|  | /* | 
|  | * Compaq Hot Plug Controller Driver | 
|  | * | 
|  | * Copyright (C) 1995,2001 Compaq Computer Corporation | 
|  | * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) | 
|  | * Copyright (C) 2001 IBM Corp. | 
|  | * | 
|  | * All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or (at | 
|  | * your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | * NON INFRINGEMENT.  See the GNU General Public License for more | 
|  | * details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | * | 
|  | * Send feedback to <greg@kroah.com> | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/pci_hotplug.h> | 
|  | #include "../pci.h" | 
|  | #include "cpqphp.h" | 
|  | #include "cpqphp_nvram.h" | 
|  |  | 
|  |  | 
|  | u8 cpqhp_nic_irq; | 
|  | u8 cpqhp_disk_irq; | 
|  |  | 
|  | static u16 unused_IRQ; | 
|  |  | 
|  | /* | 
|  | * detect_HRT_floating_pointer | 
|  | * | 
|  | * find the Hot Plug Resource Table in the specified region of memory. | 
|  | * | 
|  | */ | 
|  | static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end) | 
|  | { | 
|  | void __iomem *fp; | 
|  | void __iomem *endp; | 
|  | u8 temp1, temp2, temp3, temp4; | 
|  | int status = 0; | 
|  |  | 
|  | endp = (end - sizeof(struct hrt) + 1); | 
|  |  | 
|  | for (fp = begin; fp <= endp; fp += 16) { | 
|  | temp1 = readb(fp + SIG0); | 
|  | temp2 = readb(fp + SIG1); | 
|  | temp3 = readb(fp + SIG2); | 
|  | temp4 = readb(fp + SIG3); | 
|  | if (temp1 == '$' && | 
|  | temp2 == 'H' && | 
|  | temp3 == 'R' && | 
|  | temp4 == 'T') { | 
|  | status = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!status) | 
|  | fp = NULL; | 
|  |  | 
|  | dbg("Discovered Hotplug Resource Table at %p\n", fp); | 
|  | return fp; | 
|  | } | 
|  |  | 
|  |  | 
|  | int cpqhp_configure_device (struct controller* ctrl, struct pci_func* func) | 
|  | { | 
|  | unsigned char bus; | 
|  | struct pci_bus *child; | 
|  | int num; | 
|  |  | 
|  | if (func->pci_dev == NULL) | 
|  | func->pci_dev = pci_get_bus_and_slot(func->bus,PCI_DEVFN(func->device, func->function)); | 
|  |  | 
|  | /* No pci device, we need to create it then */ | 
|  | if (func->pci_dev == NULL) { | 
|  | dbg("INFO: pci_dev still null\n"); | 
|  |  | 
|  | num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function)); | 
|  | if (num) | 
|  | pci_bus_add_devices(ctrl->pci_dev->bus); | 
|  |  | 
|  | func->pci_dev = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, func->function)); | 
|  | if (func->pci_dev == NULL) { | 
|  | dbg("ERROR: pci_dev still null\n"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { | 
|  | pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus); | 
|  | child = (struct pci_bus*) pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus); | 
|  | pci_do_scan_bus(child); | 
|  | } | 
|  |  | 
|  | pci_dev_put(func->pci_dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | int cpqhp_unconfigure_device(struct pci_func* func) | 
|  | { | 
|  | int j; | 
|  |  | 
|  | dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function); | 
|  |  | 
|  | for (j=0; j<8 ; j++) { | 
|  | struct pci_dev* temp = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, j)); | 
|  | if (temp) { | 
|  | pci_dev_put(temp); | 
|  | pci_stop_and_remove_bus_device(temp); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value) | 
|  | { | 
|  | u32 vendID = 0; | 
|  |  | 
|  | if (pci_bus_read_config_dword (bus, devfn, PCI_VENDOR_ID, &vendID) == -1) | 
|  | return -1; | 
|  | if (vendID == 0xffffffff) | 
|  | return -1; | 
|  | return pci_bus_read_config_dword (bus, devfn, offset, value); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * cpqhp_set_irq | 
|  | * | 
|  | * @bus_num: bus number of PCI device | 
|  | * @dev_num: device number of PCI device | 
|  | * @slot: pointer to u8 where slot number will be returned | 
|  | */ | 
|  | int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | if (cpqhp_legacy_mode) { | 
|  | struct pci_dev *fakedev; | 
|  | struct pci_bus *fakebus; | 
|  | u16 temp_word; | 
|  |  | 
|  | fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL); | 
|  | fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL); | 
|  | if (!fakedev || !fakebus) { | 
|  | kfree(fakedev); | 
|  | kfree(fakebus); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | fakedev->devfn = dev_num << 3; | 
|  | fakedev->bus = fakebus; | 
|  | fakebus->number = bus_num; | 
|  | dbg("%s: dev %d, bus %d, pin %d, num %d\n", | 
|  | __func__, dev_num, bus_num, int_pin, irq_num); | 
|  | rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num); | 
|  | kfree(fakedev); | 
|  | kfree(fakebus); | 
|  | dbg("%s: rc %d\n", __func__, rc); | 
|  | if (!rc) | 
|  | return !rc; | 
|  |  | 
|  | /* set the Edge Level Control Register (ELCR) */ | 
|  | temp_word = inb(0x4d0); | 
|  | temp_word |= inb(0x4d1) << 8; | 
|  |  | 
|  | temp_word |= 0x01 << irq_num; | 
|  |  | 
|  | /* This should only be for x86 as it sets the Edge Level | 
|  | * Control Register | 
|  | */ | 
|  | outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word & | 
|  | 0xFF00) >> 8), 0x4d1); rc = 0; } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 * dev_num) | 
|  | { | 
|  | u16 tdevice; | 
|  | u32 work; | 
|  | u8 tbus; | 
|  |  | 
|  | ctrl->pci_bus->number = bus_num; | 
|  |  | 
|  | for (tdevice = 0; tdevice < 0xFF; tdevice++) { | 
|  | /* Scan for access first */ | 
|  | if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1) | 
|  | continue; | 
|  | dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice); | 
|  | /* Yep we got one. Not a bridge ? */ | 
|  | if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) { | 
|  | *dev_num = tdevice; | 
|  | dbg("found it !\n"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | for (tdevice = 0; tdevice < 0xFF; tdevice++) { | 
|  | /* Scan for access first */ | 
|  | if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1) | 
|  | continue; | 
|  | dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice); | 
|  | /* Yep we got one. bridge ? */ | 
|  | if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) { | 
|  | pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus); | 
|  | /* XXX: no recursion, wtf? */ | 
|  | dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge) | 
|  | { | 
|  | int loop, len; | 
|  | u32 work; | 
|  | u8 tbus, tdevice, tslot; | 
|  |  | 
|  | len = cpqhp_routing_table_length(); | 
|  | for (loop = 0; loop < len; ++loop) { | 
|  | tbus = cpqhp_routing_table->slots[loop].bus; | 
|  | tdevice = cpqhp_routing_table->slots[loop].devfn; | 
|  | tslot = cpqhp_routing_table->slots[loop].slot; | 
|  |  | 
|  | if (tslot == slot) { | 
|  | *bus_num = tbus; | 
|  | *dev_num = tdevice; | 
|  | ctrl->pci_bus->number = tbus; | 
|  | pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work); | 
|  | if (!nobridge || (work == 0xffffffff)) | 
|  | return 0; | 
|  |  | 
|  | dbg("bus_num %d devfn %d\n", *bus_num, *dev_num); | 
|  | pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work); | 
|  | dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS); | 
|  |  | 
|  | if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) { | 
|  | pci_bus_read_config_byte (ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus); | 
|  | dbg("Scan bus for Non Bridge: bus %d\n", tbus); | 
|  | if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) { | 
|  | *bus_num = tbus; | 
|  | return 0; | 
|  | } | 
|  | } else | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | int cpqhp_get_bus_dev (struct controller *ctrl, u8 * bus_num, u8 * dev_num, u8 slot) | 
|  | { | 
|  | /* plain (bridges allowed) */ | 
|  | return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* More PCI configuration routines; this time centered around hotplug | 
|  | * controller | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * cpqhp_save_config | 
|  | * | 
|  | * Reads configuration for all slots in a PCI bus and saves info. | 
|  | * | 
|  | * Note:  For non-hot plug busses, the slot # saved is the device # | 
|  | * | 
|  | * returns 0 if success | 
|  | */ | 
|  | int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug) | 
|  | { | 
|  | long rc; | 
|  | u8 class_code; | 
|  | u8 header_type; | 
|  | u32 ID; | 
|  | u8 secondary_bus; | 
|  | struct pci_func *new_slot; | 
|  | int sub_bus; | 
|  | int FirstSupported; | 
|  | int LastSupported; | 
|  | int max_functions; | 
|  | int function; | 
|  | u8 DevError; | 
|  | int device = 0; | 
|  | int cloop = 0; | 
|  | int stop_it; | 
|  | int index; | 
|  |  | 
|  | /* Decide which slots are supported */ | 
|  |  | 
|  | if (is_hot_plug) { | 
|  | /* | 
|  | * is_hot_plug is the slot mask | 
|  | */ | 
|  | FirstSupported = is_hot_plug >> 4; | 
|  | LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1; | 
|  | } else { | 
|  | FirstSupported = 0; | 
|  | LastSupported = 0x1F; | 
|  | } | 
|  |  | 
|  | /* Save PCI configuration space for all devices in supported slots */ | 
|  | ctrl->pci_bus->number = busnumber; | 
|  | for (device = FirstSupported; device <= LastSupported; device++) { | 
|  | ID = 0xFFFFFFFF; | 
|  | rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID); | 
|  |  | 
|  | if (ID == 0xFFFFFFFF) { | 
|  | if (is_hot_plug) { | 
|  | /* Setup slot structure with entry for empty | 
|  | * slot | 
|  | */ | 
|  | new_slot = cpqhp_slot_create(busnumber); | 
|  | if (new_slot == NULL) | 
|  | return 1; | 
|  |  | 
|  | new_slot->bus = (u8) busnumber; | 
|  | new_slot->device = (u8) device; | 
|  | new_slot->function = 0; | 
|  | new_slot->is_a_board = 0; | 
|  | new_slot->presence_save = 0; | 
|  | new_slot->switch_save = 0; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* If multi-function device, set max_functions to 8 */ | 
|  | if (header_type & 0x80) | 
|  | max_functions = 8; | 
|  | else | 
|  | max_functions = 1; | 
|  |  | 
|  | function = 0; | 
|  |  | 
|  | do { | 
|  | DevError = 0; | 
|  | if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { | 
|  | /* Recurse the subordinate bus | 
|  | * get the subordinate bus number | 
|  | */ | 
|  | rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus); | 
|  | if (rc) { | 
|  | return rc; | 
|  | } else { | 
|  | sub_bus = (int) secondary_bus; | 
|  |  | 
|  | /* Save secondary bus cfg spc | 
|  | * with this recursive call. | 
|  | */ | 
|  | rc = cpqhp_save_config(ctrl, sub_bus, 0); | 
|  | if (rc) | 
|  | return rc; | 
|  | ctrl->pci_bus->number = busnumber; | 
|  | } | 
|  | } | 
|  |  | 
|  | index = 0; | 
|  | new_slot = cpqhp_slot_find(busnumber, device, index++); | 
|  | while (new_slot && | 
|  | (new_slot->function != (u8) function)) | 
|  | new_slot = cpqhp_slot_find(busnumber, device, index++); | 
|  |  | 
|  | if (!new_slot) { | 
|  | /* Setup slot structure. */ | 
|  | new_slot = cpqhp_slot_create(busnumber); | 
|  | if (new_slot == NULL) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | new_slot->bus = (u8) busnumber; | 
|  | new_slot->device = (u8) device; | 
|  | new_slot->function = (u8) function; | 
|  | new_slot->is_a_board = 1; | 
|  | new_slot->switch_save = 0x10; | 
|  | /* In case of unsupported board */ | 
|  | new_slot->status = DevError; | 
|  | new_slot->pci_dev = pci_get_bus_and_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function); | 
|  |  | 
|  | for (cloop = 0; cloop < 0x20; cloop++) { | 
|  | rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop])); | 
|  | if (rc) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | pci_dev_put(new_slot->pci_dev); | 
|  |  | 
|  | function++; | 
|  |  | 
|  | stop_it = 0; | 
|  |  | 
|  | /* this loop skips to the next present function | 
|  | * reading in Class Code and Header type. | 
|  | */ | 
|  | while ((function < max_functions) && (!stop_it)) { | 
|  | rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID); | 
|  | if (ID == 0xFFFFFFFF) { | 
|  | function++; | 
|  | continue; | 
|  | } | 
|  | rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | stop_it++; | 
|  | } | 
|  |  | 
|  | } while (function < max_functions); | 
|  | }			/* End of FOR loop */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * cpqhp_save_slot_config | 
|  | * | 
|  | * Saves configuration info for all PCI devices in a given slot | 
|  | * including subordinate busses. | 
|  | * | 
|  | * returns 0 if success | 
|  | */ | 
|  | int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot) | 
|  | { | 
|  | long rc; | 
|  | u8 class_code; | 
|  | u8 header_type; | 
|  | u32 ID; | 
|  | u8 secondary_bus; | 
|  | int sub_bus; | 
|  | int max_functions; | 
|  | int function = 0; | 
|  | int cloop = 0; | 
|  | int stop_it; | 
|  |  | 
|  | ID = 0xFFFFFFFF; | 
|  |  | 
|  | ctrl->pci_bus->number = new_slot->bus; | 
|  | pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID); | 
|  |  | 
|  | if (ID == 0xFFFFFFFF) | 
|  | return 2; | 
|  |  | 
|  | pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code); | 
|  | pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type); | 
|  |  | 
|  | if (header_type & 0x80)	/* Multi-function device */ | 
|  | max_functions = 8; | 
|  | else | 
|  | max_functions = 1; | 
|  |  | 
|  | while (function < max_functions) { | 
|  | if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { | 
|  | /*  Recurse the subordinate bus */ | 
|  | pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus); | 
|  |  | 
|  | sub_bus = (int) secondary_bus; | 
|  |  | 
|  | /* Save the config headers for the secondary | 
|  | * bus. | 
|  | */ | 
|  | rc = cpqhp_save_config(ctrl, sub_bus, 0); | 
|  | if (rc) | 
|  | return(rc); | 
|  | ctrl->pci_bus->number = new_slot->bus; | 
|  |  | 
|  | } | 
|  |  | 
|  | new_slot->status = 0; | 
|  |  | 
|  | for (cloop = 0; cloop < 0x20; cloop++) | 
|  | pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop])); | 
|  |  | 
|  | function++; | 
|  |  | 
|  | stop_it = 0; | 
|  |  | 
|  | /* this loop skips to the next present function | 
|  | * reading in the Class Code and the Header type. | 
|  | */ | 
|  | while ((function < max_functions) && (!stop_it)) { | 
|  | pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID); | 
|  |  | 
|  | if (ID == 0xFFFFFFFF) | 
|  | function++; | 
|  | else { | 
|  | pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code); | 
|  | pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type); | 
|  | stop_it++; | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * cpqhp_save_base_addr_length | 
|  | * | 
|  | * Saves the length of all base address registers for the | 
|  | * specified slot.  this is for hot plug REPLACE | 
|  | * | 
|  | * returns 0 if success | 
|  | */ | 
|  | int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func * func) | 
|  | { | 
|  | u8 cloop; | 
|  | u8 header_type; | 
|  | u8 secondary_bus; | 
|  | u8 type; | 
|  | int sub_bus; | 
|  | u32 temp_register; | 
|  | u32 base; | 
|  | u32 rc; | 
|  | struct pci_func *next; | 
|  | int index = 0; | 
|  | struct pci_bus *pci_bus = ctrl->pci_bus; | 
|  | unsigned int devfn; | 
|  |  | 
|  | func = cpqhp_slot_find(func->bus, func->device, index++); | 
|  |  | 
|  | while (func != NULL) { | 
|  | pci_bus->number = func->bus; | 
|  | devfn = PCI_DEVFN(func->device, func->function); | 
|  |  | 
|  | /* Check for Bridge */ | 
|  | pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); | 
|  |  | 
|  | if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { | 
|  | pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus); | 
|  |  | 
|  | sub_bus = (int) secondary_bus; | 
|  |  | 
|  | next = cpqhp_slot_list[sub_bus]; | 
|  |  | 
|  | while (next != NULL) { | 
|  | rc = cpqhp_save_base_addr_length(ctrl, next); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | next = next->next; | 
|  | } | 
|  | pci_bus->number = func->bus; | 
|  |  | 
|  | /* FIXME: this loop is duplicated in the non-bridge | 
|  | * case.  The two could be rolled together Figure out | 
|  | * IO and memory base lengths | 
|  | */ | 
|  | for (cloop = 0x10; cloop <= 0x14; cloop += 4) { | 
|  | temp_register = 0xFFFFFFFF; | 
|  | pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); | 
|  | pci_bus_read_config_dword (pci_bus, devfn, cloop, &base); | 
|  | /* If this register is implemented */ | 
|  | if (base) { | 
|  | if (base & 0x01L) { | 
|  | /* IO base | 
|  | * set base = amount of IO space | 
|  | * requested | 
|  | */ | 
|  | base = base & 0xFFFFFFFE; | 
|  | base = (~base) + 1; | 
|  |  | 
|  | type = 1; | 
|  | } else { | 
|  | /* memory base */ | 
|  | base = base & 0xFFFFFFF0; | 
|  | base = (~base) + 1; | 
|  |  | 
|  | type = 0; | 
|  | } | 
|  | } else { | 
|  | base = 0x0L; | 
|  | type = 0; | 
|  | } | 
|  |  | 
|  | /* Save information in slot structure */ | 
|  | func->base_length[(cloop - 0x10) >> 2] = | 
|  | base; | 
|  | func->base_type[(cloop - 0x10) >> 2] = type; | 
|  |  | 
|  | }	/* End of base register loop */ | 
|  |  | 
|  | } else if ((header_type & 0x7F) == 0x00) { | 
|  | /* Figure out IO and memory base lengths */ | 
|  | for (cloop = 0x10; cloop <= 0x24; cloop += 4) { | 
|  | temp_register = 0xFFFFFFFF; | 
|  | pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); | 
|  | pci_bus_read_config_dword (pci_bus, devfn, cloop, &base); | 
|  |  | 
|  | /* If this register is implemented */ | 
|  | if (base) { | 
|  | if (base & 0x01L) { | 
|  | /* IO base | 
|  | * base = amount of IO space | 
|  | * requested | 
|  | */ | 
|  | base = base & 0xFFFFFFFE; | 
|  | base = (~base) + 1; | 
|  |  | 
|  | type = 1; | 
|  | } else { | 
|  | /* memory base | 
|  | * base = amount of memory | 
|  | * space requested | 
|  | */ | 
|  | base = base & 0xFFFFFFF0; | 
|  | base = (~base) + 1; | 
|  |  | 
|  | type = 0; | 
|  | } | 
|  | } else { | 
|  | base = 0x0L; | 
|  | type = 0; | 
|  | } | 
|  |  | 
|  | /* Save information in slot structure */ | 
|  | func->base_length[(cloop - 0x10) >> 2] = base; | 
|  | func->base_type[(cloop - 0x10) >> 2] = type; | 
|  |  | 
|  | }	/* End of base register loop */ | 
|  |  | 
|  | } else {	  /* Some other unknown header type */ | 
|  | } | 
|  |  | 
|  | /* find the next device in this slot */ | 
|  | func = cpqhp_slot_find(func->bus, func->device, index++); | 
|  | } | 
|  |  | 
|  | return(0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * cpqhp_save_used_resources | 
|  | * | 
|  | * Stores used resource information for existing boards.  this is | 
|  | * for boards that were in the system when this driver was loaded. | 
|  | * this function is for hot plug ADD | 
|  | * | 
|  | * returns 0 if success | 
|  | */ | 
|  | int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func * func) | 
|  | { | 
|  | u8 cloop; | 
|  | u8 header_type; | 
|  | u8 secondary_bus; | 
|  | u8 temp_byte; | 
|  | u8 b_base; | 
|  | u8 b_length; | 
|  | u16 command; | 
|  | u16 save_command; | 
|  | u16 w_base; | 
|  | u16 w_length; | 
|  | u32 temp_register; | 
|  | u32 save_base; | 
|  | u32 base; | 
|  | int index = 0; | 
|  | struct pci_resource *mem_node; | 
|  | struct pci_resource *p_mem_node; | 
|  | struct pci_resource *io_node; | 
|  | struct pci_resource *bus_node; | 
|  | struct pci_bus *pci_bus = ctrl->pci_bus; | 
|  | unsigned int devfn; | 
|  |  | 
|  | func = cpqhp_slot_find(func->bus, func->device, index++); | 
|  |  | 
|  | while ((func != NULL) && func->is_a_board) { | 
|  | pci_bus->number = func->bus; | 
|  | devfn = PCI_DEVFN(func->device, func->function); | 
|  |  | 
|  | /* Save the command register */ | 
|  | pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command); | 
|  |  | 
|  | /* disable card */ | 
|  | command = 0x00; | 
|  | pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command); | 
|  |  | 
|  | /* Check for Bridge */ | 
|  | pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type); | 
|  |  | 
|  | if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { | 
|  | /* Clear Bridge Control Register */ | 
|  | command = 0x00; | 
|  | pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command); | 
|  | pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus); | 
|  | pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte); | 
|  |  | 
|  | bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL); | 
|  | if (!bus_node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | bus_node->base = secondary_bus; | 
|  | bus_node->length = temp_byte - secondary_bus + 1; | 
|  |  | 
|  | bus_node->next = func->bus_head; | 
|  | func->bus_head = bus_node; | 
|  |  | 
|  | /* Save IO base and Limit registers */ | 
|  | pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base); | 
|  | pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length); | 
|  |  | 
|  | if ((b_base <= b_length) && (save_command & 0x01)) { | 
|  | io_node = kmalloc(sizeof(*io_node), GFP_KERNEL); | 
|  | if (!io_node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | io_node->base = (b_base & 0xF0) << 8; | 
|  | io_node->length = (b_length - b_base + 0x10) << 8; | 
|  |  | 
|  | io_node->next = func->io_head; | 
|  | func->io_head = io_node; | 
|  | } | 
|  |  | 
|  | /* Save memory base and Limit registers */ | 
|  | pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base); | 
|  | pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length); | 
|  |  | 
|  | if ((w_base <= w_length) && (save_command & 0x02)) { | 
|  | mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL); | 
|  | if (!mem_node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mem_node->base = w_base << 16; | 
|  | mem_node->length = (w_length - w_base + 0x10) << 16; | 
|  |  | 
|  | mem_node->next = func->mem_head; | 
|  | func->mem_head = mem_node; | 
|  | } | 
|  |  | 
|  | /* Save prefetchable memory base and Limit registers */ | 
|  | pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base); | 
|  | pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length); | 
|  |  | 
|  | if ((w_base <= w_length) && (save_command & 0x02)) { | 
|  | p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL); | 
|  | if (!p_mem_node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | p_mem_node->base = w_base << 16; | 
|  | p_mem_node->length = (w_length - w_base + 0x10) << 16; | 
|  |  | 
|  | p_mem_node->next = func->p_mem_head; | 
|  | func->p_mem_head = p_mem_node; | 
|  | } | 
|  | /* Figure out IO and memory base lengths */ | 
|  | for (cloop = 0x10; cloop <= 0x14; cloop += 4) { | 
|  | pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base); | 
|  |  | 
|  | temp_register = 0xFFFFFFFF; | 
|  | pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); | 
|  | pci_bus_read_config_dword(pci_bus, devfn, cloop, &base); | 
|  |  | 
|  | temp_register = base; | 
|  |  | 
|  | /* If this register is implemented */ | 
|  | if (base) { | 
|  | if (((base & 0x03L) == 0x01) | 
|  | && (save_command & 0x01)) { | 
|  | /* IO base | 
|  | * set temp_register = amount | 
|  | * of IO space requested | 
|  | */ | 
|  | temp_register = base & 0xFFFFFFFE; | 
|  | temp_register = (~temp_register) + 1; | 
|  |  | 
|  | io_node = kmalloc(sizeof(*io_node), | 
|  | GFP_KERNEL); | 
|  | if (!io_node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | io_node->base = | 
|  | save_base & (~0x03L); | 
|  | io_node->length = temp_register; | 
|  |  | 
|  | io_node->next = func->io_head; | 
|  | func->io_head = io_node; | 
|  | } else | 
|  | if (((base & 0x0BL) == 0x08) | 
|  | && (save_command & 0x02)) { | 
|  | /* prefetchable memory base */ | 
|  | temp_register = base & 0xFFFFFFF0; | 
|  | temp_register = (~temp_register) + 1; | 
|  |  | 
|  | p_mem_node = kmalloc(sizeof(*p_mem_node), | 
|  | GFP_KERNEL); | 
|  | if (!p_mem_node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | p_mem_node->base = save_base & (~0x0FL); | 
|  | p_mem_node->length = temp_register; | 
|  |  | 
|  | p_mem_node->next = func->p_mem_head; | 
|  | func->p_mem_head = p_mem_node; | 
|  | } else | 
|  | if (((base & 0x0BL) == 0x00) | 
|  | && (save_command & 0x02)) { | 
|  | /* prefetchable memory base */ | 
|  | temp_register = base & 0xFFFFFFF0; | 
|  | temp_register = (~temp_register) + 1; | 
|  |  | 
|  | mem_node = kmalloc(sizeof(*mem_node), | 
|  | GFP_KERNEL); | 
|  | if (!mem_node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mem_node->base = save_base & (~0x0FL); | 
|  | mem_node->length = temp_register; | 
|  |  | 
|  | mem_node->next = func->mem_head; | 
|  | func->mem_head = mem_node; | 
|  | } else | 
|  | return(1); | 
|  | } | 
|  | }	/* End of base register loop */ | 
|  | /* Standard header */ | 
|  | } else if ((header_type & 0x7F) == 0x00) { | 
|  | /* Figure out IO and memory base lengths */ | 
|  | for (cloop = 0x10; cloop <= 0x24; cloop += 4) { | 
|  | pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base); | 
|  |  | 
|  | temp_register = 0xFFFFFFFF; | 
|  | pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); | 
|  | pci_bus_read_config_dword(pci_bus, devfn, cloop, &base); | 
|  |  | 
|  | temp_register = base; | 
|  |  | 
|  | /* If this register is implemented */ | 
|  | if (base) { | 
|  | if (((base & 0x03L) == 0x01) | 
|  | && (save_command & 0x01)) { | 
|  | /* IO base | 
|  | * set temp_register = amount | 
|  | * of IO space requested | 
|  | */ | 
|  | temp_register = base & 0xFFFFFFFE; | 
|  | temp_register = (~temp_register) + 1; | 
|  |  | 
|  | io_node = kmalloc(sizeof(*io_node), | 
|  | GFP_KERNEL); | 
|  | if (!io_node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | io_node->base = save_base & (~0x01L); | 
|  | io_node->length = temp_register; | 
|  |  | 
|  | io_node->next = func->io_head; | 
|  | func->io_head = io_node; | 
|  | } else | 
|  | if (((base & 0x0BL) == 0x08) | 
|  | && (save_command & 0x02)) { | 
|  | /* prefetchable memory base */ | 
|  | temp_register = base & 0xFFFFFFF0; | 
|  | temp_register = (~temp_register) + 1; | 
|  |  | 
|  | p_mem_node = kmalloc(sizeof(*p_mem_node), | 
|  | GFP_KERNEL); | 
|  | if (!p_mem_node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | p_mem_node->base = save_base & (~0x0FL); | 
|  | p_mem_node->length = temp_register; | 
|  |  | 
|  | p_mem_node->next = func->p_mem_head; | 
|  | func->p_mem_head = p_mem_node; | 
|  | } else | 
|  | if (((base & 0x0BL) == 0x00) | 
|  | && (save_command & 0x02)) { | 
|  | /* prefetchable memory base */ | 
|  | temp_register = base & 0xFFFFFFF0; | 
|  | temp_register = (~temp_register) + 1; | 
|  |  | 
|  | mem_node = kmalloc(sizeof(*mem_node), | 
|  | GFP_KERNEL); | 
|  | if (!mem_node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mem_node->base = save_base & (~0x0FL); | 
|  | mem_node->length = temp_register; | 
|  |  | 
|  | mem_node->next = func->mem_head; | 
|  | func->mem_head = mem_node; | 
|  | } else | 
|  | return(1); | 
|  | } | 
|  | }	/* End of base register loop */ | 
|  | } | 
|  |  | 
|  | /* find the next device in this slot */ | 
|  | func = cpqhp_slot_find(func->bus, func->device, index++); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * cpqhp_configure_board | 
|  | * | 
|  | * Copies saved configuration information to one slot. | 
|  | * this is called recursively for bridge devices. | 
|  | * this is for hot plug REPLACE! | 
|  | * | 
|  | * returns 0 if success | 
|  | */ | 
|  | int cpqhp_configure_board(struct controller *ctrl, struct pci_func * func) | 
|  | { | 
|  | int cloop; | 
|  | u8 header_type; | 
|  | u8 secondary_bus; | 
|  | int sub_bus; | 
|  | struct pci_func *next; | 
|  | u32 temp; | 
|  | u32 rc; | 
|  | int index = 0; | 
|  | struct pci_bus *pci_bus = ctrl->pci_bus; | 
|  | unsigned int devfn; | 
|  |  | 
|  | func = cpqhp_slot_find(func->bus, func->device, index++); | 
|  |  | 
|  | while (func != NULL) { | 
|  | pci_bus->number = func->bus; | 
|  | devfn = PCI_DEVFN(func->device, func->function); | 
|  |  | 
|  | /* Start at the top of config space so that the control | 
|  | * registers are programmed last | 
|  | */ | 
|  | for (cloop = 0x3C; cloop > 0; cloop -= 4) | 
|  | pci_bus_write_config_dword (pci_bus, devfn, cloop, func->config_space[cloop >> 2]); | 
|  |  | 
|  | pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); | 
|  |  | 
|  | /* If this is a bridge device, restore subordinate devices */ | 
|  | if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { | 
|  | pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus); | 
|  |  | 
|  | sub_bus = (int) secondary_bus; | 
|  |  | 
|  | next = cpqhp_slot_list[sub_bus]; | 
|  |  | 
|  | while (next != NULL) { | 
|  | rc = cpqhp_configure_board(ctrl, next); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | next = next->next; | 
|  | } | 
|  | } else { | 
|  |  | 
|  | /* Check all the base Address Registers to make sure | 
|  | * they are the same.  If not, the board is different. | 
|  | */ | 
|  |  | 
|  | for (cloop = 16; cloop < 40; cloop += 4) { | 
|  | pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp); | 
|  |  | 
|  | if (temp != func->config_space[cloop >> 2]) { | 
|  | dbg("Config space compare failure!!! offset = %x\n", cloop); | 
|  | dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function); | 
|  | dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | func->configured = 1; | 
|  |  | 
|  | func = cpqhp_slot_find(func->bus, func->device, index++); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * cpqhp_valid_replace | 
|  | * | 
|  | * this function checks to see if a board is the same as the | 
|  | * one it is replacing.  this check will detect if the device's | 
|  | * vendor or device id's are the same | 
|  | * | 
|  | * returns 0 if the board is the same nonzero otherwise | 
|  | */ | 
|  | int cpqhp_valid_replace(struct controller *ctrl, struct pci_func * func) | 
|  | { | 
|  | u8 cloop; | 
|  | u8 header_type; | 
|  | u8 secondary_bus; | 
|  | u8 type; | 
|  | u32 temp_register = 0; | 
|  | u32 base; | 
|  | u32 rc; | 
|  | struct pci_func *next; | 
|  | int index = 0; | 
|  | struct pci_bus *pci_bus = ctrl->pci_bus; | 
|  | unsigned int devfn; | 
|  |  | 
|  | if (!func->is_a_board) | 
|  | return(ADD_NOT_SUPPORTED); | 
|  |  | 
|  | func = cpqhp_slot_find(func->bus, func->device, index++); | 
|  |  | 
|  | while (func != NULL) { | 
|  | pci_bus->number = func->bus; | 
|  | devfn = PCI_DEVFN(func->device, func->function); | 
|  |  | 
|  | pci_bus_read_config_dword (pci_bus, devfn, PCI_VENDOR_ID, &temp_register); | 
|  |  | 
|  | /* No adapter present */ | 
|  | if (temp_register == 0xFFFFFFFF) | 
|  | return(NO_ADAPTER_PRESENT); | 
|  |  | 
|  | if (temp_register != func->config_space[0]) | 
|  | return(ADAPTER_NOT_SAME); | 
|  |  | 
|  | /* Check for same revision number and class code */ | 
|  | pci_bus_read_config_dword (pci_bus, devfn, PCI_CLASS_REVISION, &temp_register); | 
|  |  | 
|  | /* Adapter not the same */ | 
|  | if (temp_register != func->config_space[0x08 >> 2]) | 
|  | return(ADAPTER_NOT_SAME); | 
|  |  | 
|  | /* Check for Bridge */ | 
|  | pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); | 
|  |  | 
|  | if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { | 
|  | /* In order to continue checking, we must program the | 
|  | * bus registers in the bridge to respond to accesses | 
|  | * for its subordinate bus(es) | 
|  | */ | 
|  |  | 
|  | temp_register = func->config_space[0x18 >> 2]; | 
|  | pci_bus_write_config_dword (pci_bus, devfn, PCI_PRIMARY_BUS, temp_register); | 
|  |  | 
|  | secondary_bus = (temp_register >> 8) & 0xFF; | 
|  |  | 
|  | next = cpqhp_slot_list[secondary_bus]; | 
|  |  | 
|  | while (next != NULL) { | 
|  | rc = cpqhp_valid_replace(ctrl, next); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | next = next->next; | 
|  | } | 
|  |  | 
|  | } | 
|  | /* Check to see if it is a standard config header */ | 
|  | else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) { | 
|  | /* Check subsystem vendor and ID */ | 
|  | pci_bus_read_config_dword (pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register); | 
|  |  | 
|  | if (temp_register != func->config_space[0x2C >> 2]) { | 
|  | /* If it's a SMART-2 and the register isn't | 
|  | * filled in, ignore the difference because | 
|  | * they just have an old rev of the firmware | 
|  | */ | 
|  | if (!((func->config_space[0] == 0xAE100E11) | 
|  | && (temp_register == 0x00L))) | 
|  | return(ADAPTER_NOT_SAME); | 
|  | } | 
|  | /* Figure out IO and memory base lengths */ | 
|  | for (cloop = 0x10; cloop <= 0x24; cloop += 4) { | 
|  | temp_register = 0xFFFFFFFF; | 
|  | pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); | 
|  | pci_bus_read_config_dword (pci_bus, devfn, cloop, &base); | 
|  |  | 
|  | /* If this register is implemented */ | 
|  | if (base) { | 
|  | if (base & 0x01L) { | 
|  | /* IO base | 
|  | * set base = amount of IO | 
|  | * space requested | 
|  | */ | 
|  | base = base & 0xFFFFFFFE; | 
|  | base = (~base) + 1; | 
|  |  | 
|  | type = 1; | 
|  | } else { | 
|  | /* memory base */ | 
|  | base = base & 0xFFFFFFF0; | 
|  | base = (~base) + 1; | 
|  |  | 
|  | type = 0; | 
|  | } | 
|  | } else { | 
|  | base = 0x0L; | 
|  | type = 0; | 
|  | } | 
|  |  | 
|  | /* Check information in slot structure */ | 
|  | if (func->base_length[(cloop - 0x10) >> 2] != base) | 
|  | return(ADAPTER_NOT_SAME); | 
|  |  | 
|  | if (func->base_type[(cloop - 0x10) >> 2] != type) | 
|  | return(ADAPTER_NOT_SAME); | 
|  |  | 
|  | }	/* End of base register loop */ | 
|  |  | 
|  | }		/* End of (type 0 config space) else */ | 
|  | else { | 
|  | /* this is not a type 0 or 1 config space header so | 
|  | * we don't know how to do it | 
|  | */ | 
|  | return(DEVICE_TYPE_NOT_SUPPORTED); | 
|  | } | 
|  |  | 
|  | /* Get the next function */ | 
|  | func = cpqhp_slot_find(func->bus, func->device, index++); | 
|  | } | 
|  |  | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * cpqhp_find_available_resources | 
|  | * | 
|  | * Finds available memory, IO, and IRQ resources for programming | 
|  | * devices which may be added to the system | 
|  | * this function is for hot plug ADD! | 
|  | * | 
|  | * returns 0 if success | 
|  | */ | 
|  | int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start) | 
|  | { | 
|  | u8 temp; | 
|  | u8 populated_slot; | 
|  | u8 bridged_slot; | 
|  | void __iomem *one_slot; | 
|  | void __iomem *rom_resource_table; | 
|  | struct pci_func *func = NULL; | 
|  | int i = 10, index; | 
|  | u32 temp_dword, rc; | 
|  | struct pci_resource *mem_node; | 
|  | struct pci_resource *p_mem_node; | 
|  | struct pci_resource *io_node; | 
|  | struct pci_resource *bus_node; | 
|  |  | 
|  | rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff); | 
|  | dbg("rom_resource_table = %p\n", rom_resource_table); | 
|  |  | 
|  | if (rom_resource_table == NULL) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* Sum all resources and setup resource maps */ | 
|  | unused_IRQ = readl(rom_resource_table + UNUSED_IRQ); | 
|  | dbg("unused_IRQ = %x\n", unused_IRQ); | 
|  |  | 
|  | temp = 0; | 
|  | while (unused_IRQ) { | 
|  | if (unused_IRQ & 1) { | 
|  | cpqhp_disk_irq = temp; | 
|  | break; | 
|  | } | 
|  | unused_IRQ = unused_IRQ >> 1; | 
|  | temp++; | 
|  | } | 
|  |  | 
|  | dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq); | 
|  | unused_IRQ = unused_IRQ >> 1; | 
|  | temp++; | 
|  |  | 
|  | while (unused_IRQ) { | 
|  | if (unused_IRQ & 1) { | 
|  | cpqhp_nic_irq = temp; | 
|  | break; | 
|  | } | 
|  | unused_IRQ = unused_IRQ >> 1; | 
|  | temp++; | 
|  | } | 
|  |  | 
|  | dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq); | 
|  | unused_IRQ = readl(rom_resource_table + PCIIRQ); | 
|  |  | 
|  | temp = 0; | 
|  |  | 
|  | if (!cpqhp_nic_irq) | 
|  | cpqhp_nic_irq = ctrl->cfgspc_irq; | 
|  |  | 
|  | if (!cpqhp_disk_irq) | 
|  | cpqhp_disk_irq = ctrl->cfgspc_irq; | 
|  |  | 
|  | dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq); | 
|  |  | 
|  | rc = compaq_nvram_load(rom_start, ctrl); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | one_slot = rom_resource_table + sizeof (struct hrt); | 
|  |  | 
|  | i = readb(rom_resource_table + NUMBER_OF_ENTRIES); | 
|  | dbg("number_of_entries = %d\n", i); | 
|  |  | 
|  | if (!readb(one_slot + SECONDARY_BUS)) | 
|  | return 1; | 
|  |  | 
|  | dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n"); | 
|  |  | 
|  | while (i && readb(one_slot + SECONDARY_BUS)) { | 
|  | u8 dev_func = readb(one_slot + DEV_FUNC); | 
|  | u8 primary_bus = readb(one_slot + PRIMARY_BUS); | 
|  | u8 secondary_bus = readb(one_slot + SECONDARY_BUS); | 
|  | u8 max_bus = readb(one_slot + MAX_BUS); | 
|  | u16 io_base = readw(one_slot + IO_BASE); | 
|  | u16 io_length = readw(one_slot + IO_LENGTH); | 
|  | u16 mem_base = readw(one_slot + MEM_BASE); | 
|  | u16 mem_length = readw(one_slot + MEM_LENGTH); | 
|  | u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE); | 
|  | u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH); | 
|  |  | 
|  | dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n", | 
|  | dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length, | 
|  | primary_bus, secondary_bus, max_bus); | 
|  |  | 
|  | /* If this entry isn't for our controller's bus, ignore it */ | 
|  | if (primary_bus != ctrl->bus) { | 
|  | i--; | 
|  | one_slot += sizeof (struct slot_rt); | 
|  | continue; | 
|  | } | 
|  | /* find out if this entry is for an occupied slot */ | 
|  | ctrl->pci_bus->number = primary_bus; | 
|  | pci_bus_read_config_dword (ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword); | 
|  | dbg("temp_D_word = %x\n", temp_dword); | 
|  |  | 
|  | if (temp_dword != 0xFFFFFFFF) { | 
|  | index = 0; | 
|  | func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0); | 
|  |  | 
|  | while (func && (func->function != (dev_func & 0x07))) { | 
|  | dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index); | 
|  | func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++); | 
|  | } | 
|  |  | 
|  | /* If we can't find a match, skip this table entry */ | 
|  | if (!func) { | 
|  | i--; | 
|  | one_slot += sizeof (struct slot_rt); | 
|  | continue; | 
|  | } | 
|  | /* this may not work and shouldn't be used */ | 
|  | if (secondary_bus != primary_bus) | 
|  | bridged_slot = 1; | 
|  | else | 
|  | bridged_slot = 0; | 
|  |  | 
|  | populated_slot = 1; | 
|  | } else { | 
|  | populated_slot = 0; | 
|  | bridged_slot = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* If we've got a valid IO base, use it */ | 
|  |  | 
|  | temp_dword = io_base + io_length; | 
|  |  | 
|  | if ((io_base) && (temp_dword < 0x10000)) { | 
|  | io_node = kmalloc(sizeof(*io_node), GFP_KERNEL); | 
|  | if (!io_node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | io_node->base = io_base; | 
|  | io_node->length = io_length; | 
|  |  | 
|  | dbg("found io_node(base, length) = %x, %x\n", | 
|  | io_node->base, io_node->length); | 
|  | dbg("populated slot =%d \n", populated_slot); | 
|  | if (!populated_slot) { | 
|  | io_node->next = ctrl->io_head; | 
|  | ctrl->io_head = io_node; | 
|  | } else { | 
|  | io_node->next = func->io_head; | 
|  | func->io_head = io_node; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we've got a valid memory base, use it */ | 
|  | temp_dword = mem_base + mem_length; | 
|  | if ((mem_base) && (temp_dword < 0x10000)) { | 
|  | mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL); | 
|  | if (!mem_node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mem_node->base = mem_base << 16; | 
|  |  | 
|  | mem_node->length = mem_length << 16; | 
|  |  | 
|  | dbg("found mem_node(base, length) = %x, %x\n", | 
|  | mem_node->base, mem_node->length); | 
|  | dbg("populated slot =%d \n", populated_slot); | 
|  | if (!populated_slot) { | 
|  | mem_node->next = ctrl->mem_head; | 
|  | ctrl->mem_head = mem_node; | 
|  | } else { | 
|  | mem_node->next = func->mem_head; | 
|  | func->mem_head = mem_node; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we've got a valid prefetchable memory base, and | 
|  | * the base + length isn't greater than 0xFFFF | 
|  | */ | 
|  | temp_dword = pre_mem_base + pre_mem_length; | 
|  | if ((pre_mem_base) && (temp_dword < 0x10000)) { | 
|  | p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL); | 
|  | if (!p_mem_node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | p_mem_node->base = pre_mem_base << 16; | 
|  |  | 
|  | p_mem_node->length = pre_mem_length << 16; | 
|  | dbg("found p_mem_node(base, length) = %x, %x\n", | 
|  | p_mem_node->base, p_mem_node->length); | 
|  | dbg("populated slot =%d \n", populated_slot); | 
|  |  | 
|  | if (!populated_slot) { | 
|  | p_mem_node->next = ctrl->p_mem_head; | 
|  | ctrl->p_mem_head = p_mem_node; | 
|  | } else { | 
|  | p_mem_node->next = func->p_mem_head; | 
|  | func->p_mem_head = p_mem_node; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we've got a valid bus number, use it | 
|  | * The second condition is to ignore bus numbers on | 
|  | * populated slots that don't have PCI-PCI bridges | 
|  | */ | 
|  | if (secondary_bus && (secondary_bus != primary_bus)) { | 
|  | bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL); | 
|  | if (!bus_node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | bus_node->base = secondary_bus; | 
|  | bus_node->length = max_bus - secondary_bus + 1; | 
|  | dbg("found bus_node(base, length) = %x, %x\n", | 
|  | bus_node->base, bus_node->length); | 
|  | dbg("populated slot =%d \n", populated_slot); | 
|  | if (!populated_slot) { | 
|  | bus_node->next = ctrl->bus_head; | 
|  | ctrl->bus_head = bus_node; | 
|  | } else { | 
|  | bus_node->next = func->bus_head; | 
|  | func->bus_head = bus_node; | 
|  | } | 
|  | } | 
|  |  | 
|  | i--; | 
|  | one_slot += sizeof (struct slot_rt); | 
|  | } | 
|  |  | 
|  | /* If all of the following fail, we don't have any resources for | 
|  | * hot plug add | 
|  | */ | 
|  | rc = 1; | 
|  | rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); | 
|  | rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); | 
|  | rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head)); | 
|  | rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * cpqhp_return_board_resources | 
|  | * | 
|  | * this routine returns all resources allocated to a board to | 
|  | * the available pool. | 
|  | * | 
|  | * returns 0 if success | 
|  | */ | 
|  | int cpqhp_return_board_resources(struct pci_func * func, struct resource_lists * resources) | 
|  | { | 
|  | int rc = 0; | 
|  | struct pci_resource *node; | 
|  | struct pci_resource *t_node; | 
|  | dbg("%s\n", __func__); | 
|  |  | 
|  | if (!func) | 
|  | return 1; | 
|  |  | 
|  | node = func->io_head; | 
|  | func->io_head = NULL; | 
|  | while (node) { | 
|  | t_node = node->next; | 
|  | return_resource(&(resources->io_head), node); | 
|  | node = t_node; | 
|  | } | 
|  |  | 
|  | node = func->mem_head; | 
|  | func->mem_head = NULL; | 
|  | while (node) { | 
|  | t_node = node->next; | 
|  | return_resource(&(resources->mem_head), node); | 
|  | node = t_node; | 
|  | } | 
|  |  | 
|  | node = func->p_mem_head; | 
|  | func->p_mem_head = NULL; | 
|  | while (node) { | 
|  | t_node = node->next; | 
|  | return_resource(&(resources->p_mem_head), node); | 
|  | node = t_node; | 
|  | } | 
|  |  | 
|  | node = func->bus_head; | 
|  | func->bus_head = NULL; | 
|  | while (node) { | 
|  | t_node = node->next; | 
|  | return_resource(&(resources->bus_head), node); | 
|  | node = t_node; | 
|  | } | 
|  |  | 
|  | rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head)); | 
|  | rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head)); | 
|  | rc |= cpqhp_resource_sort_and_combine(&(resources->io_head)); | 
|  | rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head)); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * cpqhp_destroy_resource_list | 
|  | * | 
|  | * Puts node back in the resource list pointed to by head | 
|  | */ | 
|  | void cpqhp_destroy_resource_list (struct resource_lists * resources) | 
|  | { | 
|  | struct pci_resource *res, *tres; | 
|  |  | 
|  | res = resources->io_head; | 
|  | resources->io_head = NULL; | 
|  |  | 
|  | while (res) { | 
|  | tres = res; | 
|  | res = res->next; | 
|  | kfree(tres); | 
|  | } | 
|  |  | 
|  | res = resources->mem_head; | 
|  | resources->mem_head = NULL; | 
|  |  | 
|  | while (res) { | 
|  | tres = res; | 
|  | res = res->next; | 
|  | kfree(tres); | 
|  | } | 
|  |  | 
|  | res = resources->p_mem_head; | 
|  | resources->p_mem_head = NULL; | 
|  |  | 
|  | while (res) { | 
|  | tres = res; | 
|  | res = res->next; | 
|  | kfree(tres); | 
|  | } | 
|  |  | 
|  | res = resources->bus_head; | 
|  | resources->bus_head = NULL; | 
|  |  | 
|  | while (res) { | 
|  | tres = res; | 
|  | res = res->next; | 
|  | kfree(tres); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * cpqhp_destroy_board_resources | 
|  | * | 
|  | * Puts node back in the resource list pointed to by head | 
|  | */ | 
|  | void cpqhp_destroy_board_resources (struct pci_func * func) | 
|  | { | 
|  | struct pci_resource *res, *tres; | 
|  |  | 
|  | res = func->io_head; | 
|  | func->io_head = NULL; | 
|  |  | 
|  | while (res) { | 
|  | tres = res; | 
|  | res = res->next; | 
|  | kfree(tres); | 
|  | } | 
|  |  | 
|  | res = func->mem_head; | 
|  | func->mem_head = NULL; | 
|  |  | 
|  | while (res) { | 
|  | tres = res; | 
|  | res = res->next; | 
|  | kfree(tres); | 
|  | } | 
|  |  | 
|  | res = func->p_mem_head; | 
|  | func->p_mem_head = NULL; | 
|  |  | 
|  | while (res) { | 
|  | tres = res; | 
|  | res = res->next; | 
|  | kfree(tres); | 
|  | } | 
|  |  | 
|  | res = func->bus_head; | 
|  | func->bus_head = NULL; | 
|  |  | 
|  | while (res) { | 
|  | tres = res; | 
|  | res = res->next; | 
|  | kfree(tres); | 
|  | } | 
|  | } | 
|  |  |