|  | /* | 
|  | *	Adaptec AAC series RAID controller driver | 
|  | *	(c) Copyright 2001 Red Hat Inc. | 
|  | * | 
|  | * based on the old aacraid driver that is.. | 
|  | * Adaptec aacraid device driver for Linux. | 
|  | * | 
|  | * Copyright (c) 2000-2010 Adaptec, Inc. | 
|  | *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; see the file COPYING.  If not, write to | 
|  | * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | * | 
|  | * Module Name: | 
|  | *  commsup.c | 
|  | * | 
|  | * Abstract: Contain all routines that are required for FSA host/adapter | 
|  | *    communication. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/semaphore.h> | 
|  | #include <scsi/scsi.h> | 
|  | #include <scsi/scsi_host.h> | 
|  | #include <scsi/scsi_device.h> | 
|  | #include <scsi/scsi_cmnd.h> | 
|  |  | 
|  | #include "aacraid.h" | 
|  |  | 
|  | /** | 
|  | *	fib_map_alloc		-	allocate the fib objects | 
|  | *	@dev: Adapter to allocate for | 
|  | * | 
|  | *	Allocate and map the shared PCI space for the FIB blocks used to | 
|  | *	talk to the Adaptec firmware. | 
|  | */ | 
|  |  | 
|  | static int fib_map_alloc(struct aac_dev *dev) | 
|  | { | 
|  | dprintk((KERN_INFO | 
|  | "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n", | 
|  | dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue, | 
|  | AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); | 
|  | dev->hw_fib_va = pci_alloc_consistent(dev->pdev, | 
|  | (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) | 
|  | * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1), | 
|  | &dev->hw_fib_pa); | 
|  | if (dev->hw_fib_va == NULL) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	aac_fib_map_free		-	free the fib objects | 
|  | *	@dev: Adapter to free | 
|  | * | 
|  | *	Free the PCI mappings and the memory allocated for FIB blocks | 
|  | *	on this adapter. | 
|  | */ | 
|  |  | 
|  | void aac_fib_map_free(struct aac_dev *dev) | 
|  | { | 
|  | pci_free_consistent(dev->pdev, | 
|  | dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), | 
|  | dev->hw_fib_va, dev->hw_fib_pa); | 
|  | dev->hw_fib_va = NULL; | 
|  | dev->hw_fib_pa = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	aac_fib_setup	-	setup the fibs | 
|  | *	@dev: Adapter to set up | 
|  | * | 
|  | *	Allocate the PCI space for the fibs, map it and then initialise the | 
|  | *	fib area, the unmapped fib data and also the free list | 
|  | */ | 
|  |  | 
|  | int aac_fib_setup(struct aac_dev * dev) | 
|  | { | 
|  | struct fib *fibptr; | 
|  | struct hw_fib *hw_fib; | 
|  | dma_addr_t hw_fib_pa; | 
|  | int i; | 
|  |  | 
|  | while (((i = fib_map_alloc(dev)) == -ENOMEM) | 
|  | && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { | 
|  | dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1); | 
|  | dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB; | 
|  | } | 
|  | if (i<0) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* 32 byte alignment for PMC */ | 
|  | hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1); | 
|  | dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + | 
|  | (hw_fib_pa - dev->hw_fib_pa)); | 
|  | dev->hw_fib_pa = hw_fib_pa; | 
|  | memset(dev->hw_fib_va, 0, | 
|  | (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) * | 
|  | (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); | 
|  |  | 
|  | /* add Xport header */ | 
|  | dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + | 
|  | sizeof(struct aac_fib_xporthdr)); | 
|  | dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr); | 
|  |  | 
|  | hw_fib = dev->hw_fib_va; | 
|  | hw_fib_pa = dev->hw_fib_pa; | 
|  | /* | 
|  | *	Initialise the fibs | 
|  | */ | 
|  | for (i = 0, fibptr = &dev->fibs[i]; | 
|  | i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); | 
|  | i++, fibptr++) | 
|  | { | 
|  | fibptr->dev = dev; | 
|  | fibptr->hw_fib_va = hw_fib; | 
|  | fibptr->data = (void *) fibptr->hw_fib_va->data; | 
|  | fibptr->next = fibptr+1;	/* Forward chain the fibs */ | 
|  | sema_init(&fibptr->event_wait, 0); | 
|  | spin_lock_init(&fibptr->event_lock); | 
|  | hw_fib->header.XferState = cpu_to_le32(0xffffffff); | 
|  | hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size); | 
|  | fibptr->hw_fib_pa = hw_fib_pa; | 
|  | hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + | 
|  | dev->max_fib_size + sizeof(struct aac_fib_xporthdr)); | 
|  | hw_fib_pa = hw_fib_pa + | 
|  | dev->max_fib_size + sizeof(struct aac_fib_xporthdr); | 
|  | } | 
|  | /* | 
|  | *	Add the fib chain to the free list | 
|  | */ | 
|  | dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; | 
|  | /* | 
|  | *	Enable this to debug out of queue space | 
|  | */ | 
|  | dev->free_fib = &dev->fibs[0]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	aac_fib_alloc	-	allocate a fib | 
|  | *	@dev: Adapter to allocate the fib for | 
|  | * | 
|  | *	Allocate a fib from the adapter fib pool. If the pool is empty we | 
|  | *	return NULL. | 
|  | */ | 
|  |  | 
|  | struct fib *aac_fib_alloc(struct aac_dev *dev) | 
|  | { | 
|  | struct fib * fibptr; | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&dev->fib_lock, flags); | 
|  | fibptr = dev->free_fib; | 
|  | if(!fibptr){ | 
|  | spin_unlock_irqrestore(&dev->fib_lock, flags); | 
|  | return fibptr; | 
|  | } | 
|  | dev->free_fib = fibptr->next; | 
|  | spin_unlock_irqrestore(&dev->fib_lock, flags); | 
|  | /* | 
|  | *	Set the proper node type code and node byte size | 
|  | */ | 
|  | fibptr->type = FSAFS_NTC_FIB_CONTEXT; | 
|  | fibptr->size = sizeof(struct fib); | 
|  | /* | 
|  | *	Null out fields that depend on being zero at the start of | 
|  | *	each I/O | 
|  | */ | 
|  | fibptr->hw_fib_va->header.XferState = 0; | 
|  | fibptr->flags = 0; | 
|  | fibptr->callback = NULL; | 
|  | fibptr->callback_data = NULL; | 
|  |  | 
|  | return fibptr; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	aac_fib_free	-	free a fib | 
|  | *	@fibptr: fib to free up | 
|  | * | 
|  | *	Frees up a fib and places it on the appropriate queue | 
|  | */ | 
|  |  | 
|  | void aac_fib_free(struct fib *fibptr) | 
|  | { | 
|  | unsigned long flags, flagsv; | 
|  |  | 
|  | spin_lock_irqsave(&fibptr->event_lock, flagsv); | 
|  | if (fibptr->done == 2) { | 
|  | spin_unlock_irqrestore(&fibptr->event_lock, flagsv); | 
|  | return; | 
|  | } | 
|  | spin_unlock_irqrestore(&fibptr->event_lock, flagsv); | 
|  |  | 
|  | spin_lock_irqsave(&fibptr->dev->fib_lock, flags); | 
|  | if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) | 
|  | aac_config.fib_timeouts++; | 
|  | if (fibptr->hw_fib_va->header.XferState != 0) { | 
|  | printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", | 
|  | (void*)fibptr, | 
|  | le32_to_cpu(fibptr->hw_fib_va->header.XferState)); | 
|  | } | 
|  | fibptr->next = fibptr->dev->free_fib; | 
|  | fibptr->dev->free_fib = fibptr; | 
|  | spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	aac_fib_init	-	initialise a fib | 
|  | *	@fibptr: The fib to initialize | 
|  | * | 
|  | *	Set up the generic fib fields ready for use | 
|  | */ | 
|  |  | 
|  | void aac_fib_init(struct fib *fibptr) | 
|  | { | 
|  | struct hw_fib *hw_fib = fibptr->hw_fib_va; | 
|  |  | 
|  | hw_fib->header.StructType = FIB_MAGIC; | 
|  | hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); | 
|  | hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); | 
|  | hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */ | 
|  | hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); | 
|  | hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	fib_deallocate		-	deallocate a fib | 
|  | *	@fibptr: fib to deallocate | 
|  | * | 
|  | *	Will deallocate and return to the free pool the FIB pointed to by the | 
|  | *	caller. | 
|  | */ | 
|  |  | 
|  | static void fib_dealloc(struct fib * fibptr) | 
|  | { | 
|  | struct hw_fib *hw_fib = fibptr->hw_fib_va; | 
|  | BUG_ON(hw_fib->header.StructType != FIB_MAGIC); | 
|  | hw_fib->header.XferState = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Commuication primitives define and support the queuing method we use to | 
|  | *	support host to adapter commuication. All queue accesses happen through | 
|  | *	these routines and are the only routines which have a knowledge of the | 
|  | *	 how these queues are implemented. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | *	aac_get_entry		-	get a queue entry | 
|  | *	@dev: Adapter | 
|  | *	@qid: Queue Number | 
|  | *	@entry: Entry return | 
|  | *	@index: Index return | 
|  | *	@nonotify: notification control | 
|  | * | 
|  | *	With a priority the routine returns a queue entry if the queue has free entries. If the queue | 
|  | *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is | 
|  | *	returned. | 
|  | */ | 
|  |  | 
|  | static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) | 
|  | { | 
|  | struct aac_queue * q; | 
|  | unsigned long idx; | 
|  |  | 
|  | /* | 
|  | *	All of the queues wrap when they reach the end, so we check | 
|  | *	to see if they have reached the end and if they have we just | 
|  | *	set the index back to zero. This is a wrap. You could or off | 
|  | *	the high bits in all updates but this is a bit faster I think. | 
|  | */ | 
|  |  | 
|  | q = &dev->queues->queue[qid]; | 
|  |  | 
|  | idx = *index = le32_to_cpu(*(q->headers.producer)); | 
|  | /* Interrupt Moderation, only interrupt for first two entries */ | 
|  | if (idx != le32_to_cpu(*(q->headers.consumer))) { | 
|  | if (--idx == 0) { | 
|  | if (qid == AdapNormCmdQueue) | 
|  | idx = ADAP_NORM_CMD_ENTRIES; | 
|  | else | 
|  | idx = ADAP_NORM_RESP_ENTRIES; | 
|  | } | 
|  | if (idx != le32_to_cpu(*(q->headers.consumer))) | 
|  | *nonotify = 1; | 
|  | } | 
|  |  | 
|  | if (qid == AdapNormCmdQueue) { | 
|  | if (*index >= ADAP_NORM_CMD_ENTRIES) | 
|  | *index = 0; /* Wrap to front of the Producer Queue. */ | 
|  | } else { | 
|  | if (*index >= ADAP_NORM_RESP_ENTRIES) | 
|  | *index = 0; /* Wrap to front of the Producer Queue. */ | 
|  | } | 
|  |  | 
|  | /* Queue is full */ | 
|  | if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { | 
|  | printk(KERN_WARNING "Queue %d full, %u outstanding.\n", | 
|  | qid, q->numpending); | 
|  | return 0; | 
|  | } else { | 
|  | *entry = q->base + *index; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	aac_queue_get		-	get the next free QE | 
|  | *	@dev: Adapter | 
|  | *	@index: Returned index | 
|  | *	@priority: Priority of fib | 
|  | *	@fib: Fib to associate with the queue entry | 
|  | *	@wait: Wait if queue full | 
|  | *	@fibptr: Driver fib object to go with fib | 
|  | *	@nonotify: Don't notify the adapter | 
|  | * | 
|  | *	Gets the next free QE off the requested priorty adapter command | 
|  | *	queue and associates the Fib with the QE. The QE represented by | 
|  | *	index is ready to insert on the queue when this routine returns | 
|  | *	success. | 
|  | */ | 
|  |  | 
|  | int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) | 
|  | { | 
|  | struct aac_entry * entry = NULL; | 
|  | int map = 0; | 
|  |  | 
|  | if (qid == AdapNormCmdQueue) { | 
|  | /*  if no entries wait for some if caller wants to */ | 
|  | while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { | 
|  | printk(KERN_ERR "GetEntries failed\n"); | 
|  | } | 
|  | /* | 
|  | *	Setup queue entry with a command, status and fib mapped | 
|  | */ | 
|  | entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); | 
|  | map = 1; | 
|  | } else { | 
|  | while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { | 
|  | /* if no entries wait for some if caller wants to */ | 
|  | } | 
|  | /* | 
|  | *	Setup queue entry with command, status and fib mapped | 
|  | */ | 
|  | entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); | 
|  | entry->addr = hw_fib->header.SenderFibAddress; | 
|  | /* Restore adapters pointer to the FIB */ | 
|  | hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;	/* Let the adapter now where to find its data */ | 
|  | map = 0; | 
|  | } | 
|  | /* | 
|  | *	If MapFib is true than we need to map the Fib and put pointers | 
|  | *	in the queue entry. | 
|  | */ | 
|  | if (map) | 
|  | entry->addr = cpu_to_le32(fibptr->hw_fib_pa); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Define the highest level of host to adapter communication routines. | 
|  | *	These routines will support host to adapter FS commuication. These | 
|  | *	routines have no knowledge of the commuication method used. This level | 
|  | *	sends and receives FIBs. This level has no knowledge of how these FIBs | 
|  | *	get passed back and forth. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | *	aac_fib_send	-	send a fib to the adapter | 
|  | *	@command: Command to send | 
|  | *	@fibptr: The fib | 
|  | *	@size: Size of fib data area | 
|  | *	@priority: Priority of Fib | 
|  | *	@wait: Async/sync select | 
|  | *	@reply: True if a reply is wanted | 
|  | *	@callback: Called with reply | 
|  | *	@callback_data: Passed to callback | 
|  | * | 
|  | *	Sends the requested FIB to the adapter and optionally will wait for a | 
|  | *	response FIB. If the caller does not wish to wait for a response than | 
|  | *	an event to wait on must be supplied. This event will be set when a | 
|  | *	response FIB is received from the adapter. | 
|  | */ | 
|  |  | 
|  | int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, | 
|  | int priority, int wait, int reply, fib_callback callback, | 
|  | void *callback_data) | 
|  | { | 
|  | struct aac_dev * dev = fibptr->dev; | 
|  | struct hw_fib * hw_fib = fibptr->hw_fib_va; | 
|  | unsigned long flags = 0; | 
|  | unsigned long qflags; | 
|  | unsigned long mflags = 0; | 
|  | unsigned long sflags = 0; | 
|  |  | 
|  |  | 
|  | if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) | 
|  | return -EBUSY; | 
|  | /* | 
|  | *	There are 5 cases with the wait and response requested flags. | 
|  | *	The only invalid cases are if the caller requests to wait and | 
|  | *	does not request a response and if the caller does not want a | 
|  | *	response and the Fib is not allocated from pool. If a response | 
|  | *	is not requesed the Fib will just be deallocaed by the DPC | 
|  | *	routine when the response comes back from the adapter. No | 
|  | *	further processing will be done besides deleting the Fib. We | 
|  | *	will have a debug mode where the adapter can notify the host | 
|  | *	it had a problem and the host can log that fact. | 
|  | */ | 
|  | fibptr->flags = 0; | 
|  | if (wait && !reply) { | 
|  | return -EINVAL; | 
|  | } else if (!wait && reply) { | 
|  | hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); | 
|  | FIB_COUNTER_INCREMENT(aac_config.AsyncSent); | 
|  | } else if (!wait && !reply) { | 
|  | hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); | 
|  | FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); | 
|  | } else if (wait && reply) { | 
|  | hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); | 
|  | FIB_COUNTER_INCREMENT(aac_config.NormalSent); | 
|  | } | 
|  | /* | 
|  | *	Map the fib into 32bits by using the fib number | 
|  | */ | 
|  |  | 
|  | hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); | 
|  | hw_fib->header.SenderData = (u32)(fibptr - dev->fibs); | 
|  | /* | 
|  | *	Set FIB state to indicate where it came from and if we want a | 
|  | *	response from the adapter. Also load the command from the | 
|  | *	caller. | 
|  | * | 
|  | *	Map the hw fib pointer as a 32bit value | 
|  | */ | 
|  | hw_fib->header.Command = cpu_to_le16(command); | 
|  | hw_fib->header.XferState |= cpu_to_le32(SentFromHost); | 
|  | fibptr->hw_fib_va->header.Flags = 0;	/* 0 the flags field - internal only*/ | 
|  | /* | 
|  | *	Set the size of the Fib we want to send to the adapter | 
|  | */ | 
|  | hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); | 
|  | if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { | 
|  | return -EMSGSIZE; | 
|  | } | 
|  | /* | 
|  | *	Get a queue entry connect the FIB to it and send an notify | 
|  | *	the adapter a command is ready. | 
|  | */ | 
|  | hw_fib->header.XferState |= cpu_to_le32(NormalPriority); | 
|  |  | 
|  | /* | 
|  | *	Fill in the Callback and CallbackContext if we are not | 
|  | *	going to wait. | 
|  | */ | 
|  | if (!wait) { | 
|  | fibptr->callback = callback; | 
|  | fibptr->callback_data = callback_data; | 
|  | fibptr->flags = FIB_CONTEXT_FLAG; | 
|  | } | 
|  |  | 
|  | fibptr->done = 0; | 
|  |  | 
|  | FIB_COUNTER_INCREMENT(aac_config.FibsSent); | 
|  |  | 
|  | dprintk((KERN_DEBUG "Fib contents:.\n")); | 
|  | dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command))); | 
|  | dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); | 
|  | dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState))); | 
|  | dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va)); | 
|  | dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); | 
|  | dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr)); | 
|  |  | 
|  | if (!dev->queues) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (wait) { | 
|  |  | 
|  | spin_lock_irqsave(&dev->manage_lock, mflags); | 
|  | if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { | 
|  | printk(KERN_INFO "No management Fibs Available:%d\n", | 
|  | dev->management_fib_count); | 
|  | spin_unlock_irqrestore(&dev->manage_lock, mflags); | 
|  | return -EBUSY; | 
|  | } | 
|  | dev->management_fib_count++; | 
|  | spin_unlock_irqrestore(&dev->manage_lock, mflags); | 
|  | spin_lock_irqsave(&fibptr->event_lock, flags); | 
|  | } | 
|  |  | 
|  | if (dev->sync_mode) { | 
|  | if (wait) | 
|  | spin_unlock_irqrestore(&fibptr->event_lock, flags); | 
|  | spin_lock_irqsave(&dev->sync_lock, sflags); | 
|  | if (dev->sync_fib) { | 
|  | list_add_tail(&fibptr->fiblink, &dev->sync_fib_list); | 
|  | spin_unlock_irqrestore(&dev->sync_lock, sflags); | 
|  | } else { | 
|  | dev->sync_fib = fibptr; | 
|  | spin_unlock_irqrestore(&dev->sync_lock, sflags); | 
|  | aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, | 
|  | (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0, | 
|  | NULL, NULL, NULL, NULL, NULL); | 
|  | } | 
|  | if (wait) { | 
|  | fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; | 
|  | if (down_interruptible(&fibptr->event_wait)) { | 
|  | fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT; | 
|  | return -EFAULT; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | return -EINPROGRESS; | 
|  | } | 
|  |  | 
|  | if (aac_adapter_deliver(fibptr) != 0) { | 
|  | printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); | 
|  | if (wait) { | 
|  | spin_unlock_irqrestore(&fibptr->event_lock, flags); | 
|  | spin_lock_irqsave(&dev->manage_lock, mflags); | 
|  | dev->management_fib_count--; | 
|  | spin_unlock_irqrestore(&dev->manage_lock, mflags); | 
|  | } | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | *	If the caller wanted us to wait for response wait now. | 
|  | */ | 
|  |  | 
|  | if (wait) { | 
|  | spin_unlock_irqrestore(&fibptr->event_lock, flags); | 
|  | /* Only set for first known interruptable command */ | 
|  | if (wait < 0) { | 
|  | /* | 
|  | * *VERY* Dangerous to time out a command, the | 
|  | * assumption is made that we have no hope of | 
|  | * functioning because an interrupt routing or other | 
|  | * hardware failure has occurred. | 
|  | */ | 
|  | unsigned long count = 36000000L; /* 3 minutes */ | 
|  | while (down_trylock(&fibptr->event_wait)) { | 
|  | int blink; | 
|  | if (--count == 0) { | 
|  | struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; | 
|  | spin_lock_irqsave(q->lock, qflags); | 
|  | q->numpending--; | 
|  | spin_unlock_irqrestore(q->lock, qflags); | 
|  | if (wait == -1) { | 
|  | printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" | 
|  | "Usually a result of a PCI interrupt routing problem;\n" | 
|  | "update mother board BIOS or consider utilizing one of\n" | 
|  | "the SAFE mode kernel options (acpi, apic etc)\n"); | 
|  | } | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  | if ((blink = aac_adapter_check_health(dev)) > 0) { | 
|  | if (wait == -1) { | 
|  | printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" | 
|  | "Usually a result of a serious unrecoverable hardware problem\n", | 
|  | blink); | 
|  | } | 
|  | return -EFAULT; | 
|  | } | 
|  | udelay(5); | 
|  | } | 
|  | } else if (down_interruptible(&fibptr->event_wait)) { | 
|  | /* Do nothing ... satisfy | 
|  | * down_interruptible must_check */ | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&fibptr->event_lock, flags); | 
|  | if (fibptr->done == 0) { | 
|  | fibptr->done = 2; /* Tell interrupt we aborted */ | 
|  | spin_unlock_irqrestore(&fibptr->event_lock, flags); | 
|  | return -ERESTARTSYS; | 
|  | } | 
|  | spin_unlock_irqrestore(&fibptr->event_lock, flags); | 
|  | BUG_ON(fibptr->done == 0); | 
|  |  | 
|  | if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) | 
|  | return -ETIMEDOUT; | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | *	If the user does not want a response than return success otherwise | 
|  | *	return pending | 
|  | */ | 
|  | if (reply) | 
|  | return -EINPROGRESS; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	aac_consumer_get	-	get the top of the queue | 
|  | *	@dev: Adapter | 
|  | *	@q: Queue | 
|  | *	@entry: Return entry | 
|  | * | 
|  | *	Will return a pointer to the entry on the top of the queue requested that | 
|  | *	we are a consumer of, and return the address of the queue entry. It does | 
|  | *	not change the state of the queue. | 
|  | */ | 
|  |  | 
|  | int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) | 
|  | { | 
|  | u32 index; | 
|  | int status; | 
|  | if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { | 
|  | status = 0; | 
|  | } else { | 
|  | /* | 
|  | *	The consumer index must be wrapped if we have reached | 
|  | *	the end of the queue, else we just use the entry | 
|  | *	pointed to by the header index | 
|  | */ | 
|  | if (le32_to_cpu(*q->headers.consumer) >= q->entries) | 
|  | index = 0; | 
|  | else | 
|  | index = le32_to_cpu(*q->headers.consumer); | 
|  | *entry = q->base + index; | 
|  | status = 1; | 
|  | } | 
|  | return(status); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	aac_consumer_free	-	free consumer entry | 
|  | *	@dev: Adapter | 
|  | *	@q: Queue | 
|  | *	@qid: Queue ident | 
|  | * | 
|  | *	Frees up the current top of the queue we are a consumer of. If the | 
|  | *	queue was full notify the producer that the queue is no longer full. | 
|  | */ | 
|  |  | 
|  | void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) | 
|  | { | 
|  | int wasfull = 0; | 
|  | u32 notify; | 
|  |  | 
|  | if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) | 
|  | wasfull = 1; | 
|  |  | 
|  | if (le32_to_cpu(*q->headers.consumer) >= q->entries) | 
|  | *q->headers.consumer = cpu_to_le32(1); | 
|  | else | 
|  | le32_add_cpu(q->headers.consumer, 1); | 
|  |  | 
|  | if (wasfull) { | 
|  | switch (qid) { | 
|  |  | 
|  | case HostNormCmdQueue: | 
|  | notify = HostNormCmdNotFull; | 
|  | break; | 
|  | case HostNormRespQueue: | 
|  | notify = HostNormRespNotFull; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | return; | 
|  | } | 
|  | aac_adapter_notify(dev, notify); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	aac_fib_adapter_complete	-	complete adapter issued fib | 
|  | *	@fibptr: fib to complete | 
|  | *	@size: size of fib | 
|  | * | 
|  | *	Will do all necessary work to complete a FIB that was sent from | 
|  | *	the adapter. | 
|  | */ | 
|  |  | 
|  | int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) | 
|  | { | 
|  | struct hw_fib * hw_fib = fibptr->hw_fib_va; | 
|  | struct aac_dev * dev = fibptr->dev; | 
|  | struct aac_queue * q; | 
|  | unsigned long nointr = 0; | 
|  | unsigned long qflags; | 
|  |  | 
|  | if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1) { | 
|  | kfree(hw_fib); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (hw_fib->header.XferState == 0) { | 
|  | if (dev->comm_interface == AAC_COMM_MESSAGE) | 
|  | kfree(hw_fib); | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | *	If we plan to do anything check the structure type first. | 
|  | */ | 
|  | if (hw_fib->header.StructType != FIB_MAGIC) { | 
|  | if (dev->comm_interface == AAC_COMM_MESSAGE) | 
|  | kfree(hw_fib); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* | 
|  | *	This block handles the case where the adapter had sent us a | 
|  | *	command and we have finished processing the command. We | 
|  | *	call completeFib when we are done processing the command | 
|  | *	and want to send a response back to the adapter. This will | 
|  | *	send the completed cdb to the adapter. | 
|  | */ | 
|  | if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { | 
|  | if (dev->comm_interface == AAC_COMM_MESSAGE) { | 
|  | kfree (hw_fib); | 
|  | } else { | 
|  | u32 index; | 
|  | hw_fib->header.XferState |= cpu_to_le32(HostProcessed); | 
|  | if (size) { | 
|  | size += sizeof(struct aac_fibhdr); | 
|  | if (size > le16_to_cpu(hw_fib->header.SenderSize)) | 
|  | return -EMSGSIZE; | 
|  | hw_fib->header.Size = cpu_to_le16(size); | 
|  | } | 
|  | q = &dev->queues->queue[AdapNormRespQueue]; | 
|  | spin_lock_irqsave(q->lock, qflags); | 
|  | aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); | 
|  | *(q->headers.producer) = cpu_to_le32(index + 1); | 
|  | spin_unlock_irqrestore(q->lock, qflags); | 
|  | if (!(nointr & (int)aac_config.irq_mod)) | 
|  | aac_adapter_notify(dev, AdapNormRespQueue); | 
|  | } | 
|  | } else { | 
|  | printk(KERN_WARNING "aac_fib_adapter_complete: " | 
|  | "Unknown xferstate detected.\n"); | 
|  | BUG(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	aac_fib_complete	-	fib completion handler | 
|  | *	@fib: FIB to complete | 
|  | * | 
|  | *	Will do all necessary work to complete a FIB. | 
|  | */ | 
|  |  | 
|  | int aac_fib_complete(struct fib *fibptr) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct hw_fib * hw_fib = fibptr->hw_fib_va; | 
|  |  | 
|  | /* | 
|  | *	Check for a fib which has already been completed | 
|  | */ | 
|  |  | 
|  | if (hw_fib->header.XferState == 0) | 
|  | return 0; | 
|  | /* | 
|  | *	If we plan to do anything check the structure type first. | 
|  | */ | 
|  |  | 
|  | if (hw_fib->header.StructType != FIB_MAGIC) | 
|  | return -EINVAL; | 
|  | /* | 
|  | *	This block completes a cdb which orginated on the host and we | 
|  | *	just need to deallocate the cdb or reinit it. At this point the | 
|  | *	command is complete that we had sent to the adapter and this | 
|  | *	cdb could be reused. | 
|  | */ | 
|  | spin_lock_irqsave(&fibptr->event_lock, flags); | 
|  | if (fibptr->done == 2) { | 
|  | spin_unlock_irqrestore(&fibptr->event_lock, flags); | 
|  | return 0; | 
|  | } | 
|  | spin_unlock_irqrestore(&fibptr->event_lock, flags); | 
|  |  | 
|  | if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && | 
|  | (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) | 
|  | { | 
|  | fib_dealloc(fibptr); | 
|  | } | 
|  | else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) | 
|  | { | 
|  | /* | 
|  | *	This handles the case when the host has aborted the I/O | 
|  | *	to the adapter because the adapter is not responding | 
|  | */ | 
|  | fib_dealloc(fibptr); | 
|  | } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { | 
|  | fib_dealloc(fibptr); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	aac_printf	-	handle printf from firmware | 
|  | *	@dev: Adapter | 
|  | *	@val: Message info | 
|  | * | 
|  | *	Print a message passed to us by the controller firmware on the | 
|  | *	Adaptec board | 
|  | */ | 
|  |  | 
|  | void aac_printf(struct aac_dev *dev, u32 val) | 
|  | { | 
|  | char *cp = dev->printfbuf; | 
|  | if (dev->printf_enabled) | 
|  | { | 
|  | int length = val & 0xffff; | 
|  | int level = (val >> 16) & 0xffff; | 
|  |  | 
|  | /* | 
|  | *	The size of the printfbuf is set in port.c | 
|  | *	There is no variable or define for it | 
|  | */ | 
|  | if (length > 255) | 
|  | length = 255; | 
|  | if (cp[length] != 0) | 
|  | cp[length] = 0; | 
|  | if (level == LOG_AAC_HIGH_ERROR) | 
|  | printk(KERN_WARNING "%s:%s", dev->name, cp); | 
|  | else | 
|  | printk(KERN_INFO "%s:%s", dev->name, cp); | 
|  | } | 
|  | memset(cp, 0, 256); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | *	aac_handle_aif		-	Handle a message from the firmware | 
|  | *	@dev: Which adapter this fib is from | 
|  | *	@fibptr: Pointer to fibptr from adapter | 
|  | * | 
|  | *	This routine handles a driver notify fib from the adapter and | 
|  | *	dispatches it to the appropriate routine for handling. | 
|  | */ | 
|  |  | 
|  | #define AIF_SNIFF_TIMEOUT	(30*HZ) | 
|  | static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) | 
|  | { | 
|  | struct hw_fib * hw_fib = fibptr->hw_fib_va; | 
|  | struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; | 
|  | u32 channel, id, lun, container; | 
|  | struct scsi_device *device; | 
|  | enum { | 
|  | NOTHING, | 
|  | DELETE, | 
|  | ADD, | 
|  | CHANGE | 
|  | } device_config_needed = NOTHING; | 
|  |  | 
|  | /* Sniff for container changes */ | 
|  |  | 
|  | if (!dev || !dev->fsa_dev) | 
|  | return; | 
|  | container = channel = id = lun = (u32)-1; | 
|  |  | 
|  | /* | 
|  | *	We have set this up to try and minimize the number of | 
|  | * re-configures that take place. As a result of this when | 
|  | * certain AIF's come in we will set a flag waiting for another | 
|  | * type of AIF before setting the re-config flag. | 
|  | */ | 
|  | switch (le32_to_cpu(aifcmd->command)) { | 
|  | case AifCmdDriverNotify: | 
|  | switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { | 
|  | /* | 
|  | *	Morph or Expand complete | 
|  | */ | 
|  | case AifDenMorphComplete: | 
|  | case AifDenVolumeExtendComplete: | 
|  | container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); | 
|  | if (container >= dev->maximum_num_containers) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | *	Find the scsi_device associated with the SCSI | 
|  | * address. Make sure we have the right array, and if | 
|  | * so set the flag to initiate a new re-config once we | 
|  | * see an AifEnConfigChange AIF come through. | 
|  | */ | 
|  |  | 
|  | if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { | 
|  | device = scsi_device_lookup(dev->scsi_host_ptr, | 
|  | CONTAINER_TO_CHANNEL(container), | 
|  | CONTAINER_TO_ID(container), | 
|  | CONTAINER_TO_LUN(container)); | 
|  | if (device) { | 
|  | dev->fsa_dev[container].config_needed = CHANGE; | 
|  | dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; | 
|  | dev->fsa_dev[container].config_waiting_stamp = jiffies; | 
|  | scsi_device_put(device); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	If we are waiting on something and this happens to be | 
|  | * that thing then set the re-configure flag. | 
|  | */ | 
|  | if (container != (u32)-1) { | 
|  | if (container >= dev->maximum_num_containers) | 
|  | break; | 
|  | if ((dev->fsa_dev[container].config_waiting_on == | 
|  | le32_to_cpu(*(__le32 *)aifcmd->data)) && | 
|  | time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) | 
|  | dev->fsa_dev[container].config_waiting_on = 0; | 
|  | } else for (container = 0; | 
|  | container < dev->maximum_num_containers; ++container) { | 
|  | if ((dev->fsa_dev[container].config_waiting_on == | 
|  | le32_to_cpu(*(__le32 *)aifcmd->data)) && | 
|  | time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) | 
|  | dev->fsa_dev[container].config_waiting_on = 0; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case AifCmdEventNotify: | 
|  | switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { | 
|  | case AifEnBatteryEvent: | 
|  | dev->cache_protected = | 
|  | (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); | 
|  | break; | 
|  | /* | 
|  | *	Add an Array. | 
|  | */ | 
|  | case AifEnAddContainer: | 
|  | container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); | 
|  | if (container >= dev->maximum_num_containers) | 
|  | break; | 
|  | dev->fsa_dev[container].config_needed = ADD; | 
|  | dev->fsa_dev[container].config_waiting_on = | 
|  | AifEnConfigChange; | 
|  | dev->fsa_dev[container].config_waiting_stamp = jiffies; | 
|  | break; | 
|  |  | 
|  | /* | 
|  | *	Delete an Array. | 
|  | */ | 
|  | case AifEnDeleteContainer: | 
|  | container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); | 
|  | if (container >= dev->maximum_num_containers) | 
|  | break; | 
|  | dev->fsa_dev[container].config_needed = DELETE; | 
|  | dev->fsa_dev[container].config_waiting_on = | 
|  | AifEnConfigChange; | 
|  | dev->fsa_dev[container].config_waiting_stamp = jiffies; | 
|  | break; | 
|  |  | 
|  | /* | 
|  | *	Container change detected. If we currently are not | 
|  | * waiting on something else, setup to wait on a Config Change. | 
|  | */ | 
|  | case AifEnContainerChange: | 
|  | container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); | 
|  | if (container >= dev->maximum_num_containers) | 
|  | break; | 
|  | if (dev->fsa_dev[container].config_waiting_on && | 
|  | time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) | 
|  | break; | 
|  | dev->fsa_dev[container].config_needed = CHANGE; | 
|  | dev->fsa_dev[container].config_waiting_on = | 
|  | AifEnConfigChange; | 
|  | dev->fsa_dev[container].config_waiting_stamp = jiffies; | 
|  | break; | 
|  |  | 
|  | case AifEnConfigChange: | 
|  | break; | 
|  |  | 
|  | case AifEnAddJBOD: | 
|  | case AifEnDeleteJBOD: | 
|  | container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); | 
|  | if ((container >> 28)) { | 
|  | container = (u32)-1; | 
|  | break; | 
|  | } | 
|  | channel = (container >> 24) & 0xF; | 
|  | if (channel >= dev->maximum_num_channels) { | 
|  | container = (u32)-1; | 
|  | break; | 
|  | } | 
|  | id = container & 0xFFFF; | 
|  | if (id >= dev->maximum_num_physicals) { | 
|  | container = (u32)-1; | 
|  | break; | 
|  | } | 
|  | lun = (container >> 16) & 0xFF; | 
|  | container = (u32)-1; | 
|  | channel = aac_phys_to_logical(channel); | 
|  | device_config_needed = | 
|  | (((__le32 *)aifcmd->data)[0] == | 
|  | cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; | 
|  | if (device_config_needed == ADD) { | 
|  | device = scsi_device_lookup(dev->scsi_host_ptr, | 
|  | channel, | 
|  | id, | 
|  | lun); | 
|  | if (device) { | 
|  | scsi_remove_device(device); | 
|  | scsi_device_put(device); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case AifEnEnclosureManagement: | 
|  | /* | 
|  | * If in JBOD mode, automatic exposure of new | 
|  | * physical target to be suppressed until configured. | 
|  | */ | 
|  | if (dev->jbod) | 
|  | break; | 
|  | switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { | 
|  | case EM_DRIVE_INSERTION: | 
|  | case EM_DRIVE_REMOVAL: | 
|  | container = le32_to_cpu( | 
|  | ((__le32 *)aifcmd->data)[2]); | 
|  | if ((container >> 28)) { | 
|  | container = (u32)-1; | 
|  | break; | 
|  | } | 
|  | channel = (container >> 24) & 0xF; | 
|  | if (channel >= dev->maximum_num_channels) { | 
|  | container = (u32)-1; | 
|  | break; | 
|  | } | 
|  | id = container & 0xFFFF; | 
|  | lun = (container >> 16) & 0xFF; | 
|  | container = (u32)-1; | 
|  | if (id >= dev->maximum_num_physicals) { | 
|  | /* legacy dev_t ? */ | 
|  | if ((0x2000 <= id) || lun || channel || | 
|  | ((channel = (id >> 7) & 0x3F) >= | 
|  | dev->maximum_num_channels)) | 
|  | break; | 
|  | lun = (id >> 4) & 7; | 
|  | id &= 0xF; | 
|  | } | 
|  | channel = aac_phys_to_logical(channel); | 
|  | device_config_needed = | 
|  | (((__le32 *)aifcmd->data)[3] | 
|  | == cpu_to_le32(EM_DRIVE_INSERTION)) ? | 
|  | ADD : DELETE; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	If we are waiting on something and this happens to be | 
|  | * that thing then set the re-configure flag. | 
|  | */ | 
|  | if (container != (u32)-1) { | 
|  | if (container >= dev->maximum_num_containers) | 
|  | break; | 
|  | if ((dev->fsa_dev[container].config_waiting_on == | 
|  | le32_to_cpu(*(__le32 *)aifcmd->data)) && | 
|  | time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) | 
|  | dev->fsa_dev[container].config_waiting_on = 0; | 
|  | } else for (container = 0; | 
|  | container < dev->maximum_num_containers; ++container) { | 
|  | if ((dev->fsa_dev[container].config_waiting_on == | 
|  | le32_to_cpu(*(__le32 *)aifcmd->data)) && | 
|  | time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) | 
|  | dev->fsa_dev[container].config_waiting_on = 0; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case AifCmdJobProgress: | 
|  | /* | 
|  | *	These are job progress AIF's. When a Clear is being | 
|  | * done on a container it is initially created then hidden from | 
|  | * the OS. When the clear completes we don't get a config | 
|  | * change so we monitor the job status complete on a clear then | 
|  | * wait for a container change. | 
|  | */ | 
|  |  | 
|  | if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && | 
|  | (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || | 
|  | ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { | 
|  | for (container = 0; | 
|  | container < dev->maximum_num_containers; | 
|  | ++container) { | 
|  | /* | 
|  | * Stomp on all config sequencing for all | 
|  | * containers? | 
|  | */ | 
|  | dev->fsa_dev[container].config_waiting_on = | 
|  | AifEnContainerChange; | 
|  | dev->fsa_dev[container].config_needed = ADD; | 
|  | dev->fsa_dev[container].config_waiting_stamp = | 
|  | jiffies; | 
|  | } | 
|  | } | 
|  | if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && | 
|  | ((__le32 *)aifcmd->data)[6] == 0 && | 
|  | ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { | 
|  | for (container = 0; | 
|  | container < dev->maximum_num_containers; | 
|  | ++container) { | 
|  | /* | 
|  | * Stomp on all config sequencing for all | 
|  | * containers? | 
|  | */ | 
|  | dev->fsa_dev[container].config_waiting_on = | 
|  | AifEnContainerChange; | 
|  | dev->fsa_dev[container].config_needed = DELETE; | 
|  | dev->fsa_dev[container].config_waiting_stamp = | 
|  | jiffies; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | container = 0; | 
|  | retry_next: | 
|  | if (device_config_needed == NOTHING) | 
|  | for (; container < dev->maximum_num_containers; ++container) { | 
|  | if ((dev->fsa_dev[container].config_waiting_on == 0) && | 
|  | (dev->fsa_dev[container].config_needed != NOTHING) && | 
|  | time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { | 
|  | device_config_needed = | 
|  | dev->fsa_dev[container].config_needed; | 
|  | dev->fsa_dev[container].config_needed = NOTHING; | 
|  | channel = CONTAINER_TO_CHANNEL(container); | 
|  | id = CONTAINER_TO_ID(container); | 
|  | lun = CONTAINER_TO_LUN(container); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (device_config_needed == NOTHING) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | *	If we decided that a re-configuration needs to be done, | 
|  | * schedule it here on the way out the door, please close the door | 
|  | * behind you. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *	Find the scsi_device associated with the SCSI address, | 
|  | * and mark it as changed, invalidating the cache. This deals | 
|  | * with changes to existing device IDs. | 
|  | */ | 
|  |  | 
|  | if (!dev || !dev->scsi_host_ptr) | 
|  | return; | 
|  | /* | 
|  | * force reload of disk info via aac_probe_container | 
|  | */ | 
|  | if ((channel == CONTAINER_CHANNEL) && | 
|  | (device_config_needed != NOTHING)) { | 
|  | if (dev->fsa_dev[container].valid == 1) | 
|  | dev->fsa_dev[container].valid = 2; | 
|  | aac_probe_container(dev, container); | 
|  | } | 
|  | device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); | 
|  | if (device) { | 
|  | switch (device_config_needed) { | 
|  | case DELETE: | 
|  | #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) | 
|  | scsi_remove_device(device); | 
|  | #else | 
|  | if (scsi_device_online(device)) { | 
|  | scsi_device_set_state(device, SDEV_OFFLINE); | 
|  | sdev_printk(KERN_INFO, device, | 
|  | "Device offlined - %s\n", | 
|  | (channel == CONTAINER_CHANNEL) ? | 
|  | "array deleted" : | 
|  | "enclosure services event"); | 
|  | } | 
|  | #endif | 
|  | break; | 
|  | case ADD: | 
|  | if (!scsi_device_online(device)) { | 
|  | sdev_printk(KERN_INFO, device, | 
|  | "Device online - %s\n", | 
|  | (channel == CONTAINER_CHANNEL) ? | 
|  | "array created" : | 
|  | "enclosure services event"); | 
|  | scsi_device_set_state(device, SDEV_RUNNING); | 
|  | } | 
|  | /* FALLTHRU */ | 
|  | case CHANGE: | 
|  | if ((channel == CONTAINER_CHANNEL) | 
|  | && (!dev->fsa_dev[container].valid)) { | 
|  | #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) | 
|  | scsi_remove_device(device); | 
|  | #else | 
|  | if (!scsi_device_online(device)) | 
|  | break; | 
|  | scsi_device_set_state(device, SDEV_OFFLINE); | 
|  | sdev_printk(KERN_INFO, device, | 
|  | "Device offlined - %s\n", | 
|  | "array failed"); | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | scsi_rescan_device(&device->sdev_gendev); | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | scsi_device_put(device); | 
|  | device_config_needed = NOTHING; | 
|  | } | 
|  | if (device_config_needed == ADD) | 
|  | scsi_add_device(dev->scsi_host_ptr, channel, id, lun); | 
|  | if (channel == CONTAINER_CHANNEL) { | 
|  | container++; | 
|  | device_config_needed = NOTHING; | 
|  | goto retry_next; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int _aac_reset_adapter(struct aac_dev *aac, int forced) | 
|  | { | 
|  | int index, quirks; | 
|  | int retval; | 
|  | struct Scsi_Host *host; | 
|  | struct scsi_device *dev; | 
|  | struct scsi_cmnd *command; | 
|  | struct scsi_cmnd *command_list; | 
|  | int jafo = 0; | 
|  |  | 
|  | /* | 
|  | * Assumptions: | 
|  | *	- host is locked, unless called by the aacraid thread. | 
|  | *	  (a matter of convenience, due to legacy issues surrounding | 
|  | *	  eh_host_adapter_reset). | 
|  | *	- in_reset is asserted, so no new i/o is getting to the | 
|  | *	  card. | 
|  | *	- The card is dead, or will be very shortly ;-/ so no new | 
|  | *	  commands are completing in the interrupt service. | 
|  | */ | 
|  | host = aac->scsi_host_ptr; | 
|  | scsi_block_requests(host); | 
|  | aac_adapter_disable_int(aac); | 
|  | if (aac->thread->pid != current->pid) { | 
|  | spin_unlock_irq(host->host_lock); | 
|  | kthread_stop(aac->thread); | 
|  | jafo = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	If a positive health, means in a known DEAD PANIC | 
|  | * state and the adapter could be reset to `try again'. | 
|  | */ | 
|  | retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac)); | 
|  |  | 
|  | if (retval) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | *	Loop through the fibs, close the synchronous FIBS | 
|  | */ | 
|  | for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) { | 
|  | struct fib *fib = &aac->fibs[index]; | 
|  | if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && | 
|  | (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) { | 
|  | unsigned long flagv; | 
|  | spin_lock_irqsave(&fib->event_lock, flagv); | 
|  | up(&fib->event_wait); | 
|  | spin_unlock_irqrestore(&fib->event_lock, flagv); | 
|  | schedule(); | 
|  | retval = 0; | 
|  | } | 
|  | } | 
|  | /* Give some extra time for ioctls to complete. */ | 
|  | if (retval == 0) | 
|  | ssleep(2); | 
|  | index = aac->cardtype; | 
|  |  | 
|  | /* | 
|  | * Re-initialize the adapter, first free resources, then carefully | 
|  | * apply the initialization sequence to come back again. Only risk | 
|  | * is a change in Firmware dropping cache, it is assumed the caller | 
|  | * will ensure that i/o is queisced and the card is flushed in that | 
|  | * case. | 
|  | */ | 
|  | aac_fib_map_free(aac); | 
|  | pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys); | 
|  | aac->comm_addr = NULL; | 
|  | aac->comm_phys = 0; | 
|  | kfree(aac->queues); | 
|  | aac->queues = NULL; | 
|  | free_irq(aac->pdev->irq, aac); | 
|  | if (aac->msi) | 
|  | pci_disable_msi(aac->pdev); | 
|  | kfree(aac->fsa_dev); | 
|  | aac->fsa_dev = NULL; | 
|  | quirks = aac_get_driver_ident(index)->quirks; | 
|  | if (quirks & AAC_QUIRK_31BIT) { | 
|  | if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) || | 
|  | ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31))))) | 
|  | goto out; | 
|  | } else { | 
|  | if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) || | 
|  | ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32))))) | 
|  | goto out; | 
|  | } | 
|  | if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) | 
|  | goto out; | 
|  | if (quirks & AAC_QUIRK_31BIT) | 
|  | if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) | 
|  | goto out; | 
|  | if (jafo) { | 
|  | aac->thread = kthread_run(aac_command_thread, aac, aac->name); | 
|  | if (IS_ERR(aac->thread)) { | 
|  | retval = PTR_ERR(aac->thread); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | (void)aac_get_adapter_info(aac); | 
|  | if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { | 
|  | host->sg_tablesize = 34; | 
|  | host->max_sectors = (host->sg_tablesize * 8) + 112; | 
|  | } | 
|  | if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { | 
|  | host->sg_tablesize = 17; | 
|  | host->max_sectors = (host->sg_tablesize * 8) + 112; | 
|  | } | 
|  | aac_get_config_status(aac, 1); | 
|  | aac_get_containers(aac); | 
|  | /* | 
|  | * This is where the assumption that the Adapter is quiesced | 
|  | * is important. | 
|  | */ | 
|  | command_list = NULL; | 
|  | __shost_for_each_device(dev, host) { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&dev->list_lock, flags); | 
|  | list_for_each_entry(command, &dev->cmd_list, list) | 
|  | if (command->SCp.phase == AAC_OWNER_FIRMWARE) { | 
|  | command->SCp.buffer = (struct scatterlist *)command_list; | 
|  | command_list = command; | 
|  | } | 
|  | spin_unlock_irqrestore(&dev->list_lock, flags); | 
|  | } | 
|  | while ((command = command_list)) { | 
|  | command_list = (struct scsi_cmnd *)command->SCp.buffer; | 
|  | command->SCp.buffer = NULL; | 
|  | command->result = DID_OK << 16 | 
|  | | COMMAND_COMPLETE << 8 | 
|  | | SAM_STAT_TASK_SET_FULL; | 
|  | command->SCp.phase = AAC_OWNER_ERROR_HANDLER; | 
|  | command->scsi_done(command); | 
|  | } | 
|  | retval = 0; | 
|  |  | 
|  | out: | 
|  | aac->in_reset = 0; | 
|  | scsi_unblock_requests(host); | 
|  | if (jafo) { | 
|  | spin_lock_irq(host->host_lock); | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | int aac_reset_adapter(struct aac_dev * aac, int forced) | 
|  | { | 
|  | unsigned long flagv = 0; | 
|  | int retval; | 
|  | struct Scsi_Host * host; | 
|  |  | 
|  | if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (aac->in_reset) { | 
|  | spin_unlock_irqrestore(&aac->fib_lock, flagv); | 
|  | return -EBUSY; | 
|  | } | 
|  | aac->in_reset = 1; | 
|  | spin_unlock_irqrestore(&aac->fib_lock, flagv); | 
|  |  | 
|  | /* | 
|  | * Wait for all commands to complete to this specific | 
|  | * target (block maximum 60 seconds). Although not necessary, | 
|  | * it does make us a good storage citizen. | 
|  | */ | 
|  | host = aac->scsi_host_ptr; | 
|  | scsi_block_requests(host); | 
|  | if (forced < 2) for (retval = 60; retval; --retval) { | 
|  | struct scsi_device * dev; | 
|  | struct scsi_cmnd * command; | 
|  | int active = 0; | 
|  |  | 
|  | __shost_for_each_device(dev, host) { | 
|  | spin_lock_irqsave(&dev->list_lock, flagv); | 
|  | list_for_each_entry(command, &dev->cmd_list, list) { | 
|  | if (command->SCp.phase == AAC_OWNER_FIRMWARE) { | 
|  | active++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&dev->list_lock, flagv); | 
|  | if (active) | 
|  | break; | 
|  |  | 
|  | } | 
|  | /* | 
|  | * We can exit If all the commands are complete | 
|  | */ | 
|  | if (active == 0) | 
|  | break; | 
|  | ssleep(1); | 
|  | } | 
|  |  | 
|  | /* Quiesce build, flush cache, write through mode */ | 
|  | if (forced < 2) | 
|  | aac_send_shutdown(aac); | 
|  | spin_lock_irqsave(host->host_lock, flagv); | 
|  | retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1))); | 
|  | spin_unlock_irqrestore(host->host_lock, flagv); | 
|  |  | 
|  | if ((forced < 2) && (retval == -ENODEV)) { | 
|  | /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ | 
|  | struct fib * fibctx = aac_fib_alloc(aac); | 
|  | if (fibctx) { | 
|  | struct aac_pause *cmd; | 
|  | int status; | 
|  |  | 
|  | aac_fib_init(fibctx); | 
|  |  | 
|  | cmd = (struct aac_pause *) fib_data(fibctx); | 
|  |  | 
|  | cmd->command = cpu_to_le32(VM_ContainerConfig); | 
|  | cmd->type = cpu_to_le32(CT_PAUSE_IO); | 
|  | cmd->timeout = cpu_to_le32(1); | 
|  | cmd->min = cpu_to_le32(1); | 
|  | cmd->noRescan = cpu_to_le32(1); | 
|  | cmd->count = cpu_to_le32(0); | 
|  |  | 
|  | status = aac_fib_send(ContainerCommand, | 
|  | fibctx, | 
|  | sizeof(struct aac_pause), | 
|  | FsaNormal, | 
|  | -2 /* Timeout silently */, 1, | 
|  | NULL, NULL); | 
|  |  | 
|  | if (status >= 0) | 
|  | aac_fib_complete(fibctx); | 
|  | /* FIB should be freed only after getting | 
|  | * the response from the F/W */ | 
|  | if (status != -ERESTARTSYS) | 
|  | aac_fib_free(fibctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | int aac_check_health(struct aac_dev * aac) | 
|  | { | 
|  | int BlinkLED; | 
|  | unsigned long time_now, flagv = 0; | 
|  | struct list_head * entry; | 
|  | struct Scsi_Host * host; | 
|  |  | 
|  | /* Extending the scope of fib_lock slightly to protect aac->in_reset */ | 
|  | if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) | 
|  | return 0; | 
|  |  | 
|  | if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { | 
|  | spin_unlock_irqrestore(&aac->fib_lock, flagv); | 
|  | return 0; /* OK */ | 
|  | } | 
|  |  | 
|  | aac->in_reset = 1; | 
|  |  | 
|  | /* Fake up an AIF: | 
|  | *	aac_aifcmd.command = AifCmdEventNotify = 1 | 
|  | *	aac_aifcmd.seqnum = 0xFFFFFFFF | 
|  | *	aac_aifcmd.data[0] = AifEnExpEvent = 23 | 
|  | *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 | 
|  | *	aac.aifcmd.data[2] = AifHighPriority = 3 | 
|  | *	aac.aifcmd.data[3] = BlinkLED | 
|  | */ | 
|  |  | 
|  | time_now = jiffies/HZ; | 
|  | entry = aac->fib_list.next; | 
|  |  | 
|  | /* | 
|  | * For each Context that is on the | 
|  | * fibctxList, make a copy of the | 
|  | * fib, and then set the event to wake up the | 
|  | * thread that is waiting for it. | 
|  | */ | 
|  | while (entry != &aac->fib_list) { | 
|  | /* | 
|  | * Extract the fibctx | 
|  | */ | 
|  | struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); | 
|  | struct hw_fib * hw_fib; | 
|  | struct fib * fib; | 
|  | /* | 
|  | * Check if the queue is getting | 
|  | * backlogged | 
|  | */ | 
|  | if (fibctx->count > 20) { | 
|  | /* | 
|  | * It's *not* jiffies folks, | 
|  | * but jiffies / HZ, so do not | 
|  | * panic ... | 
|  | */ | 
|  | u32 time_last = fibctx->jiffies; | 
|  | /* | 
|  | * Has it been > 2 minutes | 
|  | * since the last read off | 
|  | * the queue? | 
|  | */ | 
|  | if ((time_now - time_last) > aif_timeout) { | 
|  | entry = entry->next; | 
|  | aac_close_fib_context(aac, fibctx); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Warning: no sleep allowed while | 
|  | * holding spinlock | 
|  | */ | 
|  | hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); | 
|  | fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); | 
|  | if (fib && hw_fib) { | 
|  | struct aac_aifcmd * aif; | 
|  |  | 
|  | fib->hw_fib_va = hw_fib; | 
|  | fib->dev = aac; | 
|  | aac_fib_init(fib); | 
|  | fib->type = FSAFS_NTC_FIB_CONTEXT; | 
|  | fib->size = sizeof (struct fib); | 
|  | fib->data = hw_fib->data; | 
|  | aif = (struct aac_aifcmd *)hw_fib->data; | 
|  | aif->command = cpu_to_le32(AifCmdEventNotify); | 
|  | aif->seqnum = cpu_to_le32(0xFFFFFFFF); | 
|  | ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); | 
|  | ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); | 
|  | ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); | 
|  | ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); | 
|  |  | 
|  | /* | 
|  | * Put the FIB onto the | 
|  | * fibctx's fibs | 
|  | */ | 
|  | list_add_tail(&fib->fiblink, &fibctx->fib_list); | 
|  | fibctx->count++; | 
|  | /* | 
|  | * Set the event to wake up the | 
|  | * thread that will waiting. | 
|  | */ | 
|  | up(&fibctx->wait_sem); | 
|  | } else { | 
|  | printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); | 
|  | kfree(fib); | 
|  | kfree(hw_fib); | 
|  | } | 
|  | entry = entry->next; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&aac->fib_lock, flagv); | 
|  |  | 
|  | if (BlinkLED < 0) { | 
|  | printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); | 
|  |  | 
|  | if (!aac_check_reset || ((aac_check_reset == 1) && | 
|  | (aac->supplement_adapter_info.SupportedOptions2 & | 
|  | AAC_OPTION_IGNORE_RESET))) | 
|  | goto out; | 
|  | host = aac->scsi_host_ptr; | 
|  | if (aac->thread->pid != current->pid) | 
|  | spin_lock_irqsave(host->host_lock, flagv); | 
|  | BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1); | 
|  | if (aac->thread->pid != current->pid) | 
|  | spin_unlock_irqrestore(host->host_lock, flagv); | 
|  | return BlinkLED; | 
|  |  | 
|  | out: | 
|  | aac->in_reset = 0; | 
|  | return BlinkLED; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | *	aac_command_thread	-	command processing thread | 
|  | *	@dev: Adapter to monitor | 
|  | * | 
|  | *	Waits on the commandready event in it's queue. When the event gets set | 
|  | *	it will pull FIBs off it's queue. It will continue to pull FIBs off | 
|  | *	until the queue is empty. When the queue is empty it will wait for | 
|  | *	more FIBs. | 
|  | */ | 
|  |  | 
|  | int aac_command_thread(void *data) | 
|  | { | 
|  | struct aac_dev *dev = data; | 
|  | struct hw_fib *hw_fib, *hw_newfib; | 
|  | struct fib *fib, *newfib; | 
|  | struct aac_fib_context *fibctx; | 
|  | unsigned long flags; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | unsigned long next_jiffies = jiffies + HZ; | 
|  | unsigned long next_check_jiffies = next_jiffies; | 
|  | long difference = HZ; | 
|  |  | 
|  | /* | 
|  | *	We can only have one thread per adapter for AIF's. | 
|  | */ | 
|  | if (dev->aif_thread) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | *	Let the DPC know it has a place to send the AIF's to. | 
|  | */ | 
|  | dev->aif_thread = 1; | 
|  | add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | dprintk ((KERN_INFO "aac_command_thread start\n")); | 
|  | while (1) { | 
|  | spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); | 
|  | while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { | 
|  | struct list_head *entry; | 
|  | struct aac_aifcmd * aifcmd; | 
|  |  | 
|  | set_current_state(TASK_RUNNING); | 
|  |  | 
|  | entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; | 
|  | list_del(entry); | 
|  |  | 
|  | spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); | 
|  | fib = list_entry(entry, struct fib, fiblink); | 
|  | /* | 
|  | *	We will process the FIB here or pass it to a | 
|  | *	worker thread that is TBD. We Really can't | 
|  | *	do anything at this point since we don't have | 
|  | *	anything defined for this thread to do. | 
|  | */ | 
|  | hw_fib = fib->hw_fib_va; | 
|  | memset(fib, 0, sizeof(struct fib)); | 
|  | fib->type = FSAFS_NTC_FIB_CONTEXT; | 
|  | fib->size = sizeof(struct fib); | 
|  | fib->hw_fib_va = hw_fib; | 
|  | fib->data = hw_fib->data; | 
|  | fib->dev = dev; | 
|  | /* | 
|  | *	We only handle AifRequest fibs from the adapter. | 
|  | */ | 
|  | aifcmd = (struct aac_aifcmd *) hw_fib->data; | 
|  | if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { | 
|  | /* Handle Driver Notify Events */ | 
|  | aac_handle_aif(dev, fib); | 
|  | *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); | 
|  | aac_fib_adapter_complete(fib, (u16)sizeof(u32)); | 
|  | } else { | 
|  | /* The u32 here is important and intended. We are using | 
|  | 32bit wrapping time to fit the adapter field */ | 
|  |  | 
|  | u32 time_now, time_last; | 
|  | unsigned long flagv; | 
|  | unsigned num; | 
|  | struct hw_fib ** hw_fib_pool, ** hw_fib_p; | 
|  | struct fib ** fib_pool, ** fib_p; | 
|  |  | 
|  | /* Sniff events */ | 
|  | if ((aifcmd->command == | 
|  | cpu_to_le32(AifCmdEventNotify)) || | 
|  | (aifcmd->command == | 
|  | cpu_to_le32(AifCmdJobProgress))) { | 
|  | aac_handle_aif(dev, fib); | 
|  | } | 
|  |  | 
|  | time_now = jiffies/HZ; | 
|  |  | 
|  | /* | 
|  | * Warning: no sleep allowed while | 
|  | * holding spinlock. We take the estimate | 
|  | * and pre-allocate a set of fibs outside the | 
|  | * lock. | 
|  | */ | 
|  | num = le32_to_cpu(dev->init->AdapterFibsSize) | 
|  | / sizeof(struct hw_fib); /* some extra */ | 
|  | spin_lock_irqsave(&dev->fib_lock, flagv); | 
|  | entry = dev->fib_list.next; | 
|  | while (entry != &dev->fib_list) { | 
|  | entry = entry->next; | 
|  | ++num; | 
|  | } | 
|  | spin_unlock_irqrestore(&dev->fib_lock, flagv); | 
|  | hw_fib_pool = NULL; | 
|  | fib_pool = NULL; | 
|  | if (num | 
|  | && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL))) | 
|  | && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) { | 
|  | hw_fib_p = hw_fib_pool; | 
|  | fib_p = fib_pool; | 
|  | while (hw_fib_p < &hw_fib_pool[num]) { | 
|  | if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) { | 
|  | --hw_fib_p; | 
|  | break; | 
|  | } | 
|  | if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) { | 
|  | kfree(*(--hw_fib_p)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if ((num = hw_fib_p - hw_fib_pool) == 0) { | 
|  | kfree(fib_pool); | 
|  | fib_pool = NULL; | 
|  | kfree(hw_fib_pool); | 
|  | hw_fib_pool = NULL; | 
|  | } | 
|  | } else { | 
|  | kfree(hw_fib_pool); | 
|  | hw_fib_pool = NULL; | 
|  | } | 
|  | spin_lock_irqsave(&dev->fib_lock, flagv); | 
|  | entry = dev->fib_list.next; | 
|  | /* | 
|  | * For each Context that is on the | 
|  | * fibctxList, make a copy of the | 
|  | * fib, and then set the event to wake up the | 
|  | * thread that is waiting for it. | 
|  | */ | 
|  | hw_fib_p = hw_fib_pool; | 
|  | fib_p = fib_pool; | 
|  | while (entry != &dev->fib_list) { | 
|  | /* | 
|  | * Extract the fibctx | 
|  | */ | 
|  | fibctx = list_entry(entry, struct aac_fib_context, next); | 
|  | /* | 
|  | * Check if the queue is getting | 
|  | * backlogged | 
|  | */ | 
|  | if (fibctx->count > 20) | 
|  | { | 
|  | /* | 
|  | * It's *not* jiffies folks, | 
|  | * but jiffies / HZ so do not | 
|  | * panic ... | 
|  | */ | 
|  | time_last = fibctx->jiffies; | 
|  | /* | 
|  | * Has it been > 2 minutes | 
|  | * since the last read off | 
|  | * the queue? | 
|  | */ | 
|  | if ((time_now - time_last) > aif_timeout) { | 
|  | entry = entry->next; | 
|  | aac_close_fib_context(dev, fibctx); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Warning: no sleep allowed while | 
|  | * holding spinlock | 
|  | */ | 
|  | if (hw_fib_p < &hw_fib_pool[num]) { | 
|  | hw_newfib = *hw_fib_p; | 
|  | *(hw_fib_p++) = NULL; | 
|  | newfib = *fib_p; | 
|  | *(fib_p++) = NULL; | 
|  | /* | 
|  | * Make the copy of the FIB | 
|  | */ | 
|  | memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); | 
|  | memcpy(newfib, fib, sizeof(struct fib)); | 
|  | newfib->hw_fib_va = hw_newfib; | 
|  | /* | 
|  | * Put the FIB onto the | 
|  | * fibctx's fibs | 
|  | */ | 
|  | list_add_tail(&newfib->fiblink, &fibctx->fib_list); | 
|  | fibctx->count++; | 
|  | /* | 
|  | * Set the event to wake up the | 
|  | * thread that is waiting. | 
|  | */ | 
|  | up(&fibctx->wait_sem); | 
|  | } else { | 
|  | printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); | 
|  | } | 
|  | entry = entry->next; | 
|  | } | 
|  | /* | 
|  | *	Set the status of this FIB | 
|  | */ | 
|  | *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); | 
|  | aac_fib_adapter_complete(fib, sizeof(u32)); | 
|  | spin_unlock_irqrestore(&dev->fib_lock, flagv); | 
|  | /* Free up the remaining resources */ | 
|  | hw_fib_p = hw_fib_pool; | 
|  | fib_p = fib_pool; | 
|  | while (hw_fib_p < &hw_fib_pool[num]) { | 
|  | kfree(*hw_fib_p); | 
|  | kfree(*fib_p); | 
|  | ++fib_p; | 
|  | ++hw_fib_p; | 
|  | } | 
|  | kfree(hw_fib_pool); | 
|  | kfree(fib_pool); | 
|  | } | 
|  | kfree(fib); | 
|  | spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); | 
|  | } | 
|  | /* | 
|  | *	There are no more AIF's | 
|  | */ | 
|  | spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); | 
|  |  | 
|  | /* | 
|  | *	Background activity | 
|  | */ | 
|  | if ((time_before(next_check_jiffies,next_jiffies)) | 
|  | && ((difference = next_check_jiffies - jiffies) <= 0)) { | 
|  | next_check_jiffies = next_jiffies; | 
|  | if (aac_check_health(dev) == 0) { | 
|  | difference = ((long)(unsigned)check_interval) | 
|  | * HZ; | 
|  | next_check_jiffies = jiffies + difference; | 
|  | } else if (!dev->queues) | 
|  | break; | 
|  | } | 
|  | if (!time_before(next_check_jiffies,next_jiffies) | 
|  | && ((difference = next_jiffies - jiffies) <= 0)) { | 
|  | struct timeval now; | 
|  | int ret; | 
|  |  | 
|  | /* Don't even try to talk to adapter if its sick */ | 
|  | ret = aac_check_health(dev); | 
|  | if (!ret && !dev->queues) | 
|  | break; | 
|  | next_check_jiffies = jiffies | 
|  | + ((long)(unsigned)check_interval) | 
|  | * HZ; | 
|  | do_gettimeofday(&now); | 
|  |  | 
|  | /* Synchronize our watches */ | 
|  | if (((1000000 - (1000000 / HZ)) > now.tv_usec) | 
|  | && (now.tv_usec > (1000000 / HZ))) | 
|  | difference = (((1000000 - now.tv_usec) * HZ) | 
|  | + 500000) / 1000000; | 
|  | else if (ret == 0) { | 
|  | struct fib *fibptr; | 
|  |  | 
|  | if ((fibptr = aac_fib_alloc(dev))) { | 
|  | int status; | 
|  | __le32 *info; | 
|  |  | 
|  | aac_fib_init(fibptr); | 
|  |  | 
|  | info = (__le32 *) fib_data(fibptr); | 
|  | if (now.tv_usec > 500000) | 
|  | ++now.tv_sec; | 
|  |  | 
|  | *info = cpu_to_le32(now.tv_sec); | 
|  |  | 
|  | status = aac_fib_send(SendHostTime, | 
|  | fibptr, | 
|  | sizeof(*info), | 
|  | FsaNormal, | 
|  | 1, 1, | 
|  | NULL, | 
|  | NULL); | 
|  | /* Do not set XferState to zero unless | 
|  | * receives a response from F/W */ | 
|  | if (status >= 0) | 
|  | aac_fib_complete(fibptr); | 
|  | /* FIB should be freed only after | 
|  | * getting the response from the F/W */ | 
|  | if (status != -ERESTARTSYS) | 
|  | aac_fib_free(fibptr); | 
|  | } | 
|  | difference = (long)(unsigned)update_interval*HZ; | 
|  | } else { | 
|  | /* retry shortly */ | 
|  | difference = 10 * HZ; | 
|  | } | 
|  | next_jiffies = jiffies + difference; | 
|  | if (time_before(next_check_jiffies,next_jiffies)) | 
|  | difference = next_check_jiffies - jiffies; | 
|  | } | 
|  | if (difference <= 0) | 
|  | difference = 1; | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | schedule_timeout(difference); | 
|  |  | 
|  | if (kthread_should_stop()) | 
|  | break; | 
|  | } | 
|  | if (dev->queues) | 
|  | remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); | 
|  | dev->aif_thread = 0; | 
|  | return 0; | 
|  | } |