| /* | 
 |  * Memory Migration functionality - linux/mm/migration.c | 
 |  * | 
 |  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter | 
 |  * | 
 |  * Page migration was first developed in the context of the memory hotplug | 
 |  * project. The main authors of the migration code are: | 
 |  * | 
 |  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> | 
 |  * Hirokazu Takahashi <taka@valinux.co.jp> | 
 |  * Dave Hansen <haveblue@us.ibm.com> | 
 |  * Christoph Lameter | 
 |  */ | 
 |  | 
 | #include <linux/migrate.h> | 
 | #include <linux/export.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/nsproxy.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/ksm.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/topology.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/security.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/hugetlb_cgroup.h> | 
 | #include <linux/gfp.h> | 
 |  | 
 | #include <asm/tlbflush.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | /* | 
 |  * migrate_prep() needs to be called before we start compiling a list of pages | 
 |  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is | 
 |  * undesirable, use migrate_prep_local() | 
 |  */ | 
 | int migrate_prep(void) | 
 | { | 
 | 	/* | 
 | 	 * Clear the LRU lists so pages can be isolated. | 
 | 	 * Note that pages may be moved off the LRU after we have | 
 | 	 * drained them. Those pages will fail to migrate like other | 
 | 	 * pages that may be busy. | 
 | 	 */ | 
 | 	lru_add_drain_all(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Do the necessary work of migrate_prep but not if it involves other CPUs */ | 
 | int migrate_prep_local(void) | 
 | { | 
 | 	lru_add_drain(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Add isolated pages on the list back to the LRU under page lock | 
 |  * to avoid leaking evictable pages back onto unevictable list. | 
 |  */ | 
 | void putback_lru_pages(struct list_head *l) | 
 | { | 
 | 	struct page *page; | 
 | 	struct page *page2; | 
 |  | 
 | 	list_for_each_entry_safe(page, page2, l, lru) { | 
 | 		list_del(&page->lru); | 
 | 		dec_zone_page_state(page, NR_ISOLATED_ANON + | 
 | 				page_is_file_cache(page)); | 
 | 		putback_lru_page(page); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Restore a potential migration pte to a working pte entry | 
 |  */ | 
 | static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, | 
 | 				 unsigned long addr, void *old) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	swp_entry_t entry; | 
 |  	pgd_t *pgd; | 
 |  	pud_t *pud; | 
 |  	pmd_t *pmd; | 
 | 	pte_t *ptep, pte; | 
 |  	spinlock_t *ptl; | 
 |  | 
 | 	if (unlikely(PageHuge(new))) { | 
 | 		ptep = huge_pte_offset(mm, addr); | 
 | 		if (!ptep) | 
 | 			goto out; | 
 | 		ptl = &mm->page_table_lock; | 
 | 	} else { | 
 | 		pgd = pgd_offset(mm, addr); | 
 | 		if (!pgd_present(*pgd)) | 
 | 			goto out; | 
 |  | 
 | 		pud = pud_offset(pgd, addr); | 
 | 		if (!pud_present(*pud)) | 
 | 			goto out; | 
 |  | 
 | 		pmd = pmd_offset(pud, addr); | 
 | 		if (pmd_trans_huge(*pmd)) | 
 | 			goto out; | 
 | 		if (!pmd_present(*pmd)) | 
 | 			goto out; | 
 |  | 
 | 		ptep = pte_offset_map(pmd, addr); | 
 |  | 
 | 		/* | 
 | 		 * Peek to check is_swap_pte() before taking ptlock?  No, we | 
 | 		 * can race mremap's move_ptes(), which skips anon_vma lock. | 
 | 		 */ | 
 |  | 
 | 		ptl = pte_lockptr(mm, pmd); | 
 | 	} | 
 |  | 
 |  	spin_lock(ptl); | 
 | 	pte = *ptep; | 
 | 	if (!is_swap_pte(pte)) | 
 | 		goto unlock; | 
 |  | 
 | 	entry = pte_to_swp_entry(pte); | 
 |  | 
 | 	if (!is_migration_entry(entry) || | 
 | 	    migration_entry_to_page(entry) != old) | 
 | 		goto unlock; | 
 |  | 
 | 	get_page(new); | 
 | 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); | 
 | 	if (is_write_migration_entry(entry)) | 
 | 		pte = pte_mkwrite(pte); | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | 	if (PageHuge(new)) | 
 | 		pte = pte_mkhuge(pte); | 
 | #endif | 
 | 	flush_cache_page(vma, addr, pte_pfn(pte)); | 
 | 	set_pte_at(mm, addr, ptep, pte); | 
 |  | 
 | 	if (PageHuge(new)) { | 
 | 		if (PageAnon(new)) | 
 | 			hugepage_add_anon_rmap(new, vma, addr); | 
 | 		else | 
 | 			page_dup_rmap(new); | 
 | 	} else if (PageAnon(new)) | 
 | 		page_add_anon_rmap(new, vma, addr); | 
 | 	else | 
 | 		page_add_file_rmap(new); | 
 |  | 
 | 	/* No need to invalidate - it was non-present before */ | 
 | 	update_mmu_cache(vma, addr, ptep); | 
 | unlock: | 
 | 	pte_unmap_unlock(ptep, ptl); | 
 | out: | 
 | 	return SWAP_AGAIN; | 
 | } | 
 |  | 
 | /* | 
 |  * Get rid of all migration entries and replace them by | 
 |  * references to the indicated page. | 
 |  */ | 
 | static void remove_migration_ptes(struct page *old, struct page *new) | 
 | { | 
 | 	rmap_walk(new, remove_migration_pte, old); | 
 | } | 
 |  | 
 | /* | 
 |  * Something used the pte of a page under migration. We need to | 
 |  * get to the page and wait until migration is finished. | 
 |  * When we return from this function the fault will be retried. | 
 |  */ | 
 | void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, | 
 | 				unsigned long address) | 
 | { | 
 | 	pte_t *ptep, pte; | 
 | 	spinlock_t *ptl; | 
 | 	swp_entry_t entry; | 
 | 	struct page *page; | 
 |  | 
 | 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 	pte = *ptep; | 
 | 	if (!is_swap_pte(pte)) | 
 | 		goto out; | 
 |  | 
 | 	entry = pte_to_swp_entry(pte); | 
 | 	if (!is_migration_entry(entry)) | 
 | 		goto out; | 
 |  | 
 | 	page = migration_entry_to_page(entry); | 
 |  | 
 | 	/* | 
 | 	 * Once radix-tree replacement of page migration started, page_count | 
 | 	 * *must* be zero. And, we don't want to call wait_on_page_locked() | 
 | 	 * against a page without get_page(). | 
 | 	 * So, we use get_page_unless_zero(), here. Even failed, page fault | 
 | 	 * will occur again. | 
 | 	 */ | 
 | 	if (!get_page_unless_zero(page)) | 
 | 		goto out; | 
 | 	pte_unmap_unlock(ptep, ptl); | 
 | 	wait_on_page_locked(page); | 
 | 	put_page(page); | 
 | 	return; | 
 | out: | 
 | 	pte_unmap_unlock(ptep, ptl); | 
 | } | 
 |  | 
 | #ifdef CONFIG_BLOCK | 
 | /* Returns true if all buffers are successfully locked */ | 
 | static bool buffer_migrate_lock_buffers(struct buffer_head *head, | 
 | 							enum migrate_mode mode) | 
 | { | 
 | 	struct buffer_head *bh = head; | 
 |  | 
 | 	/* Simple case, sync compaction */ | 
 | 	if (mode != MIGRATE_ASYNC) { | 
 | 		do { | 
 | 			get_bh(bh); | 
 | 			lock_buffer(bh); | 
 | 			bh = bh->b_this_page; | 
 |  | 
 | 		} while (bh != head); | 
 |  | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* async case, we cannot block on lock_buffer so use trylock_buffer */ | 
 | 	do { | 
 | 		get_bh(bh); | 
 | 		if (!trylock_buffer(bh)) { | 
 | 			/* | 
 | 			 * We failed to lock the buffer and cannot stall in | 
 | 			 * async migration. Release the taken locks | 
 | 			 */ | 
 | 			struct buffer_head *failed_bh = bh; | 
 | 			put_bh(failed_bh); | 
 | 			bh = head; | 
 | 			while (bh != failed_bh) { | 
 | 				unlock_buffer(bh); | 
 | 				put_bh(bh); | 
 | 				bh = bh->b_this_page; | 
 | 			} | 
 | 			return false; | 
 | 		} | 
 |  | 
 | 		bh = bh->b_this_page; | 
 | 	} while (bh != head); | 
 | 	return true; | 
 | } | 
 | #else | 
 | static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, | 
 | 							enum migrate_mode mode) | 
 | { | 
 | 	return true; | 
 | } | 
 | #endif /* CONFIG_BLOCK */ | 
 |  | 
 | /* | 
 |  * Replace the page in the mapping. | 
 |  * | 
 |  * The number of remaining references must be: | 
 |  * 1 for anonymous pages without a mapping | 
 |  * 2 for pages with a mapping | 
 |  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. | 
 |  */ | 
 | static int migrate_page_move_mapping(struct address_space *mapping, | 
 | 		struct page *newpage, struct page *page, | 
 | 		struct buffer_head *head, enum migrate_mode mode) | 
 | { | 
 | 	int expected_count; | 
 | 	void **pslot; | 
 |  | 
 | 	if (!mapping) { | 
 | 		/* Anonymous page without mapping */ | 
 | 		if (page_count(page) != 1) | 
 | 			return -EAGAIN; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(&mapping->tree_lock); | 
 |  | 
 | 	pslot = radix_tree_lookup_slot(&mapping->page_tree, | 
 |  					page_index(page)); | 
 |  | 
 | 	expected_count = 2 + page_has_private(page); | 
 | 	if (page_count(page) != expected_count || | 
 | 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { | 
 | 		spin_unlock_irq(&mapping->tree_lock); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	if (!page_freeze_refs(page, expected_count)) { | 
 | 		spin_unlock_irq(&mapping->tree_lock); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In the async migration case of moving a page with buffers, lock the | 
 | 	 * buffers using trylock before the mapping is moved. If the mapping | 
 | 	 * was moved, we later failed to lock the buffers and could not move | 
 | 	 * the mapping back due to an elevated page count, we would have to | 
 | 	 * block waiting on other references to be dropped. | 
 | 	 */ | 
 | 	if (mode == MIGRATE_ASYNC && head && | 
 | 			!buffer_migrate_lock_buffers(head, mode)) { | 
 | 		page_unfreeze_refs(page, expected_count); | 
 | 		spin_unlock_irq(&mapping->tree_lock); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now we know that no one else is looking at the page. | 
 | 	 */ | 
 | 	get_page(newpage);	/* add cache reference */ | 
 | 	if (PageSwapCache(page)) { | 
 | 		SetPageSwapCache(newpage); | 
 | 		set_page_private(newpage, page_private(page)); | 
 | 	} | 
 |  | 
 | 	radix_tree_replace_slot(pslot, newpage); | 
 |  | 
 | 	/* | 
 | 	 * Drop cache reference from old page by unfreezing | 
 | 	 * to one less reference. | 
 | 	 * We know this isn't the last reference. | 
 | 	 */ | 
 | 	page_unfreeze_refs(page, expected_count - 1); | 
 |  | 
 | 	/* | 
 | 	 * If moved to a different zone then also account | 
 | 	 * the page for that zone. Other VM counters will be | 
 | 	 * taken care of when we establish references to the | 
 | 	 * new page and drop references to the old page. | 
 | 	 * | 
 | 	 * Note that anonymous pages are accounted for | 
 | 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they | 
 | 	 * are mapped to swap space. | 
 | 	 */ | 
 | 	__dec_zone_page_state(page, NR_FILE_PAGES); | 
 | 	__inc_zone_page_state(newpage, NR_FILE_PAGES); | 
 | 	if (!PageSwapCache(page) && PageSwapBacked(page)) { | 
 | 		__dec_zone_page_state(page, NR_SHMEM); | 
 | 		__inc_zone_page_state(newpage, NR_SHMEM); | 
 | 	} | 
 | 	spin_unlock_irq(&mapping->tree_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The expected number of remaining references is the same as that | 
 |  * of migrate_page_move_mapping(). | 
 |  */ | 
 | int migrate_huge_page_move_mapping(struct address_space *mapping, | 
 | 				   struct page *newpage, struct page *page) | 
 | { | 
 | 	int expected_count; | 
 | 	void **pslot; | 
 |  | 
 | 	if (!mapping) { | 
 | 		if (page_count(page) != 1) | 
 | 			return -EAGAIN; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(&mapping->tree_lock); | 
 |  | 
 | 	pslot = radix_tree_lookup_slot(&mapping->page_tree, | 
 | 					page_index(page)); | 
 |  | 
 | 	expected_count = 2 + page_has_private(page); | 
 | 	if (page_count(page) != expected_count || | 
 | 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { | 
 | 		spin_unlock_irq(&mapping->tree_lock); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	if (!page_freeze_refs(page, expected_count)) { | 
 | 		spin_unlock_irq(&mapping->tree_lock); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	get_page(newpage); | 
 |  | 
 | 	radix_tree_replace_slot(pslot, newpage); | 
 |  | 
 | 	page_unfreeze_refs(page, expected_count - 1); | 
 |  | 
 | 	spin_unlock_irq(&mapping->tree_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Copy the page to its new location | 
 |  */ | 
 | void migrate_page_copy(struct page *newpage, struct page *page) | 
 | { | 
 | 	if (PageHuge(page)) | 
 | 		copy_huge_page(newpage, page); | 
 | 	else | 
 | 		copy_highpage(newpage, page); | 
 |  | 
 | 	if (PageError(page)) | 
 | 		SetPageError(newpage); | 
 | 	if (PageReferenced(page)) | 
 | 		SetPageReferenced(newpage); | 
 | 	if (PageUptodate(page)) | 
 | 		SetPageUptodate(newpage); | 
 | 	if (TestClearPageActive(page)) { | 
 | 		VM_BUG_ON(PageUnevictable(page)); | 
 | 		SetPageActive(newpage); | 
 | 	} else if (TestClearPageUnevictable(page)) | 
 | 		SetPageUnevictable(newpage); | 
 | 	if (PageChecked(page)) | 
 | 		SetPageChecked(newpage); | 
 | 	if (PageMappedToDisk(page)) | 
 | 		SetPageMappedToDisk(newpage); | 
 |  | 
 | 	if (PageDirty(page)) { | 
 | 		clear_page_dirty_for_io(page); | 
 | 		/* | 
 | 		 * Want to mark the page and the radix tree as dirty, and | 
 | 		 * redo the accounting that clear_page_dirty_for_io undid, | 
 | 		 * but we can't use set_page_dirty because that function | 
 | 		 * is actually a signal that all of the page has become dirty. | 
 | 		 * Whereas only part of our page may be dirty. | 
 | 		 */ | 
 | 		if (PageSwapBacked(page)) | 
 | 			SetPageDirty(newpage); | 
 | 		else | 
 | 			__set_page_dirty_nobuffers(newpage); | 
 |  	} | 
 |  | 
 | 	mlock_migrate_page(newpage, page); | 
 | 	ksm_migrate_page(newpage, page); | 
 |  | 
 | 	ClearPageSwapCache(page); | 
 | 	ClearPagePrivate(page); | 
 | 	set_page_private(page, 0); | 
 |  | 
 | 	/* | 
 | 	 * If any waiters have accumulated on the new page then | 
 | 	 * wake them up. | 
 | 	 */ | 
 | 	if (PageWriteback(newpage)) | 
 | 		end_page_writeback(newpage); | 
 | } | 
 |  | 
 | /************************************************************ | 
 |  *                    Migration functions | 
 |  ***********************************************************/ | 
 |  | 
 | /* Always fail migration. Used for mappings that are not movable */ | 
 | int fail_migrate_page(struct address_space *mapping, | 
 | 			struct page *newpage, struct page *page) | 
 | { | 
 | 	return -EIO; | 
 | } | 
 | EXPORT_SYMBOL(fail_migrate_page); | 
 |  | 
 | /* | 
 |  * Common logic to directly migrate a single page suitable for | 
 |  * pages that do not use PagePrivate/PagePrivate2. | 
 |  * | 
 |  * Pages are locked upon entry and exit. | 
 |  */ | 
 | int migrate_page(struct address_space *mapping, | 
 | 		struct page *newpage, struct page *page, | 
 | 		enum migrate_mode mode) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */ | 
 |  | 
 | 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode); | 
 |  | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	migrate_page_copy(newpage, page); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(migrate_page); | 
 |  | 
 | #ifdef CONFIG_BLOCK | 
 | /* | 
 |  * Migration function for pages with buffers. This function can only be used | 
 |  * if the underlying filesystem guarantees that no other references to "page" | 
 |  * exist. | 
 |  */ | 
 | int buffer_migrate_page(struct address_space *mapping, | 
 | 		struct page *newpage, struct page *page, enum migrate_mode mode) | 
 | { | 
 | 	struct buffer_head *bh, *head; | 
 | 	int rc; | 
 |  | 
 | 	if (!page_has_buffers(page)) | 
 | 		return migrate_page(mapping, newpage, page, mode); | 
 |  | 
 | 	head = page_buffers(page); | 
 |  | 
 | 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode); | 
 |  | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* | 
 | 	 * In the async case, migrate_page_move_mapping locked the buffers | 
 | 	 * with an IRQ-safe spinlock held. In the sync case, the buffers | 
 | 	 * need to be locked now | 
 | 	 */ | 
 | 	if (mode != MIGRATE_ASYNC) | 
 | 		BUG_ON(!buffer_migrate_lock_buffers(head, mode)); | 
 |  | 
 | 	ClearPagePrivate(page); | 
 | 	set_page_private(newpage, page_private(page)); | 
 | 	set_page_private(page, 0); | 
 | 	put_page(page); | 
 | 	get_page(newpage); | 
 |  | 
 | 	bh = head; | 
 | 	do { | 
 | 		set_bh_page(bh, newpage, bh_offset(bh)); | 
 | 		bh = bh->b_this_page; | 
 |  | 
 | 	} while (bh != head); | 
 |  | 
 | 	SetPagePrivate(newpage); | 
 |  | 
 | 	migrate_page_copy(newpage, page); | 
 |  | 
 | 	bh = head; | 
 | 	do { | 
 | 		unlock_buffer(bh); | 
 |  		put_bh(bh); | 
 | 		bh = bh->b_this_page; | 
 |  | 
 | 	} while (bh != head); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(buffer_migrate_page); | 
 | #endif | 
 |  | 
 | /* | 
 |  * Writeback a page to clean the dirty state | 
 |  */ | 
 | static int writeout(struct address_space *mapping, struct page *page) | 
 | { | 
 | 	struct writeback_control wbc = { | 
 | 		.sync_mode = WB_SYNC_NONE, | 
 | 		.nr_to_write = 1, | 
 | 		.range_start = 0, | 
 | 		.range_end = LLONG_MAX, | 
 | 		.for_reclaim = 1 | 
 | 	}; | 
 | 	int rc; | 
 |  | 
 | 	if (!mapping->a_ops->writepage) | 
 | 		/* No write method for the address space */ | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!clear_page_dirty_for_io(page)) | 
 | 		/* Someone else already triggered a write */ | 
 | 		return -EAGAIN; | 
 |  | 
 | 	/* | 
 | 	 * A dirty page may imply that the underlying filesystem has | 
 | 	 * the page on some queue. So the page must be clean for | 
 | 	 * migration. Writeout may mean we loose the lock and the | 
 | 	 * page state is no longer what we checked for earlier. | 
 | 	 * At this point we know that the migration attempt cannot | 
 | 	 * be successful. | 
 | 	 */ | 
 | 	remove_migration_ptes(page, page); | 
 |  | 
 | 	rc = mapping->a_ops->writepage(page, &wbc); | 
 |  | 
 | 	if (rc != AOP_WRITEPAGE_ACTIVATE) | 
 | 		/* unlocked. Relock */ | 
 | 		lock_page(page); | 
 |  | 
 | 	return (rc < 0) ? -EIO : -EAGAIN; | 
 | } | 
 |  | 
 | /* | 
 |  * Default handling if a filesystem does not provide a migration function. | 
 |  */ | 
 | static int fallback_migrate_page(struct address_space *mapping, | 
 | 	struct page *newpage, struct page *page, enum migrate_mode mode) | 
 | { | 
 | 	if (PageDirty(page)) { | 
 | 		/* Only writeback pages in full synchronous migration */ | 
 | 		if (mode != MIGRATE_SYNC) | 
 | 			return -EBUSY; | 
 | 		return writeout(mapping, page); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Buffers may be managed in a filesystem specific way. | 
 | 	 * We must have no buffers or drop them. | 
 | 	 */ | 
 | 	if (page_has_private(page) && | 
 | 	    !try_to_release_page(page, GFP_KERNEL)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	return migrate_page(mapping, newpage, page, mode); | 
 | } | 
 |  | 
 | /* | 
 |  * Move a page to a newly allocated page | 
 |  * The page is locked and all ptes have been successfully removed. | 
 |  * | 
 |  * The new page will have replaced the old page if this function | 
 |  * is successful. | 
 |  * | 
 |  * Return value: | 
 |  *   < 0 - error code | 
 |  *  == 0 - success | 
 |  */ | 
 | static int move_to_new_page(struct page *newpage, struct page *page, | 
 | 				int remap_swapcache, enum migrate_mode mode) | 
 | { | 
 | 	struct address_space *mapping; | 
 | 	int rc; | 
 |  | 
 | 	/* | 
 | 	 * Block others from accessing the page when we get around to | 
 | 	 * establishing additional references. We are the only one | 
 | 	 * holding a reference to the new page at this point. | 
 | 	 */ | 
 | 	if (!trylock_page(newpage)) | 
 | 		BUG(); | 
 |  | 
 | 	/* Prepare mapping for the new page.*/ | 
 | 	newpage->index = page->index; | 
 | 	newpage->mapping = page->mapping; | 
 | 	if (PageSwapBacked(page)) | 
 | 		SetPageSwapBacked(newpage); | 
 |  | 
 | 	mapping = page_mapping(page); | 
 | 	if (!mapping) | 
 | 		rc = migrate_page(mapping, newpage, page, mode); | 
 | 	else if (mapping->a_ops->migratepage) | 
 | 		/* | 
 | 		 * Most pages have a mapping and most filesystems provide a | 
 | 		 * migratepage callback. Anonymous pages are part of swap | 
 | 		 * space which also has its own migratepage callback. This | 
 | 		 * is the most common path for page migration. | 
 | 		 */ | 
 | 		rc = mapping->a_ops->migratepage(mapping, | 
 | 						newpage, page, mode); | 
 | 	else | 
 | 		rc = fallback_migrate_page(mapping, newpage, page, mode); | 
 |  | 
 | 	if (rc) { | 
 | 		newpage->mapping = NULL; | 
 | 	} else { | 
 | 		if (remap_swapcache) | 
 | 			remove_migration_ptes(page, newpage); | 
 | 		page->mapping = NULL; | 
 | 	} | 
 |  | 
 | 	unlock_page(newpage); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int __unmap_and_move(struct page *page, struct page *newpage, | 
 | 			int force, bool offlining, enum migrate_mode mode) | 
 | { | 
 | 	int rc = -EAGAIN; | 
 | 	int remap_swapcache = 1; | 
 | 	struct mem_cgroup *mem; | 
 | 	struct anon_vma *anon_vma = NULL; | 
 |  | 
 | 	if (!trylock_page(page)) { | 
 | 		if (!force || mode == MIGRATE_ASYNC) | 
 | 			goto out; | 
 |  | 
 | 		/* | 
 | 		 * It's not safe for direct compaction to call lock_page. | 
 | 		 * For example, during page readahead pages are added locked | 
 | 		 * to the LRU. Later, when the IO completes the pages are | 
 | 		 * marked uptodate and unlocked. However, the queueing | 
 | 		 * could be merging multiple pages for one bio (e.g. | 
 | 		 * mpage_readpages). If an allocation happens for the | 
 | 		 * second or third page, the process can end up locking | 
 | 		 * the same page twice and deadlocking. Rather than | 
 | 		 * trying to be clever about what pages can be locked, | 
 | 		 * avoid the use of lock_page for direct compaction | 
 | 		 * altogether. | 
 | 		 */ | 
 | 		if (current->flags & PF_MEMALLOC) | 
 | 			goto out; | 
 |  | 
 | 		lock_page(page); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Only memory hotplug's offline_pages() caller has locked out KSM, | 
 | 	 * and can safely migrate a KSM page.  The other cases have skipped | 
 | 	 * PageKsm along with PageReserved - but it is only now when we have | 
 | 	 * the page lock that we can be certain it will not go KSM beneath us | 
 | 	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees | 
 | 	 * its pagecount raised, but only here do we take the page lock which | 
 | 	 * serializes that). | 
 | 	 */ | 
 | 	if (PageKsm(page) && !offlining) { | 
 | 		rc = -EBUSY; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	/* charge against new page */ | 
 | 	mem_cgroup_prepare_migration(page, newpage, &mem); | 
 |  | 
 | 	if (PageWriteback(page)) { | 
 | 		/* | 
 | 		 * Only in the case of a full syncronous migration is it | 
 | 		 * necessary to wait for PageWriteback. In the async case, | 
 | 		 * the retry loop is too short and in the sync-light case, | 
 | 		 * the overhead of stalling is too much | 
 | 		 */ | 
 | 		if (mode != MIGRATE_SYNC) { | 
 | 			rc = -EBUSY; | 
 | 			goto uncharge; | 
 | 		} | 
 | 		if (!force) | 
 | 			goto uncharge; | 
 | 		wait_on_page_writeback(page); | 
 | 	} | 
 | 	/* | 
 | 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, | 
 | 	 * we cannot notice that anon_vma is freed while we migrates a page. | 
 | 	 * This get_anon_vma() delays freeing anon_vma pointer until the end | 
 | 	 * of migration. File cache pages are no problem because of page_lock() | 
 | 	 * File Caches may use write_page() or lock_page() in migration, then, | 
 | 	 * just care Anon page here. | 
 | 	 */ | 
 | 	if (PageAnon(page)) { | 
 | 		/* | 
 | 		 * Only page_lock_anon_vma() understands the subtleties of | 
 | 		 * getting a hold on an anon_vma from outside one of its mms. | 
 | 		 */ | 
 | 		anon_vma = page_get_anon_vma(page); | 
 | 		if (anon_vma) { | 
 | 			/* | 
 | 			 * Anon page | 
 | 			 */ | 
 | 		} else if (PageSwapCache(page)) { | 
 | 			/* | 
 | 			 * We cannot be sure that the anon_vma of an unmapped | 
 | 			 * swapcache page is safe to use because we don't | 
 | 			 * know in advance if the VMA that this page belonged | 
 | 			 * to still exists. If the VMA and others sharing the | 
 | 			 * data have been freed, then the anon_vma could | 
 | 			 * already be invalid. | 
 | 			 * | 
 | 			 * To avoid this possibility, swapcache pages get | 
 | 			 * migrated but are not remapped when migration | 
 | 			 * completes | 
 | 			 */ | 
 | 			remap_swapcache = 0; | 
 | 		} else { | 
 | 			goto uncharge; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Corner case handling: | 
 | 	 * 1. When a new swap-cache page is read into, it is added to the LRU | 
 | 	 * and treated as swapcache but it has no rmap yet. | 
 | 	 * Calling try_to_unmap() against a page->mapping==NULL page will | 
 | 	 * trigger a BUG.  So handle it here. | 
 | 	 * 2. An orphaned page (see truncate_complete_page) might have | 
 | 	 * fs-private metadata. The page can be picked up due to memory | 
 | 	 * offlining.  Everywhere else except page reclaim, the page is | 
 | 	 * invisible to the vm, so the page can not be migrated.  So try to | 
 | 	 * free the metadata, so the page can be freed. | 
 | 	 */ | 
 | 	if (!page->mapping) { | 
 | 		VM_BUG_ON(PageAnon(page)); | 
 | 		if (page_has_private(page)) { | 
 | 			try_to_free_buffers(page); | 
 | 			goto uncharge; | 
 | 		} | 
 | 		goto skip_unmap; | 
 | 	} | 
 |  | 
 | 	/* Establish migration ptes or remove ptes */ | 
 | 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); | 
 |  | 
 | skip_unmap: | 
 | 	if (!page_mapped(page)) | 
 | 		rc = move_to_new_page(newpage, page, remap_swapcache, mode); | 
 |  | 
 | 	if (rc && remap_swapcache) | 
 | 		remove_migration_ptes(page, page); | 
 |  | 
 | 	/* Drop an anon_vma reference if we took one */ | 
 | 	if (anon_vma) | 
 | 		put_anon_vma(anon_vma); | 
 |  | 
 | uncharge: | 
 | 	mem_cgroup_end_migration(mem, page, newpage, rc == 0); | 
 | unlock: | 
 | 	unlock_page(page); | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * Obtain the lock on page, remove all ptes and migrate the page | 
 |  * to the newly allocated page in newpage. | 
 |  */ | 
 | static int unmap_and_move(new_page_t get_new_page, unsigned long private, | 
 | 			struct page *page, int force, bool offlining, | 
 | 			enum migrate_mode mode) | 
 | { | 
 | 	int rc = 0; | 
 | 	int *result = NULL; | 
 | 	struct page *newpage = get_new_page(page, private, &result); | 
 |  | 
 | 	if (!newpage) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (page_count(page) == 1) { | 
 | 		/* page was freed from under us. So we are done. */ | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (unlikely(PageTransHuge(page))) | 
 | 		if (unlikely(split_huge_page(page))) | 
 | 			goto out; | 
 |  | 
 | 	rc = __unmap_and_move(page, newpage, force, offlining, mode); | 
 | out: | 
 | 	if (rc != -EAGAIN) { | 
 | 		/* | 
 | 		 * A page that has been migrated has all references | 
 | 		 * removed and will be freed. A page that has not been | 
 | 		 * migrated will have kepts its references and be | 
 | 		 * restored. | 
 | 		 */ | 
 | 		list_del(&page->lru); | 
 | 		dec_zone_page_state(page, NR_ISOLATED_ANON + | 
 | 				page_is_file_cache(page)); | 
 | 		putback_lru_page(page); | 
 | 	} | 
 | 	/* | 
 | 	 * Move the new page to the LRU. If migration was not successful | 
 | 	 * then this will free the page. | 
 | 	 */ | 
 | 	putback_lru_page(newpage); | 
 | 	if (result) { | 
 | 		if (rc) | 
 | 			*result = rc; | 
 | 		else | 
 | 			*result = page_to_nid(newpage); | 
 | 	} | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * Counterpart of unmap_and_move_page() for hugepage migration. | 
 |  * | 
 |  * This function doesn't wait the completion of hugepage I/O | 
 |  * because there is no race between I/O and migration for hugepage. | 
 |  * Note that currently hugepage I/O occurs only in direct I/O | 
 |  * where no lock is held and PG_writeback is irrelevant, | 
 |  * and writeback status of all subpages are counted in the reference | 
 |  * count of the head page (i.e. if all subpages of a 2MB hugepage are | 
 |  * under direct I/O, the reference of the head page is 512 and a bit more.) | 
 |  * This means that when we try to migrate hugepage whose subpages are | 
 |  * doing direct I/O, some references remain after try_to_unmap() and | 
 |  * hugepage migration fails without data corruption. | 
 |  * | 
 |  * There is also no race when direct I/O is issued on the page under migration, | 
 |  * because then pte is replaced with migration swap entry and direct I/O code | 
 |  * will wait in the page fault for migration to complete. | 
 |  */ | 
 | static int unmap_and_move_huge_page(new_page_t get_new_page, | 
 | 				unsigned long private, struct page *hpage, | 
 | 				int force, bool offlining, | 
 | 				enum migrate_mode mode) | 
 | { | 
 | 	int rc = 0; | 
 | 	int *result = NULL; | 
 | 	struct page *new_hpage = get_new_page(hpage, private, &result); | 
 | 	struct anon_vma *anon_vma = NULL; | 
 |  | 
 | 	if (!new_hpage) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	rc = -EAGAIN; | 
 |  | 
 | 	if (!trylock_page(hpage)) { | 
 | 		if (!force || mode != MIGRATE_SYNC) | 
 | 			goto out; | 
 | 		lock_page(hpage); | 
 | 	} | 
 |  | 
 | 	if (PageAnon(hpage)) | 
 | 		anon_vma = page_get_anon_vma(hpage); | 
 |  | 
 | 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); | 
 |  | 
 | 	if (!page_mapped(hpage)) | 
 | 		rc = move_to_new_page(new_hpage, hpage, 1, mode); | 
 |  | 
 | 	if (rc) | 
 | 		remove_migration_ptes(hpage, hpage); | 
 |  | 
 | 	if (anon_vma) | 
 | 		put_anon_vma(anon_vma); | 
 |  | 
 | 	if (!rc) | 
 | 		hugetlb_cgroup_migrate(hpage, new_hpage); | 
 |  | 
 | 	unlock_page(hpage); | 
 | out: | 
 | 	put_page(new_hpage); | 
 | 	if (result) { | 
 | 		if (rc) | 
 | 			*result = rc; | 
 | 		else | 
 | 			*result = page_to_nid(new_hpage); | 
 | 	} | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * migrate_pages | 
 |  * | 
 |  * The function takes one list of pages to migrate and a function | 
 |  * that determines from the page to be migrated and the private data | 
 |  * the target of the move and allocates the page. | 
 |  * | 
 |  * The function returns after 10 attempts or if no pages | 
 |  * are movable anymore because to has become empty | 
 |  * or no retryable pages exist anymore. | 
 |  * Caller should call putback_lru_pages to return pages to the LRU | 
 |  * or free list only if ret != 0. | 
 |  * | 
 |  * Return: Number of pages not migrated or error code. | 
 |  */ | 
 | int migrate_pages(struct list_head *from, | 
 | 		new_page_t get_new_page, unsigned long private, bool offlining, | 
 | 		enum migrate_mode mode) | 
 | { | 
 | 	int retry = 1; | 
 | 	int nr_failed = 0; | 
 | 	int pass = 0; | 
 | 	struct page *page; | 
 | 	struct page *page2; | 
 | 	int swapwrite = current->flags & PF_SWAPWRITE; | 
 | 	int rc; | 
 |  | 
 | 	if (!swapwrite) | 
 | 		current->flags |= PF_SWAPWRITE; | 
 |  | 
 | 	for(pass = 0; pass < 10 && retry; pass++) { | 
 | 		retry = 0; | 
 |  | 
 | 		list_for_each_entry_safe(page, page2, from, lru) { | 
 | 			cond_resched(); | 
 |  | 
 | 			rc = unmap_and_move(get_new_page, private, | 
 | 						page, pass > 2, offlining, | 
 | 						mode); | 
 |  | 
 | 			switch(rc) { | 
 | 			case -ENOMEM: | 
 | 				goto out; | 
 | 			case -EAGAIN: | 
 | 				retry++; | 
 | 				break; | 
 | 			case 0: | 
 | 				break; | 
 | 			default: | 
 | 				/* Permanent failure */ | 
 | 				nr_failed++; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	rc = 0; | 
 | out: | 
 | 	if (!swapwrite) | 
 | 		current->flags &= ~PF_SWAPWRITE; | 
 |  | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	return nr_failed + retry; | 
 | } | 
 |  | 
 | int migrate_huge_page(struct page *hpage, new_page_t get_new_page, | 
 | 		      unsigned long private, bool offlining, | 
 | 		      enum migrate_mode mode) | 
 | { | 
 | 	int pass, rc; | 
 |  | 
 | 	for (pass = 0; pass < 10; pass++) { | 
 | 		rc = unmap_and_move_huge_page(get_new_page, | 
 | 					      private, hpage, pass > 2, offlining, | 
 | 					      mode); | 
 | 		switch (rc) { | 
 | 		case -ENOMEM: | 
 | 			goto out; | 
 | 		case -EAGAIN: | 
 | 			/* try again */ | 
 | 			cond_resched(); | 
 | 			break; | 
 | 		case 0: | 
 | 			goto out; | 
 | 		default: | 
 | 			rc = -EIO; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* | 
 |  * Move a list of individual pages | 
 |  */ | 
 | struct page_to_node { | 
 | 	unsigned long addr; | 
 | 	struct page *page; | 
 | 	int node; | 
 | 	int status; | 
 | }; | 
 |  | 
 | static struct page *new_page_node(struct page *p, unsigned long private, | 
 | 		int **result) | 
 | { | 
 | 	struct page_to_node *pm = (struct page_to_node *)private; | 
 |  | 
 | 	while (pm->node != MAX_NUMNODES && pm->page != p) | 
 | 		pm++; | 
 |  | 
 | 	if (pm->node == MAX_NUMNODES) | 
 | 		return NULL; | 
 |  | 
 | 	*result = &pm->status; | 
 |  | 
 | 	return alloc_pages_exact_node(pm->node, | 
 | 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Move a set of pages as indicated in the pm array. The addr | 
 |  * field must be set to the virtual address of the page to be moved | 
 |  * and the node number must contain a valid target node. | 
 |  * The pm array ends with node = MAX_NUMNODES. | 
 |  */ | 
 | static int do_move_page_to_node_array(struct mm_struct *mm, | 
 | 				      struct page_to_node *pm, | 
 | 				      int migrate_all) | 
 | { | 
 | 	int err; | 
 | 	struct page_to_node *pp; | 
 | 	LIST_HEAD(pagelist); | 
 |  | 
 | 	down_read(&mm->mmap_sem); | 
 |  | 
 | 	/* | 
 | 	 * Build a list of pages to migrate | 
 | 	 */ | 
 | 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) { | 
 | 		struct vm_area_struct *vma; | 
 | 		struct page *page; | 
 |  | 
 | 		err = -EFAULT; | 
 | 		vma = find_vma(mm, pp->addr); | 
 | 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) | 
 | 			goto set_status; | 
 |  | 
 | 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT); | 
 |  | 
 | 		err = PTR_ERR(page); | 
 | 		if (IS_ERR(page)) | 
 | 			goto set_status; | 
 |  | 
 | 		err = -ENOENT; | 
 | 		if (!page) | 
 | 			goto set_status; | 
 |  | 
 | 		/* Use PageReserved to check for zero page */ | 
 | 		if (PageReserved(page) || PageKsm(page)) | 
 | 			goto put_and_set; | 
 |  | 
 | 		pp->page = page; | 
 | 		err = page_to_nid(page); | 
 |  | 
 | 		if (err == pp->node) | 
 | 			/* | 
 | 			 * Node already in the right place | 
 | 			 */ | 
 | 			goto put_and_set; | 
 |  | 
 | 		err = -EACCES; | 
 | 		if (page_mapcount(page) > 1 && | 
 | 				!migrate_all) | 
 | 			goto put_and_set; | 
 |  | 
 | 		err = isolate_lru_page(page); | 
 | 		if (!err) { | 
 | 			list_add_tail(&page->lru, &pagelist); | 
 | 			inc_zone_page_state(page, NR_ISOLATED_ANON + | 
 | 					    page_is_file_cache(page)); | 
 | 		} | 
 | put_and_set: | 
 | 		/* | 
 | 		 * Either remove the duplicate refcount from | 
 | 		 * isolate_lru_page() or drop the page ref if it was | 
 | 		 * not isolated. | 
 | 		 */ | 
 | 		put_page(page); | 
 | set_status: | 
 | 		pp->status = err; | 
 | 	} | 
 |  | 
 | 	err = 0; | 
 | 	if (!list_empty(&pagelist)) { | 
 | 		err = migrate_pages(&pagelist, new_page_node, | 
 | 				(unsigned long)pm, 0, MIGRATE_SYNC); | 
 | 		if (err) | 
 | 			putback_lru_pages(&pagelist); | 
 | 	} | 
 |  | 
 | 	up_read(&mm->mmap_sem); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Migrate an array of page address onto an array of nodes and fill | 
 |  * the corresponding array of status. | 
 |  */ | 
 | static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, | 
 | 			 unsigned long nr_pages, | 
 | 			 const void __user * __user *pages, | 
 | 			 const int __user *nodes, | 
 | 			 int __user *status, int flags) | 
 | { | 
 | 	struct page_to_node *pm; | 
 | 	unsigned long chunk_nr_pages; | 
 | 	unsigned long chunk_start; | 
 | 	int err; | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); | 
 | 	if (!pm) | 
 | 		goto out; | 
 |  | 
 | 	migrate_prep(); | 
 |  | 
 | 	/* | 
 | 	 * Store a chunk of page_to_node array in a page, | 
 | 	 * but keep the last one as a marker | 
 | 	 */ | 
 | 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; | 
 |  | 
 | 	for (chunk_start = 0; | 
 | 	     chunk_start < nr_pages; | 
 | 	     chunk_start += chunk_nr_pages) { | 
 | 		int j; | 
 |  | 
 | 		if (chunk_start + chunk_nr_pages > nr_pages) | 
 | 			chunk_nr_pages = nr_pages - chunk_start; | 
 |  | 
 | 		/* fill the chunk pm with addrs and nodes from user-space */ | 
 | 		for (j = 0; j < chunk_nr_pages; j++) { | 
 | 			const void __user *p; | 
 | 			int node; | 
 |  | 
 | 			err = -EFAULT; | 
 | 			if (get_user(p, pages + j + chunk_start)) | 
 | 				goto out_pm; | 
 | 			pm[j].addr = (unsigned long) p; | 
 |  | 
 | 			if (get_user(node, nodes + j + chunk_start)) | 
 | 				goto out_pm; | 
 |  | 
 | 			err = -ENODEV; | 
 | 			if (node < 0 || node >= MAX_NUMNODES) | 
 | 				goto out_pm; | 
 |  | 
 | 			if (!node_state(node, N_HIGH_MEMORY)) | 
 | 				goto out_pm; | 
 |  | 
 | 			err = -EACCES; | 
 | 			if (!node_isset(node, task_nodes)) | 
 | 				goto out_pm; | 
 |  | 
 | 			pm[j].node = node; | 
 | 		} | 
 |  | 
 | 		/* End marker for this chunk */ | 
 | 		pm[chunk_nr_pages].node = MAX_NUMNODES; | 
 |  | 
 | 		/* Migrate this chunk */ | 
 | 		err = do_move_page_to_node_array(mm, pm, | 
 | 						 flags & MPOL_MF_MOVE_ALL); | 
 | 		if (err < 0) | 
 | 			goto out_pm; | 
 |  | 
 | 		/* Return status information */ | 
 | 		for (j = 0; j < chunk_nr_pages; j++) | 
 | 			if (put_user(pm[j].status, status + j + chunk_start)) { | 
 | 				err = -EFAULT; | 
 | 				goto out_pm; | 
 | 			} | 
 | 	} | 
 | 	err = 0; | 
 |  | 
 | out_pm: | 
 | 	free_page((unsigned long)pm); | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine the nodes of an array of pages and store it in an array of status. | 
 |  */ | 
 | static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, | 
 | 				const void __user **pages, int *status) | 
 | { | 
 | 	unsigned long i; | 
 |  | 
 | 	down_read(&mm->mmap_sem); | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		unsigned long addr = (unsigned long)(*pages); | 
 | 		struct vm_area_struct *vma; | 
 | 		struct page *page; | 
 | 		int err = -EFAULT; | 
 |  | 
 | 		vma = find_vma(mm, addr); | 
 | 		if (!vma || addr < vma->vm_start) | 
 | 			goto set_status; | 
 |  | 
 | 		page = follow_page(vma, addr, 0); | 
 |  | 
 | 		err = PTR_ERR(page); | 
 | 		if (IS_ERR(page)) | 
 | 			goto set_status; | 
 |  | 
 | 		err = -ENOENT; | 
 | 		/* Use PageReserved to check for zero page */ | 
 | 		if (!page || PageReserved(page) || PageKsm(page)) | 
 | 			goto set_status; | 
 |  | 
 | 		err = page_to_nid(page); | 
 | set_status: | 
 | 		*status = err; | 
 |  | 
 | 		pages++; | 
 | 		status++; | 
 | 	} | 
 |  | 
 | 	up_read(&mm->mmap_sem); | 
 | } | 
 |  | 
 | /* | 
 |  * Determine the nodes of a user array of pages and store it in | 
 |  * a user array of status. | 
 |  */ | 
 | static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, | 
 | 			 const void __user * __user *pages, | 
 | 			 int __user *status) | 
 | { | 
 | #define DO_PAGES_STAT_CHUNK_NR 16 | 
 | 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; | 
 | 	int chunk_status[DO_PAGES_STAT_CHUNK_NR]; | 
 |  | 
 | 	while (nr_pages) { | 
 | 		unsigned long chunk_nr; | 
 |  | 
 | 		chunk_nr = nr_pages; | 
 | 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) | 
 | 			chunk_nr = DO_PAGES_STAT_CHUNK_NR; | 
 |  | 
 | 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) | 
 | 			break; | 
 |  | 
 | 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); | 
 |  | 
 | 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) | 
 | 			break; | 
 |  | 
 | 		pages += chunk_nr; | 
 | 		status += chunk_nr; | 
 | 		nr_pages -= chunk_nr; | 
 | 	} | 
 | 	return nr_pages ? -EFAULT : 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Move a list of pages in the address space of the currently executing | 
 |  * process. | 
 |  */ | 
 | SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, | 
 | 		const void __user * __user *, pages, | 
 | 		const int __user *, nodes, | 
 | 		int __user *, status, int, flags) | 
 | { | 
 | 	const struct cred *cred = current_cred(), *tcred; | 
 | 	struct task_struct *task; | 
 | 	struct mm_struct *mm; | 
 | 	int err; | 
 | 	nodemask_t task_nodes; | 
 |  | 
 | 	/* Check flags */ | 
 | 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) | 
 | 		return -EPERM; | 
 |  | 
 | 	/* Find the mm_struct */ | 
 | 	rcu_read_lock(); | 
 | 	task = pid ? find_task_by_vpid(pid) : current; | 
 | 	if (!task) { | 
 | 		rcu_read_unlock(); | 
 | 		return -ESRCH; | 
 | 	} | 
 | 	get_task_struct(task); | 
 |  | 
 | 	/* | 
 | 	 * Check if this process has the right to modify the specified | 
 | 	 * process. The right exists if the process has administrative | 
 | 	 * capabilities, superuser privileges or the same | 
 | 	 * userid as the target process. | 
 | 	 */ | 
 | 	tcred = __task_cred(task); | 
 | 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && | 
 | 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) && | 
 | 	    !capable(CAP_SYS_NICE)) { | 
 | 		rcu_read_unlock(); | 
 | 		err = -EPERM; | 
 | 		goto out; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 |  	err = security_task_movememory(task); | 
 |  	if (err) | 
 | 		goto out; | 
 |  | 
 | 	task_nodes = cpuset_mems_allowed(task); | 
 | 	mm = get_task_mm(task); | 
 | 	put_task_struct(task); | 
 |  | 
 | 	if (!mm) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (nodes) | 
 | 		err = do_pages_move(mm, task_nodes, nr_pages, pages, | 
 | 				    nodes, status, flags); | 
 | 	else | 
 | 		err = do_pages_stat(mm, nr_pages, pages, status); | 
 |  | 
 | 	mmput(mm); | 
 | 	return err; | 
 |  | 
 | out: | 
 | 	put_task_struct(task); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Call migration functions in the vma_ops that may prepare | 
 |  * memory in a vm for migration. migration functions may perform | 
 |  * the migration for vmas that do not have an underlying page struct. | 
 |  */ | 
 | int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, | 
 | 	const nodemask_t *from, unsigned long flags) | 
 | { | 
 |  	struct vm_area_struct *vma; | 
 |  	int err = 0; | 
 |  | 
 | 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) { | 
 |  		if (vma->vm_ops && vma->vm_ops->migrate) { | 
 |  			err = vma->vm_ops->migrate(vma, to, from, flags); | 
 |  			if (err) | 
 |  				break; | 
 |  		} | 
 |  	} | 
 |  	return err; | 
 | } | 
 | #endif |