|  | /* | 
|  | *  linux/drivers/video/cyber2000fb.c | 
|  | * | 
|  | *  Copyright (C) 1998-2002 Russell King | 
|  | * | 
|  | *  MIPS and 50xx clock support | 
|  | *  Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com> | 
|  | * | 
|  | *  32 bit support, text color and panning fixes for modes != 8 bit | 
|  | *  Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device | 
|  | * | 
|  | * Based on cyberfb.c. | 
|  | * | 
|  | * Note that we now use the new fbcon fix, var and cmap scheme.  We do | 
|  | * still have to check which console is the currently displayed one | 
|  | * however, especially for the colourmap stuff. | 
|  | * | 
|  | * We also use the new hotplug PCI subsystem.  I'm not sure if there | 
|  | * are any such cards, but I'm erring on the side of caution.  We don't | 
|  | * want to go pop just because someone does have one. | 
|  | * | 
|  | * Note that this doesn't work fully in the case of multiple CyberPro | 
|  | * cards with grabbers.  We currently can only attach to the first | 
|  | * CyberPro card found. | 
|  | * | 
|  | * When we're in truecolour mode, we power down the LUT RAM as a power | 
|  | * saving feature.  Also, when we enter any of the powersaving modes | 
|  | * (except soft blanking) we power down the RAMDACs.  This saves about | 
|  | * 1W, which is roughly 8% of the power consumption of a NetWinder | 
|  | * (which, incidentally, is about the same saving as a 2.5in hard disk | 
|  | * entering standby mode.) | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/fb.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/i2c.h> | 
|  | #include <linux/i2c-algo-bit.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  |  | 
|  | #ifdef __arm__ | 
|  | #include <asm/mach-types.h> | 
|  | #endif | 
|  |  | 
|  | #include "cyber2000fb.h" | 
|  |  | 
|  | struct cfb_info { | 
|  | struct fb_info		fb; | 
|  | struct display_switch	*dispsw; | 
|  | struct display		*display; | 
|  | unsigned char		__iomem *region; | 
|  | unsigned char		__iomem *regs; | 
|  | u_int			id; | 
|  | u_int			irq; | 
|  | int			func_use_count; | 
|  | u_long			ref_ps; | 
|  |  | 
|  | /* | 
|  | * Clock divisors | 
|  | */ | 
|  | u_int			divisors[4]; | 
|  |  | 
|  | struct { | 
|  | u8 red, green, blue; | 
|  | } palette[NR_PALETTE]; | 
|  |  | 
|  | u_char			mem_ctl1; | 
|  | u_char			mem_ctl2; | 
|  | u_char			mclk_mult; | 
|  | u_char			mclk_div; | 
|  | /* | 
|  | * RAMDAC control register is both of these or'ed together | 
|  | */ | 
|  | u_char			ramdac_ctrl; | 
|  | u_char			ramdac_powerdown; | 
|  |  | 
|  | u32			pseudo_palette[16]; | 
|  |  | 
|  | spinlock_t		reg_b0_lock; | 
|  |  | 
|  | #ifdef CONFIG_FB_CYBER2000_DDC | 
|  | bool			ddc_registered; | 
|  | struct i2c_adapter	ddc_adapter; | 
|  | struct i2c_algo_bit_data	ddc_algo; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_FB_CYBER2000_I2C | 
|  | struct i2c_adapter	i2c_adapter; | 
|  | struct i2c_algo_bit_data i2c_algo; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static char *default_font = "Acorn8x8"; | 
|  | module_param(default_font, charp, 0); | 
|  | MODULE_PARM_DESC(default_font, "Default font name"); | 
|  |  | 
|  | /* | 
|  | * Our access methods. | 
|  | */ | 
|  | #define cyber2000fb_writel(val, reg, cfb)	writel(val, (cfb)->regs + (reg)) | 
|  | #define cyber2000fb_writew(val, reg, cfb)	writew(val, (cfb)->regs + (reg)) | 
|  | #define cyber2000fb_writeb(val, reg, cfb)	writeb(val, (cfb)->regs + (reg)) | 
|  |  | 
|  | #define cyber2000fb_readb(reg, cfb)		readb((cfb)->regs + (reg)) | 
|  |  | 
|  | static inline void | 
|  | cyber2000_crtcw(unsigned int reg, unsigned int val, struct cfb_info *cfb) | 
|  | { | 
|  | cyber2000fb_writew((reg & 255) | val << 8, 0x3d4, cfb); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | cyber2000_grphw(unsigned int reg, unsigned int val, struct cfb_info *cfb) | 
|  | { | 
|  | cyber2000fb_writew((reg & 255) | val << 8, 0x3ce, cfb); | 
|  | } | 
|  |  | 
|  | static inline unsigned int | 
|  | cyber2000_grphr(unsigned int reg, struct cfb_info *cfb) | 
|  | { | 
|  | cyber2000fb_writeb(reg, 0x3ce, cfb); | 
|  | return cyber2000fb_readb(0x3cf, cfb); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | cyber2000_attrw(unsigned int reg, unsigned int val, struct cfb_info *cfb) | 
|  | { | 
|  | cyber2000fb_readb(0x3da, cfb); | 
|  | cyber2000fb_writeb(reg, 0x3c0, cfb); | 
|  | cyber2000fb_readb(0x3c1, cfb); | 
|  | cyber2000fb_writeb(val, 0x3c0, cfb); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | cyber2000_seqw(unsigned int reg, unsigned int val, struct cfb_info *cfb) | 
|  | { | 
|  | cyber2000fb_writew((reg & 255) | val << 8, 0x3c4, cfb); | 
|  | } | 
|  |  | 
|  | /* -------------------- Hardware specific routines ------------------------- */ | 
|  |  | 
|  | /* | 
|  | * Hardware Cyber2000 Acceleration | 
|  | */ | 
|  | static void | 
|  | cyber2000fb_fillrect(struct fb_info *info, const struct fb_fillrect *rect) | 
|  | { | 
|  | struct cfb_info *cfb = (struct cfb_info *)info; | 
|  | unsigned long dst, col; | 
|  |  | 
|  | if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) { | 
|  | cfb_fillrect(info, rect); | 
|  | return; | 
|  | } | 
|  |  | 
|  | cyber2000fb_writeb(0, CO_REG_CONTROL, cfb); | 
|  | cyber2000fb_writew(rect->width - 1, CO_REG_PIXWIDTH, cfb); | 
|  | cyber2000fb_writew(rect->height - 1, CO_REG_PIXHEIGHT, cfb); | 
|  |  | 
|  | col = rect->color; | 
|  | if (cfb->fb.var.bits_per_pixel > 8) | 
|  | col = ((u32 *)cfb->fb.pseudo_palette)[col]; | 
|  | cyber2000fb_writel(col, CO_REG_FGCOLOUR, cfb); | 
|  |  | 
|  | dst = rect->dx + rect->dy * cfb->fb.var.xres_virtual; | 
|  | if (cfb->fb.var.bits_per_pixel == 24) { | 
|  | cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb); | 
|  | dst *= 3; | 
|  | } | 
|  |  | 
|  | cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb); | 
|  | cyber2000fb_writeb(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb); | 
|  | cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL, CO_REG_CMD_L, cfb); | 
|  | cyber2000fb_writew(CO_CMD_H_BLITTER, CO_REG_CMD_H, cfb); | 
|  | } | 
|  |  | 
|  | static void | 
|  | cyber2000fb_copyarea(struct fb_info *info, const struct fb_copyarea *region) | 
|  | { | 
|  | struct cfb_info *cfb = (struct cfb_info *)info; | 
|  | unsigned int cmd = CO_CMD_L_PATTERN_FGCOL; | 
|  | unsigned long src, dst; | 
|  |  | 
|  | if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) { | 
|  | cfb_copyarea(info, region); | 
|  | return; | 
|  | } | 
|  |  | 
|  | cyber2000fb_writeb(0, CO_REG_CONTROL, cfb); | 
|  | cyber2000fb_writew(region->width - 1, CO_REG_PIXWIDTH, cfb); | 
|  | cyber2000fb_writew(region->height - 1, CO_REG_PIXHEIGHT, cfb); | 
|  |  | 
|  | src = region->sx + region->sy * cfb->fb.var.xres_virtual; | 
|  | dst = region->dx + region->dy * cfb->fb.var.xres_virtual; | 
|  |  | 
|  | if (region->sx < region->dx) { | 
|  | src += region->width - 1; | 
|  | dst += region->width - 1; | 
|  | cmd |= CO_CMD_L_INC_LEFT; | 
|  | } | 
|  |  | 
|  | if (region->sy < region->dy) { | 
|  | src += (region->height - 1) * cfb->fb.var.xres_virtual; | 
|  | dst += (region->height - 1) * cfb->fb.var.xres_virtual; | 
|  | cmd |= CO_CMD_L_INC_UP; | 
|  | } | 
|  |  | 
|  | if (cfb->fb.var.bits_per_pixel == 24) { | 
|  | cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb); | 
|  | src *= 3; | 
|  | dst *= 3; | 
|  | } | 
|  | cyber2000fb_writel(src, CO_REG_SRC1_PTR, cfb); | 
|  | cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb); | 
|  | cyber2000fb_writew(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb); | 
|  | cyber2000fb_writew(cmd, CO_REG_CMD_L, cfb); | 
|  | cyber2000fb_writew(CO_CMD_H_FGSRCMAP | CO_CMD_H_BLITTER, | 
|  | CO_REG_CMD_H, cfb); | 
|  | } | 
|  |  | 
|  | static void | 
|  | cyber2000fb_imageblit(struct fb_info *info, const struct fb_image *image) | 
|  | { | 
|  | cfb_imageblit(info, image); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int cyber2000fb_sync(struct fb_info *info) | 
|  | { | 
|  | struct cfb_info *cfb = (struct cfb_info *)info; | 
|  | int count = 100000; | 
|  |  | 
|  | if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) | 
|  | return 0; | 
|  |  | 
|  | while (cyber2000fb_readb(CO_REG_CONTROL, cfb) & CO_CTRL_BUSY) { | 
|  | if (!count--) { | 
|  | debug_printf("accel_wait timed out\n"); | 
|  | cyber2000fb_writeb(0, CO_REG_CONTROL, cfb); | 
|  | break; | 
|  | } | 
|  | udelay(1); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * =========================================================================== | 
|  | */ | 
|  |  | 
|  | static inline u32 convert_bitfield(u_int val, struct fb_bitfield *bf) | 
|  | { | 
|  | u_int mask = (1 << bf->length) - 1; | 
|  |  | 
|  | return (val >> (16 - bf->length) & mask) << bf->offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *    Set a single color register. Return != 0 for invalid regno. | 
|  | */ | 
|  | static int | 
|  | cyber2000fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, | 
|  | u_int transp, struct fb_info *info) | 
|  | { | 
|  | struct cfb_info *cfb = (struct cfb_info *)info; | 
|  | struct fb_var_screeninfo *var = &cfb->fb.var; | 
|  | u32 pseudo_val; | 
|  | int ret = 1; | 
|  |  | 
|  | switch (cfb->fb.fix.visual) { | 
|  | default: | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Pseudocolour: | 
|  | *	   8     8 | 
|  | * pixel --/--+--/-->  red lut  --> red dac | 
|  | *	      |  8 | 
|  | *	      +--/--> green lut --> green dac | 
|  | *	      |  8 | 
|  | *	      +--/-->  blue lut --> blue dac | 
|  | */ | 
|  | case FB_VISUAL_PSEUDOCOLOR: | 
|  | if (regno >= NR_PALETTE) | 
|  | return 1; | 
|  |  | 
|  | red >>= 8; | 
|  | green >>= 8; | 
|  | blue >>= 8; | 
|  |  | 
|  | cfb->palette[regno].red = red; | 
|  | cfb->palette[regno].green = green; | 
|  | cfb->palette[regno].blue = blue; | 
|  |  | 
|  | cyber2000fb_writeb(regno, 0x3c8, cfb); | 
|  | cyber2000fb_writeb(red, 0x3c9, cfb); | 
|  | cyber2000fb_writeb(green, 0x3c9, cfb); | 
|  | cyber2000fb_writeb(blue, 0x3c9, cfb); | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Direct colour: | 
|  | *	   n     rl | 
|  | * pixel --/--+--/-->  red lut  --> red dac | 
|  | *	      |  gl | 
|  | *	      +--/--> green lut --> green dac | 
|  | *	      |  bl | 
|  | *	      +--/-->  blue lut --> blue dac | 
|  | * n = bpp, rl = red length, gl = green length, bl = blue length | 
|  | */ | 
|  | case FB_VISUAL_DIRECTCOLOR: | 
|  | red >>= 8; | 
|  | green >>= 8; | 
|  | blue >>= 8; | 
|  |  | 
|  | if (var->green.length == 6 && regno < 64) { | 
|  | cfb->palette[regno << 2].green = green; | 
|  |  | 
|  | /* | 
|  | * The 6 bits of the green component are applied | 
|  | * to the high 6 bits of the LUT. | 
|  | */ | 
|  | cyber2000fb_writeb(regno << 2, 0x3c8, cfb); | 
|  | cyber2000fb_writeb(cfb->palette[regno >> 1].red, | 
|  | 0x3c9, cfb); | 
|  | cyber2000fb_writeb(green, 0x3c9, cfb); | 
|  | cyber2000fb_writeb(cfb->palette[regno >> 1].blue, | 
|  | 0x3c9, cfb); | 
|  |  | 
|  | green = cfb->palette[regno << 3].green; | 
|  |  | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | if (var->green.length >= 5 && regno < 32) { | 
|  | cfb->palette[regno << 3].red = red; | 
|  | cfb->palette[regno << 3].green = green; | 
|  | cfb->palette[regno << 3].blue = blue; | 
|  |  | 
|  | /* | 
|  | * The 5 bits of each colour component are | 
|  | * applied to the high 5 bits of the LUT. | 
|  | */ | 
|  | cyber2000fb_writeb(regno << 3, 0x3c8, cfb); | 
|  | cyber2000fb_writeb(red, 0x3c9, cfb); | 
|  | cyber2000fb_writeb(green, 0x3c9, cfb); | 
|  | cyber2000fb_writeb(blue, 0x3c9, cfb); | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | if (var->green.length == 4 && regno < 16) { | 
|  | cfb->palette[regno << 4].red = red; | 
|  | cfb->palette[regno << 4].green = green; | 
|  | cfb->palette[regno << 4].blue = blue; | 
|  |  | 
|  | /* | 
|  | * The 5 bits of each colour component are | 
|  | * applied to the high 5 bits of the LUT. | 
|  | */ | 
|  | cyber2000fb_writeb(regno << 4, 0x3c8, cfb); | 
|  | cyber2000fb_writeb(red, 0x3c9, cfb); | 
|  | cyber2000fb_writeb(green, 0x3c9, cfb); | 
|  | cyber2000fb_writeb(blue, 0x3c9, cfb); | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since this is only used for the first 16 colours, we | 
|  | * don't have to care about overflowing for regno >= 32 | 
|  | */ | 
|  | pseudo_val = regno << var->red.offset | | 
|  | regno << var->green.offset | | 
|  | regno << var->blue.offset; | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * True colour: | 
|  | *	   n     rl | 
|  | * pixel --/--+--/--> red dac | 
|  | *	      |  gl | 
|  | *	      +--/--> green dac | 
|  | *	      |  bl | 
|  | *	      +--/--> blue dac | 
|  | * n = bpp, rl = red length, gl = green length, bl = blue length | 
|  | */ | 
|  | case FB_VISUAL_TRUECOLOR: | 
|  | pseudo_val = convert_bitfield(transp ^ 0xffff, &var->transp); | 
|  | pseudo_val |= convert_bitfield(red, &var->red); | 
|  | pseudo_val |= convert_bitfield(green, &var->green); | 
|  | pseudo_val |= convert_bitfield(blue, &var->blue); | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now set our pseudo palette for the CFB16/24/32 drivers. | 
|  | */ | 
|  | if (regno < 16) | 
|  | ((u32 *)cfb->fb.pseudo_palette)[regno] = pseudo_val; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct par_info { | 
|  | /* | 
|  | * Hardware | 
|  | */ | 
|  | u_char	clock_mult; | 
|  | u_char	clock_div; | 
|  | u_char	extseqmisc; | 
|  | u_char	co_pixfmt; | 
|  | u_char	crtc_ofl; | 
|  | u_char	crtc[19]; | 
|  | u_int	width; | 
|  | u_int	pitch; | 
|  | u_int	fetch; | 
|  |  | 
|  | /* | 
|  | * Other | 
|  | */ | 
|  | u_char	ramdac; | 
|  | }; | 
|  |  | 
|  | static const u_char crtc_idx[] = { | 
|  | 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, | 
|  | 0x08, 0x09, | 
|  | 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18 | 
|  | }; | 
|  |  | 
|  | static void cyber2000fb_write_ramdac_ctrl(struct cfb_info *cfb) | 
|  | { | 
|  | unsigned int i; | 
|  | unsigned int val = cfb->ramdac_ctrl | cfb->ramdac_powerdown; | 
|  |  | 
|  | cyber2000fb_writeb(0x56, 0x3ce, cfb); | 
|  | i = cyber2000fb_readb(0x3cf, cfb); | 
|  | cyber2000fb_writeb(i | 4, 0x3cf, cfb); | 
|  | cyber2000fb_writeb(val, 0x3c6, cfb); | 
|  | cyber2000fb_writeb(i, 0x3cf, cfb); | 
|  | /* prevent card lock-up observed on x86 with CyberPro 2000 */ | 
|  | cyber2000fb_readb(0x3cf, cfb); | 
|  | } | 
|  |  | 
|  | static void cyber2000fb_set_timing(struct cfb_info *cfb, struct par_info *hw) | 
|  | { | 
|  | u_int i; | 
|  |  | 
|  | /* | 
|  | * Blank palette | 
|  | */ | 
|  | for (i = 0; i < NR_PALETTE; i++) { | 
|  | cyber2000fb_writeb(i, 0x3c8, cfb); | 
|  | cyber2000fb_writeb(0, 0x3c9, cfb); | 
|  | cyber2000fb_writeb(0, 0x3c9, cfb); | 
|  | cyber2000fb_writeb(0, 0x3c9, cfb); | 
|  | } | 
|  |  | 
|  | cyber2000fb_writeb(0xef, 0x3c2, cfb); | 
|  | cyber2000_crtcw(0x11, 0x0b, cfb); | 
|  | cyber2000_attrw(0x11, 0x00, cfb); | 
|  |  | 
|  | cyber2000_seqw(0x00, 0x01, cfb); | 
|  | cyber2000_seqw(0x01, 0x01, cfb); | 
|  | cyber2000_seqw(0x02, 0x0f, cfb); | 
|  | cyber2000_seqw(0x03, 0x00, cfb); | 
|  | cyber2000_seqw(0x04, 0x0e, cfb); | 
|  | cyber2000_seqw(0x00, 0x03, cfb); | 
|  |  | 
|  | for (i = 0; i < sizeof(crtc_idx); i++) | 
|  | cyber2000_crtcw(crtc_idx[i], hw->crtc[i], cfb); | 
|  |  | 
|  | for (i = 0x0a; i < 0x10; i++) | 
|  | cyber2000_crtcw(i, 0, cfb); | 
|  |  | 
|  | cyber2000_grphw(EXT_CRT_VRTOFL, hw->crtc_ofl, cfb); | 
|  | cyber2000_grphw(0x00, 0x00, cfb); | 
|  | cyber2000_grphw(0x01, 0x00, cfb); | 
|  | cyber2000_grphw(0x02, 0x00, cfb); | 
|  | cyber2000_grphw(0x03, 0x00, cfb); | 
|  | cyber2000_grphw(0x04, 0x00, cfb); | 
|  | cyber2000_grphw(0x05, 0x60, cfb); | 
|  | cyber2000_grphw(0x06, 0x05, cfb); | 
|  | cyber2000_grphw(0x07, 0x0f, cfb); | 
|  | cyber2000_grphw(0x08, 0xff, cfb); | 
|  |  | 
|  | /* Attribute controller registers */ | 
|  | for (i = 0; i < 16; i++) | 
|  | cyber2000_attrw(i, i, cfb); | 
|  |  | 
|  | cyber2000_attrw(0x10, 0x01, cfb); | 
|  | cyber2000_attrw(0x11, 0x00, cfb); | 
|  | cyber2000_attrw(0x12, 0x0f, cfb); | 
|  | cyber2000_attrw(0x13, 0x00, cfb); | 
|  | cyber2000_attrw(0x14, 0x00, cfb); | 
|  |  | 
|  | /* PLL registers */ | 
|  | spin_lock(&cfb->reg_b0_lock); | 
|  | cyber2000_grphw(EXT_DCLK_MULT, hw->clock_mult, cfb); | 
|  | cyber2000_grphw(EXT_DCLK_DIV, hw->clock_div, cfb); | 
|  | cyber2000_grphw(EXT_MCLK_MULT, cfb->mclk_mult, cfb); | 
|  | cyber2000_grphw(EXT_MCLK_DIV, cfb->mclk_div, cfb); | 
|  | cyber2000_grphw(0x90, 0x01, cfb); | 
|  | cyber2000_grphw(0xb9, 0x80, cfb); | 
|  | cyber2000_grphw(0xb9, 0x00, cfb); | 
|  | spin_unlock(&cfb->reg_b0_lock); | 
|  |  | 
|  | cfb->ramdac_ctrl = hw->ramdac; | 
|  | cyber2000fb_write_ramdac_ctrl(cfb); | 
|  |  | 
|  | cyber2000fb_writeb(0x20, 0x3c0, cfb); | 
|  | cyber2000fb_writeb(0xff, 0x3c6, cfb); | 
|  |  | 
|  | cyber2000_grphw(0x14, hw->fetch, cfb); | 
|  | cyber2000_grphw(0x15, ((hw->fetch >> 8) & 0x03) | | 
|  | ((hw->pitch >> 4) & 0x30), cfb); | 
|  | cyber2000_grphw(EXT_SEQ_MISC, hw->extseqmisc, cfb); | 
|  |  | 
|  | /* | 
|  | * Set up accelerator registers | 
|  | */ | 
|  | cyber2000fb_writew(hw->width, CO_REG_SRC_WIDTH, cfb); | 
|  | cyber2000fb_writew(hw->width, CO_REG_DEST_WIDTH, cfb); | 
|  | cyber2000fb_writeb(hw->co_pixfmt, CO_REG_PIXFMT, cfb); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | cyber2000fb_update_start(struct cfb_info *cfb, struct fb_var_screeninfo *var) | 
|  | { | 
|  | u_int base = var->yoffset * var->xres_virtual + var->xoffset; | 
|  |  | 
|  | base *= var->bits_per_pixel; | 
|  |  | 
|  | /* | 
|  | * Convert to bytes and shift two extra bits because DAC | 
|  | * can only start on 4 byte aligned data. | 
|  | */ | 
|  | base >>= 5; | 
|  |  | 
|  | if (base >= 1 << 20) | 
|  | return -EINVAL; | 
|  |  | 
|  | cyber2000_grphw(0x10, base >> 16 | 0x10, cfb); | 
|  | cyber2000_crtcw(0x0c, base >> 8, cfb); | 
|  | cyber2000_crtcw(0x0d, base, cfb); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | cyber2000fb_decode_crtc(struct par_info *hw, struct cfb_info *cfb, | 
|  | struct fb_var_screeninfo *var) | 
|  | { | 
|  | u_int Htotal, Hblankend, Hsyncend; | 
|  | u_int Vtotal, Vdispend, Vblankstart, Vblankend, Vsyncstart, Vsyncend; | 
|  | #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2)) | 
|  |  | 
|  | hw->crtc[13] = hw->pitch; | 
|  | hw->crtc[17] = 0xe3; | 
|  | hw->crtc[14] = 0; | 
|  | hw->crtc[8]  = 0; | 
|  |  | 
|  | Htotal     = var->xres + var->right_margin + | 
|  | var->hsync_len + var->left_margin; | 
|  |  | 
|  | if (Htotal > 2080) | 
|  | return -EINVAL; | 
|  |  | 
|  | hw->crtc[0] = (Htotal >> 3) - 5; | 
|  | hw->crtc[1] = (var->xres >> 3) - 1; | 
|  | hw->crtc[2] = var->xres >> 3; | 
|  | hw->crtc[4] = (var->xres + var->right_margin) >> 3; | 
|  |  | 
|  | Hblankend   = (Htotal - 4 * 8) >> 3; | 
|  |  | 
|  | hw->crtc[3] = ENCODE_BIT(Hblankend,  0, 0x1f,  0) | | 
|  | ENCODE_BIT(1,          0, 0x01,  7); | 
|  |  | 
|  | Hsyncend    = (var->xres + var->right_margin + var->hsync_len) >> 3; | 
|  |  | 
|  | hw->crtc[5] = ENCODE_BIT(Hsyncend,   0, 0x1f,  0) | | 
|  | ENCODE_BIT(Hblankend,  5, 0x01,  7); | 
|  |  | 
|  | Vdispend    = var->yres - 1; | 
|  | Vsyncstart  = var->yres + var->lower_margin; | 
|  | Vsyncend    = var->yres + var->lower_margin + var->vsync_len; | 
|  | Vtotal      = var->yres + var->lower_margin + var->vsync_len + | 
|  | var->upper_margin - 2; | 
|  |  | 
|  | if (Vtotal > 2047) | 
|  | return -EINVAL; | 
|  |  | 
|  | Vblankstart = var->yres + 6; | 
|  | Vblankend   = Vtotal - 10; | 
|  |  | 
|  | hw->crtc[6]  = Vtotal; | 
|  | hw->crtc[7]  = ENCODE_BIT(Vtotal,     8, 0x01,  0) | | 
|  | ENCODE_BIT(Vdispend,   8, 0x01,  1) | | 
|  | ENCODE_BIT(Vsyncstart, 8, 0x01,  2) | | 
|  | ENCODE_BIT(Vblankstart, 8, 0x01,  3) | | 
|  | ENCODE_BIT(1,          0, 0x01,  4) | | 
|  | ENCODE_BIT(Vtotal,     9, 0x01,  5) | | 
|  | ENCODE_BIT(Vdispend,   9, 0x01,  6) | | 
|  | ENCODE_BIT(Vsyncstart, 9, 0x01,  7); | 
|  | hw->crtc[9]  = ENCODE_BIT(0,          0, 0x1f,  0) | | 
|  | ENCODE_BIT(Vblankstart, 9, 0x01,  5) | | 
|  | ENCODE_BIT(1,          0, 0x01,  6); | 
|  | hw->crtc[10] = Vsyncstart; | 
|  | hw->crtc[11] = ENCODE_BIT(Vsyncend,   0, 0x0f,  0) | | 
|  | ENCODE_BIT(1,          0, 0x01,  7); | 
|  | hw->crtc[12] = Vdispend; | 
|  | hw->crtc[15] = Vblankstart; | 
|  | hw->crtc[16] = Vblankend; | 
|  | hw->crtc[18] = 0xff; | 
|  |  | 
|  | /* | 
|  | * overflow - graphics reg 0x11 | 
|  | * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10 | 
|  | * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT | 
|  | */ | 
|  | hw->crtc_ofl = | 
|  | ENCODE_BIT(Vtotal, 10, 0x01, 0) | | 
|  | ENCODE_BIT(Vdispend, 10, 0x01, 1) | | 
|  | ENCODE_BIT(Vsyncstart, 10, 0x01, 2) | | 
|  | ENCODE_BIT(Vblankstart, 10, 0x01, 3) | | 
|  | EXT_CRT_VRTOFL_LINECOMP10; | 
|  |  | 
|  | /* woody: set the interlaced bit... */ | 
|  | /* FIXME: what about doublescan? */ | 
|  | if ((var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED) | 
|  | hw->crtc_ofl |= EXT_CRT_VRTOFL_INTERLACE; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following was discovered by a good monitor, bit twiddling, theorising | 
|  | * and but mostly luck.  Strangely, it looks like everyone elses' PLL! | 
|  | * | 
|  | * Clock registers: | 
|  | *   fclock = fpll / div2 | 
|  | *   fpll   = fref * mult / div1 | 
|  | * where: | 
|  | *   fref = 14.318MHz (69842ps) | 
|  | *   mult = reg0xb0.7:0 | 
|  | *   div1 = (reg0xb1.5:0 + 1) | 
|  | *   div2 =  2^(reg0xb1.7:6) | 
|  | *   fpll should be between 115 and 260 MHz | 
|  | *  (8696ps and 3846ps) | 
|  | */ | 
|  | static int | 
|  | cyber2000fb_decode_clock(struct par_info *hw, struct cfb_info *cfb, | 
|  | struct fb_var_screeninfo *var) | 
|  | { | 
|  | u_long pll_ps = var->pixclock; | 
|  | const u_long ref_ps = cfb->ref_ps; | 
|  | u_int div2, t_div1, best_div1, best_mult; | 
|  | int best_diff; | 
|  | int vco; | 
|  |  | 
|  | /* | 
|  | * Step 1: | 
|  | *   find div2 such that 115MHz < fpll < 260MHz | 
|  | *   and 0 <= div2 < 4 | 
|  | */ | 
|  | for (div2 = 0; div2 < 4; div2++) { | 
|  | u_long new_pll; | 
|  |  | 
|  | new_pll = pll_ps / cfb->divisors[div2]; | 
|  | if (8696 > new_pll && new_pll > 3846) { | 
|  | pll_ps = new_pll; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (div2 == 4) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Step 2: | 
|  | *  Given pll_ps and ref_ps, find: | 
|  | *    pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005 | 
|  | *  where { 1 < best_div1 < 32, 1 < best_mult < 256 } | 
|  | *    pll_ps_calc = best_div1 / (ref_ps * best_mult) | 
|  | */ | 
|  | best_diff = 0x7fffffff; | 
|  | best_mult = 2; | 
|  | best_div1 = 32; | 
|  | for (t_div1 = 2; t_div1 < 32; t_div1 += 1) { | 
|  | u_int rr, t_mult, t_pll_ps; | 
|  | int diff; | 
|  |  | 
|  | /* | 
|  | * Find the multiplier for this divisor | 
|  | */ | 
|  | rr = ref_ps * t_div1; | 
|  | t_mult = (rr + pll_ps / 2) / pll_ps; | 
|  |  | 
|  | /* | 
|  | * Is the multiplier within the correct range? | 
|  | */ | 
|  | if (t_mult > 256 || t_mult < 2) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Calculate the actual clock period from this multiplier | 
|  | * and divisor, and estimate the error. | 
|  | */ | 
|  | t_pll_ps = (rr + t_mult / 2) / t_mult; | 
|  | diff = pll_ps - t_pll_ps; | 
|  | if (diff < 0) | 
|  | diff = -diff; | 
|  |  | 
|  | if (diff < best_diff) { | 
|  | best_diff = diff; | 
|  | best_mult = t_mult; | 
|  | best_div1 = t_div1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we hit an exact value, there is no point in continuing. | 
|  | */ | 
|  | if (diff == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Step 3: | 
|  | *  combine values | 
|  | */ | 
|  | hw->clock_mult = best_mult - 1; | 
|  | hw->clock_div  = div2 << 6 | (best_div1 - 1); | 
|  |  | 
|  | vco = ref_ps * best_div1 / best_mult; | 
|  | if ((ref_ps == 40690) && (vco < 5556)) | 
|  | /* Set VFSEL when VCO > 180MHz (5.556 ps). */ | 
|  | hw->clock_div |= EXT_DCLK_DIV_VFSEL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *    Set the User Defined Part of the Display | 
|  | */ | 
|  | static int | 
|  | cyber2000fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) | 
|  | { | 
|  | struct cfb_info *cfb = (struct cfb_info *)info; | 
|  | struct par_info hw; | 
|  | unsigned int mem; | 
|  | int err; | 
|  |  | 
|  | var->transp.msb_right	= 0; | 
|  | var->red.msb_right	= 0; | 
|  | var->green.msb_right	= 0; | 
|  | var->blue.msb_right	= 0; | 
|  | var->transp.offset	= 0; | 
|  | var->transp.length	= 0; | 
|  |  | 
|  | switch (var->bits_per_pixel) { | 
|  | case 8:	/* PSEUDOCOLOUR, 256 */ | 
|  | var->red.offset		= 0; | 
|  | var->red.length		= 8; | 
|  | var->green.offset	= 0; | 
|  | var->green.length	= 8; | 
|  | var->blue.offset	= 0; | 
|  | var->blue.length	= 8; | 
|  | break; | 
|  |  | 
|  | case 16:/* DIRECTCOLOUR, 64k or 32k */ | 
|  | switch (var->green.length) { | 
|  | case 6: /* RGB565, 64k */ | 
|  | var->red.offset		= 11; | 
|  | var->red.length		= 5; | 
|  | var->green.offset	= 5; | 
|  | var->green.length	= 6; | 
|  | var->blue.offset	= 0; | 
|  | var->blue.length	= 5; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | case 5: /* RGB555, 32k */ | 
|  | var->red.offset		= 10; | 
|  | var->red.length		= 5; | 
|  | var->green.offset	= 5; | 
|  | var->green.length	= 5; | 
|  | var->blue.offset	= 0; | 
|  | var->blue.length	= 5; | 
|  | break; | 
|  |  | 
|  | case 4: /* RGB444, 4k + transparency? */ | 
|  | var->transp.offset	= 12; | 
|  | var->transp.length	= 4; | 
|  | var->red.offset		= 8; | 
|  | var->red.length		= 4; | 
|  | var->green.offset	= 4; | 
|  | var->green.length	= 4; | 
|  | var->blue.offset	= 0; | 
|  | var->blue.length	= 4; | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 24:/* TRUECOLOUR, 16m */ | 
|  | var->red.offset		= 16; | 
|  | var->red.length		= 8; | 
|  | var->green.offset	= 8; | 
|  | var->green.length	= 8; | 
|  | var->blue.offset	= 0; | 
|  | var->blue.length	= 8; | 
|  | break; | 
|  |  | 
|  | case 32:/* TRUECOLOUR, 16m */ | 
|  | var->transp.offset	= 24; | 
|  | var->transp.length	= 8; | 
|  | var->red.offset		= 16; | 
|  | var->red.length		= 8; | 
|  | var->green.offset	= 8; | 
|  | var->green.length	= 8; | 
|  | var->blue.offset	= 0; | 
|  | var->blue.length	= 8; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | mem = var->xres_virtual * var->yres_virtual * (var->bits_per_pixel / 8); | 
|  | if (mem > cfb->fb.fix.smem_len) | 
|  | var->yres_virtual = cfb->fb.fix.smem_len * 8 / | 
|  | (var->bits_per_pixel * var->xres_virtual); | 
|  |  | 
|  | if (var->yres > var->yres_virtual) | 
|  | var->yres = var->yres_virtual; | 
|  | if (var->xres > var->xres_virtual) | 
|  | var->xres = var->xres_virtual; | 
|  |  | 
|  | err = cyber2000fb_decode_clock(&hw, cfb, var); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = cyber2000fb_decode_crtc(&hw, cfb, var); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cyber2000fb_set_par(struct fb_info *info) | 
|  | { | 
|  | struct cfb_info *cfb = (struct cfb_info *)info; | 
|  | struct fb_var_screeninfo *var = &cfb->fb.var; | 
|  | struct par_info hw; | 
|  | unsigned int mem; | 
|  |  | 
|  | hw.width = var->xres_virtual; | 
|  | hw.ramdac = RAMDAC_VREFEN | RAMDAC_DAC8BIT; | 
|  |  | 
|  | switch (var->bits_per_pixel) { | 
|  | case 8: | 
|  | hw.co_pixfmt		= CO_PIXFMT_8BPP; | 
|  | hw.pitch		= hw.width >> 3; | 
|  | hw.extseqmisc		= EXT_SEQ_MISC_8; | 
|  | break; | 
|  |  | 
|  | case 16: | 
|  | hw.co_pixfmt		= CO_PIXFMT_16BPP; | 
|  | hw.pitch		= hw.width >> 2; | 
|  |  | 
|  | switch (var->green.length) { | 
|  | case 6: /* RGB565, 64k */ | 
|  | hw.extseqmisc	= EXT_SEQ_MISC_16_RGB565; | 
|  | break; | 
|  | case 5: /* RGB555, 32k */ | 
|  | hw.extseqmisc	= EXT_SEQ_MISC_16_RGB555; | 
|  | break; | 
|  | case 4: /* RGB444, 4k + transparency? */ | 
|  | hw.extseqmisc	= EXT_SEQ_MISC_16_RGB444; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 24:/* TRUECOLOUR, 16m */ | 
|  | hw.co_pixfmt		= CO_PIXFMT_24BPP; | 
|  | hw.width		*= 3; | 
|  | hw.pitch		= hw.width >> 3; | 
|  | hw.ramdac		|= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN); | 
|  | hw.extseqmisc		= EXT_SEQ_MISC_24_RGB888; | 
|  | break; | 
|  |  | 
|  | case 32:/* TRUECOLOUR, 16m */ | 
|  | hw.co_pixfmt		= CO_PIXFMT_32BPP; | 
|  | hw.pitch		= hw.width >> 1; | 
|  | hw.ramdac		|= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN); | 
|  | hw.extseqmisc		= EXT_SEQ_MISC_32; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sigh, this is absolutely disgusting, but caused by | 
|  | * the way the fbcon developers want to separate out | 
|  | * the "checking" and the "setting" of the video mode. | 
|  | * | 
|  | * If the mode is not suitable for the hardware here, | 
|  | * we can't prevent it being set by returning an error. | 
|  | * | 
|  | * In theory, since NetWinders contain just one VGA card, | 
|  | * we should never end up hitting this problem. | 
|  | */ | 
|  | BUG_ON(cyber2000fb_decode_clock(&hw, cfb, var) != 0); | 
|  | BUG_ON(cyber2000fb_decode_crtc(&hw, cfb, var) != 0); | 
|  |  | 
|  | hw.width -= 1; | 
|  | hw.fetch = hw.pitch; | 
|  | if (!(cfb->mem_ctl2 & MEM_CTL2_64BIT)) | 
|  | hw.fetch <<= 1; | 
|  | hw.fetch += 1; | 
|  |  | 
|  | cfb->fb.fix.line_length = var->xres_virtual * var->bits_per_pixel / 8; | 
|  |  | 
|  | /* | 
|  | * Same here - if the size of the video mode exceeds the | 
|  | * available RAM, we can't prevent this mode being set. | 
|  | * | 
|  | * In theory, since NetWinders contain just one VGA card, | 
|  | * we should never end up hitting this problem. | 
|  | */ | 
|  | mem = cfb->fb.fix.line_length * var->yres_virtual; | 
|  | BUG_ON(mem > cfb->fb.fix.smem_len); | 
|  |  | 
|  | /* | 
|  | * 8bpp displays are always pseudo colour.  16bpp and above | 
|  | * are direct colour or true colour, depending on whether | 
|  | * the RAMDAC palettes are bypassed.  (Direct colour has | 
|  | * palettes, true colour does not.) | 
|  | */ | 
|  | if (var->bits_per_pixel == 8) | 
|  | cfb->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; | 
|  | else if (hw.ramdac & RAMDAC_BYPASS) | 
|  | cfb->fb.fix.visual = FB_VISUAL_TRUECOLOR; | 
|  | else | 
|  | cfb->fb.fix.visual = FB_VISUAL_DIRECTCOLOR; | 
|  |  | 
|  | cyber2000fb_set_timing(cfb, &hw); | 
|  | cyber2000fb_update_start(cfb, var); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *    Pan or Wrap the Display | 
|  | */ | 
|  | static int | 
|  | cyber2000fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) | 
|  | { | 
|  | struct cfb_info *cfb = (struct cfb_info *)info; | 
|  |  | 
|  | if (cyber2000fb_update_start(cfb, var)) | 
|  | return -EINVAL; | 
|  |  | 
|  | cfb->fb.var.xoffset = var->xoffset; | 
|  | cfb->fb.var.yoffset = var->yoffset; | 
|  |  | 
|  | if (var->vmode & FB_VMODE_YWRAP) { | 
|  | cfb->fb.var.vmode |= FB_VMODE_YWRAP; | 
|  | } else { | 
|  | cfb->fb.var.vmode &= ~FB_VMODE_YWRAP; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *    (Un)Blank the display. | 
|  | * | 
|  | *  Blank the screen if blank_mode != 0, else unblank. If | 
|  | *  blank == NULL then the caller blanks by setting the CLUT | 
|  | *  (Color Look Up Table) to all black. Return 0 if blanking | 
|  | *  succeeded, != 0 if un-/blanking failed due to e.g. a | 
|  | *  video mode which doesn't support it. Implements VESA | 
|  | *  suspend and powerdown modes on hardware that supports | 
|  | *  disabling hsync/vsync: | 
|  | *    blank_mode == 2: suspend vsync | 
|  | *    blank_mode == 3: suspend hsync | 
|  | *    blank_mode == 4: powerdown | 
|  | * | 
|  | *  wms...Enable VESA DMPS compatible powerdown mode | 
|  | *  run "setterm -powersave powerdown" to take advantage | 
|  | */ | 
|  | static int cyber2000fb_blank(int blank, struct fb_info *info) | 
|  | { | 
|  | struct cfb_info *cfb = (struct cfb_info *)info; | 
|  | unsigned int sync = 0; | 
|  | int i; | 
|  |  | 
|  | switch (blank) { | 
|  | case FB_BLANK_POWERDOWN:	/* powerdown - both sync lines down */ | 
|  | sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_0; | 
|  | break; | 
|  | case FB_BLANK_HSYNC_SUSPEND:	/* hsync off */ | 
|  | sync = EXT_SYNC_CTL_VS_NORMAL | EXT_SYNC_CTL_HS_0; | 
|  | break; | 
|  | case FB_BLANK_VSYNC_SUSPEND:	/* vsync off */ | 
|  | sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_NORMAL; | 
|  | break; | 
|  | case FB_BLANK_NORMAL:		/* soft blank */ | 
|  | default:			/* unblank */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | cyber2000_grphw(EXT_SYNC_CTL, sync, cfb); | 
|  |  | 
|  | if (blank <= 1) { | 
|  | /* turn on ramdacs */ | 
|  | cfb->ramdac_powerdown &= ~(RAMDAC_DACPWRDN | RAMDAC_BYPASS | | 
|  | RAMDAC_RAMPWRDN); | 
|  | cyber2000fb_write_ramdac_ctrl(cfb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Soft blank/unblank the display. | 
|  | */ | 
|  | if (blank) {	/* soft blank */ | 
|  | for (i = 0; i < NR_PALETTE; i++) { | 
|  | cyber2000fb_writeb(i, 0x3c8, cfb); | 
|  | cyber2000fb_writeb(0, 0x3c9, cfb); | 
|  | cyber2000fb_writeb(0, 0x3c9, cfb); | 
|  | cyber2000fb_writeb(0, 0x3c9, cfb); | 
|  | } | 
|  | } else {	/* unblank */ | 
|  | for (i = 0; i < NR_PALETTE; i++) { | 
|  | cyber2000fb_writeb(i, 0x3c8, cfb); | 
|  | cyber2000fb_writeb(cfb->palette[i].red, 0x3c9, cfb); | 
|  | cyber2000fb_writeb(cfb->palette[i].green, 0x3c9, cfb); | 
|  | cyber2000fb_writeb(cfb->palette[i].blue, 0x3c9, cfb); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (blank >= 2) { | 
|  | /* turn off ramdacs */ | 
|  | cfb->ramdac_powerdown |= RAMDAC_DACPWRDN | RAMDAC_BYPASS | | 
|  | RAMDAC_RAMPWRDN; | 
|  | cyber2000fb_write_ramdac_ctrl(cfb); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct fb_ops cyber2000fb_ops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .fb_check_var	= cyber2000fb_check_var, | 
|  | .fb_set_par	= cyber2000fb_set_par, | 
|  | .fb_setcolreg	= cyber2000fb_setcolreg, | 
|  | .fb_blank	= cyber2000fb_blank, | 
|  | .fb_pan_display	= cyber2000fb_pan_display, | 
|  | .fb_fillrect	= cyber2000fb_fillrect, | 
|  | .fb_copyarea	= cyber2000fb_copyarea, | 
|  | .fb_imageblit	= cyber2000fb_imageblit, | 
|  | .fb_sync	= cyber2000fb_sync, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This is the only "static" reference to the internal data structures | 
|  | * of this driver.  It is here solely at the moment to support the other | 
|  | * CyberPro modules external to this driver. | 
|  | */ | 
|  | static struct cfb_info *int_cfb_info; | 
|  |  | 
|  | /* | 
|  | * Enable access to the extended registers | 
|  | */ | 
|  | void cyber2000fb_enable_extregs(struct cfb_info *cfb) | 
|  | { | 
|  | cfb->func_use_count += 1; | 
|  |  | 
|  | if (cfb->func_use_count == 1) { | 
|  | int old; | 
|  |  | 
|  | old = cyber2000_grphr(EXT_FUNC_CTL, cfb); | 
|  | old |= EXT_FUNC_CTL_EXTREGENBL; | 
|  | cyber2000_grphw(EXT_FUNC_CTL, old, cfb); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(cyber2000fb_enable_extregs); | 
|  |  | 
|  | /* | 
|  | * Disable access to the extended registers | 
|  | */ | 
|  | void cyber2000fb_disable_extregs(struct cfb_info *cfb) | 
|  | { | 
|  | if (cfb->func_use_count == 1) { | 
|  | int old; | 
|  |  | 
|  | old = cyber2000_grphr(EXT_FUNC_CTL, cfb); | 
|  | old &= ~EXT_FUNC_CTL_EXTREGENBL; | 
|  | cyber2000_grphw(EXT_FUNC_CTL, old, cfb); | 
|  | } | 
|  |  | 
|  | if (cfb->func_use_count == 0) | 
|  | printk(KERN_ERR "disable_extregs: count = 0\n"); | 
|  | else | 
|  | cfb->func_use_count -= 1; | 
|  | } | 
|  | EXPORT_SYMBOL(cyber2000fb_disable_extregs); | 
|  |  | 
|  | /* | 
|  | * Attach a capture/tv driver to the core CyberX0X0 driver. | 
|  | */ | 
|  | int cyber2000fb_attach(struct cyberpro_info *info, int idx) | 
|  | { | 
|  | if (int_cfb_info != NULL) { | 
|  | info->dev	      = int_cfb_info->fb.device; | 
|  | #ifdef CONFIG_FB_CYBER2000_I2C | 
|  | info->i2c	      = &int_cfb_info->i2c_adapter; | 
|  | #else | 
|  | info->i2c	      = NULL; | 
|  | #endif | 
|  | info->regs	      = int_cfb_info->regs; | 
|  | info->irq             = int_cfb_info->irq; | 
|  | info->fb	      = int_cfb_info->fb.screen_base; | 
|  | info->fb_size	      = int_cfb_info->fb.fix.smem_len; | 
|  | info->info	      = int_cfb_info; | 
|  |  | 
|  | strlcpy(info->dev_name, int_cfb_info->fb.fix.id, | 
|  | sizeof(info->dev_name)); | 
|  | } | 
|  |  | 
|  | return int_cfb_info != NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(cyber2000fb_attach); | 
|  |  | 
|  | /* | 
|  | * Detach a capture/tv driver from the core CyberX0X0 driver. | 
|  | */ | 
|  | void cyber2000fb_detach(int idx) | 
|  | { | 
|  | } | 
|  | EXPORT_SYMBOL(cyber2000fb_detach); | 
|  |  | 
|  | #ifdef CONFIG_FB_CYBER2000_DDC | 
|  |  | 
|  | #define DDC_REG		0xb0 | 
|  | #define DDC_SCL_OUT	(1 << 0) | 
|  | #define DDC_SDA_OUT	(1 << 4) | 
|  | #define DDC_SCL_IN	(1 << 2) | 
|  | #define DDC_SDA_IN	(1 << 6) | 
|  |  | 
|  | static void cyber2000fb_enable_ddc(struct cfb_info *cfb) | 
|  | { | 
|  | spin_lock(&cfb->reg_b0_lock); | 
|  | cyber2000fb_writew(0x1bf, 0x3ce, cfb); | 
|  | } | 
|  |  | 
|  | static void cyber2000fb_disable_ddc(struct cfb_info *cfb) | 
|  | { | 
|  | cyber2000fb_writew(0x0bf, 0x3ce, cfb); | 
|  | spin_unlock(&cfb->reg_b0_lock); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void cyber2000fb_ddc_setscl(void *data, int val) | 
|  | { | 
|  | struct cfb_info *cfb = data; | 
|  | unsigned char reg; | 
|  |  | 
|  | cyber2000fb_enable_ddc(cfb); | 
|  | reg = cyber2000_grphr(DDC_REG, cfb); | 
|  | if (!val)	/* bit is inverted */ | 
|  | reg |= DDC_SCL_OUT; | 
|  | else | 
|  | reg &= ~DDC_SCL_OUT; | 
|  | cyber2000_grphw(DDC_REG, reg, cfb); | 
|  | cyber2000fb_disable_ddc(cfb); | 
|  | } | 
|  |  | 
|  | static void cyber2000fb_ddc_setsda(void *data, int val) | 
|  | { | 
|  | struct cfb_info *cfb = data; | 
|  | unsigned char reg; | 
|  |  | 
|  | cyber2000fb_enable_ddc(cfb); | 
|  | reg = cyber2000_grphr(DDC_REG, cfb); | 
|  | if (!val)	/* bit is inverted */ | 
|  | reg |= DDC_SDA_OUT; | 
|  | else | 
|  | reg &= ~DDC_SDA_OUT; | 
|  | cyber2000_grphw(DDC_REG, reg, cfb); | 
|  | cyber2000fb_disable_ddc(cfb); | 
|  | } | 
|  |  | 
|  | static int cyber2000fb_ddc_getscl(void *data) | 
|  | { | 
|  | struct cfb_info *cfb = data; | 
|  | int retval; | 
|  |  | 
|  | cyber2000fb_enable_ddc(cfb); | 
|  | retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SCL_IN); | 
|  | cyber2000fb_disable_ddc(cfb); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int cyber2000fb_ddc_getsda(void *data) | 
|  | { | 
|  | struct cfb_info *cfb = data; | 
|  | int retval; | 
|  |  | 
|  | cyber2000fb_enable_ddc(cfb); | 
|  | retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SDA_IN); | 
|  | cyber2000fb_disable_ddc(cfb); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int __devinit cyber2000fb_setup_ddc_bus(struct cfb_info *cfb) | 
|  | { | 
|  | strlcpy(cfb->ddc_adapter.name, cfb->fb.fix.id, | 
|  | sizeof(cfb->ddc_adapter.name)); | 
|  | cfb->ddc_adapter.owner		= THIS_MODULE; | 
|  | cfb->ddc_adapter.class		= I2C_CLASS_DDC; | 
|  | cfb->ddc_adapter.algo_data	= &cfb->ddc_algo; | 
|  | cfb->ddc_adapter.dev.parent	= cfb->fb.device; | 
|  | cfb->ddc_algo.setsda		= cyber2000fb_ddc_setsda; | 
|  | cfb->ddc_algo.setscl		= cyber2000fb_ddc_setscl; | 
|  | cfb->ddc_algo.getsda		= cyber2000fb_ddc_getsda; | 
|  | cfb->ddc_algo.getscl		= cyber2000fb_ddc_getscl; | 
|  | cfb->ddc_algo.udelay		= 10; | 
|  | cfb->ddc_algo.timeout		= 20; | 
|  | cfb->ddc_algo.data		= cfb; | 
|  |  | 
|  | i2c_set_adapdata(&cfb->ddc_adapter, cfb); | 
|  |  | 
|  | return i2c_bit_add_bus(&cfb->ddc_adapter); | 
|  | } | 
|  | #endif /* CONFIG_FB_CYBER2000_DDC */ | 
|  |  | 
|  | #ifdef CONFIG_FB_CYBER2000_I2C | 
|  | static void cyber2000fb_i2c_setsda(void *data, int state) | 
|  | { | 
|  | struct cfb_info *cfb = data; | 
|  | unsigned int latch2; | 
|  |  | 
|  | spin_lock(&cfb->reg_b0_lock); | 
|  | latch2 = cyber2000_grphr(EXT_LATCH2, cfb); | 
|  | latch2 &= EXT_LATCH2_I2C_CLKEN; | 
|  | if (state) | 
|  | latch2 |= EXT_LATCH2_I2C_DATEN; | 
|  | cyber2000_grphw(EXT_LATCH2, latch2, cfb); | 
|  | spin_unlock(&cfb->reg_b0_lock); | 
|  | } | 
|  |  | 
|  | static void cyber2000fb_i2c_setscl(void *data, int state) | 
|  | { | 
|  | struct cfb_info *cfb = data; | 
|  | unsigned int latch2; | 
|  |  | 
|  | spin_lock(&cfb->reg_b0_lock); | 
|  | latch2 = cyber2000_grphr(EXT_LATCH2, cfb); | 
|  | latch2 &= EXT_LATCH2_I2C_DATEN; | 
|  | if (state) | 
|  | latch2 |= EXT_LATCH2_I2C_CLKEN; | 
|  | cyber2000_grphw(EXT_LATCH2, latch2, cfb); | 
|  | spin_unlock(&cfb->reg_b0_lock); | 
|  | } | 
|  |  | 
|  | static int cyber2000fb_i2c_getsda(void *data) | 
|  | { | 
|  | struct cfb_info *cfb = data; | 
|  | int ret; | 
|  |  | 
|  | spin_lock(&cfb->reg_b0_lock); | 
|  | ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_DAT); | 
|  | spin_unlock(&cfb->reg_b0_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cyber2000fb_i2c_getscl(void *data) | 
|  | { | 
|  | struct cfb_info *cfb = data; | 
|  | int ret; | 
|  |  | 
|  | spin_lock(&cfb->reg_b0_lock); | 
|  | ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_CLK); | 
|  | spin_unlock(&cfb->reg_b0_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __devinit cyber2000fb_i2c_register(struct cfb_info *cfb) | 
|  | { | 
|  | strlcpy(cfb->i2c_adapter.name, cfb->fb.fix.id, | 
|  | sizeof(cfb->i2c_adapter.name)); | 
|  | cfb->i2c_adapter.owner = THIS_MODULE; | 
|  | cfb->i2c_adapter.algo_data = &cfb->i2c_algo; | 
|  | cfb->i2c_adapter.dev.parent = cfb->fb.device; | 
|  | cfb->i2c_algo.setsda = cyber2000fb_i2c_setsda; | 
|  | cfb->i2c_algo.setscl = cyber2000fb_i2c_setscl; | 
|  | cfb->i2c_algo.getsda = cyber2000fb_i2c_getsda; | 
|  | cfb->i2c_algo.getscl = cyber2000fb_i2c_getscl; | 
|  | cfb->i2c_algo.udelay = 5; | 
|  | cfb->i2c_algo.timeout = msecs_to_jiffies(100); | 
|  | cfb->i2c_algo.data = cfb; | 
|  |  | 
|  | return i2c_bit_add_bus(&cfb->i2c_adapter); | 
|  | } | 
|  |  | 
|  | static void cyber2000fb_i2c_unregister(struct cfb_info *cfb) | 
|  | { | 
|  | i2c_del_adapter(&cfb->i2c_adapter); | 
|  | } | 
|  | #else | 
|  | #define cyber2000fb_i2c_register(cfb)	(0) | 
|  | #define cyber2000fb_i2c_unregister(cfb)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * These parameters give | 
|  | * 640x480, hsync 31.5kHz, vsync 60Hz | 
|  | */ | 
|  | static struct fb_videomode __devinitdata cyber2000fb_default_mode = { | 
|  | .refresh	= 60, | 
|  | .xres		= 640, | 
|  | .yres		= 480, | 
|  | .pixclock	= 39722, | 
|  | .left_margin	= 56, | 
|  | .right_margin	= 16, | 
|  | .upper_margin	= 34, | 
|  | .lower_margin	= 9, | 
|  | .hsync_len	= 88, | 
|  | .vsync_len	= 2, | 
|  | .sync		= FB_SYNC_COMP_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, | 
|  | .vmode		= FB_VMODE_NONINTERLACED | 
|  | }; | 
|  |  | 
|  | static char igs_regs[] = { | 
|  | EXT_CRT_IRQ,		0, | 
|  | EXT_CRT_TEST,		0, | 
|  | EXT_SYNC_CTL,		0, | 
|  | EXT_SEG_WRITE_PTR,	0, | 
|  | EXT_SEG_READ_PTR,	0, | 
|  | EXT_BIU_MISC,		EXT_BIU_MISC_LIN_ENABLE | | 
|  | EXT_BIU_MISC_COP_ENABLE | | 
|  | EXT_BIU_MISC_COP_BFC, | 
|  | EXT_FUNC_CTL,		0, | 
|  | CURS_H_START,		0, | 
|  | CURS_H_START + 1,	0, | 
|  | CURS_H_PRESET,		0, | 
|  | CURS_V_START,		0, | 
|  | CURS_V_START + 1,	0, | 
|  | CURS_V_PRESET,		0, | 
|  | CURS_CTL,		0, | 
|  | EXT_ATTRIB_CTL,		EXT_ATTRIB_CTL_EXT, | 
|  | EXT_OVERSCAN_RED,	0, | 
|  | EXT_OVERSCAN_GREEN,	0, | 
|  | EXT_OVERSCAN_BLUE,	0, | 
|  |  | 
|  | /* some of these are questionable when we have a BIOS */ | 
|  | EXT_MEM_CTL0,		EXT_MEM_CTL0_7CLK | | 
|  | EXT_MEM_CTL0_RAS_1 | | 
|  | EXT_MEM_CTL0_MULTCAS, | 
|  | EXT_HIDDEN_CTL1,	0x30, | 
|  | EXT_FIFO_CTL,		0x0b, | 
|  | EXT_FIFO_CTL + 1,	0x17, | 
|  | 0x76,			0x00, | 
|  | EXT_HIDDEN_CTL4,	0xc8 | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Initialise the CyberPro hardware.  On the CyberPro5XXXX, | 
|  | * ensure that we're using the correct PLL (5XXX's may be | 
|  | * programmed to use an additional set of PLLs.) | 
|  | */ | 
|  | static void cyberpro_init_hw(struct cfb_info *cfb) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < sizeof(igs_regs); i += 2) | 
|  | cyber2000_grphw(igs_regs[i], igs_regs[i + 1], cfb); | 
|  |  | 
|  | if (cfb->id == ID_CYBERPRO_5000) { | 
|  | unsigned char val; | 
|  | cyber2000fb_writeb(0xba, 0x3ce, cfb); | 
|  | val = cyber2000fb_readb(0x3cf, cfb) & 0x80; | 
|  | cyber2000fb_writeb(val, 0x3cf, cfb); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct cfb_info __devinit *cyberpro_alloc_fb_info(unsigned int id, | 
|  | char *name) | 
|  | { | 
|  | struct cfb_info *cfb; | 
|  |  | 
|  | cfb = kzalloc(sizeof(struct cfb_info), GFP_KERNEL); | 
|  | if (!cfb) | 
|  | return NULL; | 
|  |  | 
|  |  | 
|  | cfb->id			= id; | 
|  |  | 
|  | if (id == ID_CYBERPRO_5000) | 
|  | cfb->ref_ps	= 40690; /* 24.576 MHz */ | 
|  | else | 
|  | cfb->ref_ps	= 69842; /* 14.31818 MHz (69841?) */ | 
|  |  | 
|  | cfb->divisors[0]	= 1; | 
|  | cfb->divisors[1]	= 2; | 
|  | cfb->divisors[2]	= 4; | 
|  |  | 
|  | if (id == ID_CYBERPRO_2000) | 
|  | cfb->divisors[3] = 8; | 
|  | else | 
|  | cfb->divisors[3] = 6; | 
|  |  | 
|  | strcpy(cfb->fb.fix.id, name); | 
|  |  | 
|  | cfb->fb.fix.type	= FB_TYPE_PACKED_PIXELS; | 
|  | cfb->fb.fix.type_aux	= 0; | 
|  | cfb->fb.fix.xpanstep	= 0; | 
|  | cfb->fb.fix.ypanstep	= 1; | 
|  | cfb->fb.fix.ywrapstep	= 0; | 
|  |  | 
|  | switch (id) { | 
|  | case ID_IGA_1682: | 
|  | cfb->fb.fix.accel = 0; | 
|  | break; | 
|  |  | 
|  | case ID_CYBERPRO_2000: | 
|  | cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2000; | 
|  | break; | 
|  |  | 
|  | case ID_CYBERPRO_2010: | 
|  | cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2010; | 
|  | break; | 
|  |  | 
|  | case ID_CYBERPRO_5000: | 
|  | cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER5000; | 
|  | break; | 
|  | } | 
|  |  | 
|  | cfb->fb.var.nonstd	= 0; | 
|  | cfb->fb.var.activate	= FB_ACTIVATE_NOW; | 
|  | cfb->fb.var.height	= -1; | 
|  | cfb->fb.var.width	= -1; | 
|  | cfb->fb.var.accel_flags	= FB_ACCELF_TEXT; | 
|  |  | 
|  | cfb->fb.fbops		= &cyber2000fb_ops; | 
|  | cfb->fb.flags		= FBINFO_DEFAULT | FBINFO_HWACCEL_YPAN; | 
|  | cfb->fb.pseudo_palette	= cfb->pseudo_palette; | 
|  |  | 
|  | spin_lock_init(&cfb->reg_b0_lock); | 
|  |  | 
|  | fb_alloc_cmap(&cfb->fb.cmap, NR_PALETTE, 0); | 
|  |  | 
|  | return cfb; | 
|  | } | 
|  |  | 
|  | static void cyberpro_free_fb_info(struct cfb_info *cfb) | 
|  | { | 
|  | if (cfb) { | 
|  | /* | 
|  | * Free the colourmap | 
|  | */ | 
|  | fb_alloc_cmap(&cfb->fb.cmap, 0, 0); | 
|  |  | 
|  | kfree(cfb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Parse Cyber2000fb options.  Usage: | 
|  | *  video=cyber2000:font:fontname | 
|  | */ | 
|  | #ifndef MODULE | 
|  | static int cyber2000fb_setup(char *options) | 
|  | { | 
|  | char *opt; | 
|  |  | 
|  | if (!options || !*options) | 
|  | return 0; | 
|  |  | 
|  | while ((opt = strsep(&options, ",")) != NULL) { | 
|  | if (!*opt) | 
|  | continue; | 
|  |  | 
|  | if (strncmp(opt, "font:", 5) == 0) { | 
|  | static char default_font_storage[40]; | 
|  |  | 
|  | strlcpy(default_font_storage, opt + 5, | 
|  | sizeof(default_font_storage)); | 
|  | default_font = default_font_storage; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | printk(KERN_ERR "CyberPro20x0: unknown parameter: %s\n", opt); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif  /*  MODULE  */ | 
|  |  | 
|  | /* | 
|  | * The CyberPro chips can be placed on many different bus types. | 
|  | * This probe function is common to all bus types.  The bus-specific | 
|  | * probe function is expected to have: | 
|  | *  - enabled access to the linear memory region | 
|  | *  - memory mapped access to the registers | 
|  | *  - initialised mem_ctl1 and mem_ctl2 appropriately. | 
|  | */ | 
|  | static int __devinit cyberpro_common_probe(struct cfb_info *cfb) | 
|  | { | 
|  | u_long smem_size; | 
|  | u_int h_sync, v_sync; | 
|  | int err; | 
|  |  | 
|  | cyberpro_init_hw(cfb); | 
|  |  | 
|  | /* | 
|  | * Get the video RAM size and width from the VGA register. | 
|  | * This should have been already initialised by the BIOS, | 
|  | * but if it's garbage, claim default 1MB VRAM (woody) | 
|  | */ | 
|  | cfb->mem_ctl1 = cyber2000_grphr(EXT_MEM_CTL1, cfb); | 
|  | cfb->mem_ctl2 = cyber2000_grphr(EXT_MEM_CTL2, cfb); | 
|  |  | 
|  | /* | 
|  | * Determine the size of the memory. | 
|  | */ | 
|  | switch (cfb->mem_ctl2 & MEM_CTL2_SIZE_MASK) { | 
|  | case MEM_CTL2_SIZE_4MB: | 
|  | smem_size = 0x00400000; | 
|  | break; | 
|  | case MEM_CTL2_SIZE_2MB: | 
|  | smem_size = 0x00200000; | 
|  | break; | 
|  | case MEM_CTL2_SIZE_1MB: | 
|  | smem_size = 0x00100000; | 
|  | break; | 
|  | default: | 
|  | smem_size = 0x00100000; | 
|  | break; | 
|  | } | 
|  |  | 
|  | cfb->fb.fix.smem_len   = smem_size; | 
|  | cfb->fb.fix.mmio_len   = MMIO_SIZE; | 
|  | cfb->fb.screen_base    = cfb->region; | 
|  |  | 
|  | #ifdef CONFIG_FB_CYBER2000_DDC | 
|  | if (cyber2000fb_setup_ddc_bus(cfb) == 0) | 
|  | cfb->ddc_registered = true; | 
|  | #endif | 
|  |  | 
|  | err = -EINVAL; | 
|  | if (!fb_find_mode(&cfb->fb.var, &cfb->fb, NULL, NULL, 0, | 
|  | &cyber2000fb_default_mode, 8)) { | 
|  | printk(KERN_ERR "%s: no valid mode found\n", cfb->fb.fix.id); | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | cfb->fb.var.yres_virtual = cfb->fb.fix.smem_len * 8 / | 
|  | (cfb->fb.var.bits_per_pixel * cfb->fb.var.xres_virtual); | 
|  |  | 
|  | if (cfb->fb.var.yres_virtual < cfb->fb.var.yres) | 
|  | cfb->fb.var.yres_virtual = cfb->fb.var.yres; | 
|  |  | 
|  | /*	fb_set_var(&cfb->fb.var, -1, &cfb->fb); */ | 
|  |  | 
|  | /* | 
|  | * Calculate the hsync and vsync frequencies.  Note that | 
|  | * we split the 1e12 constant up so that we can preserve | 
|  | * the precision and fit the results into 32-bit registers. | 
|  | *  (1953125000 * 512 = 1e12) | 
|  | */ | 
|  | h_sync = 1953125000 / cfb->fb.var.pixclock; | 
|  | h_sync = h_sync * 512 / (cfb->fb.var.xres + cfb->fb.var.left_margin + | 
|  | cfb->fb.var.right_margin + cfb->fb.var.hsync_len); | 
|  | v_sync = h_sync / (cfb->fb.var.yres + cfb->fb.var.upper_margin + | 
|  | cfb->fb.var.lower_margin + cfb->fb.var.vsync_len); | 
|  |  | 
|  | printk(KERN_INFO "%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n", | 
|  | cfb->fb.fix.id, cfb->fb.fix.smem_len >> 10, | 
|  | cfb->fb.var.xres, cfb->fb.var.yres, | 
|  | h_sync / 1000, h_sync % 1000, v_sync); | 
|  |  | 
|  | err = cyber2000fb_i2c_register(cfb); | 
|  | if (err) | 
|  | goto failed; | 
|  |  | 
|  | err = register_framebuffer(&cfb->fb); | 
|  | if (err) | 
|  | cyber2000fb_i2c_unregister(cfb); | 
|  |  | 
|  | failed: | 
|  | #ifdef CONFIG_FB_CYBER2000_DDC | 
|  | if (err && cfb->ddc_registered) | 
|  | i2c_del_adapter(&cfb->ddc_adapter); | 
|  | #endif | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __devexit cyberpro_common_remove(struct cfb_info *cfb) | 
|  | { | 
|  | unregister_framebuffer(&cfb->fb); | 
|  | #ifdef CONFIG_FB_CYBER2000_DDC | 
|  | if (cfb->ddc_registered) | 
|  | i2c_del_adapter(&cfb->ddc_adapter); | 
|  | #endif | 
|  | cyber2000fb_i2c_unregister(cfb); | 
|  | } | 
|  |  | 
|  | static void cyberpro_common_resume(struct cfb_info *cfb) | 
|  | { | 
|  | cyberpro_init_hw(cfb); | 
|  |  | 
|  | /* | 
|  | * Reprogram the MEM_CTL1 and MEM_CTL2 registers | 
|  | */ | 
|  | cyber2000_grphw(EXT_MEM_CTL1, cfb->mem_ctl1, cfb); | 
|  | cyber2000_grphw(EXT_MEM_CTL2, cfb->mem_ctl2, cfb); | 
|  |  | 
|  | /* | 
|  | * Restore the old video mode and the palette. | 
|  | * We also need to tell fbcon to redraw the console. | 
|  | */ | 
|  | cyber2000fb_set_par(&cfb->fb); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARCH_SHARK | 
|  |  | 
|  | #include <mach/framebuffer.h> | 
|  |  | 
|  | static int __devinit cyberpro_vl_probe(void) | 
|  | { | 
|  | struct cfb_info *cfb; | 
|  | int err = -ENOMEM; | 
|  |  | 
|  | if (!request_mem_region(FB_START, FB_SIZE, "CyberPro2010")) | 
|  | return err; | 
|  |  | 
|  | cfb = cyberpro_alloc_fb_info(ID_CYBERPRO_2010, "CyberPro2010"); | 
|  | if (!cfb) | 
|  | goto failed_release; | 
|  |  | 
|  | cfb->irq = -1; | 
|  | cfb->region = ioremap(FB_START, FB_SIZE); | 
|  | if (!cfb->region) | 
|  | goto failed_ioremap; | 
|  |  | 
|  | cfb->regs = cfb->region + MMIO_OFFSET; | 
|  | cfb->fb.device = NULL; | 
|  | cfb->fb.fix.mmio_start = FB_START + MMIO_OFFSET; | 
|  | cfb->fb.fix.smem_start = FB_START; | 
|  |  | 
|  | /* | 
|  | * Bring up the hardware.  This is expected to enable access | 
|  | * to the linear memory region, and allow access to the memory | 
|  | * mapped registers.  Also, mem_ctl1 and mem_ctl2 must be | 
|  | * initialised. | 
|  | */ | 
|  | cyber2000fb_writeb(0x18, 0x46e8, cfb); | 
|  | cyber2000fb_writeb(0x01, 0x102, cfb); | 
|  | cyber2000fb_writeb(0x08, 0x46e8, cfb); | 
|  | cyber2000fb_writeb(EXT_BIU_MISC, 0x3ce, cfb); | 
|  | cyber2000fb_writeb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf, cfb); | 
|  |  | 
|  | cfb->mclk_mult = 0xdb; | 
|  | cfb->mclk_div  = 0x54; | 
|  |  | 
|  | err = cyberpro_common_probe(cfb); | 
|  | if (err) | 
|  | goto failed; | 
|  |  | 
|  | if (int_cfb_info == NULL) | 
|  | int_cfb_info = cfb; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | failed: | 
|  | iounmap(cfb->region); | 
|  | failed_ioremap: | 
|  | cyberpro_free_fb_info(cfb); | 
|  | failed_release: | 
|  | release_mem_region(FB_START, FB_SIZE); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | #endif /* CONFIG_ARCH_SHARK */ | 
|  |  | 
|  | /* | 
|  | * PCI specific support. | 
|  | */ | 
|  | #ifdef CONFIG_PCI | 
|  | /* | 
|  | * We need to wake up the CyberPro, and make sure its in linear memory | 
|  | * mode.  Unfortunately, this is specific to the platform and card that | 
|  | * we are running on. | 
|  | * | 
|  | * On x86 and ARM, should we be initialising the CyberPro first via the | 
|  | * IO registers, and then the MMIO registers to catch all cases?  Can we | 
|  | * end up in the situation where the chip is in MMIO mode, but not awake | 
|  | * on an x86 system? | 
|  | */ | 
|  | static int cyberpro_pci_enable_mmio(struct cfb_info *cfb) | 
|  | { | 
|  | unsigned char val; | 
|  |  | 
|  | #if defined(__sparc_v9__) | 
|  | #error "You lose, consult DaveM." | 
|  | #elif defined(__sparc__) | 
|  | /* | 
|  | * SPARC does not have an "outb" instruction, so we generate | 
|  | * I/O cycles storing into a reserved memory space at | 
|  | * physical address 0x3000000 | 
|  | */ | 
|  | unsigned char __iomem *iop; | 
|  |  | 
|  | iop = ioremap(0x3000000, 0x5000); | 
|  | if (iop == NULL) { | 
|  | printk(KERN_ERR "iga5000: cannot map I/O\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | writeb(0x18, iop + 0x46e8); | 
|  | writeb(0x01, iop + 0x102); | 
|  | writeb(0x08, iop + 0x46e8); | 
|  | writeb(EXT_BIU_MISC, iop + 0x3ce); | 
|  | writeb(EXT_BIU_MISC_LIN_ENABLE, iop + 0x3cf); | 
|  |  | 
|  | iounmap(iop); | 
|  | #else | 
|  | /* | 
|  | * Most other machine types are "normal", so | 
|  | * we use the standard IO-based wakeup. | 
|  | */ | 
|  | outb(0x18, 0x46e8); | 
|  | outb(0x01, 0x102); | 
|  | outb(0x08, 0x46e8); | 
|  | outb(EXT_BIU_MISC, 0x3ce); | 
|  | outb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Allow the CyberPro to accept PCI burst accesses | 
|  | */ | 
|  | if (cfb->id == ID_CYBERPRO_2010) { | 
|  | printk(KERN_INFO "%s: NOT enabling PCI bursts\n", | 
|  | cfb->fb.fix.id); | 
|  | } else { | 
|  | val = cyber2000_grphr(EXT_BUS_CTL, cfb); | 
|  | if (!(val & EXT_BUS_CTL_PCIBURST_WRITE)) { | 
|  | printk(KERN_INFO "%s: enabling PCI bursts\n", | 
|  | cfb->fb.fix.id); | 
|  |  | 
|  | val |= EXT_BUS_CTL_PCIBURST_WRITE; | 
|  |  | 
|  | if (cfb->id == ID_CYBERPRO_5000) | 
|  | val |= EXT_BUS_CTL_PCIBURST_READ; | 
|  |  | 
|  | cyber2000_grphw(EXT_BUS_CTL, val, cfb); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __devinit | 
|  | cyberpro_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) | 
|  | { | 
|  | struct cfb_info *cfb; | 
|  | char name[16]; | 
|  | int err; | 
|  |  | 
|  | sprintf(name, "CyberPro%4X", id->device); | 
|  |  | 
|  | err = pci_enable_device(dev); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | cfb = cyberpro_alloc_fb_info(id->driver_data, name); | 
|  | if (!cfb) | 
|  | goto failed_release; | 
|  |  | 
|  | err = pci_request_regions(dev, cfb->fb.fix.id); | 
|  | if (err) | 
|  | goto failed_regions; | 
|  |  | 
|  | cfb->irq = dev->irq; | 
|  | cfb->region = pci_ioremap_bar(dev, 0); | 
|  | if (!cfb->region) | 
|  | goto failed_ioremap; | 
|  |  | 
|  | cfb->regs = cfb->region + MMIO_OFFSET; | 
|  | cfb->fb.device = &dev->dev; | 
|  | cfb->fb.fix.mmio_start = pci_resource_start(dev, 0) + MMIO_OFFSET; | 
|  | cfb->fb.fix.smem_start = pci_resource_start(dev, 0); | 
|  |  | 
|  | /* | 
|  | * Bring up the hardware.  This is expected to enable access | 
|  | * to the linear memory region, and allow access to the memory | 
|  | * mapped registers.  Also, mem_ctl1 and mem_ctl2 must be | 
|  | * initialised. | 
|  | */ | 
|  | err = cyberpro_pci_enable_mmio(cfb); | 
|  | if (err) | 
|  | goto failed; | 
|  |  | 
|  | /* | 
|  | * Use MCLK from BIOS. FIXME: what about hotplug? | 
|  | */ | 
|  | cfb->mclk_mult = cyber2000_grphr(EXT_MCLK_MULT, cfb); | 
|  | cfb->mclk_div  = cyber2000_grphr(EXT_MCLK_DIV, cfb); | 
|  |  | 
|  | #ifdef __arm__ | 
|  | /* | 
|  | * MCLK on the NetWinder and the Shark is fixed at 75MHz | 
|  | */ | 
|  | if (machine_is_netwinder()) { | 
|  | cfb->mclk_mult = 0xdb; | 
|  | cfb->mclk_div  = 0x54; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | err = cyberpro_common_probe(cfb); | 
|  | if (err) | 
|  | goto failed; | 
|  |  | 
|  | /* | 
|  | * Our driver data | 
|  | */ | 
|  | pci_set_drvdata(dev, cfb); | 
|  | if (int_cfb_info == NULL) | 
|  | int_cfb_info = cfb; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | failed: | 
|  | iounmap(cfb->region); | 
|  | failed_ioremap: | 
|  | pci_release_regions(dev); | 
|  | failed_regions: | 
|  | cyberpro_free_fb_info(cfb); | 
|  | failed_release: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __devexit cyberpro_pci_remove(struct pci_dev *dev) | 
|  | { | 
|  | struct cfb_info *cfb = pci_get_drvdata(dev); | 
|  |  | 
|  | if (cfb) { | 
|  | cyberpro_common_remove(cfb); | 
|  | iounmap(cfb->region); | 
|  | cyberpro_free_fb_info(cfb); | 
|  |  | 
|  | /* | 
|  | * Ensure that the driver data is no longer | 
|  | * valid. | 
|  | */ | 
|  | pci_set_drvdata(dev, NULL); | 
|  | if (cfb == int_cfb_info) | 
|  | int_cfb_info = NULL; | 
|  |  | 
|  | pci_release_regions(dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cyberpro_pci_suspend(struct pci_dev *dev, pm_message_t state) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Re-initialise the CyberPro hardware | 
|  | */ | 
|  | static int cyberpro_pci_resume(struct pci_dev *dev) | 
|  | { | 
|  | struct cfb_info *cfb = pci_get_drvdata(dev); | 
|  |  | 
|  | if (cfb) { | 
|  | cyberpro_pci_enable_mmio(cfb); | 
|  | cyberpro_common_resume(cfb); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct pci_device_id cyberpro_pci_table[] = { | 
|  | /*	Not yet | 
|  | *	{ PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682, | 
|  | *		PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 }, | 
|  | */ | 
|  | { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2000, | 
|  | PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2000 }, | 
|  | { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2010, | 
|  | PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2010 }, | 
|  | { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_5000, | 
|  | PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_5000 }, | 
|  | { 0, } | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(pci, cyberpro_pci_table); | 
|  |  | 
|  | static struct pci_driver cyberpro_driver = { | 
|  | .name		= "CyberPro", | 
|  | .probe		= cyberpro_pci_probe, | 
|  | .remove		= __devexit_p(cyberpro_pci_remove), | 
|  | .suspend	= cyberpro_pci_suspend, | 
|  | .resume		= cyberpro_pci_resume, | 
|  | .id_table	= cyberpro_pci_table | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * I don't think we can use the "module_init" stuff here because | 
|  | * the fbcon stuff may not be initialised yet.  Hence the #ifdef | 
|  | * around module_init. | 
|  | * | 
|  | * Tony: "module_init" is now required | 
|  | */ | 
|  | static int __init cyber2000fb_init(void) | 
|  | { | 
|  | int ret = -1, err; | 
|  |  | 
|  | #ifndef MODULE | 
|  | char *option = NULL; | 
|  |  | 
|  | if (fb_get_options("cyber2000fb", &option)) | 
|  | return -ENODEV; | 
|  | cyber2000fb_setup(option); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ARCH_SHARK | 
|  | err = cyberpro_vl_probe(); | 
|  | if (!err) | 
|  | ret = 0; | 
|  | #endif | 
|  | #ifdef CONFIG_PCI | 
|  | err = pci_register_driver(&cyberpro_driver); | 
|  | if (!err) | 
|  | ret = 0; | 
|  | #endif | 
|  |  | 
|  | return ret ? err : 0; | 
|  | } | 
|  | module_init(cyber2000fb_init); | 
|  |  | 
|  | #ifndef CONFIG_ARCH_SHARK | 
|  | static void __exit cyberpro_exit(void) | 
|  | { | 
|  | pci_unregister_driver(&cyberpro_driver); | 
|  | } | 
|  | module_exit(cyberpro_exit); | 
|  | #endif | 
|  |  | 
|  | MODULE_AUTHOR("Russell King"); | 
|  | MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver"); | 
|  | MODULE_LICENSE("GPL"); |