | struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); | 
|  |  | 
|  | /* Re-enable NAND clock */ | 
|  | clk_enable(host->clk); | 
|  |  | 
|  | /* Fresh init of NAND controller */ | 
|  | lpc32xx_nand_setup(host); | 
|  |  | 
|  | /* Disable write protect */ | 
|  | lpc32xx_wp_disable(host); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) | 
|  | { | 
|  | uint32_t tmp; | 
|  | struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); | 
|  |  | 
|  | /* Force CE high */ | 
|  | tmp = readl(SLC_CTRL(host->io_base)); | 
|  | tmp &= ~SLCCFG_CE_LOW; | 
|  | writel(tmp, SLC_CTRL(host->io_base)); | 
|  |  | 
|  | /* Enable write protect for safety */ | 
|  | lpc32xx_wp_enable(host); | 
|  |  | 
|  | /* Disable clock */ | 
|  | clk_disable(host->clk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else | 
|  | #define lpc32xx_nand_resume NULL | 
|  | #define lpc32xx_nand_suspend NULL | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_OF) | 
|  | static const struct of_device_id lpc32xx_nand_match[] = { | 
|  | { .compatible = "nxp,lpc3220-slc" }, | 
|  | { /* sentinel */ }, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); | 
|  | #endif | 
|  |  | 
|  | static struct platform_driver lpc32xx_nand_driver = { | 
|  | .probe		= lpc32xx_nand_probe, | 
|  | .remove		= __devexit_p(lpc32xx_nand_remove), | 
|  | .resume		= lpc32xx_nand_resume, | 
|  | .suspend	= lpc32xx_nand_suspend, | 
|  | .driver		= { | 
|  | .name	= LPC32XX_MODNAME, | 
|  | .owner	= THIS_MODULE, | 
|  | .of_match_table = of_match_ptr(lpc32xx_nand_match), | 
|  | }, | 
|  | }; | 
|  |  | 
|  | module_platform_driver(lpc32xx_nand_driver); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>"); | 
|  | MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); | 
|  | MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller"); |