|  | /* | 
|  | *  drivers/mtd/nand.c | 
|  | * | 
|  | *  Overview: | 
|  | *   This is the generic MTD driver for NAND flash devices. It should be | 
|  | *   capable of working with almost all NAND chips currently available. | 
|  | *   Basic support for AG-AND chips is provided. | 
|  | * | 
|  | *	Additional technical information is available on | 
|  | *	http://www.linux-mtd.infradead.org/doc/nand.html | 
|  | * | 
|  | *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) | 
|  | *		  2002-2006 Thomas Gleixner (tglx@linutronix.de) | 
|  | * | 
|  | *  Credits: | 
|  | *	David Woodhouse for adding multichip support | 
|  | * | 
|  | *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the | 
|  | *	rework for 2K page size chips | 
|  | * | 
|  | *  TODO: | 
|  | *	Enable cached programming for 2k page size chips | 
|  | *	Check, if mtd->ecctype should be set to MTD_ECC_HW | 
|  | *	if we have HW ECC support. | 
|  | *	The AG-AND chips have nice features for speed improvement, | 
|  | *	which are not supported yet. Read / program 4 pages in one go. | 
|  | *	BBT table is not serialized, has to be fixed | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/nand_ecc.h> | 
|  | #include <linux/mtd/nand_bch.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/leds.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  |  | 
|  | /* Define default oob placement schemes for large and small page devices */ | 
|  | static struct nand_ecclayout nand_oob_8 = { | 
|  | .eccbytes = 3, | 
|  | .eccpos = {0, 1, 2}, | 
|  | .oobfree = { | 
|  | {.offset = 3, | 
|  | .length = 2}, | 
|  | {.offset = 6, | 
|  | .length = 2} } | 
|  | }; | 
|  |  | 
|  | static struct nand_ecclayout nand_oob_16 = { | 
|  | .eccbytes = 6, | 
|  | .eccpos = {0, 1, 2, 3, 6, 7}, | 
|  | .oobfree = { | 
|  | {.offset = 8, | 
|  | . length = 8} } | 
|  | }; | 
|  |  | 
|  | static struct nand_ecclayout nand_oob_64 = { | 
|  | .eccbytes = 24, | 
|  | .eccpos = { | 
|  | 40, 41, 42, 43, 44, 45, 46, 47, | 
|  | 48, 49, 50, 51, 52, 53, 54, 55, | 
|  | 56, 57, 58, 59, 60, 61, 62, 63}, | 
|  | .oobfree = { | 
|  | {.offset = 2, | 
|  | .length = 38} } | 
|  | }; | 
|  |  | 
|  | static struct nand_ecclayout nand_oob_128 = { | 
|  | .eccbytes = 48, | 
|  | .eccpos = { | 
|  | 80, 81, 82, 83, 84, 85, 86, 87, | 
|  | 88, 89, 90, 91, 92, 93, 94, 95, | 
|  | 96, 97, 98, 99, 100, 101, 102, 103, | 
|  | 104, 105, 106, 107, 108, 109, 110, 111, | 
|  | 112, 113, 114, 115, 116, 117, 118, 119, | 
|  | 120, 121, 122, 123, 124, 125, 126, 127}, | 
|  | .oobfree = { | 
|  | {.offset = 2, | 
|  | .length = 78} } | 
|  | }; | 
|  |  | 
|  | static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, | 
|  | int new_state); | 
|  |  | 
|  | static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, | 
|  | struct mtd_oob_ops *ops); | 
|  |  | 
|  | /* | 
|  | * For devices which display every fart in the system on a separate LED. Is | 
|  | * compiled away when LED support is disabled. | 
|  | */ | 
|  | DEFINE_LED_TRIGGER(nand_led_trigger); | 
|  |  | 
|  | static int check_offs_len(struct mtd_info *mtd, | 
|  | loff_t ofs, uint64_t len) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Start address must align on block boundary */ | 
|  | if (ofs & ((1 << chip->phys_erase_shift) - 1)) { | 
|  | pr_debug("%s: unaligned address\n", __func__); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Length must align on block boundary */ | 
|  | if (len & ((1 << chip->phys_erase_shift) - 1)) { | 
|  | pr_debug("%s: length not block aligned\n", __func__); | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_release_device - [GENERIC] release chip | 
|  | * @mtd: MTD device structure | 
|  | * | 
|  | * Deselect, release chip lock and wake up anyone waiting on the device. | 
|  | */ | 
|  | static void nand_release_device(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | /* De-select the NAND device */ | 
|  | chip->select_chip(mtd, -1); | 
|  |  | 
|  | /* Release the controller and the chip */ | 
|  | spin_lock(&chip->controller->lock); | 
|  | chip->controller->active = NULL; | 
|  | chip->state = FL_READY; | 
|  | wake_up(&chip->controller->wq); | 
|  | spin_unlock(&chip->controller->lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_byte - [DEFAULT] read one byte from the chip | 
|  | * @mtd: MTD device structure | 
|  | * | 
|  | * Default read function for 8bit buswidth | 
|  | */ | 
|  | static uint8_t nand_read_byte(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | return readb(chip->IO_ADDR_R); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip | 
|  | * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip | 
|  | * @mtd: MTD device structure | 
|  | * | 
|  | * Default read function for 16bit buswidth with endianness conversion. | 
|  | * | 
|  | */ | 
|  | static uint8_t nand_read_byte16(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_word - [DEFAULT] read one word from the chip | 
|  | * @mtd: MTD device structure | 
|  | * | 
|  | * Default read function for 16bit buswidth without endianness conversion. | 
|  | */ | 
|  | static u16 nand_read_word(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | return readw(chip->IO_ADDR_R); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_select_chip - [DEFAULT] control CE line | 
|  | * @mtd: MTD device structure | 
|  | * @chipnr: chipnumber to select, -1 for deselect | 
|  | * | 
|  | * Default select function for 1 chip devices. | 
|  | */ | 
|  | static void nand_select_chip(struct mtd_info *mtd, int chipnr) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | switch (chipnr) { | 
|  | case -1: | 
|  | chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); | 
|  | break; | 
|  | case 0: | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write_buf - [DEFAULT] write buffer to chip | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | * | 
|  | * Default write function for 8bit buswidth. | 
|  | */ | 
|  | static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | for (i = 0; i < len; i++) | 
|  | writeb(buf[i], chip->IO_ADDR_W); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_buf - [DEFAULT] read chip data into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | * | 
|  | * Default read function for 8bit buswidth. | 
|  | */ | 
|  | static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | for (i = 0; i < len; i++) | 
|  | buf[i] = readb(chip->IO_ADDR_R); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_verify_buf - [DEFAULT] Verify chip data against buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer containing the data to compare | 
|  | * @len: number of bytes to compare | 
|  | * | 
|  | * Default verify function for 8bit buswidth. | 
|  | */ | 
|  | static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | for (i = 0; i < len; i++) | 
|  | if (buf[i] != readb(chip->IO_ADDR_R)) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write_buf16 - [DEFAULT] write buffer to chip | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | * | 
|  | * Default write function for 16bit buswidth. | 
|  | */ | 
|  | static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | u16 *p = (u16 *) buf; | 
|  | len >>= 1; | 
|  |  | 
|  | for (i = 0; i < len; i++) | 
|  | writew(p[i], chip->IO_ADDR_W); | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_buf16 - [DEFAULT] read chip data into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | * | 
|  | * Default read function for 16bit buswidth. | 
|  | */ | 
|  | static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | u16 *p = (u16 *) buf; | 
|  | len >>= 1; | 
|  |  | 
|  | for (i = 0; i < len; i++) | 
|  | p[i] = readw(chip->IO_ADDR_R); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer containing the data to compare | 
|  | * @len: number of bytes to compare | 
|  | * | 
|  | * Default verify function for 16bit buswidth. | 
|  | */ | 
|  | static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | u16 *p = (u16 *) buf; | 
|  | len >>= 1; | 
|  |  | 
|  | for (i = 0; i < len; i++) | 
|  | if (p[i] != readw(chip->IO_ADDR_R)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_block_bad - [DEFAULT] Read bad block marker from the chip | 
|  | * @mtd: MTD device structure | 
|  | * @ofs: offset from device start | 
|  | * @getchip: 0, if the chip is already selected | 
|  | * | 
|  | * Check, if the block is bad. | 
|  | */ | 
|  | static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) | 
|  | { | 
|  | int page, chipnr, res = 0, i = 0; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | u16 bad; | 
|  |  | 
|  | if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) | 
|  | ofs += mtd->erasesize - mtd->writesize; | 
|  |  | 
|  | page = (int)(ofs >> chip->page_shift) & chip->pagemask; | 
|  |  | 
|  | if (getchip) { | 
|  | chipnr = (int)(ofs >> chip->chip_shift); | 
|  |  | 
|  | nand_get_device(chip, mtd, FL_READING); | 
|  |  | 
|  | /* Select the NAND device */ | 
|  | chip->select_chip(mtd, chipnr); | 
|  | } | 
|  |  | 
|  | do { | 
|  | if (chip->options & NAND_BUSWIDTH_16) { | 
|  | chip->cmdfunc(mtd, NAND_CMD_READOOB, | 
|  | chip->badblockpos & 0xFE, page); | 
|  | bad = cpu_to_le16(chip->read_word(mtd)); | 
|  | if (chip->badblockpos & 0x1) | 
|  | bad >>= 8; | 
|  | else | 
|  | bad &= 0xFF; | 
|  | } else { | 
|  | chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, | 
|  | page); | 
|  | bad = chip->read_byte(mtd); | 
|  | } | 
|  |  | 
|  | if (likely(chip->badblockbits == 8)) | 
|  | res = bad != 0xFF; | 
|  | else | 
|  | res = hweight8(bad) < chip->badblockbits; | 
|  | ofs += mtd->writesize; | 
|  | page = (int)(ofs >> chip->page_shift) & chip->pagemask; | 
|  | i++; | 
|  | } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE)); | 
|  |  | 
|  | if (getchip) | 
|  | nand_release_device(mtd); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_default_block_markbad - [DEFAULT] mark a block bad | 
|  | * @mtd: MTD device structure | 
|  | * @ofs: offset from device start | 
|  | * | 
|  | * This is the default implementation, which can be overridden by a hardware | 
|  | * specific driver. We try operations in the following order, according to our | 
|  | * bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH): | 
|  | *  (1) erase the affected block, to allow OOB marker to be written cleanly | 
|  | *  (2) update in-memory BBT | 
|  | *  (3) write bad block marker to OOB area of affected block | 
|  | *  (4) update flash-based BBT | 
|  | * Note that we retain the first error encountered in (3) or (4), finish the | 
|  | * procedures, and dump the error in the end. | 
|  | */ | 
|  | static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | uint8_t buf[2] = { 0, 0 }; | 
|  | int block, res, ret = 0, i = 0; | 
|  | int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM); | 
|  |  | 
|  | if (write_oob) { | 
|  | struct erase_info einfo; | 
|  |  | 
|  | /* Attempt erase before marking OOB */ | 
|  | memset(&einfo, 0, sizeof(einfo)); | 
|  | einfo.mtd = mtd; | 
|  | einfo.addr = ofs; | 
|  | einfo.len = 1 << chip->phys_erase_shift; | 
|  | nand_erase_nand(mtd, &einfo, 0); | 
|  | } | 
|  |  | 
|  | /* Get block number */ | 
|  | block = (int)(ofs >> chip->bbt_erase_shift); | 
|  | /* Mark block bad in memory-based BBT */ | 
|  | if (chip->bbt) | 
|  | chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); | 
|  |  | 
|  | /* Write bad block marker to OOB */ | 
|  | if (write_oob) { | 
|  | struct mtd_oob_ops ops; | 
|  | loff_t wr_ofs = ofs; | 
|  |  | 
|  | nand_get_device(chip, mtd, FL_WRITING); | 
|  |  | 
|  | ops.datbuf = NULL; | 
|  | ops.oobbuf = buf; | 
|  | ops.ooboffs = chip->badblockpos; | 
|  | if (chip->options & NAND_BUSWIDTH_16) { | 
|  | ops.ooboffs &= ~0x01; | 
|  | ops.len = ops.ooblen = 2; | 
|  | } else { | 
|  | ops.len = ops.ooblen = 1; | 
|  | } | 
|  | ops.mode = MTD_OPS_PLACE_OOB; | 
|  |  | 
|  | /* Write to first/last page(s) if necessary */ | 
|  | if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) | 
|  | wr_ofs += mtd->erasesize - mtd->writesize; | 
|  | do { | 
|  | res = nand_do_write_oob(mtd, wr_ofs, &ops); | 
|  | if (!ret) | 
|  | ret = res; | 
|  |  | 
|  | i++; | 
|  | wr_ofs += mtd->writesize; | 
|  | } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2); | 
|  |  | 
|  | nand_release_device(mtd); | 
|  | } | 
|  |  | 
|  | /* Update flash-based bad block table */ | 
|  | if (chip->bbt_options & NAND_BBT_USE_FLASH) { | 
|  | res = nand_update_bbt(mtd, ofs); | 
|  | if (!ret) | 
|  | ret = res; | 
|  | } | 
|  |  | 
|  | if (!ret) | 
|  | mtd->ecc_stats.badblocks++; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_check_wp - [GENERIC] check if the chip is write protected | 
|  | * @mtd: MTD device structure | 
|  | * | 
|  | * Check, if the device is write protected. The function expects, that the | 
|  | * device is already selected. | 
|  | */ | 
|  | static int nand_check_wp(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | /* Broken xD cards report WP despite being writable */ | 
|  | if (chip->options & NAND_BROKEN_XD) | 
|  | return 0; | 
|  |  | 
|  | /* Check the WP bit */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); | 
|  | return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_block_checkbad - [GENERIC] Check if a block is marked bad | 
|  | * @mtd: MTD device structure | 
|  | * @ofs: offset from device start | 
|  | * @getchip: 0, if the chip is already selected | 
|  | * @allowbbt: 1, if its allowed to access the bbt area | 
|  | * | 
|  | * Check, if the block is bad. Either by reading the bad block table or | 
|  | * calling of the scan function. | 
|  | */ | 
|  | static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, | 
|  | int allowbbt) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | if (!chip->bbt) | 
|  | return chip->block_bad(mtd, ofs, getchip); | 
|  |  | 
|  | /* Return info from the table */ | 
|  | return nand_isbad_bbt(mtd, ofs, allowbbt); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands. | 
|  | * @mtd: MTD device structure | 
|  | * @timeo: Timeout | 
|  | * | 
|  | * Helper function for nand_wait_ready used when needing to wait in interrupt | 
|  | * context. | 
|  | */ | 
|  | static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | int i; | 
|  |  | 
|  | /* Wait for the device to get ready */ | 
|  | for (i = 0; i < timeo; i++) { | 
|  | if (chip->dev_ready(mtd)) | 
|  | break; | 
|  | touch_softlockup_watchdog(); | 
|  | mdelay(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Wait for the ready pin, after a command. The timeout is caught later. */ | 
|  | void nand_wait_ready(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | unsigned long timeo = jiffies + 2; | 
|  |  | 
|  | /* 400ms timeout */ | 
|  | if (in_interrupt() || oops_in_progress) | 
|  | return panic_nand_wait_ready(mtd, 400); | 
|  |  | 
|  | led_trigger_event(nand_led_trigger, LED_FULL); | 
|  | /* Wait until command is processed or timeout occurs */ | 
|  | do { | 
|  | if (chip->dev_ready(mtd)) | 
|  | break; | 
|  | touch_softlockup_watchdog(); | 
|  | } while (time_before(jiffies, timeo)); | 
|  | led_trigger_event(nand_led_trigger, LED_OFF); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nand_wait_ready); | 
|  |  | 
|  | /** | 
|  | * nand_command - [DEFAULT] Send command to NAND device | 
|  | * @mtd: MTD device structure | 
|  | * @command: the command to be sent | 
|  | * @column: the column address for this command, -1 if none | 
|  | * @page_addr: the page address for this command, -1 if none | 
|  | * | 
|  | * Send command to NAND device. This function is used for small page devices | 
|  | * (256/512 Bytes per page). | 
|  | */ | 
|  | static void nand_command(struct mtd_info *mtd, unsigned int command, | 
|  | int column, int page_addr) | 
|  | { | 
|  | register struct nand_chip *chip = mtd->priv; | 
|  | int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; | 
|  |  | 
|  | /* Write out the command to the device */ | 
|  | if (command == NAND_CMD_SEQIN) { | 
|  | int readcmd; | 
|  |  | 
|  | if (column >= mtd->writesize) { | 
|  | /* OOB area */ | 
|  | column -= mtd->writesize; | 
|  | readcmd = NAND_CMD_READOOB; | 
|  | } else if (column < 256) { | 
|  | /* First 256 bytes --> READ0 */ | 
|  | readcmd = NAND_CMD_READ0; | 
|  | } else { | 
|  | column -= 256; | 
|  | readcmd = NAND_CMD_READ1; | 
|  | } | 
|  | chip->cmd_ctrl(mtd, readcmd, ctrl); | 
|  | ctrl &= ~NAND_CTRL_CHANGE; | 
|  | } | 
|  | chip->cmd_ctrl(mtd, command, ctrl); | 
|  |  | 
|  | /* Address cycle, when necessary */ | 
|  | ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; | 
|  | /* Serially input address */ | 
|  | if (column != -1) { | 
|  | /* Adjust columns for 16 bit buswidth */ | 
|  | if (chip->options & NAND_BUSWIDTH_16) | 
|  | column >>= 1; | 
|  | chip->cmd_ctrl(mtd, column, ctrl); | 
|  | ctrl &= ~NAND_CTRL_CHANGE; | 
|  | } | 
|  | if (page_addr != -1) { | 
|  | chip->cmd_ctrl(mtd, page_addr, ctrl); | 
|  | ctrl &= ~NAND_CTRL_CHANGE; | 
|  | chip->cmd_ctrl(mtd, page_addr >> 8, ctrl); | 
|  | /* One more address cycle for devices > 32MiB */ | 
|  | if (chip->chipsize > (32 << 20)) | 
|  | chip->cmd_ctrl(mtd, page_addr >> 16, ctrl); | 
|  | } | 
|  | chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); | 
|  |  | 
|  | /* | 
|  | * Program and erase have their own busy handlers status and sequential | 
|  | * in needs no delay | 
|  | */ | 
|  | switch (command) { | 
|  |  | 
|  | case NAND_CMD_PAGEPROG: | 
|  | case NAND_CMD_ERASE1: | 
|  | case NAND_CMD_ERASE2: | 
|  | case NAND_CMD_SEQIN: | 
|  | case NAND_CMD_STATUS: | 
|  | return; | 
|  |  | 
|  | case NAND_CMD_RESET: | 
|  | if (chip->dev_ready) | 
|  | break; | 
|  | udelay(chip->chip_delay); | 
|  | chip->cmd_ctrl(mtd, NAND_CMD_STATUS, | 
|  | NAND_CTRL_CLE | NAND_CTRL_CHANGE); | 
|  | chip->cmd_ctrl(mtd, | 
|  | NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); | 
|  | while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) | 
|  | ; | 
|  | return; | 
|  |  | 
|  | /* This applies to read commands */ | 
|  | default: | 
|  | /* | 
|  | * If we don't have access to the busy pin, we apply the given | 
|  | * command delay | 
|  | */ | 
|  | if (!chip->dev_ready) { | 
|  | udelay(chip->chip_delay); | 
|  | return; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Apply this short delay always to ensure that we do wait tWB in | 
|  | * any case on any machine. | 
|  | */ | 
|  | ndelay(100); | 
|  |  | 
|  | nand_wait_ready(mtd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_command_lp - [DEFAULT] Send command to NAND large page device | 
|  | * @mtd: MTD device structure | 
|  | * @command: the command to be sent | 
|  | * @column: the column address for this command, -1 if none | 
|  | * @page_addr: the page address for this command, -1 if none | 
|  | * | 
|  | * Send command to NAND device. This is the version for the new large page | 
|  | * devices. We don't have the separate regions as we have in the small page | 
|  | * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. | 
|  | */ | 
|  | static void nand_command_lp(struct mtd_info *mtd, unsigned int command, | 
|  | int column, int page_addr) | 
|  | { | 
|  | register struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | /* Emulate NAND_CMD_READOOB */ | 
|  | if (command == NAND_CMD_READOOB) { | 
|  | column += mtd->writesize; | 
|  | command = NAND_CMD_READ0; | 
|  | } | 
|  |  | 
|  | /* Command latch cycle */ | 
|  | chip->cmd_ctrl(mtd, command & 0xff, | 
|  | NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); | 
|  |  | 
|  | if (column != -1 || page_addr != -1) { | 
|  | int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; | 
|  |  | 
|  | /* Serially input address */ | 
|  | if (column != -1) { | 
|  | /* Adjust columns for 16 bit buswidth */ | 
|  | if (chip->options & NAND_BUSWIDTH_16) | 
|  | column >>= 1; | 
|  | chip->cmd_ctrl(mtd, column, ctrl); | 
|  | ctrl &= ~NAND_CTRL_CHANGE; | 
|  | chip->cmd_ctrl(mtd, column >> 8, ctrl); | 
|  | } | 
|  | if (page_addr != -1) { | 
|  | chip->cmd_ctrl(mtd, page_addr, ctrl); | 
|  | chip->cmd_ctrl(mtd, page_addr >> 8, | 
|  | NAND_NCE | NAND_ALE); | 
|  | /* One more address cycle for devices > 128MiB */ | 
|  | if (chip->chipsize > (128 << 20)) | 
|  | chip->cmd_ctrl(mtd, page_addr >> 16, | 
|  | NAND_NCE | NAND_ALE); | 
|  | } | 
|  | } | 
|  | chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); | 
|  |  | 
|  | /* | 
|  | * Program and erase have their own busy handlers status, sequential | 
|  | * in, and deplete1 need no delay. | 
|  | */ | 
|  | switch (command) { | 
|  |  | 
|  | case NAND_CMD_CACHEDPROG: | 
|  | case NAND_CMD_PAGEPROG: | 
|  | case NAND_CMD_ERASE1: | 
|  | case NAND_CMD_ERASE2: | 
|  | case NAND_CMD_SEQIN: | 
|  | case NAND_CMD_RNDIN: | 
|  | case NAND_CMD_STATUS: | 
|  | case NAND_CMD_DEPLETE1: | 
|  | return; | 
|  |  | 
|  | case NAND_CMD_STATUS_ERROR: | 
|  | case NAND_CMD_STATUS_ERROR0: | 
|  | case NAND_CMD_STATUS_ERROR1: | 
|  | case NAND_CMD_STATUS_ERROR2: | 
|  | case NAND_CMD_STATUS_ERROR3: | 
|  | /* Read error status commands require only a short delay */ | 
|  | udelay(chip->chip_delay); | 
|  | return; | 
|  |  | 
|  | case NAND_CMD_RESET: | 
|  | if (chip->dev_ready) | 
|  | break; | 
|  | udelay(chip->chip_delay); | 
|  | chip->cmd_ctrl(mtd, NAND_CMD_STATUS, | 
|  | NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); | 
|  | chip->cmd_ctrl(mtd, NAND_CMD_NONE, | 
|  | NAND_NCE | NAND_CTRL_CHANGE); | 
|  | while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) | 
|  | ; | 
|  | return; | 
|  |  | 
|  | case NAND_CMD_RNDOUT: | 
|  | /* No ready / busy check necessary */ | 
|  | chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART, | 
|  | NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); | 
|  | chip->cmd_ctrl(mtd, NAND_CMD_NONE, | 
|  | NAND_NCE | NAND_CTRL_CHANGE); | 
|  | return; | 
|  |  | 
|  | case NAND_CMD_READ0: | 
|  | chip->cmd_ctrl(mtd, NAND_CMD_READSTART, | 
|  | NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); | 
|  | chip->cmd_ctrl(mtd, NAND_CMD_NONE, | 
|  | NAND_NCE | NAND_CTRL_CHANGE); | 
|  |  | 
|  | /* This applies to read commands */ | 
|  | default: | 
|  | /* | 
|  | * If we don't have access to the busy pin, we apply the given | 
|  | * command delay. | 
|  | */ | 
|  | if (!chip->dev_ready) { | 
|  | udelay(chip->chip_delay); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Apply this short delay always to ensure that we do wait tWB in | 
|  | * any case on any machine. | 
|  | */ | 
|  | ndelay(100); | 
|  |  | 
|  | nand_wait_ready(mtd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * panic_nand_get_device - [GENERIC] Get chip for selected access | 
|  | * @chip: the nand chip descriptor | 
|  | * @mtd: MTD device structure | 
|  | * @new_state: the state which is requested | 
|  | * | 
|  | * Used when in panic, no locks are taken. | 
|  | */ | 
|  | static void panic_nand_get_device(struct nand_chip *chip, | 
|  | struct mtd_info *mtd, int new_state) | 
|  | { | 
|  | /* Hardware controller shared among independent devices */ | 
|  | chip->controller->active = chip; | 
|  | chip->state = new_state; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_get_device - [GENERIC] Get chip for selected access | 
|  | * @chip: the nand chip descriptor | 
|  | * @mtd: MTD device structure | 
|  | * @new_state: the state which is requested | 
|  | * | 
|  | * Get the device and lock it for exclusive access | 
|  | */ | 
|  | static int | 
|  | nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state) | 
|  | { | 
|  | spinlock_t *lock = &chip->controller->lock; | 
|  | wait_queue_head_t *wq = &chip->controller->wq; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | retry: | 
|  | spin_lock(lock); | 
|  |  | 
|  | /* Hardware controller shared among independent devices */ | 
|  | if (!chip->controller->active) | 
|  | chip->controller->active = chip; | 
|  |  | 
|  | if (chip->controller->active == chip && chip->state == FL_READY) { | 
|  | chip->state = new_state; | 
|  | spin_unlock(lock); | 
|  | return 0; | 
|  | } | 
|  | if (new_state == FL_PM_SUSPENDED) { | 
|  | if (chip->controller->active->state == FL_PM_SUSPENDED) { | 
|  | chip->state = FL_PM_SUSPENDED; | 
|  | spin_unlock(lock); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(wq, &wait); | 
|  | spin_unlock(lock); | 
|  | schedule(); | 
|  | remove_wait_queue(wq, &wait); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * panic_nand_wait - [GENERIC] wait until the command is done | 
|  | * @mtd: MTD device structure | 
|  | * @chip: NAND chip structure | 
|  | * @timeo: timeout | 
|  | * | 
|  | * Wait for command done. This is a helper function for nand_wait used when | 
|  | * we are in interrupt context. May happen when in panic and trying to write | 
|  | * an oops through mtdoops. | 
|  | */ | 
|  | static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | unsigned long timeo) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < timeo; i++) { | 
|  | if (chip->dev_ready) { | 
|  | if (chip->dev_ready(mtd)) | 
|  | break; | 
|  | } else { | 
|  | if (chip->read_byte(mtd) & NAND_STATUS_READY) | 
|  | break; | 
|  | } | 
|  | mdelay(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_wait - [DEFAULT] wait until the command is done | 
|  | * @mtd: MTD device structure | 
|  | * @chip: NAND chip structure | 
|  | * | 
|  | * Wait for command done. This applies to erase and program only. Erase can | 
|  | * take up to 400ms and program up to 20ms according to general NAND and | 
|  | * SmartMedia specs. | 
|  | */ | 
|  | static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) | 
|  | { | 
|  |  | 
|  | unsigned long timeo = jiffies; | 
|  | int status, state = chip->state; | 
|  |  | 
|  | if (state == FL_ERASING) | 
|  | timeo += (HZ * 400) / 1000; | 
|  | else | 
|  | timeo += (HZ * 20) / 1000; | 
|  |  | 
|  | led_trigger_event(nand_led_trigger, LED_FULL); | 
|  |  | 
|  | /* | 
|  | * Apply this short delay always to ensure that we do wait tWB in any | 
|  | * case on any machine. | 
|  | */ | 
|  | ndelay(100); | 
|  |  | 
|  | if ((state == FL_ERASING) && (chip->options & NAND_IS_AND)) | 
|  | chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1); | 
|  | else | 
|  | chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); | 
|  |  | 
|  | if (in_interrupt() || oops_in_progress) | 
|  | panic_nand_wait(mtd, chip, timeo); | 
|  | else { | 
|  | while (time_before(jiffies, timeo)) { | 
|  | if (chip->dev_ready) { | 
|  | if (chip->dev_ready(mtd)) | 
|  | break; | 
|  | } else { | 
|  | if (chip->read_byte(mtd) & NAND_STATUS_READY) | 
|  | break; | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  | led_trigger_event(nand_led_trigger, LED_OFF); | 
|  |  | 
|  | status = (int)chip->read_byte(mtd); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks | 
|  | * @mtd: mtd info | 
|  | * @ofs: offset to start unlock from | 
|  | * @len: length to unlock | 
|  | * @invert: when = 0, unlock the range of blocks within the lower and | 
|  | *                    upper boundary address | 
|  | *          when = 1, unlock the range of blocks outside the boundaries | 
|  | *                    of the lower and upper boundary address | 
|  | * | 
|  | * Returs unlock status. | 
|  | */ | 
|  | static int __nand_unlock(struct mtd_info *mtd, loff_t ofs, | 
|  | uint64_t len, int invert) | 
|  | { | 
|  | int ret = 0; | 
|  | int status, page; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | /* Submit address of first page to unlock */ | 
|  | page = ofs >> chip->page_shift; | 
|  | chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask); | 
|  |  | 
|  | /* Submit address of last page to unlock */ | 
|  | page = (ofs + len) >> chip->page_shift; | 
|  | chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, | 
|  | (page | invert) & chip->pagemask); | 
|  |  | 
|  | /* Call wait ready function */ | 
|  | status = chip->waitfunc(mtd, chip); | 
|  | /* See if device thinks it succeeded */ | 
|  | if (status & 0x01) { | 
|  | pr_debug("%s: error status = 0x%08x\n", | 
|  | __func__, status); | 
|  | ret = -EIO; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_unlock - [REPLACEABLE] unlocks specified locked blocks | 
|  | * @mtd: mtd info | 
|  | * @ofs: offset to start unlock from | 
|  | * @len: length to unlock | 
|  | * | 
|  | * Returns unlock status. | 
|  | */ | 
|  | int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) | 
|  | { | 
|  | int ret = 0; | 
|  | int chipnr; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | pr_debug("%s: start = 0x%012llx, len = %llu\n", | 
|  | __func__, (unsigned long long)ofs, len); | 
|  |  | 
|  | if (check_offs_len(mtd, ofs, len)) | 
|  | ret = -EINVAL; | 
|  |  | 
|  | /* Align to last block address if size addresses end of the device */ | 
|  | if (ofs + len == mtd->size) | 
|  | len -= mtd->erasesize; | 
|  |  | 
|  | nand_get_device(chip, mtd, FL_UNLOCKING); | 
|  |  | 
|  | /* Shift to get chip number */ | 
|  | chipnr = ofs >> chip->chip_shift; | 
|  |  | 
|  | chip->select_chip(mtd, chipnr); | 
|  |  | 
|  | /* Check, if it is write protected */ | 
|  | if (nand_check_wp(mtd)) { | 
|  | pr_debug("%s: device is write protected!\n", | 
|  | __func__); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = __nand_unlock(mtd, ofs, len, 0); | 
|  |  | 
|  | out: | 
|  | nand_release_device(mtd); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(nand_unlock); | 
|  |  | 
|  | /** | 
|  | * nand_lock - [REPLACEABLE] locks all blocks present in the device | 
|  | * @mtd: mtd info | 
|  | * @ofs: offset to start unlock from | 
|  | * @len: length to unlock | 
|  | * | 
|  | * This feature is not supported in many NAND parts. 'Micron' NAND parts do | 
|  | * have this feature, but it allows only to lock all blocks, not for specified | 
|  | * range for block. Implementing 'lock' feature by making use of 'unlock', for | 
|  | * now. | 
|  | * | 
|  | * Returns lock status. | 
|  | */ | 
|  | int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) | 
|  | { | 
|  | int ret = 0; | 
|  | int chipnr, status, page; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | pr_debug("%s: start = 0x%012llx, len = %llu\n", | 
|  | __func__, (unsigned long long)ofs, len); | 
|  |  | 
|  | if (check_offs_len(mtd, ofs, len)) | 
|  | ret = -EINVAL; | 
|  |  | 
|  | nand_get_device(chip, mtd, FL_LOCKING); | 
|  |  | 
|  | /* Shift to get chip number */ | 
|  | chipnr = ofs >> chip->chip_shift; | 
|  |  | 
|  | chip->select_chip(mtd, chipnr); | 
|  |  | 
|  | /* Check, if it is write protected */ | 
|  | if (nand_check_wp(mtd)) { | 
|  | pr_debug("%s: device is write protected!\n", | 
|  | __func__); | 
|  | status = MTD_ERASE_FAILED; | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Submit address of first page to lock */ | 
|  | page = ofs >> chip->page_shift; | 
|  | chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask); | 
|  |  | 
|  | /* Call wait ready function */ | 
|  | status = chip->waitfunc(mtd, chip); | 
|  | /* See if device thinks it succeeded */ | 
|  | if (status & 0x01) { | 
|  | pr_debug("%s: error status = 0x%08x\n", | 
|  | __func__, status); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = __nand_unlock(mtd, ofs, len, 0x1); | 
|  |  | 
|  | out: | 
|  | nand_release_device(mtd); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(nand_lock); | 
|  |  | 
|  | /** | 
|  | * nand_read_page_raw - [INTERN] read raw page data without ecc | 
|  | * @mtd: mtd info structure | 
|  | * @chip: nand chip info structure | 
|  | * @buf: buffer to store read data | 
|  | * @oob_required: caller requires OOB data read to chip->oob_poi | 
|  | * @page: page number to read | 
|  | * | 
|  | * Not for syndrome calculating ECC controllers, which use a special oob layout. | 
|  | */ | 
|  | static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | uint8_t *buf, int oob_required, int page) | 
|  | { | 
|  | chip->read_buf(mtd, buf, mtd->writesize); | 
|  | if (oob_required) | 
|  | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc | 
|  | * @mtd: mtd info structure | 
|  | * @chip: nand chip info structure | 
|  | * @buf: buffer to store read data | 
|  | * @oob_required: caller requires OOB data read to chip->oob_poi | 
|  | * @page: page number to read | 
|  | * | 
|  | * We need a special oob layout and handling even when OOB isn't used. | 
|  | */ | 
|  | static int nand_read_page_raw_syndrome(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, uint8_t *buf, | 
|  | int oob_required, int page) | 
|  | { | 
|  | int eccsize = chip->ecc.size; | 
|  | int eccbytes = chip->ecc.bytes; | 
|  | uint8_t *oob = chip->oob_poi; | 
|  | int steps, size; | 
|  |  | 
|  | for (steps = chip->ecc.steps; steps > 0; steps--) { | 
|  | chip->read_buf(mtd, buf, eccsize); | 
|  | buf += eccsize; | 
|  |  | 
|  | if (chip->ecc.prepad) { | 
|  | chip->read_buf(mtd, oob, chip->ecc.prepad); | 
|  | oob += chip->ecc.prepad; | 
|  | } | 
|  |  | 
|  | chip->read_buf(mtd, oob, eccbytes); | 
|  | oob += eccbytes; | 
|  |  | 
|  | if (chip->ecc.postpad) { | 
|  | chip->read_buf(mtd, oob, chip->ecc.postpad); | 
|  | oob += chip->ecc.postpad; | 
|  | } | 
|  | } | 
|  |  | 
|  | size = mtd->oobsize - (oob - chip->oob_poi); | 
|  | if (size) | 
|  | chip->read_buf(mtd, oob, size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function | 
|  | * @mtd: mtd info structure | 
|  | * @chip: nand chip info structure | 
|  | * @buf: buffer to store read data | 
|  | * @oob_required: caller requires OOB data read to chip->oob_poi | 
|  | * @page: page number to read | 
|  | */ | 
|  | static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | uint8_t *buf, int oob_required, int page) | 
|  | { | 
|  | int i, eccsize = chip->ecc.size; | 
|  | int eccbytes = chip->ecc.bytes; | 
|  | int eccsteps = chip->ecc.steps; | 
|  | uint8_t *p = buf; | 
|  | uint8_t *ecc_calc = chip->buffers->ecccalc; | 
|  | uint8_t *ecc_code = chip->buffers->ecccode; | 
|  | uint32_t *eccpos = chip->ecc.layout->eccpos; | 
|  | unsigned int max_bitflips = 0; | 
|  |  | 
|  | chip->ecc.read_page_raw(mtd, chip, buf, 1, page); | 
|  |  | 
|  | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) | 
|  | chip->ecc.calculate(mtd, p, &ecc_calc[i]); | 
|  |  | 
|  | for (i = 0; i < chip->ecc.total; i++) | 
|  | ecc_code[i] = chip->oob_poi[eccpos[i]]; | 
|  |  | 
|  | eccsteps = chip->ecc.steps; | 
|  | p = buf; | 
|  |  | 
|  | for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
|  | int stat; | 
|  |  | 
|  | stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); | 
|  | if (stat < 0) { | 
|  | mtd->ecc_stats.failed++; | 
|  | } else { | 
|  | mtd->ecc_stats.corrected += stat; | 
|  | max_bitflips = max_t(unsigned int, max_bitflips, stat); | 
|  | } | 
|  | } | 
|  | return max_bitflips; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function | 
|  | * @mtd: mtd info structure | 
|  | * @chip: nand chip info structure | 
|  | * @data_offs: offset of requested data within the page | 
|  | * @readlen: data length | 
|  | * @bufpoi: buffer to store read data | 
|  | */ | 
|  | static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi) | 
|  | { | 
|  | int start_step, end_step, num_steps; | 
|  | uint32_t *eccpos = chip->ecc.layout->eccpos; | 
|  | uint8_t *p; | 
|  | int data_col_addr, i, gaps = 0; | 
|  | int datafrag_len, eccfrag_len, aligned_len, aligned_pos; | 
|  | int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; | 
|  | int index = 0; | 
|  | unsigned int max_bitflips = 0; | 
|  |  | 
|  | /* Column address within the page aligned to ECC size (256bytes) */ | 
|  | start_step = data_offs / chip->ecc.size; | 
|  | end_step = (data_offs + readlen - 1) / chip->ecc.size; | 
|  | num_steps = end_step - start_step + 1; | 
|  |  | 
|  | /* Data size aligned to ECC ecc.size */ | 
|  | datafrag_len = num_steps * chip->ecc.size; | 
|  | eccfrag_len = num_steps * chip->ecc.bytes; | 
|  |  | 
|  | data_col_addr = start_step * chip->ecc.size; | 
|  | /* If we read not a page aligned data */ | 
|  | if (data_col_addr != 0) | 
|  | chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1); | 
|  |  | 
|  | p = bufpoi + data_col_addr; | 
|  | chip->read_buf(mtd, p, datafrag_len); | 
|  |  | 
|  | /* Calculate ECC */ | 
|  | for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) | 
|  | chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]); | 
|  |  | 
|  | /* | 
|  | * The performance is faster if we position offsets according to | 
|  | * ecc.pos. Let's make sure that there are no gaps in ECC positions. | 
|  | */ | 
|  | for (i = 0; i < eccfrag_len - 1; i++) { | 
|  | if (eccpos[i + start_step * chip->ecc.bytes] + 1 != | 
|  | eccpos[i + start_step * chip->ecc.bytes + 1]) { | 
|  | gaps = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (gaps) { | 
|  | chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); | 
|  | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  | } else { | 
|  | /* | 
|  | * Send the command to read the particular ECC bytes take care | 
|  | * about buswidth alignment in read_buf. | 
|  | */ | 
|  | index = start_step * chip->ecc.bytes; | 
|  |  | 
|  | aligned_pos = eccpos[index] & ~(busw - 1); | 
|  | aligned_len = eccfrag_len; | 
|  | if (eccpos[index] & (busw - 1)) | 
|  | aligned_len++; | 
|  | if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1)) | 
|  | aligned_len++; | 
|  |  | 
|  | chip->cmdfunc(mtd, NAND_CMD_RNDOUT, | 
|  | mtd->writesize + aligned_pos, -1); | 
|  | chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < eccfrag_len; i++) | 
|  | chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]]; | 
|  |  | 
|  | p = bufpoi + data_col_addr; | 
|  | for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { | 
|  | int stat; | 
|  |  | 
|  | stat = chip->ecc.correct(mtd, p, | 
|  | &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]); | 
|  | if (stat < 0) { | 
|  | mtd->ecc_stats.failed++; | 
|  | } else { | 
|  | mtd->ecc_stats.corrected += stat; | 
|  | max_bitflips = max_t(unsigned int, max_bitflips, stat); | 
|  | } | 
|  | } | 
|  | return max_bitflips; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function | 
|  | * @mtd: mtd info structure | 
|  | * @chip: nand chip info structure | 
|  | * @buf: buffer to store read data | 
|  | * @oob_required: caller requires OOB data read to chip->oob_poi | 
|  | * @page: page number to read | 
|  | * | 
|  | * Not for syndrome calculating ECC controllers which need a special oob layout. | 
|  | */ | 
|  | static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | uint8_t *buf, int oob_required, int page) | 
|  | { | 
|  | int i, eccsize = chip->ecc.size; | 
|  | int eccbytes = chip->ecc.bytes; | 
|  | int eccsteps = chip->ecc.steps; | 
|  | uint8_t *p = buf; | 
|  | uint8_t *ecc_calc = chip->buffers->ecccalc; | 
|  | uint8_t *ecc_code = chip->buffers->ecccode; | 
|  | uint32_t *eccpos = chip->ecc.layout->eccpos; | 
|  | unsigned int max_bitflips = 0; | 
|  |  | 
|  | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
|  | chip->ecc.hwctl(mtd, NAND_ECC_READ); | 
|  | chip->read_buf(mtd, p, eccsize); | 
|  | chip->ecc.calculate(mtd, p, &ecc_calc[i]); | 
|  | } | 
|  | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  |  | 
|  | for (i = 0; i < chip->ecc.total; i++) | 
|  | ecc_code[i] = chip->oob_poi[eccpos[i]]; | 
|  |  | 
|  | eccsteps = chip->ecc.steps; | 
|  | p = buf; | 
|  |  | 
|  | for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
|  | int stat; | 
|  |  | 
|  | stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); | 
|  | if (stat < 0) { | 
|  | mtd->ecc_stats.failed++; | 
|  | } else { | 
|  | mtd->ecc_stats.corrected += stat; | 
|  | max_bitflips = max_t(unsigned int, max_bitflips, stat); | 
|  | } | 
|  | } | 
|  | return max_bitflips; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first | 
|  | * @mtd: mtd info structure | 
|  | * @chip: nand chip info structure | 
|  | * @buf: buffer to store read data | 
|  | * @oob_required: caller requires OOB data read to chip->oob_poi | 
|  | * @page: page number to read | 
|  | * | 
|  | * Hardware ECC for large page chips, require OOB to be read first. For this | 
|  | * ECC mode, the write_page method is re-used from ECC_HW. These methods | 
|  | * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with | 
|  | * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from | 
|  | * the data area, by overwriting the NAND manufacturer bad block markings. | 
|  | */ | 
|  | static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, uint8_t *buf, int oob_required, int page) | 
|  | { | 
|  | int i, eccsize = chip->ecc.size; | 
|  | int eccbytes = chip->ecc.bytes; | 
|  | int eccsteps = chip->ecc.steps; | 
|  | uint8_t *p = buf; | 
|  | uint8_t *ecc_code = chip->buffers->ecccode; | 
|  | uint32_t *eccpos = chip->ecc.layout->eccpos; | 
|  | uint8_t *ecc_calc = chip->buffers->ecccalc; | 
|  | unsigned int max_bitflips = 0; | 
|  |  | 
|  | /* Read the OOB area first */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); | 
|  | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  | chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); | 
|  |  | 
|  | for (i = 0; i < chip->ecc.total; i++) | 
|  | ecc_code[i] = chip->oob_poi[eccpos[i]]; | 
|  |  | 
|  | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
|  | int stat; | 
|  |  | 
|  | chip->ecc.hwctl(mtd, NAND_ECC_READ); | 
|  | chip->read_buf(mtd, p, eccsize); | 
|  | chip->ecc.calculate(mtd, p, &ecc_calc[i]); | 
|  |  | 
|  | stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL); | 
|  | if (stat < 0) { | 
|  | mtd->ecc_stats.failed++; | 
|  | } else { | 
|  | mtd->ecc_stats.corrected += stat; | 
|  | max_bitflips = max_t(unsigned int, max_bitflips, stat); | 
|  | } | 
|  | } | 
|  | return max_bitflips; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read | 
|  | * @mtd: mtd info structure | 
|  | * @chip: nand chip info structure | 
|  | * @buf: buffer to store read data | 
|  | * @oob_required: caller requires OOB data read to chip->oob_poi | 
|  | * @page: page number to read | 
|  | * | 
|  | * The hw generator calculates the error syndrome automatically. Therefore we | 
|  | * need a special oob layout and handling. | 
|  | */ | 
|  | static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | uint8_t *buf, int oob_required, int page) | 
|  | { | 
|  | int i, eccsize = chip->ecc.size; | 
|  | int eccbytes = chip->ecc.bytes; | 
|  | int eccsteps = chip->ecc.steps; | 
|  | uint8_t *p = buf; | 
|  | uint8_t *oob = chip->oob_poi; | 
|  | unsigned int max_bitflips = 0; | 
|  |  | 
|  | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
|  | int stat; | 
|  |  | 
|  | chip->ecc.hwctl(mtd, NAND_ECC_READ); | 
|  | chip->read_buf(mtd, p, eccsize); | 
|  |  | 
|  | if (chip->ecc.prepad) { | 
|  | chip->read_buf(mtd, oob, chip->ecc.prepad); | 
|  | oob += chip->ecc.prepad; | 
|  | } | 
|  |  | 
|  | chip->ecc.hwctl(mtd, NAND_ECC_READSYN); | 
|  | chip->read_buf(mtd, oob, eccbytes); | 
|  | stat = chip->ecc.correct(mtd, p, oob, NULL); | 
|  |  | 
|  | if (stat < 0) { | 
|  | mtd->ecc_stats.failed++; | 
|  | } else { | 
|  | mtd->ecc_stats.corrected += stat; | 
|  | max_bitflips = max_t(unsigned int, max_bitflips, stat); | 
|  | } | 
|  |  | 
|  | oob += eccbytes; | 
|  |  | 
|  | if (chip->ecc.postpad) { | 
|  | chip->read_buf(mtd, oob, chip->ecc.postpad); | 
|  | oob += chip->ecc.postpad; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Calculate remaining oob bytes */ | 
|  | i = mtd->oobsize - (oob - chip->oob_poi); | 
|  | if (i) | 
|  | chip->read_buf(mtd, oob, i); | 
|  |  | 
|  | return max_bitflips; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_transfer_oob - [INTERN] Transfer oob to client buffer | 
|  | * @chip: nand chip structure | 
|  | * @oob: oob destination address | 
|  | * @ops: oob ops structure | 
|  | * @len: size of oob to transfer | 
|  | */ | 
|  | static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, | 
|  | struct mtd_oob_ops *ops, size_t len) | 
|  | { | 
|  | switch (ops->mode) { | 
|  |  | 
|  | case MTD_OPS_PLACE_OOB: | 
|  | case MTD_OPS_RAW: | 
|  | memcpy(oob, chip->oob_poi + ops->ooboffs, len); | 
|  | return oob + len; | 
|  |  | 
|  | case MTD_OPS_AUTO_OOB: { | 
|  | struct nand_oobfree *free = chip->ecc.layout->oobfree; | 
|  | uint32_t boffs = 0, roffs = ops->ooboffs; | 
|  | size_t bytes = 0; | 
|  |  | 
|  | for (; free->length && len; free++, len -= bytes) { | 
|  | /* Read request not from offset 0? */ | 
|  | if (unlikely(roffs)) { | 
|  | if (roffs >= free->length) { | 
|  | roffs -= free->length; | 
|  | continue; | 
|  | } | 
|  | boffs = free->offset + roffs; | 
|  | bytes = min_t(size_t, len, | 
|  | (free->length - roffs)); | 
|  | roffs = 0; | 
|  | } else { | 
|  | bytes = min_t(size_t, len, free->length); | 
|  | boffs = free->offset; | 
|  | } | 
|  | memcpy(oob, chip->oob_poi + boffs, bytes); | 
|  | oob += bytes; | 
|  | } | 
|  | return oob; | 
|  | } | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_do_read_ops - [INTERN] Read data with ECC | 
|  | * @mtd: MTD device structure | 
|  | * @from: offset to read from | 
|  | * @ops: oob ops structure | 
|  | * | 
|  | * Internal function. Called with chip held. | 
|  | */ | 
|  | static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, | 
|  | struct mtd_oob_ops *ops) | 
|  | { | 
|  | int chipnr, page, realpage, col, bytes, aligned, oob_required; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct mtd_ecc_stats stats; | 
|  | int ret = 0; | 
|  | uint32_t readlen = ops->len; | 
|  | uint32_t oobreadlen = ops->ooblen; | 
|  | uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ? | 
|  | mtd->oobavail : mtd->oobsize; | 
|  |  | 
|  | uint8_t *bufpoi, *oob, *buf; | 
|  | unsigned int max_bitflips = 0; | 
|  |  | 
|  | stats = mtd->ecc_stats; | 
|  |  | 
|  | chipnr = (int)(from >> chip->chip_shift); | 
|  | chip->select_chip(mtd, chipnr); | 
|  |  | 
|  | realpage = (int)(from >> chip->page_shift); | 
|  | page = realpage & chip->pagemask; | 
|  |  | 
|  | col = (int)(from & (mtd->writesize - 1)); | 
|  |  | 
|  | buf = ops->datbuf; | 
|  | oob = ops->oobbuf; | 
|  | oob_required = oob ? 1 : 0; | 
|  |  | 
|  | while (1) { | 
|  | bytes = min(mtd->writesize - col, readlen); | 
|  | aligned = (bytes == mtd->writesize); | 
|  |  | 
|  | /* Is the current page in the buffer? */ | 
|  | if (realpage != chip->pagebuf || oob) { | 
|  | bufpoi = aligned ? buf : chip->buffers->databuf; | 
|  |  | 
|  | chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); | 
|  |  | 
|  | /* | 
|  | * Now read the page into the buffer.  Absent an error, | 
|  | * the read methods return max bitflips per ecc step. | 
|  | */ | 
|  | if (unlikely(ops->mode == MTD_OPS_RAW)) | 
|  | ret = chip->ecc.read_page_raw(mtd, chip, bufpoi, | 
|  | oob_required, | 
|  | page); | 
|  | else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob) | 
|  | ret = chip->ecc.read_subpage(mtd, chip, | 
|  | col, bytes, bufpoi); | 
|  | else | 
|  | ret = chip->ecc.read_page(mtd, chip, bufpoi, | 
|  | oob_required, page); | 
|  | if (ret < 0) { | 
|  | if (!aligned) | 
|  | /* Invalidate page cache */ | 
|  | chip->pagebuf = -1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | max_bitflips = max_t(unsigned int, max_bitflips, ret); | 
|  |  | 
|  | /* Transfer not aligned data */ | 
|  | if (!aligned) { | 
|  | if (!NAND_SUBPAGE_READ(chip) && !oob && | 
|  | !(mtd->ecc_stats.failed - stats.failed) && | 
|  | (ops->mode != MTD_OPS_RAW)) { | 
|  | chip->pagebuf = realpage; | 
|  | chip->pagebuf_bitflips = ret; | 
|  | } else { | 
|  | /* Invalidate page cache */ | 
|  | chip->pagebuf = -1; | 
|  | } | 
|  | memcpy(buf, chip->buffers->databuf + col, bytes); | 
|  | } | 
|  |  | 
|  | buf += bytes; | 
|  |  | 
|  | if (unlikely(oob)) { | 
|  | int toread = min(oobreadlen, max_oobsize); | 
|  |  | 
|  | if (toread) { | 
|  | oob = nand_transfer_oob(chip, | 
|  | oob, ops, toread); | 
|  | oobreadlen -= toread; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | memcpy(buf, chip->buffers->databuf + col, bytes); | 
|  | buf += bytes; | 
|  | max_bitflips = max_t(unsigned int, max_bitflips, | 
|  | chip->pagebuf_bitflips); | 
|  | } | 
|  |  | 
|  | readlen -= bytes; | 
|  |  | 
|  | if (!readlen) | 
|  | break; | 
|  |  | 
|  | /* For subsequent reads align to page boundary */ | 
|  | col = 0; | 
|  | /* Increment page address */ | 
|  | realpage++; | 
|  |  | 
|  | page = realpage & chip->pagemask; | 
|  | /* Check, if we cross a chip boundary */ | 
|  | if (!page) { | 
|  | chipnr++; | 
|  | chip->select_chip(mtd, -1); | 
|  | chip->select_chip(mtd, chipnr); | 
|  | } | 
|  | } | 
|  |  | 
|  | ops->retlen = ops->len - (size_t) readlen; | 
|  | if (oob) | 
|  | ops->oobretlen = ops->ooblen - oobreadlen; | 
|  |  | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (mtd->ecc_stats.failed - stats.failed) | 
|  | return -EBADMSG; | 
|  |  | 
|  | return max_bitflips; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc | 
|  | * @mtd: MTD device structure | 
|  | * @from: offset to read from | 
|  | * @len: number of bytes to read | 
|  | * @retlen: pointer to variable to store the number of read bytes | 
|  | * @buf: the databuffer to put data | 
|  | * | 
|  | * Get hold of the chip and call nand_do_read. | 
|  | */ | 
|  | static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t *retlen, uint8_t *buf) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct mtd_oob_ops ops; | 
|  | int ret; | 
|  |  | 
|  | nand_get_device(chip, mtd, FL_READING); | 
|  | ops.len = len; | 
|  | ops.datbuf = buf; | 
|  | ops.oobbuf = NULL; | 
|  | ops.mode = 0; | 
|  | ret = nand_do_read_ops(mtd, from, &ops); | 
|  | *retlen = ops.retlen; | 
|  | nand_release_device(mtd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function | 
|  | * @mtd: mtd info structure | 
|  | * @chip: nand chip info structure | 
|  | * @page: page number to read | 
|  | */ | 
|  | static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | int page) | 
|  | { | 
|  | chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); | 
|  | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC | 
|  | *			    with syndromes | 
|  | * @mtd: mtd info structure | 
|  | * @chip: nand chip info structure | 
|  | * @page: page number to read | 
|  | */ | 
|  | static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | int page) | 
|  | { | 
|  | uint8_t *buf = chip->oob_poi; | 
|  | int length = mtd->oobsize; | 
|  | int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; | 
|  | int eccsize = chip->ecc.size; | 
|  | uint8_t *bufpoi = buf; | 
|  | int i, toread, sndrnd = 0, pos; | 
|  |  | 
|  | chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page); | 
|  | for (i = 0; i < chip->ecc.steps; i++) { | 
|  | if (sndrnd) { | 
|  | pos = eccsize + i * (eccsize + chunk); | 
|  | if (mtd->writesize > 512) | 
|  | chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1); | 
|  | else | 
|  | chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page); | 
|  | } else | 
|  | sndrnd = 1; | 
|  | toread = min_t(int, length, chunk); | 
|  | chip->read_buf(mtd, bufpoi, toread); | 
|  | bufpoi += toread; | 
|  | length -= toread; | 
|  | } | 
|  | if (length > 0) | 
|  | chip->read_buf(mtd, bufpoi, length); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function | 
|  | * @mtd: mtd info structure | 
|  | * @chip: nand chip info structure | 
|  | * @page: page number to write | 
|  | */ | 
|  | static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | int page) | 
|  | { | 
|  | int status = 0; | 
|  | const uint8_t *buf = chip->oob_poi; | 
|  | int length = mtd->oobsize; | 
|  |  | 
|  | chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); | 
|  | chip->write_buf(mtd, buf, length); | 
|  | /* Send command to program the OOB data */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | 
|  |  | 
|  | status = chip->waitfunc(mtd, chip); | 
|  |  | 
|  | return status & NAND_STATUS_FAIL ? -EIO : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC | 
|  | *			     with syndrome - only for large page flash | 
|  | * @mtd: mtd info structure | 
|  | * @chip: nand chip info structure | 
|  | * @page: page number to write | 
|  | */ | 
|  | static int nand_write_oob_syndrome(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, int page) | 
|  | { | 
|  | int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; | 
|  | int eccsize = chip->ecc.size, length = mtd->oobsize; | 
|  | int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps; | 
|  | const uint8_t *bufpoi = chip->oob_poi; | 
|  |  | 
|  | /* | 
|  | * data-ecc-data-ecc ... ecc-oob | 
|  | * or | 
|  | * data-pad-ecc-pad-data-pad .... ecc-pad-oob | 
|  | */ | 
|  | if (!chip->ecc.prepad && !chip->ecc.postpad) { | 
|  | pos = steps * (eccsize + chunk); | 
|  | steps = 0; | 
|  | } else | 
|  | pos = eccsize; | 
|  |  | 
|  | chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page); | 
|  | for (i = 0; i < steps; i++) { | 
|  | if (sndcmd) { | 
|  | if (mtd->writesize <= 512) { | 
|  | uint32_t fill = 0xFFFFFFFF; | 
|  |  | 
|  | len = eccsize; | 
|  | while (len > 0) { | 
|  | int num = min_t(int, len, 4); | 
|  | chip->write_buf(mtd, (uint8_t *)&fill, | 
|  | num); | 
|  | len -= num; | 
|  | } | 
|  | } else { | 
|  | pos = eccsize + i * (eccsize + chunk); | 
|  | chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1); | 
|  | } | 
|  | } else | 
|  | sndcmd = 1; | 
|  | len = min_t(int, length, chunk); | 
|  | chip->write_buf(mtd, bufpoi, len); | 
|  | bufpoi += len; | 
|  | length -= len; | 
|  | } | 
|  | if (length > 0) | 
|  | chip->write_buf(mtd, bufpoi, length); | 
|  |  | 
|  | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | 
|  | status = chip->waitfunc(mtd, chip); | 
|  |  | 
|  | return status & NAND_STATUS_FAIL ? -EIO : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_do_read_oob - [INTERN] NAND read out-of-band | 
|  | * @mtd: MTD device structure | 
|  | * @from: offset to read from | 
|  | * @ops: oob operations description structure | 
|  | * | 
|  | * NAND read out-of-band data from the spare area. | 
|  | */ | 
|  | static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, | 
|  | struct mtd_oob_ops *ops) | 
|  | { | 
|  | int page, realpage, chipnr; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct mtd_ecc_stats stats; | 
|  | int readlen = ops->ooblen; | 
|  | int len; | 
|  | uint8_t *buf = ops->oobbuf; | 
|  | int ret = 0; | 
|  |  | 
|  | pr_debug("%s: from = 0x%08Lx, len = %i\n", | 
|  | __func__, (unsigned long long)from, readlen); | 
|  |  | 
|  | stats = mtd->ecc_stats; | 
|  |  | 
|  | if (ops->mode == MTD_OPS_AUTO_OOB) | 
|  | len = chip->ecc.layout->oobavail; | 
|  | else | 
|  | len = mtd->oobsize; | 
|  |  | 
|  | if (unlikely(ops->ooboffs >= len)) { | 
|  | pr_debug("%s: attempt to start read outside oob\n", | 
|  | __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Do not allow reads past end of device */ | 
|  | if (unlikely(from >= mtd->size || | 
|  | ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) - | 
|  | (from >> chip->page_shift)) * len)) { | 
|  | pr_debug("%s: attempt to read beyond end of device\n", | 
|  | __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | chipnr = (int)(from >> chip->chip_shift); | 
|  | chip->select_chip(mtd, chipnr); | 
|  |  | 
|  | /* Shift to get page */ | 
|  | realpage = (int)(from >> chip->page_shift); | 
|  | page = realpage & chip->pagemask; | 
|  |  | 
|  | while (1) { | 
|  | if (ops->mode == MTD_OPS_RAW) | 
|  | ret = chip->ecc.read_oob_raw(mtd, chip, page); | 
|  | else | 
|  | ret = chip->ecc.read_oob(mtd, chip, page); | 
|  |  | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | len = min(len, readlen); | 
|  | buf = nand_transfer_oob(chip, buf, ops, len); | 
|  |  | 
|  | readlen -= len; | 
|  | if (!readlen) | 
|  | break; | 
|  |  | 
|  | /* Increment page address */ | 
|  | realpage++; | 
|  |  | 
|  | page = realpage & chip->pagemask; | 
|  | /* Check, if we cross a chip boundary */ | 
|  | if (!page) { | 
|  | chipnr++; | 
|  | chip->select_chip(mtd, -1); | 
|  | chip->select_chip(mtd, chipnr); | 
|  | } | 
|  | } | 
|  |  | 
|  | ops->oobretlen = ops->ooblen - readlen; | 
|  |  | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (mtd->ecc_stats.failed - stats.failed) | 
|  | return -EBADMSG; | 
|  |  | 
|  | return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band | 
|  | * @mtd: MTD device structure | 
|  | * @from: offset to read from | 
|  | * @ops: oob operation description structure | 
|  | * | 
|  | * NAND read data and/or out-of-band data. | 
|  | */ | 
|  | static int nand_read_oob(struct mtd_info *mtd, loff_t from, | 
|  | struct mtd_oob_ops *ops) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | int ret = -ENOTSUPP; | 
|  |  | 
|  | ops->retlen = 0; | 
|  |  | 
|  | /* Do not allow reads past end of device */ | 
|  | if (ops->datbuf && (from + ops->len) > mtd->size) { | 
|  | pr_debug("%s: attempt to read beyond end of device\n", | 
|  | __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | nand_get_device(chip, mtd, FL_READING); | 
|  |  | 
|  | switch (ops->mode) { | 
|  | case MTD_OPS_PLACE_OOB: | 
|  | case MTD_OPS_AUTO_OOB: | 
|  | case MTD_OPS_RAW: | 
|  | break; | 
|  |  | 
|  | default: | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!ops->datbuf) | 
|  | ret = nand_do_read_oob(mtd, from, ops); | 
|  | else | 
|  | ret = nand_do_read_ops(mtd, from, ops); | 
|  |  | 
|  | out: | 
|  | nand_release_device(mtd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * nand_write_page_raw - [INTERN] raw page write function | 
|  | * @mtd: mtd info structure | 
|  | * @chip: nand chip info structure | 
|  | * @buf: data buffer | 
|  | * @oob_required: must write chip->oob_poi to OOB | 
|  | * | 
|  | * Not for syndrome calculating ECC controllers, which use a special oob layout. | 
|  | */ | 
|  | static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | const uint8_t *buf, int oob_required) | 
|  | { | 
|  | chip->write_buf(mtd, buf, mtd->writesize); | 
|  | if (oob_required) | 
|  | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write_page_raw_syndrome - [INTERN] raw page write function | 
|  | * @mtd: mtd info structure | 
|  | * @chip: nand chip info structure | 
|  | * @buf: data buffer | 
|  | * @oob_required: must write chip->oob_poi to OOB | 
|  | * | 
|  | * We need a special oob layout and handling even when ECC isn't checked. | 
|  | */ | 
|  | static int nand_write_page_raw_syndrome(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, | 
|  | const uint8_t *buf, int oob_required) | 
|  | { | 
|  | int eccsize = chip->ecc.size; | 
|  | int eccbytes = chip->ecc.bytes; | 
|  | uint8_t *oob = chip->oob_poi; | 
|  | int steps, size; | 
|  |  | 
|  | for (steps = chip->ecc.steps; steps > 0; steps--) { | 
|  | chip->write_buf(mtd, buf, eccsize); | 
|  | buf += eccsize; | 
|  |  | 
|  | if (chip->ecc.prepad) { | 
|  | chip->write_buf(mtd, oob, chip->ecc.prepad); | 
|  | oob += chip->ecc.prepad; | 
|  | } | 
|  |  | 
|  | chip->read_buf(mtd, oob, eccbytes); | 
|  | oob += eccbytes; | 
|  |  | 
|  | if (chip->ecc.postpad) { | 
|  | chip->write_buf(mtd, oob, chip->ecc.postpad); | 
|  | oob += chip->ecc.postpad; | 
|  | } | 
|  | } | 
|  |  | 
|  | size = mtd->oobsize - (oob - chip->oob_poi); | 
|  | if (size) | 
|  | chip->write_buf(mtd, oob, size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | /** | 
|  | * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function | 
|  | * @mtd: mtd info structure | 
|  | * @chip: nand chip info structure | 
|  | * @buf: data buffer | 
|  | * @oob_required: must write chip->oob_poi to OOB | 
|  | */ | 
|  | static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | const uint8_t *buf, int oob_required) | 
|  | { | 
|  | int i, eccsize = chip->ecc.size; | 
|  | int eccbytes = chip->ecc.bytes; | 
|  | int eccsteps = chip->ecc.steps; | 
|  | uint8_t *ecc_calc = chip->buffers->ecccalc; | 
|  | const uint8_t *p = buf; | 
|  | uint32_t *eccpos = chip->ecc.layout->eccpos; | 
|  |  | 
|  | /* Software ECC calculation */ | 
|  | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) | 
|  | chip->ecc.calculate(mtd, p, &ecc_calc[i]); | 
|  |  | 
|  | for (i = 0; i < chip->ecc.total; i++) | 
|  | chip->oob_poi[eccpos[i]] = ecc_calc[i]; | 
|  |  | 
|  | return chip->ecc.write_page_raw(mtd, chip, buf, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function | 
|  | * @mtd: mtd info structure | 
|  | * @chip: nand chip info structure | 
|  | * @buf: data buffer | 
|  | * @oob_required: must write chip->oob_poi to OOB | 
|  | */ | 
|  | static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | const uint8_t *buf, int oob_required) | 
|  | { | 
|  | int i, eccsize = chip->ecc.size; | 
|  | int eccbytes = chip->ecc.bytes; | 
|  | int eccsteps = chip->ecc.steps; | 
|  | uint8_t *ecc_calc = chip->buffers->ecccalc; | 
|  | const uint8_t *p = buf; | 
|  | uint32_t *eccpos = chip->ecc.layout->eccpos; | 
|  |  | 
|  | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
|  | chip->ecc.hwctl(mtd, NAND_ECC_WRITE); | 
|  | chip->write_buf(mtd, p, eccsize); | 
|  | chip->ecc.calculate(mtd, p, &ecc_calc[i]); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < chip->ecc.total; i++) | 
|  | chip->oob_poi[eccpos[i]] = ecc_calc[i]; | 
|  |  | 
|  | chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write | 
|  | * @mtd: mtd info structure | 
|  | * @chip: nand chip info structure | 
|  | * @buf: data buffer | 
|  | * @oob_required: must write chip->oob_poi to OOB | 
|  | * | 
|  | * The hw generator calculates the error syndrome automatically. Therefore we | 
|  | * need a special oob layout and handling. | 
|  | */ | 
|  | static int nand_write_page_syndrome(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, | 
|  | const uint8_t *buf, int oob_required) | 
|  | { | 
|  | int i, eccsize = chip->ecc.size; | 
|  | int eccbytes = chip->ecc.bytes; | 
|  | int eccsteps = chip->ecc.steps; | 
|  | const uint8_t *p = buf; | 
|  | uint8_t *oob = chip->oob_poi; | 
|  |  | 
|  | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { | 
|  |  | 
|  | chip->ecc.hwctl(mtd, NAND_ECC_WRITE); | 
|  | chip->write_buf(mtd, p, eccsize); | 
|  |  | 
|  | if (chip->ecc.prepad) { | 
|  | chip->write_buf(mtd, oob, chip->ecc.prepad); | 
|  | oob += chip->ecc.prepad; | 
|  | } | 
|  |  | 
|  | chip->ecc.calculate(mtd, p, oob); | 
|  | chip->write_buf(mtd, oob, eccbytes); | 
|  | oob += eccbytes; | 
|  |  | 
|  | if (chip->ecc.postpad) { | 
|  | chip->write_buf(mtd, oob, chip->ecc.postpad); | 
|  | oob += chip->ecc.postpad; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Calculate remaining oob bytes */ | 
|  | i = mtd->oobsize - (oob - chip->oob_poi); | 
|  | if (i) | 
|  | chip->write_buf(mtd, oob, i); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write_page - [REPLACEABLE] write one page | 
|  | * @mtd: MTD device structure | 
|  | * @chip: NAND chip descriptor | 
|  | * @buf: the data to write | 
|  | * @oob_required: must write chip->oob_poi to OOB | 
|  | * @page: page number to write | 
|  | * @cached: cached programming | 
|  | * @raw: use _raw version of write_page | 
|  | */ | 
|  | static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | const uint8_t *buf, int oob_required, int page, | 
|  | int cached, int raw) | 
|  | { | 
|  | int status; | 
|  |  | 
|  | chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); | 
|  |  | 
|  | if (unlikely(raw)) | 
|  | status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required); | 
|  | else | 
|  | status = chip->ecc.write_page(mtd, chip, buf, oob_required); | 
|  |  | 
|  | if (status < 0) | 
|  | return status; | 
|  |  | 
|  | /* | 
|  | * Cached progamming disabled for now. Not sure if it's worth the | 
|  | * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s). | 
|  | */ | 
|  | cached = 0; | 
|  |  | 
|  | if (!cached || !(chip->options & NAND_CACHEPRG)) { | 
|  |  | 
|  | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | 
|  | status = chip->waitfunc(mtd, chip); | 
|  | /* | 
|  | * See if operation failed and additional status checks are | 
|  | * available. | 
|  | */ | 
|  | if ((status & NAND_STATUS_FAIL) && (chip->errstat)) | 
|  | status = chip->errstat(mtd, chip, FL_WRITING, status, | 
|  | page); | 
|  |  | 
|  | if (status & NAND_STATUS_FAIL) | 
|  | return -EIO; | 
|  | } else { | 
|  | chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1); | 
|  | status = chip->waitfunc(mtd, chip); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MTD_NAND_VERIFY_WRITE | 
|  | /* Send command to read back the data */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); | 
|  |  | 
|  | if (chip->verify_buf(mtd, buf, mtd->writesize)) | 
|  | return -EIO; | 
|  |  | 
|  | /* Make sure the next page prog is preceded by a status read */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_fill_oob - [INTERN] Transfer client buffer to oob | 
|  | * @mtd: MTD device structure | 
|  | * @oob: oob data buffer | 
|  | * @len: oob data write length | 
|  | * @ops: oob ops structure | 
|  | */ | 
|  | static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len, | 
|  | struct mtd_oob_ops *ops) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | /* | 
|  | * Initialise to all 0xFF, to avoid the possibility of left over OOB | 
|  | * data from a previous OOB read. | 
|  | */ | 
|  | memset(chip->oob_poi, 0xff, mtd->oobsize); | 
|  |  | 
|  | switch (ops->mode) { | 
|  |  | 
|  | case MTD_OPS_PLACE_OOB: | 
|  | case MTD_OPS_RAW: | 
|  | memcpy(chip->oob_poi + ops->ooboffs, oob, len); | 
|  | return oob + len; | 
|  |  | 
|  | case MTD_OPS_AUTO_OOB: { | 
|  | struct nand_oobfree *free = chip->ecc.layout->oobfree; | 
|  | uint32_t boffs = 0, woffs = ops->ooboffs; | 
|  | size_t bytes = 0; | 
|  |  | 
|  | for (; free->length && len; free++, len -= bytes) { | 
|  | /* Write request not from offset 0? */ | 
|  | if (unlikely(woffs)) { | 
|  | if (woffs >= free->length) { | 
|  | woffs -= free->length; | 
|  | continue; | 
|  | } | 
|  | boffs = free->offset + woffs; | 
|  | bytes = min_t(size_t, len, | 
|  | (free->length - woffs)); | 
|  | woffs = 0; | 
|  | } else { | 
|  | bytes = min_t(size_t, len, free->length); | 
|  | boffs = free->offset; | 
|  | } | 
|  | memcpy(chip->oob_poi + boffs, oob, bytes); | 
|  | oob += bytes; | 
|  | } | 
|  | return oob; | 
|  | } | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0) | 
|  |  | 
|  | /** | 
|  | * nand_do_write_ops - [INTERN] NAND write with ECC | 
|  | * @mtd: MTD device structure | 
|  | * @to: offset to write to | 
|  | * @ops: oob operations description structure | 
|  | * | 
|  | * NAND write with ECC. | 
|  | */ | 
|  | static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, | 
|  | struct mtd_oob_ops *ops) | 
|  | { | 
|  | int chipnr, realpage, page, blockmask, column; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | uint32_t writelen = ops->len; | 
|  |  | 
|  | uint32_t oobwritelen = ops->ooblen; | 
|  | uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ? | 
|  | mtd->oobavail : mtd->oobsize; | 
|  |  | 
|  | uint8_t *oob = ops->oobbuf; | 
|  | uint8_t *buf = ops->datbuf; | 
|  | int ret, subpage; | 
|  | int oob_required = oob ? 1 : 0; | 
|  |  | 
|  | ops->retlen = 0; | 
|  | if (!writelen) | 
|  | return 0; | 
|  |  | 
|  | /* Reject writes, which are not page aligned */ | 
|  | if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { | 
|  | pr_notice("%s: attempt to write non page aligned data\n", | 
|  | __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | column = to & (mtd->writesize - 1); | 
|  | subpage = column || (writelen & (mtd->writesize - 1)); | 
|  |  | 
|  | if (subpage && oob) | 
|  | return -EINVAL; | 
|  |  | 
|  | chipnr = (int)(to >> chip->chip_shift); | 
|  | chip->select_chip(mtd, chipnr); | 
|  |  | 
|  | /* Check, if it is write protected */ | 
|  | if (nand_check_wp(mtd)) | 
|  | return -EIO; | 
|  |  | 
|  | realpage = (int)(to >> chip->page_shift); | 
|  | page = realpage & chip->pagemask; | 
|  | blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1; | 
|  |  | 
|  | /* Invalidate the page cache, when we write to the cached page */ | 
|  | if (to <= (chip->pagebuf << chip->page_shift) && | 
|  | (chip->pagebuf << chip->page_shift) < (to + ops->len)) | 
|  | chip->pagebuf = -1; | 
|  |  | 
|  | /* Don't allow multipage oob writes with offset */ | 
|  | if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) | 
|  | return -EINVAL; | 
|  |  | 
|  | while (1) { | 
|  | int bytes = mtd->writesize; | 
|  | int cached = writelen > bytes && page != blockmask; | 
|  | uint8_t *wbuf = buf; | 
|  |  | 
|  | /* Partial page write? */ | 
|  | if (unlikely(column || writelen < (mtd->writesize - 1))) { | 
|  | cached = 0; | 
|  | bytes = min_t(int, bytes - column, (int) writelen); | 
|  | chip->pagebuf = -1; | 
|  | memset(chip->buffers->databuf, 0xff, mtd->writesize); | 
|  | memcpy(&chip->buffers->databuf[column], buf, bytes); | 
|  | wbuf = chip->buffers->databuf; | 
|  | } | 
|  |  | 
|  | if (unlikely(oob)) { | 
|  | size_t len = min(oobwritelen, oobmaxlen); | 
|  | oob = nand_fill_oob(mtd, oob, len, ops); | 
|  | oobwritelen -= len; | 
|  | } else { | 
|  | /* We still need to erase leftover OOB data */ | 
|  | memset(chip->oob_poi, 0xff, mtd->oobsize); | 
|  | } | 
|  |  | 
|  | ret = chip->write_page(mtd, chip, wbuf, oob_required, page, | 
|  | cached, (ops->mode == MTD_OPS_RAW)); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | writelen -= bytes; | 
|  | if (!writelen) | 
|  | break; | 
|  |  | 
|  | column = 0; | 
|  | buf += bytes; | 
|  | realpage++; | 
|  |  | 
|  | page = realpage & chip->pagemask; | 
|  | /* Check, if we cross a chip boundary */ | 
|  | if (!page) { | 
|  | chipnr++; | 
|  | chip->select_chip(mtd, -1); | 
|  | chip->select_chip(mtd, chipnr); | 
|  | } | 
|  | } | 
|  |  | 
|  | ops->retlen = ops->len - writelen; | 
|  | if (unlikely(oob)) | 
|  | ops->oobretlen = ops->ooblen; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * panic_nand_write - [MTD Interface] NAND write with ECC | 
|  | * @mtd: MTD device structure | 
|  | * @to: offset to write to | 
|  | * @len: number of bytes to write | 
|  | * @retlen: pointer to variable to store the number of written bytes | 
|  | * @buf: the data to write | 
|  | * | 
|  | * NAND write with ECC. Used when performing writes in interrupt context, this | 
|  | * may for example be called by mtdoops when writing an oops while in panic. | 
|  | */ | 
|  | static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t *retlen, const uint8_t *buf) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct mtd_oob_ops ops; | 
|  | int ret; | 
|  |  | 
|  | /* Wait for the device to get ready */ | 
|  | panic_nand_wait(mtd, chip, 400); | 
|  |  | 
|  | /* Grab the device */ | 
|  | panic_nand_get_device(chip, mtd, FL_WRITING); | 
|  |  | 
|  | ops.len = len; | 
|  | ops.datbuf = (uint8_t *)buf; | 
|  | ops.oobbuf = NULL; | 
|  | ops.mode = 0; | 
|  |  | 
|  | ret = nand_do_write_ops(mtd, to, &ops); | 
|  |  | 
|  | *retlen = ops.retlen; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write - [MTD Interface] NAND write with ECC | 
|  | * @mtd: MTD device structure | 
|  | * @to: offset to write to | 
|  | * @len: number of bytes to write | 
|  | * @retlen: pointer to variable to store the number of written bytes | 
|  | * @buf: the data to write | 
|  | * | 
|  | * NAND write with ECC. | 
|  | */ | 
|  | static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t *retlen, const uint8_t *buf) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct mtd_oob_ops ops; | 
|  | int ret; | 
|  |  | 
|  | nand_get_device(chip, mtd, FL_WRITING); | 
|  | ops.len = len; | 
|  | ops.datbuf = (uint8_t *)buf; | 
|  | ops.oobbuf = NULL; | 
|  | ops.mode = 0; | 
|  | ret = nand_do_write_ops(mtd, to, &ops); | 
|  | *retlen = ops.retlen; | 
|  | nand_release_device(mtd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_do_write_oob - [MTD Interface] NAND write out-of-band | 
|  | * @mtd: MTD device structure | 
|  | * @to: offset to write to | 
|  | * @ops: oob operation description structure | 
|  | * | 
|  | * NAND write out-of-band. | 
|  | */ | 
|  | static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, | 
|  | struct mtd_oob_ops *ops) | 
|  | { | 
|  | int chipnr, page, status, len; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | pr_debug("%s: to = 0x%08x, len = %i\n", | 
|  | __func__, (unsigned int)to, (int)ops->ooblen); | 
|  |  | 
|  | if (ops->mode == MTD_OPS_AUTO_OOB) | 
|  | len = chip->ecc.layout->oobavail; | 
|  | else | 
|  | len = mtd->oobsize; | 
|  |  | 
|  | /* Do not allow write past end of page */ | 
|  | if ((ops->ooboffs + ops->ooblen) > len) { | 
|  | pr_debug("%s: attempt to write past end of page\n", | 
|  | __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (unlikely(ops->ooboffs >= len)) { | 
|  | pr_debug("%s: attempt to start write outside oob\n", | 
|  | __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Do not allow write past end of device */ | 
|  | if (unlikely(to >= mtd->size || | 
|  | ops->ooboffs + ops->ooblen > | 
|  | ((mtd->size >> chip->page_shift) - | 
|  | (to >> chip->page_shift)) * len)) { | 
|  | pr_debug("%s: attempt to write beyond end of device\n", | 
|  | __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | chipnr = (int)(to >> chip->chip_shift); | 
|  | chip->select_chip(mtd, chipnr); | 
|  |  | 
|  | /* Shift to get page */ | 
|  | page = (int)(to >> chip->page_shift); | 
|  |  | 
|  | /* | 
|  | * Reset the chip. Some chips (like the Toshiba TC5832DC found in one | 
|  | * of my DiskOnChip 2000 test units) will clear the whole data page too | 
|  | * if we don't do this. I have no clue why, but I seem to have 'fixed' | 
|  | * it in the doc2000 driver in August 1999.  dwmw2. | 
|  | */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); | 
|  |  | 
|  | /* Check, if it is write protected */ | 
|  | if (nand_check_wp(mtd)) | 
|  | return -EROFS; | 
|  |  | 
|  | /* Invalidate the page cache, if we write to the cached page */ | 
|  | if (page == chip->pagebuf) | 
|  | chip->pagebuf = -1; | 
|  |  | 
|  | nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops); | 
|  |  | 
|  | if (ops->mode == MTD_OPS_RAW) | 
|  | status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask); | 
|  | else | 
|  | status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask); | 
|  |  | 
|  | if (status) | 
|  | return status; | 
|  |  | 
|  | ops->oobretlen = ops->ooblen; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band | 
|  | * @mtd: MTD device structure | 
|  | * @to: offset to write to | 
|  | * @ops: oob operation description structure | 
|  | */ | 
|  | static int nand_write_oob(struct mtd_info *mtd, loff_t to, | 
|  | struct mtd_oob_ops *ops) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | int ret = -ENOTSUPP; | 
|  |  | 
|  | ops->retlen = 0; | 
|  |  | 
|  | /* Do not allow writes past end of device */ | 
|  | if (ops->datbuf && (to + ops->len) > mtd->size) { | 
|  | pr_debug("%s: attempt to write beyond end of device\n", | 
|  | __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | nand_get_device(chip, mtd, FL_WRITING); | 
|  |  | 
|  | switch (ops->mode) { | 
|  | case MTD_OPS_PLACE_OOB: | 
|  | case MTD_OPS_AUTO_OOB: | 
|  | case MTD_OPS_RAW: | 
|  | break; | 
|  |  | 
|  | default: | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!ops->datbuf) | 
|  | ret = nand_do_write_oob(mtd, to, ops); | 
|  | else | 
|  | ret = nand_do_write_ops(mtd, to, ops); | 
|  |  | 
|  | out: | 
|  | nand_release_device(mtd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * single_erase_cmd - [GENERIC] NAND standard block erase command function | 
|  | * @mtd: MTD device structure | 
|  | * @page: the page address of the block which will be erased | 
|  | * | 
|  | * Standard erase command for NAND chips. | 
|  | */ | 
|  | static void single_erase_cmd(struct mtd_info *mtd, int page) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | /* Send commands to erase a block */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); | 
|  | chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * multi_erase_cmd - [GENERIC] AND specific block erase command function | 
|  | * @mtd: MTD device structure | 
|  | * @page: the page address of the block which will be erased | 
|  | * | 
|  | * AND multi block erase command function. Erase 4 consecutive blocks. | 
|  | */ | 
|  | static void multi_erase_cmd(struct mtd_info *mtd, int page) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | /* Send commands to erase a block */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); | 
|  | chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); | 
|  | chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); | 
|  | chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); | 
|  | chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_erase - [MTD Interface] erase block(s) | 
|  | * @mtd: MTD device structure | 
|  | * @instr: erase instruction | 
|  | * | 
|  | * Erase one ore more blocks. | 
|  | */ | 
|  | static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) | 
|  | { | 
|  | return nand_erase_nand(mtd, instr, 0); | 
|  | } | 
|  |  | 
|  | #define BBT_PAGE_MASK	0xffffff3f | 
|  | /** | 
|  | * nand_erase_nand - [INTERN] erase block(s) | 
|  | * @mtd: MTD device structure | 
|  | * @instr: erase instruction | 
|  | * @allowbbt: allow erasing the bbt area | 
|  | * | 
|  | * Erase one ore more blocks. | 
|  | */ | 
|  | int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, | 
|  | int allowbbt) | 
|  | { | 
|  | int page, status, pages_per_block, ret, chipnr; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0}; | 
|  | unsigned int bbt_masked_page = 0xffffffff; | 
|  | loff_t len; | 
|  |  | 
|  | pr_debug("%s: start = 0x%012llx, len = %llu\n", | 
|  | __func__, (unsigned long long)instr->addr, | 
|  | (unsigned long long)instr->len); | 
|  |  | 
|  | if (check_offs_len(mtd, instr->addr, instr->len)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Grab the lock and see if the device is available */ | 
|  | nand_get_device(chip, mtd, FL_ERASING); | 
|  |  | 
|  | /* Shift to get first page */ | 
|  | page = (int)(instr->addr >> chip->page_shift); | 
|  | chipnr = (int)(instr->addr >> chip->chip_shift); | 
|  |  | 
|  | /* Calculate pages in each block */ | 
|  | pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); | 
|  |  | 
|  | /* Select the NAND device */ | 
|  | chip->select_chip(mtd, chipnr); | 
|  |  | 
|  | /* Check, if it is write protected */ | 
|  | if (nand_check_wp(mtd)) { | 
|  | pr_debug("%s: device is write protected!\n", | 
|  | __func__); | 
|  | instr->state = MTD_ERASE_FAILED; | 
|  | goto erase_exit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If BBT requires refresh, set the BBT page mask to see if the BBT | 
|  | * should be rewritten. Otherwise the mask is set to 0xffffffff which | 
|  | * can not be matched. This is also done when the bbt is actually | 
|  | * erased to avoid recursive updates. | 
|  | */ | 
|  | if (chip->options & BBT_AUTO_REFRESH && !allowbbt) | 
|  | bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK; | 
|  |  | 
|  | /* Loop through the pages */ | 
|  | len = instr->len; | 
|  |  | 
|  | instr->state = MTD_ERASING; | 
|  |  | 
|  | while (len) { | 
|  | /* Check if we have a bad block, we do not erase bad blocks! */ | 
|  | if (nand_block_checkbad(mtd, ((loff_t) page) << | 
|  | chip->page_shift, 0, allowbbt)) { | 
|  | pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", | 
|  | __func__, page); | 
|  | instr->state = MTD_ERASE_FAILED; | 
|  | goto erase_exit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Invalidate the page cache, if we erase the block which | 
|  | * contains the current cached page. | 
|  | */ | 
|  | if (page <= chip->pagebuf && chip->pagebuf < | 
|  | (page + pages_per_block)) | 
|  | chip->pagebuf = -1; | 
|  |  | 
|  | chip->erase_cmd(mtd, page & chip->pagemask); | 
|  |  | 
|  | status = chip->waitfunc(mtd, chip); | 
|  |  | 
|  | /* | 
|  | * See if operation failed and additional status checks are | 
|  | * available | 
|  | */ | 
|  | if ((status & NAND_STATUS_FAIL) && (chip->errstat)) | 
|  | status = chip->errstat(mtd, chip, FL_ERASING, | 
|  | status, page); | 
|  |  | 
|  | /* See if block erase succeeded */ | 
|  | if (status & NAND_STATUS_FAIL) { | 
|  | pr_debug("%s: failed erase, page 0x%08x\n", | 
|  | __func__, page); | 
|  | instr->state = MTD_ERASE_FAILED; | 
|  | instr->fail_addr = | 
|  | ((loff_t)page << chip->page_shift); | 
|  | goto erase_exit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If BBT requires refresh, set the BBT rewrite flag to the | 
|  | * page being erased. | 
|  | */ | 
|  | if (bbt_masked_page != 0xffffffff && | 
|  | (page & BBT_PAGE_MASK) == bbt_masked_page) | 
|  | rewrite_bbt[chipnr] = | 
|  | ((loff_t)page << chip->page_shift); | 
|  |  | 
|  | /* Increment page address and decrement length */ | 
|  | len -= (1 << chip->phys_erase_shift); | 
|  | page += pages_per_block; | 
|  |  | 
|  | /* Check, if we cross a chip boundary */ | 
|  | if (len && !(page & chip->pagemask)) { | 
|  | chipnr++; | 
|  | chip->select_chip(mtd, -1); | 
|  | chip->select_chip(mtd, chipnr); | 
|  |  | 
|  | /* | 
|  | * If BBT requires refresh and BBT-PERCHIP, set the BBT | 
|  | * page mask to see if this BBT should be rewritten. | 
|  | */ | 
|  | if (bbt_masked_page != 0xffffffff && | 
|  | (chip->bbt_td->options & NAND_BBT_PERCHIP)) | 
|  | bbt_masked_page = chip->bbt_td->pages[chipnr] & | 
|  | BBT_PAGE_MASK; | 
|  | } | 
|  | } | 
|  | instr->state = MTD_ERASE_DONE; | 
|  |  | 
|  | erase_exit: | 
|  |  | 
|  | ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; | 
|  |  | 
|  | /* Deselect and wake up anyone waiting on the device */ | 
|  | nand_release_device(mtd); | 
|  |  | 
|  | /* Do call back function */ | 
|  | if (!ret) | 
|  | mtd_erase_callback(instr); | 
|  |  | 
|  | /* | 
|  | * If BBT requires refresh and erase was successful, rewrite any | 
|  | * selected bad block tables. | 
|  | */ | 
|  | if (bbt_masked_page == 0xffffffff || ret) | 
|  | return ret; | 
|  |  | 
|  | for (chipnr = 0; chipnr < chip->numchips; chipnr++) { | 
|  | if (!rewrite_bbt[chipnr]) | 
|  | continue; | 
|  | /* Update the BBT for chip */ | 
|  | pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n", | 
|  | __func__, chipnr, rewrite_bbt[chipnr], | 
|  | chip->bbt_td->pages[chipnr]); | 
|  | nand_update_bbt(mtd, rewrite_bbt[chipnr]); | 
|  | } | 
|  |  | 
|  | /* Return more or less happy */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_sync - [MTD Interface] sync | 
|  | * @mtd: MTD device structure | 
|  | * | 
|  | * Sync is actually a wait for chip ready function. | 
|  | */ | 
|  | static void nand_sync(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | pr_debug("%s: called\n", __func__); | 
|  |  | 
|  | /* Grab the lock and see if the device is available */ | 
|  | nand_get_device(chip, mtd, FL_SYNCING); | 
|  | /* Release it and go back */ | 
|  | nand_release_device(mtd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_block_isbad - [MTD Interface] Check if block at offset is bad | 
|  | * @mtd: MTD device structure | 
|  | * @offs: offset relative to mtd start | 
|  | */ | 
|  | static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) | 
|  | { | 
|  | return nand_block_checkbad(mtd, offs, 1, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad | 
|  | * @mtd: MTD device structure | 
|  | * @ofs: offset relative to mtd start | 
|  | */ | 
|  | static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | int ret; | 
|  |  | 
|  | ret = nand_block_isbad(mtd, ofs); | 
|  | if (ret) { | 
|  | /* If it was bad already, return success and do nothing */ | 
|  | if (ret > 0) | 
|  | return 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return chip->block_markbad(mtd, ofs); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_suspend - [MTD Interface] Suspend the NAND flash | 
|  | * @mtd: MTD device structure | 
|  | */ | 
|  | static int nand_suspend(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | return nand_get_device(chip, mtd, FL_PM_SUSPENDED); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_resume - [MTD Interface] Resume the NAND flash | 
|  | * @mtd: MTD device structure | 
|  | */ | 
|  | static void nand_resume(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | if (chip->state == FL_PM_SUSPENDED) | 
|  | nand_release_device(mtd); | 
|  | else | 
|  | pr_err("%s called for a chip which is not in suspended state\n", | 
|  | __func__); | 
|  | } | 
|  |  | 
|  | /* Set default functions */ | 
|  | static void nand_set_defaults(struct nand_chip *chip, int busw) | 
|  | { | 
|  | /* check for proper chip_delay setup, set 20us if not */ | 
|  | if (!chip->chip_delay) | 
|  | chip->chip_delay = 20; | 
|  |  | 
|  | /* check, if a user supplied command function given */ | 
|  | if (chip->cmdfunc == NULL) | 
|  | chip->cmdfunc = nand_command; | 
|  |  | 
|  | /* check, if a user supplied wait function given */ | 
|  | if (chip->waitfunc == NULL) | 
|  | chip->waitfunc = nand_wait; | 
|  |  | 
|  | if (!chip->select_chip) | 
|  | chip->select_chip = nand_select_chip; | 
|  | if (!chip->read_byte) | 
|  | chip->read_byte = busw ? nand_read_byte16 : nand_read_byte; | 
|  | if (!chip->read_word) | 
|  | chip->read_word = nand_read_word; | 
|  | if (!chip->block_bad) | 
|  | chip->block_bad = nand_block_bad; | 
|  | if (!chip->block_markbad) | 
|  | chip->block_markbad = nand_default_block_markbad; | 
|  | if (!chip->write_buf) | 
|  | chip->write_buf = busw ? nand_write_buf16 : nand_write_buf; | 
|  | if (!chip->read_buf) | 
|  | chip->read_buf = busw ? nand_read_buf16 : nand_read_buf; | 
|  | if (!chip->verify_buf) | 
|  | chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf; | 
|  | if (!chip->scan_bbt) | 
|  | chip->scan_bbt = nand_default_bbt; | 
|  |  | 
|  | if (!chip->controller) { | 
|  | chip->controller = &chip->hwcontrol; | 
|  | spin_lock_init(&chip->controller->lock); | 
|  | init_waitqueue_head(&chip->controller->wq); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Sanitize ONFI strings so we can safely print them */ | 
|  | static void sanitize_string(uint8_t *s, size_t len) | 
|  | { | 
|  | ssize_t i; | 
|  |  | 
|  | /* Null terminate */ | 
|  | s[len - 1] = 0; | 
|  |  | 
|  | /* Remove non printable chars */ | 
|  | for (i = 0; i < len - 1; i++) { | 
|  | if (s[i] < ' ' || s[i] > 127) | 
|  | s[i] = '?'; | 
|  | } | 
|  |  | 
|  | /* Remove trailing spaces */ | 
|  | strim(s); | 
|  | } | 
|  |  | 
|  | static u16 onfi_crc16(u16 crc, u8 const *p, size_t len) | 
|  | { | 
|  | int i; | 
|  | while (len--) { | 
|  | crc ^= *p++ << 8; | 
|  | for (i = 0; i < 8; i++) | 
|  | crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0); | 
|  | } | 
|  |  | 
|  | return crc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise. | 
|  | */ | 
|  | static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | int *busw) | 
|  | { | 
|  | struct nand_onfi_params *p = &chip->onfi_params; | 
|  | int i; | 
|  | int val; | 
|  |  | 
|  | /* Try ONFI for unknown chip or LP */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1); | 
|  | if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' || | 
|  | chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I') | 
|  | return 0; | 
|  |  | 
|  | chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1); | 
|  | for (i = 0; i < 3; i++) { | 
|  | chip->read_buf(mtd, (uint8_t *)p, sizeof(*p)); | 
|  | if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) == | 
|  | le16_to_cpu(p->crc)) { | 
|  | pr_info("ONFI param page %d valid\n", i); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i == 3) | 
|  | return 0; | 
|  |  | 
|  | /* Check version */ | 
|  | val = le16_to_cpu(p->revision); | 
|  | if (val & (1 << 5)) | 
|  | chip->onfi_version = 23; | 
|  | else if (val & (1 << 4)) | 
|  | chip->onfi_version = 22; | 
|  | else if (val & (1 << 3)) | 
|  | chip->onfi_version = 21; | 
|  | else if (val & (1 << 2)) | 
|  | chip->onfi_version = 20; | 
|  | else if (val & (1 << 1)) | 
|  | chip->onfi_version = 10; | 
|  | else | 
|  | chip->onfi_version = 0; | 
|  |  | 
|  | if (!chip->onfi_version) { | 
|  | pr_info("%s: unsupported ONFI version: %d\n", __func__, val); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | sanitize_string(p->manufacturer, sizeof(p->manufacturer)); | 
|  | sanitize_string(p->model, sizeof(p->model)); | 
|  | if (!mtd->name) | 
|  | mtd->name = p->model; | 
|  | mtd->writesize = le32_to_cpu(p->byte_per_page); | 
|  | mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize; | 
|  | mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); | 
|  | chip->chipsize = le32_to_cpu(p->blocks_per_lun); | 
|  | chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; | 
|  | *busw = 0; | 
|  | if (le16_to_cpu(p->features) & 1) | 
|  | *busw = NAND_BUSWIDTH_16; | 
|  |  | 
|  | chip->options &= ~NAND_CHIPOPTIONS_MSK; | 
|  |  | 
|  | pr_info("ONFI flash detected\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the flash and manufacturer id and lookup if the type is supported. | 
|  | */ | 
|  | static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, | 
|  | struct nand_chip *chip, | 
|  | int busw, | 
|  | int *maf_id, int *dev_id, | 
|  | struct nand_flash_dev *type) | 
|  | { | 
|  | int i, maf_idx; | 
|  | u8 id_data[8]; | 
|  | int ret; | 
|  |  | 
|  | /* Select the device */ | 
|  | chip->select_chip(mtd, 0); | 
|  |  | 
|  | /* | 
|  | * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) | 
|  | * after power-up. | 
|  | */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); | 
|  |  | 
|  | /* Send the command for reading device ID */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); | 
|  |  | 
|  | /* Read manufacturer and device IDs */ | 
|  | *maf_id = chip->read_byte(mtd); | 
|  | *dev_id = chip->read_byte(mtd); | 
|  |  | 
|  | /* | 
|  | * Try again to make sure, as some systems the bus-hold or other | 
|  | * interface concerns can cause random data which looks like a | 
|  | * possibly credible NAND flash to appear. If the two results do | 
|  | * not match, ignore the device completely. | 
|  | */ | 
|  |  | 
|  | chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); | 
|  |  | 
|  | for (i = 0; i < 2; i++) | 
|  | id_data[i] = chip->read_byte(mtd); | 
|  |  | 
|  | if (id_data[0] != *maf_id || id_data[1] != *dev_id) { | 
|  | pr_info("%s: second ID read did not match " | 
|  | "%02x,%02x against %02x,%02x\n", __func__, | 
|  | *maf_id, *dev_id, id_data[0], id_data[1]); | 
|  | return ERR_PTR(-ENODEV); | 
|  | } | 
|  |  | 
|  | if (!type) | 
|  | type = nand_flash_ids; | 
|  |  | 
|  | for (; type->name != NULL; type++) | 
|  | if (*dev_id == type->id) | 
|  | break; | 
|  |  | 
|  | chip->onfi_version = 0; | 
|  | if (!type->name || !type->pagesize) { | 
|  | /* Check is chip is ONFI compliant */ | 
|  | ret = nand_flash_detect_onfi(mtd, chip, &busw); | 
|  | if (ret) | 
|  | goto ident_done; | 
|  | } | 
|  |  | 
|  | chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); | 
|  |  | 
|  | /* Read entire ID string */ | 
|  |  | 
|  | for (i = 0; i < 8; i++) | 
|  | id_data[i] = chip->read_byte(mtd); | 
|  |  | 
|  | if (!type->name) | 
|  | return ERR_PTR(-ENODEV); | 
|  |  | 
|  | if (!mtd->name) | 
|  | mtd->name = type->name; | 
|  |  | 
|  | chip->chipsize = (uint64_t)type->chipsize << 20; | 
|  |  | 
|  | if (!type->pagesize && chip->init_size) { | 
|  | /* Set the pagesize, oobsize, erasesize by the driver */ | 
|  | busw = chip->init_size(mtd, chip, id_data); | 
|  | } else if (!type->pagesize) { | 
|  | int extid; | 
|  | /* The 3rd id byte holds MLC / multichip data */ | 
|  | chip->cellinfo = id_data[2]; | 
|  | /* The 4th id byte is the important one */ | 
|  | extid = id_data[3]; | 
|  |  | 
|  | /* | 
|  | * Field definitions are in the following datasheets: | 
|  | * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32) | 
|  | * New style   (6 byte ID): Samsung K9GBG08U0M (p.40) | 
|  | * | 
|  | * Check for wraparound + Samsung ID + nonzero 6th byte | 
|  | * to decide what to do. | 
|  | */ | 
|  | if (id_data[0] == id_data[6] && id_data[1] == id_data[7] && | 
|  | id_data[0] == NAND_MFR_SAMSUNG && | 
|  | (chip->cellinfo & NAND_CI_CELLTYPE_MSK) && | 
|  | id_data[5] != 0x00) { | 
|  | /* Calc pagesize */ | 
|  | mtd->writesize = 2048 << (extid & 0x03); | 
|  | extid >>= 2; | 
|  | /* Calc oobsize */ | 
|  | switch (extid & 0x03) { | 
|  | case 1: | 
|  | mtd->oobsize = 128; | 
|  | break; | 
|  | case 2: | 
|  | mtd->oobsize = 218; | 
|  | break; | 
|  | case 3: | 
|  | mtd->oobsize = 400; | 
|  | break; | 
|  | default: | 
|  | mtd->oobsize = 436; | 
|  | break; | 
|  | } | 
|  | extid >>= 2; | 
|  | /* Calc blocksize */ | 
|  | mtd->erasesize = (128 * 1024) << | 
|  | (((extid >> 1) & 0x04) | (extid & 0x03)); | 
|  | busw = 0; | 
|  | } else { | 
|  | /* Calc pagesize */ | 
|  | mtd->writesize = 1024 << (extid & 0x03); | 
|  | extid >>= 2; | 
|  | /* Calc oobsize */ | 
|  | mtd->oobsize = (8 << (extid & 0x01)) * | 
|  | (mtd->writesize >> 9); | 
|  | extid >>= 2; | 
|  | /* Calc blocksize. Blocksize is multiples of 64KiB */ | 
|  | mtd->erasesize = (64 * 1024) << (extid & 0x03); | 
|  | extid >>= 2; | 
|  | /* Get buswidth information */ | 
|  | busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Old devices have chip data hardcoded in the device id table. | 
|  | */ | 
|  | mtd->erasesize = type->erasesize; | 
|  | mtd->writesize = type->pagesize; | 
|  | mtd->oobsize = mtd->writesize / 32; | 
|  | busw = type->options & NAND_BUSWIDTH_16; | 
|  |  | 
|  | /* | 
|  | * Check for Spansion/AMD ID + repeating 5th, 6th byte since | 
|  | * some Spansion chips have erasesize that conflicts with size | 
|  | * listed in nand_ids table. | 
|  | * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39) | 
|  | */ | 
|  | if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && | 
|  | id_data[5] == 0x00 && id_data[6] == 0x00 && | 
|  | id_data[7] == 0x00 && mtd->writesize == 512) { | 
|  | mtd->erasesize = 128 * 1024; | 
|  | mtd->erasesize <<= ((id_data[3] & 0x03) << 1); | 
|  | } | 
|  | } | 
|  | /* Get chip options, preserve non chip based options */ | 
|  | chip->options &= ~NAND_CHIPOPTIONS_MSK; | 
|  | chip->options |= type->options & NAND_CHIPOPTIONS_MSK; | 
|  |  | 
|  | /* | 
|  | * Check if chip is not a Samsung device. Do not clear the | 
|  | * options for chips which do not have an extended id. | 
|  | */ | 
|  | if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize) | 
|  | chip->options &= ~NAND_SAMSUNG_LP_OPTIONS; | 
|  | ident_done: | 
|  |  | 
|  | /* Try to identify manufacturer */ | 
|  | for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) { | 
|  | if (nand_manuf_ids[maf_idx].id == *maf_id) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check, if buswidth is correct. Hardware drivers should set | 
|  | * chip correct! | 
|  | */ | 
|  | if (busw != (chip->options & NAND_BUSWIDTH_16)) { | 
|  | pr_info("NAND device: Manufacturer ID:" | 
|  | " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, | 
|  | *dev_id, nand_manuf_ids[maf_idx].name, mtd->name); | 
|  | pr_warn("NAND bus width %d instead %d bit\n", | 
|  | (chip->options & NAND_BUSWIDTH_16) ? 16 : 8, | 
|  | busw ? 16 : 8); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | /* Calculate the address shift from the page size */ | 
|  | chip->page_shift = ffs(mtd->writesize) - 1; | 
|  | /* Convert chipsize to number of pages per chip -1 */ | 
|  | chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; | 
|  |  | 
|  | chip->bbt_erase_shift = chip->phys_erase_shift = | 
|  | ffs(mtd->erasesize) - 1; | 
|  | if (chip->chipsize & 0xffffffff) | 
|  | chip->chip_shift = ffs((unsigned)chip->chipsize) - 1; | 
|  | else { | 
|  | chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)); | 
|  | chip->chip_shift += 32 - 1; | 
|  | } | 
|  |  | 
|  | chip->badblockbits = 8; | 
|  |  | 
|  | /* Set the bad block position */ | 
|  | if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16)) | 
|  | chip->badblockpos = NAND_LARGE_BADBLOCK_POS; | 
|  | else | 
|  | chip->badblockpos = NAND_SMALL_BADBLOCK_POS; | 
|  |  | 
|  | /* | 
|  | * Bad block marker is stored in the last page of each block | 
|  | * on Samsung and Hynix MLC devices; stored in first two pages | 
|  | * of each block on Micron devices with 2KiB pages and on | 
|  | * SLC Samsung, Hynix, Toshiba, AMD/Spansion, and Macronix. | 
|  | * All others scan only the first page. | 
|  | */ | 
|  | if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) && | 
|  | (*maf_id == NAND_MFR_SAMSUNG || | 
|  | *maf_id == NAND_MFR_HYNIX)) | 
|  | chip->bbt_options |= NAND_BBT_SCANLASTPAGE; | 
|  | else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) && | 
|  | (*maf_id == NAND_MFR_SAMSUNG || | 
|  | *maf_id == NAND_MFR_HYNIX || | 
|  | *maf_id == NAND_MFR_TOSHIBA || | 
|  | *maf_id == NAND_MFR_AMD || | 
|  | *maf_id == NAND_MFR_MACRONIX)) || | 
|  | (mtd->writesize == 2048 && | 
|  | *maf_id == NAND_MFR_MICRON)) | 
|  | chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; | 
|  |  | 
|  | /* Check for AND chips with 4 page planes */ | 
|  | if (chip->options & NAND_4PAGE_ARRAY) | 
|  | chip->erase_cmd = multi_erase_cmd; | 
|  | else | 
|  | chip->erase_cmd = single_erase_cmd; | 
|  |  | 
|  | /* Do not replace user supplied command function! */ | 
|  | if (mtd->writesize > 512 && chip->cmdfunc == nand_command) | 
|  | chip->cmdfunc = nand_command_lp; | 
|  |  | 
|  | pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s)," | 
|  | " page size: %d, OOB size: %d\n", | 
|  | *maf_id, *dev_id, nand_manuf_ids[maf_idx].name, | 
|  | chip->onfi_version ? chip->onfi_params.model : type->name, | 
|  | mtd->writesize, mtd->oobsize); | 
|  |  | 
|  | return type; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_scan_ident - [NAND Interface] Scan for the NAND device | 
|  | * @mtd: MTD device structure | 
|  | * @maxchips: number of chips to scan for | 
|  | * @table: alternative NAND ID table | 
|  | * | 
|  | * This is the first phase of the normal nand_scan() function. It reads the | 
|  | * flash ID and sets up MTD fields accordingly. | 
|  | * | 
|  | * The mtd->owner field must be set to the module of the caller. | 
|  | */ | 
|  | int nand_scan_ident(struct mtd_info *mtd, int maxchips, | 
|  | struct nand_flash_dev *table) | 
|  | { | 
|  | int i, busw, nand_maf_id, nand_dev_id; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct nand_flash_dev *type; | 
|  |  | 
|  | /* Get buswidth to select the correct functions */ | 
|  | busw = chip->options & NAND_BUSWIDTH_16; | 
|  | /* Set the default functions */ | 
|  | nand_set_defaults(chip, busw); | 
|  |  | 
|  | /* Read the flash type */ | 
|  | type = nand_get_flash_type(mtd, chip, busw, | 
|  | &nand_maf_id, &nand_dev_id, table); | 
|  |  | 
|  | if (IS_ERR(type)) { | 
|  | if (!(chip->options & NAND_SCAN_SILENT_NODEV)) | 
|  | pr_warn("No NAND device found\n"); | 
|  | chip->select_chip(mtd, -1); | 
|  | return PTR_ERR(type); | 
|  | } | 
|  |  | 
|  | /* Check for a chip array */ | 
|  | for (i = 1; i < maxchips; i++) { | 
|  | chip->select_chip(mtd, i); | 
|  | /* See comment in nand_get_flash_type for reset */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); | 
|  | /* Send the command for reading device ID */ | 
|  | chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); | 
|  | /* Read manufacturer and device IDs */ | 
|  | if (nand_maf_id != chip->read_byte(mtd) || | 
|  | nand_dev_id != chip->read_byte(mtd)) | 
|  | break; | 
|  | } | 
|  | if (i > 1) | 
|  | pr_info("%d NAND chips detected\n", i); | 
|  |  | 
|  | /* Store the number of chips and calc total size for mtd */ | 
|  | chip->numchips = i; | 
|  | mtd->size = i * chip->chipsize; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(nand_scan_ident); | 
|  |  | 
|  |  | 
|  | /** | 
|  | * nand_scan_tail - [NAND Interface] Scan for the NAND device | 
|  | * @mtd: MTD device structure | 
|  | * | 
|  | * This is the second phase of the normal nand_scan() function. It fills out | 
|  | * all the uninitialized function pointers with the defaults and scans for a | 
|  | * bad block table if appropriate. | 
|  | */ | 
|  | int nand_scan_tail(struct mtd_info *mtd) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | /* New bad blocks should be marked in OOB, flash-based BBT, or both */ | 
|  | BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && | 
|  | !(chip->bbt_options & NAND_BBT_USE_FLASH)); | 
|  |  | 
|  | if (!(chip->options & NAND_OWN_BUFFERS)) | 
|  | chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL); | 
|  | if (!chip->buffers) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Set the internal oob buffer location, just after the page data */ | 
|  | chip->oob_poi = chip->buffers->databuf + mtd->writesize; | 
|  |  | 
|  | /* | 
|  | * If no default placement scheme is given, select an appropriate one. | 
|  | */ | 
|  | if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) { | 
|  | switch (mtd->oobsize) { | 
|  | case 8: | 
|  | chip->ecc.layout = &nand_oob_8; | 
|  | break; | 
|  | case 16: | 
|  | chip->ecc.layout = &nand_oob_16; | 
|  | break; | 
|  | case 64: | 
|  | chip->ecc.layout = &nand_oob_64; | 
|  | break; | 
|  | case 128: | 
|  | chip->ecc.layout = &nand_oob_128; | 
|  | break; | 
|  | default: | 
|  | pr_warn("No oob scheme defined for oobsize %d\n", | 
|  | mtd->oobsize); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!chip->write_page) | 
|  | chip->write_page = nand_write_page; | 
|  |  | 
|  | /* | 
|  | * Check ECC mode, default to software if 3byte/512byte hardware ECC is | 
|  | * selected and we have 256 byte pagesize fallback to software ECC | 
|  | */ | 
|  |  | 
|  | switch (chip->ecc.mode) { | 
|  | case NAND_ECC_HW_OOB_FIRST: | 
|  | /* Similar to NAND_ECC_HW, but a separate read_page handle */ | 
|  | if (!chip->ecc.calculate || !chip->ecc.correct || | 
|  | !chip->ecc.hwctl) { | 
|  | pr_warn("No ECC functions supplied; " | 
|  | "hardware ECC not possible\n"); | 
|  | BUG(); | 
|  | } | 
|  | if (!chip->ecc.read_page) | 
|  | chip->ecc.read_page = nand_read_page_hwecc_oob_first; | 
|  |  | 
|  | case NAND_ECC_HW: | 
|  | /* Use standard hwecc read page function? */ | 
|  | if (!chip->ecc.read_page) | 
|  | chip->ecc.read_page = nand_read_page_hwecc; | 
|  | if (!chip->ecc.write_page) | 
|  | chip->ecc.write_page = nand_write_page_hwecc; | 
|  | if (!chip->ecc.read_page_raw) | 
|  | chip->ecc.read_page_raw = nand_read_page_raw; | 
|  | if (!chip->ecc.write_page_raw) | 
|  | chip->ecc.write_page_raw = nand_write_page_raw; | 
|  | if (!chip->ecc.read_oob) | 
|  | chip->ecc.read_oob = nand_read_oob_std; | 
|  | if (!chip->ecc.write_oob) | 
|  | chip->ecc.write_oob = nand_write_oob_std; | 
|  |  | 
|  | case NAND_ECC_HW_SYNDROME: | 
|  | if ((!chip->ecc.calculate || !chip->ecc.correct || | 
|  | !chip->ecc.hwctl) && | 
|  | (!chip->ecc.read_page || | 
|  | chip->ecc.read_page == nand_read_page_hwecc || | 
|  | !chip->ecc.write_page || | 
|  | chip->ecc.write_page == nand_write_page_hwecc)) { | 
|  | pr_warn("No ECC functions supplied; " | 
|  | "hardware ECC not possible\n"); | 
|  | BUG(); | 
|  | } | 
|  | /* Use standard syndrome read/write page function? */ | 
|  | if (!chip->ecc.read_page) | 
|  | chip->ecc.read_page = nand_read_page_syndrome; | 
|  | if (!chip->ecc.write_page) | 
|  | chip->ecc.write_page = nand_write_page_syndrome; | 
|  | if (!chip->ecc.read_page_raw) | 
|  | chip->ecc.read_page_raw = nand_read_page_raw_syndrome; | 
|  | if (!chip->ecc.write_page_raw) | 
|  | chip->ecc.write_page_raw = nand_write_page_raw_syndrome; | 
|  | if (!chip->ecc.read_oob) | 
|  | chip->ecc.read_oob = nand_read_oob_syndrome; | 
|  | if (!chip->ecc.write_oob) | 
|  | chip->ecc.write_oob = nand_write_oob_syndrome; | 
|  |  | 
|  | if (mtd->writesize >= chip->ecc.size) { | 
|  | if (!chip->ecc.strength) { | 
|  | pr_warn("Driver must set ecc.strength when using hardware ECC\n"); | 
|  | BUG(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | pr_warn("%d byte HW ECC not possible on " | 
|  | "%d byte page size, fallback to SW ECC\n", | 
|  | chip->ecc.size, mtd->writesize); | 
|  | chip->ecc.mode = NAND_ECC_SOFT; | 
|  |  | 
|  | case NAND_ECC_SOFT: | 
|  | chip->ecc.calculate = nand_calculate_ecc; | 
|  | chip->ecc.correct = nand_correct_data; | 
|  | chip->ecc.read_page = nand_read_page_swecc; | 
|  | chip->ecc.read_subpage = nand_read_subpage; | 
|  | chip->ecc.write_page = nand_write_page_swecc; | 
|  | chip->ecc.read_page_raw = nand_read_page_raw; | 
|  | chip->ecc.write_page_raw = nand_write_page_raw; | 
|  | chip->ecc.read_oob = nand_read_oob_std; | 
|  | chip->ecc.write_oob = nand_write_oob_std; | 
|  | if (!chip->ecc.size) | 
|  | chip->ecc.size = 256; | 
|  | chip->ecc.bytes = 3; | 
|  | chip->ecc.strength = 1; | 
|  | break; | 
|  |  | 
|  | case NAND_ECC_SOFT_BCH: | 
|  | if (!mtd_nand_has_bch()) { | 
|  | pr_warn("CONFIG_MTD_ECC_BCH not enabled\n"); | 
|  | BUG(); | 
|  | } | 
|  | chip->ecc.calculate = nand_bch_calculate_ecc; | 
|  | chip->ecc.correct = nand_bch_correct_data; | 
|  | chip->ecc.read_page = nand_read_page_swecc; | 
|  | chip->ecc.read_subpage = nand_read_subpage; | 
|  | chip->ecc.write_page = nand_write_page_swecc; | 
|  | chip->ecc.read_page_raw = nand_read_page_raw; | 
|  | chip->ecc.write_page_raw = nand_write_page_raw; | 
|  | chip->ecc.read_oob = nand_read_oob_std; | 
|  | chip->ecc.write_oob = nand_write_oob_std; | 
|  | /* | 
|  | * Board driver should supply ecc.size and ecc.bytes values to | 
|  | * select how many bits are correctable; see nand_bch_init() | 
|  | * for details. Otherwise, default to 4 bits for large page | 
|  | * devices. | 
|  | */ | 
|  | if (!chip->ecc.size && (mtd->oobsize >= 64)) { | 
|  | chip->ecc.size = 512; | 
|  | chip->ecc.bytes = 7; | 
|  | } | 
|  | chip->ecc.priv = nand_bch_init(mtd, | 
|  | chip->ecc.size, | 
|  | chip->ecc.bytes, | 
|  | &chip->ecc.layout); | 
|  | if (!chip->ecc.priv) { | 
|  | pr_warn("BCH ECC initialization failed!\n"); | 
|  | BUG(); | 
|  | } | 
|  | chip->ecc.strength = | 
|  | chip->ecc.bytes * 8 / fls(8 * chip->ecc.size); | 
|  | break; | 
|  |  | 
|  | case NAND_ECC_NONE: | 
|  | pr_warn("NAND_ECC_NONE selected by board driver. " | 
|  | "This is not recommended!\n"); | 
|  | chip->ecc.read_page = nand_read_page_raw; | 
|  | chip->ecc.write_page = nand_write_page_raw; | 
|  | chip->ecc.read_oob = nand_read_oob_std; | 
|  | chip->ecc.read_page_raw = nand_read_page_raw; | 
|  | chip->ecc.write_page_raw = nand_write_page_raw; | 
|  | chip->ecc.write_oob = nand_write_oob_std; | 
|  | chip->ecc.size = mtd->writesize; | 
|  | chip->ecc.bytes = 0; | 
|  | chip->ecc.strength = 0; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* For many systems, the standard OOB write also works for raw */ | 
|  | if (!chip->ecc.read_oob_raw) | 
|  | chip->ecc.read_oob_raw = chip->ecc.read_oob; | 
|  | if (!chip->ecc.write_oob_raw) | 
|  | chip->ecc.write_oob_raw = chip->ecc.write_oob; | 
|  |  | 
|  | /* | 
|  | * The number of bytes available for a client to place data into | 
|  | * the out of band area. | 
|  | */ | 
|  | chip->ecc.layout->oobavail = 0; | 
|  | for (i = 0; chip->ecc.layout->oobfree[i].length | 
|  | && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++) | 
|  | chip->ecc.layout->oobavail += | 
|  | chip->ecc.layout->oobfree[i].length; | 
|  | mtd->oobavail = chip->ecc.layout->oobavail; | 
|  |  | 
|  | /* | 
|  | * Set the number of read / write steps for one page depending on ECC | 
|  | * mode. | 
|  | */ | 
|  | chip->ecc.steps = mtd->writesize / chip->ecc.size; | 
|  | if (chip->ecc.steps * chip->ecc.size != mtd->writesize) { | 
|  | pr_warn("Invalid ECC parameters\n"); | 
|  | BUG(); | 
|  | } | 
|  | chip->ecc.total = chip->ecc.steps * chip->ecc.bytes; | 
|  |  | 
|  | /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ | 
|  | if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && | 
|  | !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) { | 
|  | switch (chip->ecc.steps) { | 
|  | case 2: | 
|  | mtd->subpage_sft = 1; | 
|  | break; | 
|  | case 4: | 
|  | case 8: | 
|  | case 16: | 
|  | mtd->subpage_sft = 2; | 
|  | break; | 
|  | } | 
|  | } | 
|  | chip->subpagesize = mtd->writesize >> mtd->subpage_sft; | 
|  |  | 
|  | /* Initialize state */ | 
|  | chip->state = FL_READY; | 
|  |  | 
|  | /* De-select the device */ | 
|  | chip->select_chip(mtd, -1); | 
|  |  | 
|  | /* Invalidate the pagebuffer reference */ | 
|  | chip->pagebuf = -1; | 
|  |  | 
|  | /* Fill in remaining MTD driver data */ | 
|  | mtd->type = MTD_NANDFLASH; | 
|  | mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : | 
|  | MTD_CAP_NANDFLASH; | 
|  | mtd->_erase = nand_erase; | 
|  | mtd->_point = NULL; | 
|  | mtd->_unpoint = NULL; | 
|  | mtd->_read = nand_read; | 
|  | mtd->_write = nand_write; | 
|  | mtd->_panic_write = panic_nand_write; | 
|  | mtd->_read_oob = nand_read_oob; | 
|  | mtd->_write_oob = nand_write_oob; | 
|  | mtd->_sync = nand_sync; | 
|  | mtd->_lock = NULL; | 
|  | mtd->_unlock = NULL; | 
|  | mtd->_suspend = nand_suspend; | 
|  | mtd->_resume = nand_resume; | 
|  | mtd->_block_isbad = nand_block_isbad; | 
|  | mtd->_block_markbad = nand_block_markbad; | 
|  | mtd->writebufsize = mtd->writesize; | 
|  |  | 
|  | /* propagate ecc info to mtd_info */ | 
|  | mtd->ecclayout = chip->ecc.layout; | 
|  | mtd->ecc_strength = chip->ecc.strength; | 
|  | /* | 
|  | * Initialize bitflip_threshold to its default prior scan_bbt() call. | 
|  | * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be | 
|  | * properly set. | 
|  | */ | 
|  | if (!mtd->bitflip_threshold) | 
|  | mtd->bitflip_threshold = mtd->ecc_strength; | 
|  |  | 
|  | /* Check, if we should skip the bad block table scan */ | 
|  | if (chip->options & NAND_SKIP_BBTSCAN) | 
|  | return 0; | 
|  |  | 
|  | /* Build bad block table */ | 
|  | return chip->scan_bbt(mtd); | 
|  | } | 
|  | EXPORT_SYMBOL(nand_scan_tail); | 
|  |  | 
|  | /* | 
|  | * is_module_text_address() isn't exported, and it's mostly a pointless | 
|  | * test if this is a module _anyway_ -- they'd have to try _really_ hard | 
|  | * to call us from in-kernel code if the core NAND support is modular. | 
|  | */ | 
|  | #ifdef MODULE | 
|  | #define caller_is_module() (1) | 
|  | #else | 
|  | #define caller_is_module() \ | 
|  | is_module_text_address((unsigned long)__builtin_return_address(0)) | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * nand_scan - [NAND Interface] Scan for the NAND device | 
|  | * @mtd: MTD device structure | 
|  | * @maxchips: number of chips to scan for | 
|  | * | 
|  | * This fills out all the uninitialized function pointers with the defaults. | 
|  | * The flash ID is read and the mtd/chip structures are filled with the | 
|  | * appropriate values. The mtd->owner field must be set to the module of the | 
|  | * caller. | 
|  | */ | 
|  | int nand_scan(struct mtd_info *mtd, int maxchips) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Many callers got this wrong, so check for it for a while... */ | 
|  | if (!mtd->owner && caller_is_module()) { | 
|  | pr_crit("%s called with NULL mtd->owner!\n", __func__); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | ret = nand_scan_ident(mtd, maxchips, NULL); | 
|  | if (!ret) | 
|  | ret = nand_scan_tail(mtd); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(nand_scan); | 
|  |  | 
|  | /** | 
|  | * nand_release - [NAND Interface] Free resources held by the NAND device | 
|  | * @mtd: MTD device structure | 
|  | */ | 
|  | void nand_release(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  |  | 
|  | if (chip->ecc.mode == NAND_ECC_SOFT_BCH) | 
|  | nand_bch_free((struct nand_bch_control *)chip->ecc.priv); | 
|  |  | 
|  | mtd_device_unregister(mtd); | 
|  |  | 
|  | /* Free bad block table memory */ | 
|  | kfree(chip->bbt); | 
|  | if (!(chip->options & NAND_OWN_BUFFERS)) | 
|  | kfree(chip->buffers); | 
|  |  | 
|  | /* Free bad block descriptor memory */ | 
|  | if (chip->badblock_pattern && chip->badblock_pattern->options | 
|  | & NAND_BBT_DYNAMICSTRUCT) | 
|  | kfree(chip->badblock_pattern); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(nand_release); | 
|  |  | 
|  | static int __init nand_base_init(void) | 
|  | { | 
|  | led_trigger_register_simple("nand-disk", &nand_led_trigger); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __exit nand_base_exit(void) | 
|  | { | 
|  | led_trigger_unregister_simple(nand_led_trigger); | 
|  | } | 
|  |  | 
|  | module_init(nand_base_init); | 
|  | module_exit(nand_base_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); | 
|  | MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); | 
|  | MODULE_DESCRIPTION("Generic NAND flash driver code"); |