|  | /* linux/drivers/mtd/nand/s3c2410.c | 
|  | * | 
|  | * Copyright © 2004-2008 Simtec Electronics | 
|  | *	http://armlinux.simtec.co.uk/ | 
|  | *	Ben Dooks <ben@simtec.co.uk> | 
|  | * | 
|  | * Samsung S3C2410/S3C2440/S3C2412 NAND driver | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG | 
|  | #define DEBUG | 
|  | #endif | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/cpufreq.h> | 
|  |  | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/nand_ecc.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  |  | 
|  | #include <asm/io.h> | 
|  |  | 
|  | #include <plat/regs-nand.h> | 
|  | #include <plat/nand.h> | 
|  |  | 
|  | #ifdef CONFIG_MTD_NAND_S3C2410_HWECC | 
|  | static int hardware_ecc = 1; | 
|  | #else | 
|  | static int hardware_ecc = 0; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP | 
|  | static int clock_stop = 1; | 
|  | #else | 
|  | static const int clock_stop = 0; | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* new oob placement block for use with hardware ecc generation | 
|  | */ | 
|  |  | 
|  | static struct nand_ecclayout nand_hw_eccoob = { | 
|  | .eccbytes = 3, | 
|  | .eccpos = {0, 1, 2}, | 
|  | .oobfree = {{8, 8}} | 
|  | }; | 
|  |  | 
|  | /* controller and mtd information */ | 
|  |  | 
|  | struct s3c2410_nand_info; | 
|  |  | 
|  | /** | 
|  | * struct s3c2410_nand_mtd - driver MTD structure | 
|  | * @mtd: The MTD instance to pass to the MTD layer. | 
|  | * @chip: The NAND chip information. | 
|  | * @set: The platform information supplied for this set of NAND chips. | 
|  | * @info: Link back to the hardware information. | 
|  | * @scan_res: The result from calling nand_scan_ident(). | 
|  | */ | 
|  | struct s3c2410_nand_mtd { | 
|  | struct mtd_info			mtd; | 
|  | struct nand_chip		chip; | 
|  | struct s3c2410_nand_set		*set; | 
|  | struct s3c2410_nand_info	*info; | 
|  | int				scan_res; | 
|  | }; | 
|  |  | 
|  | enum s3c_cpu_type { | 
|  | TYPE_S3C2410, | 
|  | TYPE_S3C2412, | 
|  | TYPE_S3C2440, | 
|  | }; | 
|  |  | 
|  | /* overview of the s3c2410 nand state */ | 
|  |  | 
|  | /** | 
|  | * struct s3c2410_nand_info - NAND controller state. | 
|  | * @mtds: An array of MTD instances on this controoler. | 
|  | * @platform: The platform data for this board. | 
|  | * @device: The platform device we bound to. | 
|  | * @area: The IO area resource that came from request_mem_region(). | 
|  | * @clk: The clock resource for this controller. | 
|  | * @regs: The area mapped for the hardware registers described by @area. | 
|  | * @sel_reg: Pointer to the register controlling the NAND selection. | 
|  | * @sel_bit: The bit in @sel_reg to select the NAND chip. | 
|  | * @mtd_count: The number of MTDs created from this controller. | 
|  | * @save_sel: The contents of @sel_reg to be saved over suspend. | 
|  | * @clk_rate: The clock rate from @clk. | 
|  | * @cpu_type: The exact type of this controller. | 
|  | */ | 
|  | struct s3c2410_nand_info { | 
|  | /* mtd info */ | 
|  | struct nand_hw_control		controller; | 
|  | struct s3c2410_nand_mtd		*mtds; | 
|  | struct s3c2410_platform_nand	*platform; | 
|  |  | 
|  | /* device info */ | 
|  | struct device			*device; | 
|  | struct resource			*area; | 
|  | struct clk			*clk; | 
|  | void __iomem			*regs; | 
|  | void __iomem			*sel_reg; | 
|  | int				sel_bit; | 
|  | int				mtd_count; | 
|  | unsigned long			save_sel; | 
|  | unsigned long			clk_rate; | 
|  |  | 
|  | enum s3c_cpu_type		cpu_type; | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ | 
|  | struct notifier_block	freq_transition; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* conversion functions */ | 
|  |  | 
|  | static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd) | 
|  | { | 
|  | return container_of(mtd, struct s3c2410_nand_mtd, mtd); | 
|  | } | 
|  |  | 
|  | static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd) | 
|  | { | 
|  | return s3c2410_nand_mtd_toours(mtd)->info; | 
|  | } | 
|  |  | 
|  | static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev) | 
|  | { | 
|  | return platform_get_drvdata(dev); | 
|  | } | 
|  |  | 
|  | static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev) | 
|  | { | 
|  | return dev->dev.platform_data; | 
|  | } | 
|  |  | 
|  | static inline int allow_clk_stop(struct s3c2410_nand_info *info) | 
|  | { | 
|  | return clock_stop; | 
|  | } | 
|  |  | 
|  | /* timing calculations */ | 
|  |  | 
|  | #define NS_IN_KHZ 1000000 | 
|  |  | 
|  | /** | 
|  | * s3c_nand_calc_rate - calculate timing data. | 
|  | * @wanted: The cycle time in nanoseconds. | 
|  | * @clk: The clock rate in kHz. | 
|  | * @max: The maximum divider value. | 
|  | * | 
|  | * Calculate the timing value from the given parameters. | 
|  | */ | 
|  | static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max) | 
|  | { | 
|  | int result; | 
|  |  | 
|  | result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ); | 
|  |  | 
|  | pr_debug("result %d from %ld, %d\n", result, clk, wanted); | 
|  |  | 
|  | if (result > max) { | 
|  | printk("%d ns is too big for current clock rate %ld\n", wanted, clk); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (result < 1) | 
|  | result = 1; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk)) | 
|  |  | 
|  | /* controller setup */ | 
|  |  | 
|  | /** | 
|  | * s3c2410_nand_setrate - setup controller timing information. | 
|  | * @info: The controller instance. | 
|  | * | 
|  | * Given the information supplied by the platform, calculate and set | 
|  | * the necessary timing registers in the hardware to generate the | 
|  | * necessary timing cycles to the hardware. | 
|  | */ | 
|  | static int s3c2410_nand_setrate(struct s3c2410_nand_info *info) | 
|  | { | 
|  | struct s3c2410_platform_nand *plat = info->platform; | 
|  | int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4; | 
|  | int tacls, twrph0, twrph1; | 
|  | unsigned long clkrate = clk_get_rate(info->clk); | 
|  | unsigned long uninitialized_var(set), cfg, uninitialized_var(mask); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* calculate the timing information for the controller */ | 
|  |  | 
|  | info->clk_rate = clkrate; | 
|  | clkrate /= 1000;	/* turn clock into kHz for ease of use */ | 
|  |  | 
|  | if (plat != NULL) { | 
|  | tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max); | 
|  | twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8); | 
|  | twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8); | 
|  | } else { | 
|  | /* default timings */ | 
|  | tacls = tacls_max; | 
|  | twrph0 = 8; | 
|  | twrph1 = 8; | 
|  | } | 
|  |  | 
|  | if (tacls < 0 || twrph0 < 0 || twrph1 < 0) { | 
|  | dev_err(info->device, "cannot get suitable timings\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n", | 
|  | tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate)); | 
|  |  | 
|  | switch (info->cpu_type) { | 
|  | case TYPE_S3C2410: | 
|  | mask = (S3C2410_NFCONF_TACLS(3) | | 
|  | S3C2410_NFCONF_TWRPH0(7) | | 
|  | S3C2410_NFCONF_TWRPH1(7)); | 
|  | set = S3C2410_NFCONF_EN; | 
|  | set |= S3C2410_NFCONF_TACLS(tacls - 1); | 
|  | set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1); | 
|  | set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1); | 
|  | break; | 
|  |  | 
|  | case TYPE_S3C2440: | 
|  | case TYPE_S3C2412: | 
|  | mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) | | 
|  | S3C2440_NFCONF_TWRPH0(7) | | 
|  | S3C2440_NFCONF_TWRPH1(7)); | 
|  |  | 
|  | set = S3C2440_NFCONF_TACLS(tacls - 1); | 
|  | set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1); | 
|  | set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | cfg = readl(info->regs + S3C2410_NFCONF); | 
|  | cfg &= ~mask; | 
|  | cfg |= set; | 
|  | writel(cfg, info->regs + S3C2410_NFCONF); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s3c2410_nand_inithw - basic hardware initialisation | 
|  | * @info: The hardware state. | 
|  | * | 
|  | * Do the basic initialisation of the hardware, using s3c2410_nand_setrate() | 
|  | * to setup the hardware access speeds and set the controller to be enabled. | 
|  | */ | 
|  | static int s3c2410_nand_inithw(struct s3c2410_nand_info *info) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = s3c2410_nand_setrate(info); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | switch (info->cpu_type) { | 
|  | case TYPE_S3C2410: | 
|  | default: | 
|  | break; | 
|  |  | 
|  | case TYPE_S3C2440: | 
|  | case TYPE_S3C2412: | 
|  | /* enable the controller and de-assert nFCE */ | 
|  |  | 
|  | writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s3c2410_nand_select_chip - select the given nand chip | 
|  | * @mtd: The MTD instance for this chip. | 
|  | * @chip: The chip number. | 
|  | * | 
|  | * This is called by the MTD layer to either select a given chip for the | 
|  | * @mtd instance, or to indicate that the access has finished and the | 
|  | * chip can be de-selected. | 
|  | * | 
|  | * The routine ensures that the nFCE line is correctly setup, and any | 
|  | * platform specific selection code is called to route nFCE to the specific | 
|  | * chip. | 
|  | */ | 
|  | static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip) | 
|  | { | 
|  | struct s3c2410_nand_info *info; | 
|  | struct s3c2410_nand_mtd *nmtd; | 
|  | struct nand_chip *this = mtd->priv; | 
|  | unsigned long cur; | 
|  |  | 
|  | nmtd = this->priv; | 
|  | info = nmtd->info; | 
|  |  | 
|  | if (chip != -1 && allow_clk_stop(info)) | 
|  | clk_enable(info->clk); | 
|  |  | 
|  | cur = readl(info->sel_reg); | 
|  |  | 
|  | if (chip == -1) { | 
|  | cur |= info->sel_bit; | 
|  | } else { | 
|  | if (nmtd->set != NULL && chip > nmtd->set->nr_chips) { | 
|  | dev_err(info->device, "invalid chip %d\n", chip); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (info->platform != NULL) { | 
|  | if (info->platform->select_chip != NULL) | 
|  | (info->platform->select_chip) (nmtd->set, chip); | 
|  | } | 
|  |  | 
|  | cur &= ~info->sel_bit; | 
|  | } | 
|  |  | 
|  | writel(cur, info->sel_reg); | 
|  |  | 
|  | if (chip == -1 && allow_clk_stop(info)) | 
|  | clk_disable(info->clk); | 
|  | } | 
|  |  | 
|  | /* s3c2410_nand_hwcontrol | 
|  | * | 
|  | * Issue command and address cycles to the chip | 
|  | */ | 
|  |  | 
|  | static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd, | 
|  | unsigned int ctrl) | 
|  | { | 
|  | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
|  |  | 
|  | if (cmd == NAND_CMD_NONE) | 
|  | return; | 
|  |  | 
|  | if (ctrl & NAND_CLE) | 
|  | writeb(cmd, info->regs + S3C2410_NFCMD); | 
|  | else | 
|  | writeb(cmd, info->regs + S3C2410_NFADDR); | 
|  | } | 
|  |  | 
|  | /* command and control functions */ | 
|  |  | 
|  | static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd, | 
|  | unsigned int ctrl) | 
|  | { | 
|  | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
|  |  | 
|  | if (cmd == NAND_CMD_NONE) | 
|  | return; | 
|  |  | 
|  | if (ctrl & NAND_CLE) | 
|  | writeb(cmd, info->regs + S3C2440_NFCMD); | 
|  | else | 
|  | writeb(cmd, info->regs + S3C2440_NFADDR); | 
|  | } | 
|  |  | 
|  | /* s3c2410_nand_devready() | 
|  | * | 
|  | * returns 0 if the nand is busy, 1 if it is ready | 
|  | */ | 
|  |  | 
|  | static int s3c2410_nand_devready(struct mtd_info *mtd) | 
|  | { | 
|  | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
|  | return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY; | 
|  | } | 
|  |  | 
|  | static int s3c2440_nand_devready(struct mtd_info *mtd) | 
|  | { | 
|  | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
|  | return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY; | 
|  | } | 
|  |  | 
|  | static int s3c2412_nand_devready(struct mtd_info *mtd) | 
|  | { | 
|  | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
|  | return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY; | 
|  | } | 
|  |  | 
|  | /* ECC handling functions */ | 
|  |  | 
|  | static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, | 
|  | u_char *read_ecc, u_char *calc_ecc) | 
|  | { | 
|  | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
|  | unsigned int diff0, diff1, diff2; | 
|  | unsigned int bit, byte; | 
|  |  | 
|  | pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc); | 
|  |  | 
|  | diff0 = read_ecc[0] ^ calc_ecc[0]; | 
|  | diff1 = read_ecc[1] ^ calc_ecc[1]; | 
|  | diff2 = read_ecc[2] ^ calc_ecc[2]; | 
|  |  | 
|  | pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n", | 
|  | __func__, | 
|  | read_ecc[0], read_ecc[1], read_ecc[2], | 
|  | calc_ecc[0], calc_ecc[1], calc_ecc[2], | 
|  | diff0, diff1, diff2); | 
|  |  | 
|  | if (diff0 == 0 && diff1 == 0 && diff2 == 0) | 
|  | return 0;		/* ECC is ok */ | 
|  |  | 
|  | /* sometimes people do not think about using the ECC, so check | 
|  | * to see if we have an 0xff,0xff,0xff read ECC and then ignore | 
|  | * the error, on the assumption that this is an un-eccd page. | 
|  | */ | 
|  | if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff | 
|  | && info->platform->ignore_unset_ecc) | 
|  | return 0; | 
|  |  | 
|  | /* Can we correct this ECC (ie, one row and column change). | 
|  | * Note, this is similar to the 256 error code on smartmedia */ | 
|  |  | 
|  | if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 && | 
|  | ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 && | 
|  | ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) { | 
|  | /* calculate the bit position of the error */ | 
|  |  | 
|  | bit  = ((diff2 >> 3) & 1) | | 
|  | ((diff2 >> 4) & 2) | | 
|  | ((diff2 >> 5) & 4); | 
|  |  | 
|  | /* calculate the byte position of the error */ | 
|  |  | 
|  | byte = ((diff2 << 7) & 0x100) | | 
|  | ((diff1 << 0) & 0x80)  | | 
|  | ((diff1 << 1) & 0x40)  | | 
|  | ((diff1 << 2) & 0x20)  | | 
|  | ((diff1 << 3) & 0x10)  | | 
|  | ((diff0 >> 4) & 0x08)  | | 
|  | ((diff0 >> 3) & 0x04)  | | 
|  | ((diff0 >> 2) & 0x02)  | | 
|  | ((diff0 >> 1) & 0x01); | 
|  |  | 
|  | dev_dbg(info->device, "correcting error bit %d, byte %d\n", | 
|  | bit, byte); | 
|  |  | 
|  | dat[byte] ^= (1 << bit); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* if there is only one bit difference in the ECC, then | 
|  | * one of only a row or column parity has changed, which | 
|  | * means the error is most probably in the ECC itself */ | 
|  |  | 
|  | diff0 |= (diff1 << 8); | 
|  | diff0 |= (diff2 << 16); | 
|  |  | 
|  | if ((diff0 & ~(1<<fls(diff0))) == 0) | 
|  | return 1; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* ECC functions | 
|  | * | 
|  | * These allow the s3c2410 and s3c2440 to use the controller's ECC | 
|  | * generator block to ECC the data as it passes through] | 
|  | */ | 
|  |  | 
|  | static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode) | 
|  | { | 
|  | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
|  | unsigned long ctrl; | 
|  |  | 
|  | ctrl = readl(info->regs + S3C2410_NFCONF); | 
|  | ctrl |= S3C2410_NFCONF_INITECC; | 
|  | writel(ctrl, info->regs + S3C2410_NFCONF); | 
|  | } | 
|  |  | 
|  | static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode) | 
|  | { | 
|  | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
|  | unsigned long ctrl; | 
|  |  | 
|  | ctrl = readl(info->regs + S3C2440_NFCONT); | 
|  | writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT); | 
|  | } | 
|  |  | 
|  | static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode) | 
|  | { | 
|  | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
|  | unsigned long ctrl; | 
|  |  | 
|  | ctrl = readl(info->regs + S3C2440_NFCONT); | 
|  | writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT); | 
|  | } | 
|  |  | 
|  | static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) | 
|  | { | 
|  | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
|  |  | 
|  | ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0); | 
|  | ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1); | 
|  | ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2); | 
|  |  | 
|  | pr_debug("%s: returning ecc %02x%02x%02x\n", __func__, | 
|  | ecc_code[0], ecc_code[1], ecc_code[2]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) | 
|  | { | 
|  | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
|  | unsigned long ecc = readl(info->regs + S3C2412_NFMECC0); | 
|  |  | 
|  | ecc_code[0] = ecc; | 
|  | ecc_code[1] = ecc >> 8; | 
|  | ecc_code[2] = ecc >> 16; | 
|  |  | 
|  | pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) | 
|  | { | 
|  | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
|  | unsigned long ecc = readl(info->regs + S3C2440_NFMECC0); | 
|  |  | 
|  | ecc_code[0] = ecc; | 
|  | ecc_code[1] = ecc >> 8; | 
|  | ecc_code[2] = ecc >> 16; | 
|  |  | 
|  | pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* over-ride the standard functions for a little more speed. We can | 
|  | * use read/write block to move the data buffers to/from the controller | 
|  | */ | 
|  |  | 
|  | static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | readsb(this->IO_ADDR_R, buf, len); | 
|  | } | 
|  |  | 
|  | static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
|  |  | 
|  | readsl(info->regs + S3C2440_NFDATA, buf, len >> 2); | 
|  |  | 
|  | /* cleanup if we've got less than a word to do */ | 
|  | if (len & 3) { | 
|  | buf += len & ~3; | 
|  |  | 
|  | for (; len & 3; len--) | 
|  | *buf++ = readb(info->regs + S3C2440_NFDATA); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | writesb(this->IO_ADDR_W, buf, len); | 
|  | } | 
|  |  | 
|  | static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) | 
|  | { | 
|  | struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); | 
|  |  | 
|  | writesl(info->regs + S3C2440_NFDATA, buf, len >> 2); | 
|  |  | 
|  | /* cleanup any fractional write */ | 
|  | if (len & 3) { | 
|  | buf += len & ~3; | 
|  |  | 
|  | for (; len & 3; len--, buf++) | 
|  | writeb(*buf, info->regs + S3C2440_NFDATA); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* cpufreq driver support */ | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ | 
|  |  | 
|  | static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb, | 
|  | unsigned long val, void *data) | 
|  | { | 
|  | struct s3c2410_nand_info *info; | 
|  | unsigned long newclk; | 
|  |  | 
|  | info = container_of(nb, struct s3c2410_nand_info, freq_transition); | 
|  | newclk = clk_get_rate(info->clk); | 
|  |  | 
|  | if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) || | 
|  | (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) { | 
|  | s3c2410_nand_setrate(info); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) | 
|  | { | 
|  | info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition; | 
|  |  | 
|  | return cpufreq_register_notifier(&info->freq_transition, | 
|  | CPUFREQ_TRANSITION_NOTIFIER); | 
|  | } | 
|  |  | 
|  | static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) | 
|  | { | 
|  | cpufreq_unregister_notifier(&info->freq_transition, | 
|  | CPUFREQ_TRANSITION_NOTIFIER); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* device management functions */ | 
|  |  | 
|  | static int s3c24xx_nand_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct s3c2410_nand_info *info = to_nand_info(pdev); | 
|  |  | 
|  | platform_set_drvdata(pdev, NULL); | 
|  |  | 
|  | if (info == NULL) | 
|  | return 0; | 
|  |  | 
|  | s3c2410_nand_cpufreq_deregister(info); | 
|  |  | 
|  | /* Release all our mtds  and their partitions, then go through | 
|  | * freeing the resources used | 
|  | */ | 
|  |  | 
|  | if (info->mtds != NULL) { | 
|  | struct s3c2410_nand_mtd *ptr = info->mtds; | 
|  | int mtdno; | 
|  |  | 
|  | for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) { | 
|  | pr_debug("releasing mtd %d (%p)\n", mtdno, ptr); | 
|  | nand_release(&ptr->mtd); | 
|  | } | 
|  |  | 
|  | kfree(info->mtds); | 
|  | } | 
|  |  | 
|  | /* free the common resources */ | 
|  |  | 
|  | if (info->clk != NULL && !IS_ERR(info->clk)) { | 
|  | if (!allow_clk_stop(info)) | 
|  | clk_disable(info->clk); | 
|  | clk_put(info->clk); | 
|  | } | 
|  |  | 
|  | if (info->regs != NULL) { | 
|  | iounmap(info->regs); | 
|  | info->regs = NULL; | 
|  | } | 
|  |  | 
|  | if (info->area != NULL) { | 
|  | release_resource(info->area); | 
|  | kfree(info->area); | 
|  | info->area = NULL; | 
|  | } | 
|  |  | 
|  | kfree(info); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MTD_PARTITIONS | 
|  | const char *part_probes[] = { "cmdlinepart", NULL }; | 
|  | static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, | 
|  | struct s3c2410_nand_mtd *mtd, | 
|  | struct s3c2410_nand_set *set) | 
|  | { | 
|  | struct mtd_partition *part_info; | 
|  | int nr_part = 0; | 
|  |  | 
|  | if (set == NULL) | 
|  | return add_mtd_device(&mtd->mtd); | 
|  |  | 
|  | if (set->nr_partitions == 0) { | 
|  | mtd->mtd.name = set->name; | 
|  | nr_part = parse_mtd_partitions(&mtd->mtd, part_probes, | 
|  | &part_info, 0); | 
|  | } else { | 
|  | if (set->nr_partitions > 0 && set->partitions != NULL) { | 
|  | nr_part = set->nr_partitions; | 
|  | part_info = set->partitions; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nr_part > 0 && part_info) | 
|  | return add_mtd_partitions(&mtd->mtd, part_info, nr_part); | 
|  |  | 
|  | return add_mtd_device(&mtd->mtd); | 
|  | } | 
|  | #else | 
|  | static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, | 
|  | struct s3c2410_nand_mtd *mtd, | 
|  | struct s3c2410_nand_set *set) | 
|  | { | 
|  | return add_mtd_device(&mtd->mtd); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * s3c2410_nand_init_chip - initialise a single instance of an chip | 
|  | * @info: The base NAND controller the chip is on. | 
|  | * @nmtd: The new controller MTD instance to fill in. | 
|  | * @set: The information passed from the board specific platform data. | 
|  | * | 
|  | * Initialise the given @nmtd from the information in @info and @set. This | 
|  | * readies the structure for use with the MTD layer functions by ensuring | 
|  | * all pointers are setup and the necessary control routines selected. | 
|  | */ | 
|  | static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, | 
|  | struct s3c2410_nand_mtd *nmtd, | 
|  | struct s3c2410_nand_set *set) | 
|  | { | 
|  | struct nand_chip *chip = &nmtd->chip; | 
|  | void __iomem *regs = info->regs; | 
|  |  | 
|  | chip->write_buf    = s3c2410_nand_write_buf; | 
|  | chip->read_buf     = s3c2410_nand_read_buf; | 
|  | chip->select_chip  = s3c2410_nand_select_chip; | 
|  | chip->chip_delay   = 50; | 
|  | chip->priv	   = nmtd; | 
|  | chip->options	   = set->options; | 
|  | chip->controller   = &info->controller; | 
|  |  | 
|  | switch (info->cpu_type) { | 
|  | case TYPE_S3C2410: | 
|  | chip->IO_ADDR_W = regs + S3C2410_NFDATA; | 
|  | info->sel_reg   = regs + S3C2410_NFCONF; | 
|  | info->sel_bit	= S3C2410_NFCONF_nFCE; | 
|  | chip->cmd_ctrl  = s3c2410_nand_hwcontrol; | 
|  | chip->dev_ready = s3c2410_nand_devready; | 
|  | break; | 
|  |  | 
|  | case TYPE_S3C2440: | 
|  | chip->IO_ADDR_W = regs + S3C2440_NFDATA; | 
|  | info->sel_reg   = regs + S3C2440_NFCONT; | 
|  | info->sel_bit	= S3C2440_NFCONT_nFCE; | 
|  | chip->cmd_ctrl  = s3c2440_nand_hwcontrol; | 
|  | chip->dev_ready = s3c2440_nand_devready; | 
|  | chip->read_buf  = s3c2440_nand_read_buf; | 
|  | chip->write_buf	= s3c2440_nand_write_buf; | 
|  | break; | 
|  |  | 
|  | case TYPE_S3C2412: | 
|  | chip->IO_ADDR_W = regs + S3C2440_NFDATA; | 
|  | info->sel_reg   = regs + S3C2440_NFCONT; | 
|  | info->sel_bit	= S3C2412_NFCONT_nFCE0; | 
|  | chip->cmd_ctrl  = s3c2440_nand_hwcontrol; | 
|  | chip->dev_ready = s3c2412_nand_devready; | 
|  |  | 
|  | if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT) | 
|  | dev_info(info->device, "System booted from NAND\n"); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | chip->IO_ADDR_R = chip->IO_ADDR_W; | 
|  |  | 
|  | nmtd->info	   = info; | 
|  | nmtd->mtd.priv	   = chip; | 
|  | nmtd->mtd.owner    = THIS_MODULE; | 
|  | nmtd->set	   = set; | 
|  |  | 
|  | if (hardware_ecc) { | 
|  | chip->ecc.calculate = s3c2410_nand_calculate_ecc; | 
|  | chip->ecc.correct   = s3c2410_nand_correct_data; | 
|  | chip->ecc.mode	    = NAND_ECC_HW; | 
|  |  | 
|  | switch (info->cpu_type) { | 
|  | case TYPE_S3C2410: | 
|  | chip->ecc.hwctl	    = s3c2410_nand_enable_hwecc; | 
|  | chip->ecc.calculate = s3c2410_nand_calculate_ecc; | 
|  | break; | 
|  |  | 
|  | case TYPE_S3C2412: | 
|  | chip->ecc.hwctl     = s3c2412_nand_enable_hwecc; | 
|  | chip->ecc.calculate = s3c2412_nand_calculate_ecc; | 
|  | break; | 
|  |  | 
|  | case TYPE_S3C2440: | 
|  | chip->ecc.hwctl     = s3c2440_nand_enable_hwecc; | 
|  | chip->ecc.calculate = s3c2440_nand_calculate_ecc; | 
|  | break; | 
|  |  | 
|  | } | 
|  | } else { | 
|  | chip->ecc.mode	    = NAND_ECC_SOFT; | 
|  | } | 
|  |  | 
|  | if (set->ecc_layout != NULL) | 
|  | chip->ecc.layout = set->ecc_layout; | 
|  |  | 
|  | if (set->disable_ecc) | 
|  | chip->ecc.mode	= NAND_ECC_NONE; | 
|  |  | 
|  | switch (chip->ecc.mode) { | 
|  | case NAND_ECC_NONE: | 
|  | dev_info(info->device, "NAND ECC disabled\n"); | 
|  | break; | 
|  | case NAND_ECC_SOFT: | 
|  | dev_info(info->device, "NAND soft ECC\n"); | 
|  | break; | 
|  | case NAND_ECC_HW: | 
|  | dev_info(info->device, "NAND hardware ECC\n"); | 
|  | break; | 
|  | default: | 
|  | dev_info(info->device, "NAND ECC UNKNOWN\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If you use u-boot BBT creation code, specifying this flag will | 
|  | * let the kernel fish out the BBT from the NAND, and also skip the | 
|  | * full NAND scan that can take 1/2s or so. Little things... */ | 
|  | if (set->flash_bbt) | 
|  | chip->options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * s3c2410_nand_update_chip - post probe update | 
|  | * @info: The controller instance. | 
|  | * @nmtd: The driver version of the MTD instance. | 
|  | * | 
|  | * This routine is called after the chip probe has successfully completed | 
|  | * and the relevant per-chip information updated. This call ensure that | 
|  | * we update the internal state accordingly. | 
|  | * | 
|  | * The internal state is currently limited to the ECC state information. | 
|  | */ | 
|  | static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info, | 
|  | struct s3c2410_nand_mtd *nmtd) | 
|  | { | 
|  | struct nand_chip *chip = &nmtd->chip; | 
|  |  | 
|  | dev_dbg(info->device, "chip %p => page shift %d\n", | 
|  | chip, chip->page_shift); | 
|  |  | 
|  | if (chip->ecc.mode != NAND_ECC_HW) | 
|  | return; | 
|  |  | 
|  | /* change the behaviour depending on wether we are using | 
|  | * the large or small page nand device */ | 
|  |  | 
|  | if (chip->page_shift > 10) { | 
|  | chip->ecc.size	    = 256; | 
|  | chip->ecc.bytes	    = 3; | 
|  | } else { | 
|  | chip->ecc.size	    = 512; | 
|  | chip->ecc.bytes	    = 3; | 
|  | chip->ecc.layout    = &nand_hw_eccoob; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* s3c24xx_nand_probe | 
|  | * | 
|  | * called by device layer when it finds a device matching | 
|  | * one our driver can handled. This code checks to see if | 
|  | * it can allocate all necessary resources then calls the | 
|  | * nand layer to look for devices | 
|  | */ | 
|  | static int s3c24xx_nand_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct s3c2410_platform_nand *plat = to_nand_plat(pdev); | 
|  | enum s3c_cpu_type cpu_type; | 
|  | struct s3c2410_nand_info *info; | 
|  | struct s3c2410_nand_mtd *nmtd; | 
|  | struct s3c2410_nand_set *sets; | 
|  | struct resource *res; | 
|  | int err = 0; | 
|  | int size; | 
|  | int nr_sets; | 
|  | int setno; | 
|  |  | 
|  | cpu_type = platform_get_device_id(pdev)->driver_data; | 
|  |  | 
|  | pr_debug("s3c2410_nand_probe(%p)\n", pdev); | 
|  |  | 
|  | info = kmalloc(sizeof(*info), GFP_KERNEL); | 
|  | if (info == NULL) { | 
|  | dev_err(&pdev->dev, "no memory for flash info\n"); | 
|  | err = -ENOMEM; | 
|  | goto exit_error; | 
|  | } | 
|  |  | 
|  | memset(info, 0, sizeof(*info)); | 
|  | platform_set_drvdata(pdev, info); | 
|  |  | 
|  | spin_lock_init(&info->controller.lock); | 
|  | init_waitqueue_head(&info->controller.wq); | 
|  |  | 
|  | /* get the clock source and enable it */ | 
|  |  | 
|  | info->clk = clk_get(&pdev->dev, "nand"); | 
|  | if (IS_ERR(info->clk)) { | 
|  | dev_err(&pdev->dev, "failed to get clock\n"); | 
|  | err = -ENOENT; | 
|  | goto exit_error; | 
|  | } | 
|  |  | 
|  | clk_enable(info->clk); | 
|  |  | 
|  | /* allocate and map the resource */ | 
|  |  | 
|  | /* currently we assume we have the one resource */ | 
|  | res  = pdev->resource; | 
|  | size = res->end - res->start + 1; | 
|  |  | 
|  | info->area = request_mem_region(res->start, size, pdev->name); | 
|  |  | 
|  | if (info->area == NULL) { | 
|  | dev_err(&pdev->dev, "cannot reserve register region\n"); | 
|  | err = -ENOENT; | 
|  | goto exit_error; | 
|  | } | 
|  |  | 
|  | info->device     = &pdev->dev; | 
|  | info->platform   = plat; | 
|  | info->regs       = ioremap(res->start, size); | 
|  | info->cpu_type   = cpu_type; | 
|  |  | 
|  | if (info->regs == NULL) { | 
|  | dev_err(&pdev->dev, "cannot reserve register region\n"); | 
|  | err = -EIO; | 
|  | goto exit_error; | 
|  | } | 
|  |  | 
|  | dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs); | 
|  |  | 
|  | /* initialise the hardware */ | 
|  |  | 
|  | err = s3c2410_nand_inithw(info); | 
|  | if (err != 0) | 
|  | goto exit_error; | 
|  |  | 
|  | sets = (plat != NULL) ? plat->sets : NULL; | 
|  | nr_sets = (plat != NULL) ? plat->nr_sets : 1; | 
|  |  | 
|  | info->mtd_count = nr_sets; | 
|  |  | 
|  | /* allocate our information */ | 
|  |  | 
|  | size = nr_sets * sizeof(*info->mtds); | 
|  | info->mtds = kmalloc(size, GFP_KERNEL); | 
|  | if (info->mtds == NULL) { | 
|  | dev_err(&pdev->dev, "failed to allocate mtd storage\n"); | 
|  | err = -ENOMEM; | 
|  | goto exit_error; | 
|  | } | 
|  |  | 
|  | memset(info->mtds, 0, size); | 
|  |  | 
|  | /* initialise all possible chips */ | 
|  |  | 
|  | nmtd = info->mtds; | 
|  |  | 
|  | for (setno = 0; setno < nr_sets; setno++, nmtd++) { | 
|  | pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info); | 
|  |  | 
|  | s3c2410_nand_init_chip(info, nmtd, sets); | 
|  |  | 
|  | nmtd->scan_res = nand_scan_ident(&nmtd->mtd, | 
|  | (sets) ? sets->nr_chips : 1); | 
|  |  | 
|  | if (nmtd->scan_res == 0) { | 
|  | s3c2410_nand_update_chip(info, nmtd); | 
|  | nand_scan_tail(&nmtd->mtd); | 
|  | s3c2410_nand_add_partition(info, nmtd, sets); | 
|  | } | 
|  |  | 
|  | if (sets != NULL) | 
|  | sets++; | 
|  | } | 
|  |  | 
|  | err = s3c2410_nand_cpufreq_register(info); | 
|  | if (err < 0) { | 
|  | dev_err(&pdev->dev, "failed to init cpufreq support\n"); | 
|  | goto exit_error; | 
|  | } | 
|  |  | 
|  | if (allow_clk_stop(info)) { | 
|  | dev_info(&pdev->dev, "clock idle support enabled\n"); | 
|  | clk_disable(info->clk); | 
|  | } | 
|  |  | 
|  | pr_debug("initialised ok\n"); | 
|  | return 0; | 
|  |  | 
|  | exit_error: | 
|  | s3c24xx_nand_remove(pdev); | 
|  |  | 
|  | if (err == 0) | 
|  | err = -EINVAL; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* PM Support */ | 
|  | #ifdef CONFIG_PM | 
|  |  | 
|  | static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm) | 
|  | { | 
|  | struct s3c2410_nand_info *info = platform_get_drvdata(dev); | 
|  |  | 
|  | if (info) { | 
|  | info->save_sel = readl(info->sel_reg); | 
|  |  | 
|  | /* For the moment, we must ensure nFCE is high during | 
|  | * the time we are suspended. This really should be | 
|  | * handled by suspending the MTDs we are using, but | 
|  | * that is currently not the case. */ | 
|  |  | 
|  | writel(info->save_sel | info->sel_bit, info->sel_reg); | 
|  |  | 
|  | if (!allow_clk_stop(info)) | 
|  | clk_disable(info->clk); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int s3c24xx_nand_resume(struct platform_device *dev) | 
|  | { | 
|  | struct s3c2410_nand_info *info = platform_get_drvdata(dev); | 
|  | unsigned long sel; | 
|  |  | 
|  | if (info) { | 
|  | clk_enable(info->clk); | 
|  | s3c2410_nand_inithw(info); | 
|  |  | 
|  | /* Restore the state of the nFCE line. */ | 
|  |  | 
|  | sel = readl(info->sel_reg); | 
|  | sel &= ~info->sel_bit; | 
|  | sel |= info->save_sel & info->sel_bit; | 
|  | writel(sel, info->sel_reg); | 
|  |  | 
|  | if (allow_clk_stop(info)) | 
|  | clk_disable(info->clk); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else | 
|  | #define s3c24xx_nand_suspend NULL | 
|  | #define s3c24xx_nand_resume NULL | 
|  | #endif | 
|  |  | 
|  | /* driver device registration */ | 
|  |  | 
|  | static struct platform_device_id s3c24xx_driver_ids[] = { | 
|  | { | 
|  | .name		= "s3c2410-nand", | 
|  | .driver_data	= TYPE_S3C2410, | 
|  | }, { | 
|  | .name		= "s3c2440-nand", | 
|  | .driver_data	= TYPE_S3C2440, | 
|  | }, { | 
|  | .name		= "s3c2412-nand", | 
|  | .driver_data	= TYPE_S3C2412, | 
|  | }, { | 
|  | .name		= "s3c6400-nand", | 
|  | .driver_data	= TYPE_S3C2412, /* compatible with 2412 */ | 
|  | }, | 
|  | { } | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids); | 
|  |  | 
|  | static struct platform_driver s3c24xx_nand_driver = { | 
|  | .probe		= s3c24xx_nand_probe, | 
|  | .remove		= s3c24xx_nand_remove, | 
|  | .suspend	= s3c24xx_nand_suspend, | 
|  | .resume		= s3c24xx_nand_resume, | 
|  | .id_table	= s3c24xx_driver_ids, | 
|  | .driver		= { | 
|  | .name	= "s3c24xx-nand", | 
|  | .owner	= THIS_MODULE, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int __init s3c2410_nand_init(void) | 
|  | { | 
|  | printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n"); | 
|  |  | 
|  | return platform_driver_register(&s3c24xx_nand_driver); | 
|  | } | 
|  |  | 
|  | static void __exit s3c2410_nand_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&s3c24xx_nand_driver); | 
|  | } | 
|  |  | 
|  | module_init(s3c2410_nand_init); | 
|  | module_exit(s3c2410_nand_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); | 
|  | MODULE_DESCRIPTION("S3C24XX MTD NAND driver"); |