| /* | 
 |  * JFFS2 -- Journalling Flash File System, Version 2. | 
 |  * | 
 |  * Copyright © 2001-2007 Red Hat, Inc. | 
 |  * | 
 |  * Created by David Woodhouse <dwmw2@infradead.org> | 
 |  * | 
 |  * For licensing information, see the file 'LICENCE' in this directory. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/crc32.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/mtd/mtd.h> | 
 | #include <linux/compiler.h> | 
 | #include "nodelist.h" | 
 |  | 
 | /* | 
 |  * Check the data CRC of the node. | 
 |  * | 
 |  * Returns: 0 if the data CRC is correct; | 
 |  * 	    1 - if incorrect; | 
 |  *	    error code if an error occured. | 
 |  */ | 
 | static int check_node_data(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn) | 
 | { | 
 | 	struct jffs2_raw_node_ref *ref = tn->fn->raw; | 
 | 	int err = 0, pointed = 0; | 
 | 	struct jffs2_eraseblock *jeb; | 
 | 	unsigned char *buffer; | 
 | 	uint32_t crc, ofs, len; | 
 | 	size_t retlen; | 
 |  | 
 | 	BUG_ON(tn->csize == 0); | 
 |  | 
 | 	/* Calculate how many bytes were already checked */ | 
 | 	ofs = ref_offset(ref) + sizeof(struct jffs2_raw_inode); | 
 | 	len = tn->csize; | 
 |  | 
 | 	if (jffs2_is_writebuffered(c)) { | 
 | 		int adj = ofs % c->wbuf_pagesize; | 
 | 		if (likely(adj)) | 
 | 			adj = c->wbuf_pagesize - adj; | 
 |  | 
 | 		if (adj >= tn->csize) { | 
 | 			dbg_readinode("no need to check node at %#08x, data length %u, data starts at %#08x - it has already been checked.\n", | 
 | 				      ref_offset(ref), tn->csize, ofs); | 
 | 			goto adj_acc; | 
 | 		} | 
 |  | 
 | 		ofs += adj; | 
 | 		len -= adj; | 
 | 	} | 
 |  | 
 | 	dbg_readinode("check node at %#08x, data length %u, partial CRC %#08x, correct CRC %#08x, data starts at %#08x, start checking from %#08x - %u bytes.\n", | 
 | 		ref_offset(ref), tn->csize, tn->partial_crc, tn->data_crc, ofs - len, ofs, len); | 
 |  | 
 | #ifndef __ECOS | 
 | 	/* TODO: instead, incapsulate point() stuff to jffs2_flash_read(), | 
 | 	 * adding and jffs2_flash_read_end() interface. */ | 
 | 	if (c->mtd->point) { | 
 | 		err = c->mtd->point(c->mtd, ofs, len, &retlen, | 
 | 				    (void **)&buffer, NULL); | 
 | 		if (!err && retlen < len) { | 
 | 			JFFS2_WARNING("MTD point returned len too short: %zu instead of %u.\n", retlen, tn->csize); | 
 | 			c->mtd->unpoint(c->mtd, ofs, retlen); | 
 | 		} else if (err) | 
 | 			JFFS2_WARNING("MTD point failed: error code %d.\n", err); | 
 | 		else | 
 | 			pointed = 1; /* succefully pointed to device */ | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (!pointed) { | 
 | 		buffer = kmalloc(len, GFP_KERNEL); | 
 | 		if (unlikely(!buffer)) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		/* TODO: this is very frequent pattern, make it a separate | 
 | 		 * routine */ | 
 | 		err = jffs2_flash_read(c, ofs, len, &retlen, buffer); | 
 | 		if (err) { | 
 | 			JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ofs, err); | 
 | 			goto free_out; | 
 | 		} | 
 |  | 
 | 		if (retlen != len) { | 
 | 			JFFS2_ERROR("short read at %#08x: %zd instead of %d.\n", ofs, retlen, len); | 
 | 			err = -EIO; | 
 | 			goto free_out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Continue calculating CRC */ | 
 | 	crc = crc32(tn->partial_crc, buffer, len); | 
 | 	if(!pointed) | 
 | 		kfree(buffer); | 
 | #ifndef __ECOS | 
 | 	else | 
 | 		c->mtd->unpoint(c->mtd, ofs, len); | 
 | #endif | 
 |  | 
 | 	if (crc != tn->data_crc) { | 
 | 		JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n", | 
 | 			     ref_offset(ref), tn->data_crc, crc); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | adj_acc: | 
 | 	jeb = &c->blocks[ref->flash_offset / c->sector_size]; | 
 | 	len = ref_totlen(c, jeb, ref); | 
 | 	/* If it should be REF_NORMAL, it'll get marked as such when | 
 | 	   we build the fragtree, shortly. No need to worry about GC | 
 | 	   moving it while it's marked REF_PRISTINE -- GC won't happen | 
 | 	   till we've finished checking every inode anyway. */ | 
 | 	ref->flash_offset |= REF_PRISTINE; | 
 | 	/* | 
 | 	 * Mark the node as having been checked and fix the | 
 | 	 * accounting accordingly. | 
 | 	 */ | 
 | 	spin_lock(&c->erase_completion_lock); | 
 | 	jeb->used_size += len; | 
 | 	jeb->unchecked_size -= len; | 
 | 	c->used_size += len; | 
 | 	c->unchecked_size -= len; | 
 | 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb); | 
 | 	spin_unlock(&c->erase_completion_lock); | 
 |  | 
 | 	return 0; | 
 |  | 
 | free_out: | 
 | 	if(!pointed) | 
 | 		kfree(buffer); | 
 | #ifndef __ECOS | 
 | 	else | 
 | 		c->mtd->unpoint(c->mtd, ofs, len); | 
 | #endif | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function for jffs2_add_older_frag_to_fragtree(). | 
 |  * | 
 |  * Checks the node if we are in the checking stage. | 
 |  */ | 
 | static int check_tn_node(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	BUG_ON(ref_obsolete(tn->fn->raw)); | 
 |  | 
 | 	/* We only check the data CRC of unchecked nodes */ | 
 | 	if (ref_flags(tn->fn->raw) != REF_UNCHECKED) | 
 | 		return 0; | 
 |  | 
 | 	dbg_readinode("check node %#04x-%#04x, phys offs %#08x\n", | 
 | 		      tn->fn->ofs, tn->fn->ofs + tn->fn->size, ref_offset(tn->fn->raw)); | 
 |  | 
 | 	ret = check_node_data(c, tn); | 
 | 	if (unlikely(ret < 0)) { | 
 | 		JFFS2_ERROR("check_node_data() returned error: %d.\n", | 
 | 			ret); | 
 | 	} else if (unlikely(ret > 0)) { | 
 | 		dbg_readinode("CRC error, mark it obsolete.\n"); | 
 | 		jffs2_mark_node_obsolete(c, tn->fn->raw); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct jffs2_tmp_dnode_info *jffs2_lookup_tn(struct rb_root *tn_root, uint32_t offset) | 
 | { | 
 | 	struct rb_node *next; | 
 | 	struct jffs2_tmp_dnode_info *tn = NULL; | 
 |  | 
 | 	dbg_readinode("root %p, offset %d\n", tn_root, offset); | 
 |  | 
 | 	next = tn_root->rb_node; | 
 |  | 
 | 	while (next) { | 
 | 		tn = rb_entry(next, struct jffs2_tmp_dnode_info, rb); | 
 |  | 
 | 		if (tn->fn->ofs < offset) | 
 | 			next = tn->rb.rb_right; | 
 | 		else if (tn->fn->ofs >= offset) | 
 | 			next = tn->rb.rb_left; | 
 | 		else | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return tn; | 
 | } | 
 |  | 
 |  | 
 | static void jffs2_kill_tn(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn) | 
 | { | 
 | 	jffs2_mark_node_obsolete(c, tn->fn->raw); | 
 | 	jffs2_free_full_dnode(tn->fn); | 
 | 	jffs2_free_tmp_dnode_info(tn); | 
 | } | 
 | /* | 
 |  * This function is used when we read an inode. Data nodes arrive in | 
 |  * arbitrary order -- they may be older or newer than the nodes which | 
 |  * are already in the tree. Where overlaps occur, the older node can | 
 |  * be discarded as long as the newer passes the CRC check. We don't | 
 |  * bother to keep track of holes in this rbtree, and neither do we deal | 
 |  * with frags -- we can have multiple entries starting at the same | 
 |  * offset, and the one with the smallest length will come first in the | 
 |  * ordering. | 
 |  * | 
 |  * Returns 0 if the node was handled (including marking it obsolete) | 
 |  *	 < 0 an if error occurred | 
 |  */ | 
 | static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c, | 
 | 				struct jffs2_readinode_info *rii, | 
 | 				struct jffs2_tmp_dnode_info *tn) | 
 | { | 
 | 	uint32_t fn_end = tn->fn->ofs + tn->fn->size; | 
 | 	struct jffs2_tmp_dnode_info *this, *ptn; | 
 |  | 
 | 	dbg_readinode("insert fragment %#04x-%#04x, ver %u at %08x\n", tn->fn->ofs, fn_end, tn->version, ref_offset(tn->fn->raw)); | 
 |  | 
 | 	/* If a node has zero dsize, we only have to keep if it if it might be the | 
 | 	   node with highest version -- i.e. the one which will end up as f->metadata. | 
 | 	   Note that such nodes won't be REF_UNCHECKED since there are no data to | 
 | 	   check anyway. */ | 
 | 	if (!tn->fn->size) { | 
 | 		if (rii->mdata_tn) { | 
 | 			if (rii->mdata_tn->version < tn->version) { | 
 | 				/* We had a candidate mdata node already */ | 
 | 				dbg_readinode("kill old mdata with ver %d\n", rii->mdata_tn->version); | 
 | 				jffs2_kill_tn(c, rii->mdata_tn); | 
 | 			} else { | 
 | 				dbg_readinode("kill new mdata with ver %d (older than existing %d\n", | 
 | 					      tn->version, rii->mdata_tn->version); | 
 | 				jffs2_kill_tn(c, tn); | 
 | 				return 0; | 
 | 			} | 
 | 		} | 
 | 		rii->mdata_tn = tn; | 
 | 		dbg_readinode("keep new mdata with ver %d\n", tn->version); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Find the earliest node which _may_ be relevant to this one */ | 
 | 	this = jffs2_lookup_tn(&rii->tn_root, tn->fn->ofs); | 
 | 	if (this) { | 
 | 		/* If the node is coincident with another at a lower address, | 
 | 		   back up until the other node is found. It may be relevant */ | 
 | 		while (this->overlapped) { | 
 | 			ptn = tn_prev(this); | 
 | 			if (!ptn) { | 
 | 				/* | 
 | 				 * We killed a node which set the overlapped | 
 | 				 * flags during the scan. Fix it up. | 
 | 				 */ | 
 | 				this->overlapped = 0; | 
 | 				break; | 
 | 			} | 
 | 			this = ptn; | 
 | 		} | 
 | 		dbg_readinode("'this' found %#04x-%#04x (%s)\n", this->fn->ofs, this->fn->ofs + this->fn->size, this->fn ? "data" : "hole"); | 
 | 	} | 
 |  | 
 | 	while (this) { | 
 | 		if (this->fn->ofs > fn_end) | 
 | 			break; | 
 | 		dbg_readinode("Ponder this ver %d, 0x%x-0x%x\n", | 
 | 			      this->version, this->fn->ofs, this->fn->size); | 
 |  | 
 | 		if (this->version == tn->version) { | 
 | 			/* Version number collision means REF_PRISTINE GC. Accept either of them | 
 | 			   as long as the CRC is correct. Check the one we have already...  */ | 
 | 			if (!check_tn_node(c, this)) { | 
 | 				/* The one we already had was OK. Keep it and throw away the new one */ | 
 | 				dbg_readinode("Like old node. Throw away new\n"); | 
 | 				jffs2_kill_tn(c, tn); | 
 | 				return 0; | 
 | 			} else { | 
 | 				/* Who cares if the new one is good; keep it for now anyway. */ | 
 | 				dbg_readinode("Like new node. Throw away old\n"); | 
 | 				rb_replace_node(&this->rb, &tn->rb, &rii->tn_root); | 
 | 				jffs2_kill_tn(c, this); | 
 | 				/* Same overlapping from in front and behind */ | 
 | 				return 0; | 
 | 			} | 
 | 		} | 
 | 		if (this->version < tn->version && | 
 | 		    this->fn->ofs >= tn->fn->ofs && | 
 | 		    this->fn->ofs + this->fn->size <= fn_end) { | 
 | 			/* New node entirely overlaps 'this' */ | 
 | 			if (check_tn_node(c, tn)) { | 
 | 				dbg_readinode("new node bad CRC\n"); | 
 | 				jffs2_kill_tn(c, tn); | 
 | 				return 0; | 
 | 			} | 
 | 			/* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */ | 
 | 			while (this && this->fn->ofs + this->fn->size <= fn_end) { | 
 | 				struct jffs2_tmp_dnode_info *next = tn_next(this); | 
 | 				if (this->version < tn->version) { | 
 | 					tn_erase(this, &rii->tn_root); | 
 | 					dbg_readinode("Kill overlapped ver %d, 0x%x-0x%x\n", | 
 | 						      this->version, this->fn->ofs, | 
 | 						      this->fn->ofs+this->fn->size); | 
 | 					jffs2_kill_tn(c, this); | 
 | 				} | 
 | 				this = next; | 
 | 			} | 
 | 			dbg_readinode("Done killing overlapped nodes\n"); | 
 | 			continue; | 
 | 		} | 
 | 		if (this->version > tn->version && | 
 | 		    this->fn->ofs <= tn->fn->ofs && | 
 | 		    this->fn->ofs+this->fn->size >= fn_end) { | 
 | 			/* New node entirely overlapped by 'this' */ | 
 | 			if (!check_tn_node(c, this)) { | 
 | 				dbg_readinode("Good CRC on old node. Kill new\n"); | 
 | 				jffs2_kill_tn(c, tn); | 
 | 				return 0; | 
 | 			} | 
 | 			/* ... but 'this' was bad. Replace it... */ | 
 | 			dbg_readinode("Bad CRC on old overlapping node. Kill it\n"); | 
 | 			tn_erase(this, &rii->tn_root); | 
 | 			jffs2_kill_tn(c, this); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		this = tn_next(this); | 
 | 	} | 
 |  | 
 | 	/* We neither completely obsoleted nor were completely | 
 | 	   obsoleted by an earlier node. Insert into the tree */ | 
 | 	{ | 
 | 		struct rb_node *parent; | 
 | 		struct rb_node **link = &rii->tn_root.rb_node; | 
 | 		struct jffs2_tmp_dnode_info *insert_point = NULL; | 
 |  | 
 | 		while (*link) { | 
 | 			parent = *link; | 
 | 			insert_point = rb_entry(parent, struct jffs2_tmp_dnode_info, rb); | 
 | 			if (tn->fn->ofs > insert_point->fn->ofs) | 
 | 				link = &insert_point->rb.rb_right; | 
 | 			else if (tn->fn->ofs < insert_point->fn->ofs || | 
 | 				 tn->fn->size < insert_point->fn->size) | 
 | 				link = &insert_point->rb.rb_left; | 
 | 			else | 
 | 				link = &insert_point->rb.rb_right; | 
 | 		} | 
 | 		rb_link_node(&tn->rb, &insert_point->rb, link); | 
 | 		rb_insert_color(&tn->rb, &rii->tn_root); | 
 | 	} | 
 |  | 
 | 	/* If there's anything behind that overlaps us, note it */ | 
 | 	this = tn_prev(tn); | 
 | 	if (this) { | 
 | 		while (1) { | 
 | 			if (this->fn->ofs + this->fn->size > tn->fn->ofs) { | 
 | 				dbg_readinode("Node is overlapped by %p (v %d, 0x%x-0x%x)\n", | 
 | 					      this, this->version, this->fn->ofs, | 
 | 					      this->fn->ofs+this->fn->size); | 
 | 				tn->overlapped = 1; | 
 | 				break; | 
 | 			} | 
 | 			if (!this->overlapped) | 
 | 				break; | 
 |  | 
 | 			ptn = tn_prev(this); | 
 | 			if (!ptn) { | 
 | 				/* | 
 | 				 * We killed a node which set the overlapped | 
 | 				 * flags during the scan. Fix it up. | 
 | 				 */ | 
 | 				this->overlapped = 0; | 
 | 				break; | 
 | 			} | 
 | 			this = ptn; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* If the new node overlaps anything ahead, note it */ | 
 | 	this = tn_next(tn); | 
 | 	while (this && this->fn->ofs < fn_end) { | 
 | 		this->overlapped = 1; | 
 | 		dbg_readinode("Node ver %d, 0x%x-0x%x is overlapped\n", | 
 | 			      this->version, this->fn->ofs, | 
 | 			      this->fn->ofs+this->fn->size); | 
 | 		this = tn_next(this); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Trivial function to remove the last node in the tree. Which by definition | 
 |    has no right-hand -- so can be removed just by making its only child (if | 
 |    any) take its place under its parent. */ | 
 | static void eat_last(struct rb_root *root, struct rb_node *node) | 
 | { | 
 | 	struct rb_node *parent = rb_parent(node); | 
 | 	struct rb_node **link; | 
 |  | 
 | 	/* LAST! */ | 
 | 	BUG_ON(node->rb_right); | 
 |  | 
 | 	if (!parent) | 
 | 		link = &root->rb_node; | 
 | 	else if (node == parent->rb_left) | 
 | 		link = &parent->rb_left; | 
 | 	else | 
 | 		link = &parent->rb_right; | 
 |  | 
 | 	*link = node->rb_left; | 
 | 	/* Colour doesn't matter now. Only the parent pointer. */ | 
 | 	if (node->rb_left) | 
 | 		node->rb_left->rb_parent_color = node->rb_parent_color; | 
 | } | 
 |  | 
 | /* We put this in reverse order, so we can just use eat_last */ | 
 | static void ver_insert(struct rb_root *ver_root, struct jffs2_tmp_dnode_info *tn) | 
 | { | 
 | 	struct rb_node **link = &ver_root->rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct jffs2_tmp_dnode_info *this_tn; | 
 |  | 
 | 	while (*link) { | 
 | 		parent = *link; | 
 | 		this_tn = rb_entry(parent, struct jffs2_tmp_dnode_info, rb); | 
 |  | 
 | 		if (tn->version > this_tn->version) | 
 | 			link = &parent->rb_left; | 
 | 		else | 
 | 			link = &parent->rb_right; | 
 | 	} | 
 | 	dbg_readinode("Link new node at %p (root is %p)\n", link, ver_root); | 
 | 	rb_link_node(&tn->rb, parent, link); | 
 | 	rb_insert_color(&tn->rb, ver_root); | 
 | } | 
 |  | 
 | /* Build final, normal fragtree from tn tree. It doesn't matter which order | 
 |    we add nodes to the real fragtree, as long as they don't overlap. And | 
 |    having thrown away the majority of overlapped nodes as we went, there | 
 |    really shouldn't be many sets of nodes which do overlap. If we start at | 
 |    the end, we can use the overlap markers -- we can just eat nodes which | 
 |    aren't overlapped, and when we encounter nodes which _do_ overlap we | 
 |    sort them all into a temporary tree in version order before replaying them. */ | 
 | static int jffs2_build_inode_fragtree(struct jffs2_sb_info *c, | 
 | 				      struct jffs2_inode_info *f, | 
 | 				      struct jffs2_readinode_info *rii) | 
 | { | 
 | 	struct jffs2_tmp_dnode_info *pen, *last, *this; | 
 | 	struct rb_root ver_root = RB_ROOT; | 
 | 	uint32_t high_ver = 0; | 
 |  | 
 | 	if (rii->mdata_tn) { | 
 | 		dbg_readinode("potential mdata is ver %d at %p\n", rii->mdata_tn->version, rii->mdata_tn); | 
 | 		high_ver = rii->mdata_tn->version; | 
 | 		rii->latest_ref = rii->mdata_tn->fn->raw; | 
 | 	} | 
 | #ifdef JFFS2_DBG_READINODE_MESSAGES | 
 | 	this = tn_last(&rii->tn_root); | 
 | 	while (this) { | 
 | 		dbg_readinode("tn %p ver %d range 0x%x-0x%x ov %d\n", this, this->version, this->fn->ofs, | 
 | 			      this->fn->ofs+this->fn->size, this->overlapped); | 
 | 		this = tn_prev(this); | 
 | 	} | 
 | #endif | 
 | 	pen = tn_last(&rii->tn_root); | 
 | 	while ((last = pen)) { | 
 | 		pen = tn_prev(last); | 
 |  | 
 | 		eat_last(&rii->tn_root, &last->rb); | 
 | 		ver_insert(&ver_root, last); | 
 |  | 
 | 		if (unlikely(last->overlapped)) { | 
 | 			if (pen) | 
 | 				continue; | 
 | 			/* | 
 | 			 * We killed a node which set the overlapped | 
 | 			 * flags during the scan. Fix it up. | 
 | 			 */ | 
 | 			last->overlapped = 0; | 
 | 		} | 
 |  | 
 | 		/* Now we have a bunch of nodes in reverse version | 
 | 		   order, in the tree at ver_root. Most of the time, | 
 | 		   there'll actually be only one node in the 'tree', | 
 | 		   in fact. */ | 
 | 		this = tn_last(&ver_root); | 
 |  | 
 | 		while (this) { | 
 | 			struct jffs2_tmp_dnode_info *vers_next; | 
 | 			int ret; | 
 | 			vers_next = tn_prev(this); | 
 | 			eat_last(&ver_root, &this->rb); | 
 | 			if (check_tn_node(c, this)) { | 
 | 				dbg_readinode("node ver %d, 0x%x-0x%x failed CRC\n", | 
 | 					     this->version, this->fn->ofs, | 
 | 					     this->fn->ofs+this->fn->size); | 
 | 				jffs2_kill_tn(c, this); | 
 | 			} else { | 
 | 				if (this->version > high_ver) { | 
 | 					/* Note that this is different from the other | 
 | 					   highest_version, because this one is only | 
 | 					   counting _valid_ nodes which could give the | 
 | 					   latest inode metadata */ | 
 | 					high_ver = this->version; | 
 | 					rii->latest_ref = this->fn->raw; | 
 | 				} | 
 | 				dbg_readinode("Add %p (v %d, 0x%x-0x%x, ov %d) to fragtree\n", | 
 | 					     this, this->version, this->fn->ofs, | 
 | 					     this->fn->ofs+this->fn->size, this->overlapped); | 
 |  | 
 | 				ret = jffs2_add_full_dnode_to_inode(c, f, this->fn); | 
 | 				if (ret) { | 
 | 					/* Free the nodes in vers_root; let the caller | 
 | 					   deal with the rest */ | 
 | 					JFFS2_ERROR("Add node to tree failed %d\n", ret); | 
 | 					while (1) { | 
 | 						vers_next = tn_prev(this); | 
 | 						if (check_tn_node(c, this)) | 
 | 							jffs2_mark_node_obsolete(c, this->fn->raw); | 
 | 						jffs2_free_full_dnode(this->fn); | 
 | 						jffs2_free_tmp_dnode_info(this); | 
 | 						this = vers_next; | 
 | 						if (!this) | 
 | 							break; | 
 | 						eat_last(&ver_root, &vers_next->rb); | 
 | 					} | 
 | 					return ret; | 
 | 				} | 
 | 				jffs2_free_tmp_dnode_info(this); | 
 | 			} | 
 | 			this = vers_next; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void jffs2_free_tmp_dnode_info_list(struct rb_root *list) | 
 | { | 
 | 	struct rb_node *this; | 
 | 	struct jffs2_tmp_dnode_info *tn; | 
 |  | 
 | 	this = list->rb_node; | 
 |  | 
 | 	/* Now at bottom of tree */ | 
 | 	while (this) { | 
 | 		if (this->rb_left) | 
 | 			this = this->rb_left; | 
 | 		else if (this->rb_right) | 
 | 			this = this->rb_right; | 
 | 		else { | 
 | 			tn = rb_entry(this, struct jffs2_tmp_dnode_info, rb); | 
 | 			jffs2_free_full_dnode(tn->fn); | 
 | 			jffs2_free_tmp_dnode_info(tn); | 
 |  | 
 | 			this = rb_parent(this); | 
 | 			if (!this) | 
 | 				break; | 
 |  | 
 | 			if (this->rb_left == &tn->rb) | 
 | 				this->rb_left = NULL; | 
 | 			else if (this->rb_right == &tn->rb) | 
 | 				this->rb_right = NULL; | 
 | 			else BUG(); | 
 | 		} | 
 | 	} | 
 | 	*list = RB_ROOT; | 
 | } | 
 |  | 
 | static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd) | 
 | { | 
 | 	struct jffs2_full_dirent *next; | 
 |  | 
 | 	while (fd) { | 
 | 		next = fd->next; | 
 | 		jffs2_free_full_dirent(fd); | 
 | 		fd = next; | 
 | 	} | 
 | } | 
 |  | 
 | /* Returns first valid node after 'ref'. May return 'ref' */ | 
 | static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref) | 
 | { | 
 | 	while (ref && ref->next_in_ino) { | 
 | 		if (!ref_obsolete(ref)) | 
 | 			return ref; | 
 | 		dbg_noderef("node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref)); | 
 | 		ref = ref->next_in_ino; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function for jffs2_get_inode_nodes(). | 
 |  * It is called every time an directory entry node is found. | 
 |  * | 
 |  * Returns: 0 on success; | 
 |  * 	    negative error code on failure. | 
 |  */ | 
 | static inline int read_direntry(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, | 
 | 				struct jffs2_raw_dirent *rd, size_t read, | 
 | 				struct jffs2_readinode_info *rii) | 
 | { | 
 | 	struct jffs2_full_dirent *fd; | 
 | 	uint32_t crc; | 
 |  | 
 | 	/* Obsoleted. This cannot happen, surely? dwmw2 20020308 */ | 
 | 	BUG_ON(ref_obsolete(ref)); | 
 |  | 
 | 	crc = crc32(0, rd, sizeof(*rd) - 8); | 
 | 	if (unlikely(crc != je32_to_cpu(rd->node_crc))) { | 
 | 		JFFS2_NOTICE("header CRC failed on dirent node at %#08x: read %#08x, calculated %#08x\n", | 
 | 			     ref_offset(ref), je32_to_cpu(rd->node_crc), crc); | 
 | 		jffs2_mark_node_obsolete(c, ref); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* If we've never checked the CRCs on this node, check them now */ | 
 | 	if (ref_flags(ref) == REF_UNCHECKED) { | 
 | 		struct jffs2_eraseblock *jeb; | 
 | 		int len; | 
 |  | 
 | 		/* Sanity check */ | 
 | 		if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) { | 
 | 			JFFS2_ERROR("illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n", | 
 | 				    ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen)); | 
 | 			jffs2_mark_node_obsolete(c, ref); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		jeb = &c->blocks[ref->flash_offset / c->sector_size]; | 
 | 		len = ref_totlen(c, jeb, ref); | 
 |  | 
 | 		spin_lock(&c->erase_completion_lock); | 
 | 		jeb->used_size += len; | 
 | 		jeb->unchecked_size -= len; | 
 | 		c->used_size += len; | 
 | 		c->unchecked_size -= len; | 
 | 		ref->flash_offset = ref_offset(ref) | dirent_node_state(rd); | 
 | 		spin_unlock(&c->erase_completion_lock); | 
 | 	} | 
 |  | 
 | 	fd = jffs2_alloc_full_dirent(rd->nsize + 1); | 
 | 	if (unlikely(!fd)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	fd->raw = ref; | 
 | 	fd->version = je32_to_cpu(rd->version); | 
 | 	fd->ino = je32_to_cpu(rd->ino); | 
 | 	fd->type = rd->type; | 
 |  | 
 | 	if (fd->version > rii->highest_version) | 
 | 		rii->highest_version = fd->version; | 
 |  | 
 | 	/* Pick out the mctime of the latest dirent */ | 
 | 	if(fd->version > rii->mctime_ver && je32_to_cpu(rd->mctime)) { | 
 | 		rii->mctime_ver = fd->version; | 
 | 		rii->latest_mctime = je32_to_cpu(rd->mctime); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Copy as much of the name as possible from the raw | 
 | 	 * dirent we've already read from the flash. | 
 | 	 */ | 
 | 	if (read > sizeof(*rd)) | 
 | 		memcpy(&fd->name[0], &rd->name[0], | 
 | 		       min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) )); | 
 |  | 
 | 	/* Do we need to copy any more of the name directly from the flash? */ | 
 | 	if (rd->nsize + sizeof(*rd) > read) { | 
 | 		/* FIXME: point() */ | 
 | 		int err; | 
 | 		int already = read - sizeof(*rd); | 
 |  | 
 | 		err = jffs2_flash_read(c, (ref_offset(ref)) + read, | 
 | 				rd->nsize - already, &read, &fd->name[already]); | 
 | 		if (unlikely(read != rd->nsize - already) && likely(!err)) | 
 | 			return -EIO; | 
 |  | 
 | 		if (unlikely(err)) { | 
 | 			JFFS2_ERROR("read remainder of name: error %d\n", err); | 
 | 			jffs2_free_full_dirent(fd); | 
 | 			return -EIO; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	fd->nhash = full_name_hash(fd->name, rd->nsize); | 
 | 	fd->next = NULL; | 
 | 	fd->name[rd->nsize] = '\0'; | 
 |  | 
 | 	/* | 
 | 	 * Wheee. We now have a complete jffs2_full_dirent structure, with | 
 | 	 * the name in it and everything. Link it into the list | 
 | 	 */ | 
 | 	jffs2_add_fd_to_list(c, fd, &rii->fds); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function for jffs2_get_inode_nodes(). | 
 |  * It is called every time an inode node is found. | 
 |  * | 
 |  * Returns: 0 on success (possibly after marking a bad node obsolete); | 
 |  * 	    negative error code on failure. | 
 |  */ | 
 | static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, | 
 | 			     struct jffs2_raw_inode *rd, int rdlen, | 
 | 			     struct jffs2_readinode_info *rii) | 
 | { | 
 | 	struct jffs2_tmp_dnode_info *tn; | 
 | 	uint32_t len, csize; | 
 | 	int ret = 0; | 
 | 	uint32_t crc; | 
 |  | 
 | 	/* Obsoleted. This cannot happen, surely? dwmw2 20020308 */ | 
 | 	BUG_ON(ref_obsolete(ref)); | 
 |  | 
 | 	crc = crc32(0, rd, sizeof(*rd) - 8); | 
 | 	if (unlikely(crc != je32_to_cpu(rd->node_crc))) { | 
 | 		JFFS2_NOTICE("node CRC failed on dnode at %#08x: read %#08x, calculated %#08x\n", | 
 | 			     ref_offset(ref), je32_to_cpu(rd->node_crc), crc); | 
 | 		jffs2_mark_node_obsolete(c, ref); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	tn = jffs2_alloc_tmp_dnode_info(); | 
 | 	if (!tn) { | 
 | 		JFFS2_ERROR("failed to allocate tn (%zu bytes).\n", sizeof(*tn)); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	tn->partial_crc = 0; | 
 | 	csize = je32_to_cpu(rd->csize); | 
 |  | 
 | 	/* If we've never checked the CRCs on this node, check them now */ | 
 | 	if (ref_flags(ref) == REF_UNCHECKED) { | 
 |  | 
 | 		/* Sanity checks */ | 
 | 		if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) || | 
 | 		    unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) { | 
 | 			JFFS2_WARNING("inode node header CRC is corrupted at %#08x\n", ref_offset(ref)); | 
 | 			jffs2_dbg_dump_node(c, ref_offset(ref)); | 
 | 			jffs2_mark_node_obsolete(c, ref); | 
 | 			goto free_out; | 
 | 		} | 
 |  | 
 | 		if (jffs2_is_writebuffered(c) && csize != 0) { | 
 | 			/* At this point we are supposed to check the data CRC | 
 | 			 * of our unchecked node. But thus far, we do not | 
 | 			 * know whether the node is valid or obsolete. To | 
 | 			 * figure this out, we need to walk all the nodes of | 
 | 			 * the inode and build the inode fragtree. We don't | 
 | 			 * want to spend time checking data of nodes which may | 
 | 			 * later be found to be obsolete. So we put off the full | 
 | 			 * data CRC checking until we have read all the inode | 
 | 			 * nodes and have started building the fragtree. | 
 | 			 * | 
 | 			 * The fragtree is being built starting with nodes | 
 | 			 * having the highest version number, so we'll be able | 
 | 			 * to detect whether a node is valid (i.e., it is not | 
 | 			 * overlapped by a node with higher version) or not. | 
 | 			 * And we'll be able to check only those nodes, which | 
 | 			 * are not obsolete. | 
 | 			 * | 
 | 			 * Of course, this optimization only makes sense in case | 
 | 			 * of NAND flashes (or other flashes with | 
 | 			 * !jffs2_can_mark_obsolete()), since on NOR flashes | 
 | 			 * nodes are marked obsolete physically. | 
 | 			 * | 
 | 			 * Since NAND flashes (or other flashes with | 
 | 			 * jffs2_is_writebuffered(c)) are anyway read by | 
 | 			 * fractions of c->wbuf_pagesize, and we have just read | 
 | 			 * the node header, it is likely that the starting part | 
 | 			 * of the node data is also read when we read the | 
 | 			 * header. So we don't mind to check the CRC of the | 
 | 			 * starting part of the data of the node now, and check | 
 | 			 * the second part later (in jffs2_check_node_data()). | 
 | 			 * Of course, we will not need to re-read and re-check | 
 | 			 * the NAND page which we have just read. This is why we | 
 | 			 * read the whole NAND page at jffs2_get_inode_nodes(), | 
 | 			 * while we needed only the node header. | 
 | 			 */ | 
 | 			unsigned char *buf; | 
 |  | 
 | 			/* 'buf' will point to the start of data */ | 
 | 			buf = (unsigned char *)rd + sizeof(*rd); | 
 | 			/* len will be the read data length */ | 
 | 			len = min_t(uint32_t, rdlen - sizeof(*rd), csize); | 
 | 			tn->partial_crc = crc32(0, buf, len); | 
 |  | 
 | 			dbg_readinode("Calculates CRC (%#08x) for %d bytes, csize %d\n", tn->partial_crc, len, csize); | 
 |  | 
 | 			/* If we actually calculated the whole data CRC | 
 | 			 * and it is wrong, drop the node. */ | 
 | 			if (len >= csize && unlikely(tn->partial_crc != je32_to_cpu(rd->data_crc))) { | 
 | 				JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n", | 
 | 					ref_offset(ref), tn->partial_crc, je32_to_cpu(rd->data_crc)); | 
 | 				jffs2_mark_node_obsolete(c, ref); | 
 | 				goto free_out; | 
 | 			} | 
 |  | 
 | 		} else if (csize == 0) { | 
 | 			/* | 
 | 			 * We checked the header CRC. If the node has no data, adjust | 
 | 			 * the space accounting now. For other nodes this will be done | 
 | 			 * later either when the node is marked obsolete or when its | 
 | 			 * data is checked. | 
 | 			 */ | 
 | 			struct jffs2_eraseblock *jeb; | 
 |  | 
 | 			dbg_readinode("the node has no data.\n"); | 
 | 			jeb = &c->blocks[ref->flash_offset / c->sector_size]; | 
 | 			len = ref_totlen(c, jeb, ref); | 
 |  | 
 | 			spin_lock(&c->erase_completion_lock); | 
 | 			jeb->used_size += len; | 
 | 			jeb->unchecked_size -= len; | 
 | 			c->used_size += len; | 
 | 			c->unchecked_size -= len; | 
 | 			ref->flash_offset = ref_offset(ref) | REF_NORMAL; | 
 | 			spin_unlock(&c->erase_completion_lock); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	tn->fn = jffs2_alloc_full_dnode(); | 
 | 	if (!tn->fn) { | 
 | 		JFFS2_ERROR("alloc fn failed\n"); | 
 | 		ret = -ENOMEM; | 
 | 		goto free_out; | 
 | 	} | 
 |  | 
 | 	tn->version = je32_to_cpu(rd->version); | 
 | 	tn->fn->ofs = je32_to_cpu(rd->offset); | 
 | 	tn->data_crc = je32_to_cpu(rd->data_crc); | 
 | 	tn->csize = csize; | 
 | 	tn->fn->raw = ref; | 
 | 	tn->overlapped = 0; | 
 |  | 
 | 	if (tn->version > rii->highest_version) | 
 | 		rii->highest_version = tn->version; | 
 |  | 
 | 	/* There was a bug where we wrote hole nodes out with | 
 | 	   csize/dsize swapped. Deal with it */ | 
 | 	if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && csize) | 
 | 		tn->fn->size = csize; | 
 | 	else // normal case... | 
 | 		tn->fn->size = je32_to_cpu(rd->dsize); | 
 |  | 
 | 	dbg_readinode2("dnode @%08x: ver %u, offset %#04x, dsize %#04x, csize %#04x\n", | 
 | 		       ref_offset(ref), je32_to_cpu(rd->version), | 
 | 		       je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize), csize); | 
 |  | 
 | 	ret = jffs2_add_tn_to_tree(c, rii, tn); | 
 |  | 
 | 	if (ret) { | 
 | 		jffs2_free_full_dnode(tn->fn); | 
 | 	free_out: | 
 | 		jffs2_free_tmp_dnode_info(tn); | 
 | 		return ret; | 
 | 	} | 
 | #ifdef JFFS2_DBG_READINODE2_MESSAGES | 
 | 	dbg_readinode2("After adding ver %d:\n", je32_to_cpu(rd->version)); | 
 | 	tn = tn_first(&rii->tn_root); | 
 | 	while (tn) { | 
 | 		dbg_readinode2("%p: v %d r 0x%x-0x%x ov %d\n", | 
 | 			       tn, tn->version, tn->fn->ofs, | 
 | 			       tn->fn->ofs+tn->fn->size, tn->overlapped); | 
 | 		tn = tn_next(tn); | 
 | 	} | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function for jffs2_get_inode_nodes(). | 
 |  * It is called every time an unknown node is found. | 
 |  * | 
 |  * Returns: 0 on success; | 
 |  * 	    negative error code on failure. | 
 |  */ | 
 | static inline int read_unknown(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_unknown_node *un) | 
 | { | 
 | 	/* We don't mark unknown nodes as REF_UNCHECKED */ | 
 | 	if (ref_flags(ref) == REF_UNCHECKED) { | 
 | 		JFFS2_ERROR("REF_UNCHECKED but unknown node at %#08x\n", | 
 | 			    ref_offset(ref)); | 
 | 		JFFS2_ERROR("Node is {%04x,%04x,%08x,%08x}. Please report this error.\n", | 
 | 			    je16_to_cpu(un->magic), je16_to_cpu(un->nodetype), | 
 | 			    je32_to_cpu(un->totlen), je32_to_cpu(un->hdr_crc)); | 
 | 		jffs2_mark_node_obsolete(c, ref); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype)); | 
 |  | 
 | 	switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) { | 
 |  | 
 | 	case JFFS2_FEATURE_INCOMPAT: | 
 | 		JFFS2_ERROR("unknown INCOMPAT nodetype %#04X at %#08x\n", | 
 | 			    je16_to_cpu(un->nodetype), ref_offset(ref)); | 
 | 		/* EEP */ | 
 | 		BUG(); | 
 | 		break; | 
 |  | 
 | 	case JFFS2_FEATURE_ROCOMPAT: | 
 | 		JFFS2_ERROR("unknown ROCOMPAT nodetype %#04X at %#08x\n", | 
 | 			    je16_to_cpu(un->nodetype), ref_offset(ref)); | 
 | 		BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO)); | 
 | 		break; | 
 |  | 
 | 	case JFFS2_FEATURE_RWCOMPAT_COPY: | 
 | 		JFFS2_NOTICE("unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n", | 
 | 			     je16_to_cpu(un->nodetype), ref_offset(ref)); | 
 | 		break; | 
 |  | 
 | 	case JFFS2_FEATURE_RWCOMPAT_DELETE: | 
 | 		JFFS2_NOTICE("unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n", | 
 | 			     je16_to_cpu(un->nodetype), ref_offset(ref)); | 
 | 		jffs2_mark_node_obsolete(c, ref); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function for jffs2_get_inode_nodes(). | 
 |  * The function detects whether more data should be read and reads it if yes. | 
 |  * | 
 |  * Returns: 0 on success; | 
 |  * 	    negative error code on failure. | 
 |  */ | 
 | static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, | 
 | 		     int needed_len, int *rdlen, unsigned char *buf) | 
 | { | 
 | 	int err, to_read = needed_len - *rdlen; | 
 | 	size_t retlen; | 
 | 	uint32_t offs; | 
 |  | 
 | 	if (jffs2_is_writebuffered(c)) { | 
 | 		int rem = to_read % c->wbuf_pagesize; | 
 |  | 
 | 		if (rem) | 
 | 			to_read += c->wbuf_pagesize - rem; | 
 | 	} | 
 |  | 
 | 	/* We need to read more data */ | 
 | 	offs = ref_offset(ref) + *rdlen; | 
 |  | 
 | 	dbg_readinode("read more %d bytes\n", to_read); | 
 |  | 
 | 	err = jffs2_flash_read(c, offs, to_read, &retlen, buf + *rdlen); | 
 | 	if (err) { | 
 | 		JFFS2_ERROR("can not read %d bytes from 0x%08x, " | 
 | 			"error code: %d.\n", to_read, offs, err); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	if (retlen < to_read) { | 
 | 		JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", | 
 | 				offs, retlen, to_read); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	*rdlen += to_read; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated | 
 |    with this ino. Perform a preliminary ordering on data nodes, throwing away | 
 |    those which are completely obsoleted by newer ones. The naïve approach we | 
 |    use to take of just returning them _all_ in version order will cause us to | 
 |    run out of memory in certain degenerate cases. */ | 
 | static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f, | 
 | 				 struct jffs2_readinode_info *rii) | 
 | { | 
 | 	struct jffs2_raw_node_ref *ref, *valid_ref; | 
 | 	unsigned char *buf = NULL; | 
 | 	union jffs2_node_union *node; | 
 | 	size_t retlen; | 
 | 	int len, err; | 
 |  | 
 | 	rii->mctime_ver = 0; | 
 |  | 
 | 	dbg_readinode("ino #%u\n", f->inocache->ino); | 
 |  | 
 | 	/* FIXME: in case of NOR and available ->point() this | 
 | 	 * needs to be fixed. */ | 
 | 	len = sizeof(union jffs2_node_union) + c->wbuf_pagesize; | 
 | 	buf = kmalloc(len, GFP_KERNEL); | 
 | 	if (!buf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock(&c->erase_completion_lock); | 
 | 	valid_ref = jffs2_first_valid_node(f->inocache->nodes); | 
 | 	if (!valid_ref && f->inocache->ino != 1) | 
 | 		JFFS2_WARNING("Eep. No valid nodes for ino #%u.\n", f->inocache->ino); | 
 | 	while (valid_ref) { | 
 | 		/* We can hold a pointer to a non-obsolete node without the spinlock, | 
 | 		   but _obsolete_ nodes may disappear at any time, if the block | 
 | 		   they're in gets erased. So if we mark 'ref' obsolete while we're | 
 | 		   not holding the lock, it can go away immediately. For that reason, | 
 | 		   we find the next valid node first, before processing 'ref'. | 
 | 		*/ | 
 | 		ref = valid_ref; | 
 | 		valid_ref = jffs2_first_valid_node(ref->next_in_ino); | 
 | 		spin_unlock(&c->erase_completion_lock); | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		/* | 
 | 		 * At this point we don't know the type of the node we're going | 
 | 		 * to read, so we do not know the size of its header. In order | 
 | 		 * to minimize the amount of flash IO we assume the header is | 
 | 		 * of size = JFFS2_MIN_NODE_HEADER. | 
 | 		 */ | 
 | 		len = JFFS2_MIN_NODE_HEADER; | 
 | 		if (jffs2_is_writebuffered(c)) { | 
 | 			int end, rem; | 
 |  | 
 | 			/* | 
 | 			 * We are about to read JFFS2_MIN_NODE_HEADER bytes, | 
 | 			 * but this flash has some minimal I/O unit. It is | 
 | 			 * possible that we'll need to read more soon, so read | 
 | 			 * up to the next min. I/O unit, in order not to | 
 | 			 * re-read the same min. I/O unit twice. | 
 | 			 */ | 
 | 			end = ref_offset(ref) + len; | 
 | 			rem = end % c->wbuf_pagesize; | 
 | 			if (rem) | 
 | 				end += c->wbuf_pagesize - rem; | 
 | 			len = end - ref_offset(ref); | 
 | 		} | 
 |  | 
 | 		dbg_readinode("read %d bytes at %#08x(%d).\n", len, ref_offset(ref), ref_flags(ref)); | 
 |  | 
 | 		/* FIXME: point() */ | 
 | 		err = jffs2_flash_read(c, ref_offset(ref), len, &retlen, buf); | 
 | 		if (err) { | 
 | 			JFFS2_ERROR("can not read %d bytes from 0x%08x, " "error code: %d.\n", len, ref_offset(ref), err); | 
 | 			goto free_out; | 
 | 		} | 
 |  | 
 | 		if (retlen < len) { | 
 | 			JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", ref_offset(ref), retlen, len); | 
 | 			err = -EIO; | 
 | 			goto free_out; | 
 | 		} | 
 |  | 
 | 		node = (union jffs2_node_union *)buf; | 
 |  | 
 | 		/* No need to mask in the valid bit; it shouldn't be invalid */ | 
 | 		if (je32_to_cpu(node->u.hdr_crc) != crc32(0, node, sizeof(node->u)-4)) { | 
 | 			JFFS2_NOTICE("Node header CRC failed at %#08x. {%04x,%04x,%08x,%08x}\n", | 
 | 				     ref_offset(ref), je16_to_cpu(node->u.magic), | 
 | 				     je16_to_cpu(node->u.nodetype), | 
 | 				     je32_to_cpu(node->u.totlen), | 
 | 				     je32_to_cpu(node->u.hdr_crc)); | 
 | 			jffs2_dbg_dump_node(c, ref_offset(ref)); | 
 | 			jffs2_mark_node_obsolete(c, ref); | 
 | 			goto cont; | 
 | 		} | 
 | 		if (je16_to_cpu(node->u.magic) != JFFS2_MAGIC_BITMASK) { | 
 | 			/* Not a JFFS2 node, whinge and move on */ | 
 | 			JFFS2_NOTICE("Wrong magic bitmask 0x%04x in node header at %#08x.\n", | 
 | 				     je16_to_cpu(node->u.magic), ref_offset(ref)); | 
 | 			jffs2_mark_node_obsolete(c, ref); | 
 | 			goto cont; | 
 | 		} | 
 |  | 
 | 		switch (je16_to_cpu(node->u.nodetype)) { | 
 |  | 
 | 		case JFFS2_NODETYPE_DIRENT: | 
 |  | 
 | 			if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_dirent) && | 
 | 			    len < sizeof(struct jffs2_raw_dirent)) { | 
 | 				err = read_more(c, ref, sizeof(struct jffs2_raw_dirent), &len, buf); | 
 | 				if (unlikely(err)) | 
 | 					goto free_out; | 
 | 			} | 
 |  | 
 | 			err = read_direntry(c, ref, &node->d, retlen, rii); | 
 | 			if (unlikely(err)) | 
 | 				goto free_out; | 
 |  | 
 | 			break; | 
 |  | 
 | 		case JFFS2_NODETYPE_INODE: | 
 |  | 
 | 			if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_inode) && | 
 | 			    len < sizeof(struct jffs2_raw_inode)) { | 
 | 				err = read_more(c, ref, sizeof(struct jffs2_raw_inode), &len, buf); | 
 | 				if (unlikely(err)) | 
 | 					goto free_out; | 
 | 			} | 
 |  | 
 | 			err = read_dnode(c, ref, &node->i, len, rii); | 
 | 			if (unlikely(err)) | 
 | 				goto free_out; | 
 |  | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_unknown_node) && | 
 | 			    len < sizeof(struct jffs2_unknown_node)) { | 
 | 				err = read_more(c, ref, sizeof(struct jffs2_unknown_node), &len, buf); | 
 | 				if (unlikely(err)) | 
 | 					goto free_out; | 
 | 			} | 
 |  | 
 | 			err = read_unknown(c, ref, &node->u); | 
 | 			if (unlikely(err)) | 
 | 				goto free_out; | 
 |  | 
 | 		} | 
 | 	cont: | 
 | 		spin_lock(&c->erase_completion_lock); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&c->erase_completion_lock); | 
 | 	kfree(buf); | 
 |  | 
 | 	f->highest_version = rii->highest_version; | 
 |  | 
 | 	dbg_readinode("nodes of inode #%u were read, the highest version is %u, latest_mctime %u, mctime_ver %u.\n", | 
 | 		      f->inocache->ino, rii->highest_version, rii->latest_mctime, | 
 | 		      rii->mctime_ver); | 
 | 	return 0; | 
 |  | 
 |  free_out: | 
 | 	jffs2_free_tmp_dnode_info_list(&rii->tn_root); | 
 | 	jffs2_free_full_dirent_list(rii->fds); | 
 | 	rii->fds = NULL; | 
 | 	kfree(buf); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c, | 
 | 					struct jffs2_inode_info *f, | 
 | 					struct jffs2_raw_inode *latest_node) | 
 | { | 
 | 	struct jffs2_readinode_info rii; | 
 | 	uint32_t crc, new_size; | 
 | 	size_t retlen; | 
 | 	int ret; | 
 |  | 
 | 	dbg_readinode("ino #%u pino/nlink is %d\n", f->inocache->ino, | 
 | 		      f->inocache->pino_nlink); | 
 |  | 
 | 	memset(&rii, 0, sizeof(rii)); | 
 |  | 
 | 	/* Grab all nodes relevant to this ino */ | 
 | 	ret = jffs2_get_inode_nodes(c, f, &rii); | 
 |  | 
 | 	if (ret) { | 
 | 		JFFS2_ERROR("cannot read nodes for ino %u, returned error is %d\n", f->inocache->ino, ret); | 
 | 		if (f->inocache->state == INO_STATE_READING) | 
 | 			jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = jffs2_build_inode_fragtree(c, f, &rii); | 
 | 	if (ret) { | 
 | 		JFFS2_ERROR("Failed to build final fragtree for inode #%u: error %d\n", | 
 | 			    f->inocache->ino, ret); | 
 | 		if (f->inocache->state == INO_STATE_READING) | 
 | 			jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); | 
 | 		jffs2_free_tmp_dnode_info_list(&rii.tn_root); | 
 | 		/* FIXME: We could at least crc-check them all */ | 
 | 		if (rii.mdata_tn) { | 
 | 			jffs2_free_full_dnode(rii.mdata_tn->fn); | 
 | 			jffs2_free_tmp_dnode_info(rii.mdata_tn); | 
 | 			rii.mdata_tn = NULL; | 
 | 		} | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (rii.mdata_tn) { | 
 | 		if (rii.mdata_tn->fn->raw == rii.latest_ref) { | 
 | 			f->metadata = rii.mdata_tn->fn; | 
 | 			jffs2_free_tmp_dnode_info(rii.mdata_tn); | 
 | 		} else { | 
 | 			jffs2_kill_tn(c, rii.mdata_tn); | 
 | 		} | 
 | 		rii.mdata_tn = NULL; | 
 | 	} | 
 |  | 
 | 	f->dents = rii.fds; | 
 |  | 
 | 	jffs2_dbg_fragtree_paranoia_check_nolock(f); | 
 |  | 
 | 	if (unlikely(!rii.latest_ref)) { | 
 | 		/* No data nodes for this inode. */ | 
 | 		if (f->inocache->ino != 1) { | 
 | 			JFFS2_WARNING("no data nodes found for ino #%u\n", f->inocache->ino); | 
 | 			if (!rii.fds) { | 
 | 				if (f->inocache->state == INO_STATE_READING) | 
 | 					jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); | 
 | 				return -EIO; | 
 | 			} | 
 | 			JFFS2_NOTICE("but it has children so we fake some modes for it\n"); | 
 | 		} | 
 | 		latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO); | 
 | 		latest_node->version = cpu_to_je32(0); | 
 | 		latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0); | 
 | 		latest_node->isize = cpu_to_je32(0); | 
 | 		latest_node->gid = cpu_to_je16(0); | 
 | 		latest_node->uid = cpu_to_je16(0); | 
 | 		if (f->inocache->state == INO_STATE_READING) | 
 | 			jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ret = jffs2_flash_read(c, ref_offset(rii.latest_ref), sizeof(*latest_node), &retlen, (void *)latest_node); | 
 | 	if (ret || retlen != sizeof(*latest_node)) { | 
 | 		JFFS2_ERROR("failed to read from flash: error %d, %zd of %zd bytes read\n", | 
 | 			ret, retlen, sizeof(*latest_node)); | 
 | 		/* FIXME: If this fails, there seems to be a memory leak. Find it. */ | 
 | 		mutex_unlock(&f->sem); | 
 | 		jffs2_do_clear_inode(c, f); | 
 | 		return ret?ret:-EIO; | 
 | 	} | 
 |  | 
 | 	crc = crc32(0, latest_node, sizeof(*latest_node)-8); | 
 | 	if (crc != je32_to_cpu(latest_node->node_crc)) { | 
 | 		JFFS2_ERROR("CRC failed for read_inode of inode %u at physical location 0x%x\n", | 
 | 			f->inocache->ino, ref_offset(rii.latest_ref)); | 
 | 		mutex_unlock(&f->sem); | 
 | 		jffs2_do_clear_inode(c, f); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	switch(jemode_to_cpu(latest_node->mode) & S_IFMT) { | 
 | 	case S_IFDIR: | 
 | 		if (rii.mctime_ver > je32_to_cpu(latest_node->version)) { | 
 | 			/* The times in the latest_node are actually older than | 
 | 			   mctime in the latest dirent. Cheat. */ | 
 | 			latest_node->ctime = latest_node->mtime = cpu_to_je32(rii.latest_mctime); | 
 | 		} | 
 | 		break; | 
 |  | 
 |  | 
 | 	case S_IFREG: | 
 | 		/* If it was a regular file, truncate it to the latest node's isize */ | 
 | 		new_size = jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize)); | 
 | 		if (new_size != je32_to_cpu(latest_node->isize)) { | 
 | 			JFFS2_WARNING("Truncating ino #%u to %d bytes failed because it only had %d bytes to start with!\n", | 
 | 				      f->inocache->ino, je32_to_cpu(latest_node->isize), new_size); | 
 | 			latest_node->isize = cpu_to_je32(new_size); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case S_IFLNK: | 
 | 		/* Hack to work around broken isize in old symlink code. | 
 | 		   Remove this when dwmw2 comes to his senses and stops | 
 | 		   symlinks from being an entirely gratuitous special | 
 | 		   case. */ | 
 | 		if (!je32_to_cpu(latest_node->isize)) | 
 | 			latest_node->isize = latest_node->dsize; | 
 |  | 
 | 		if (f->inocache->state != INO_STATE_CHECKING) { | 
 | 			/* Symlink's inode data is the target path. Read it and | 
 | 			 * keep in RAM to facilitate quick follow symlink | 
 | 			 * operation. */ | 
 | 			f->target = kmalloc(je32_to_cpu(latest_node->csize) + 1, GFP_KERNEL); | 
 | 			if (!f->target) { | 
 | 				JFFS2_ERROR("can't allocate %d bytes of memory for the symlink target path cache\n", je32_to_cpu(latest_node->csize)); | 
 | 				mutex_unlock(&f->sem); | 
 | 				jffs2_do_clear_inode(c, f); | 
 | 				return -ENOMEM; | 
 | 			} | 
 |  | 
 | 			ret = jffs2_flash_read(c, ref_offset(rii.latest_ref) + sizeof(*latest_node), | 
 | 						je32_to_cpu(latest_node->csize), &retlen, (char *)f->target); | 
 |  | 
 | 			if (ret  || retlen != je32_to_cpu(latest_node->csize)) { | 
 | 				if (retlen != je32_to_cpu(latest_node->csize)) | 
 | 					ret = -EIO; | 
 | 				kfree(f->target); | 
 | 				f->target = NULL; | 
 | 				mutex_unlock(&f->sem); | 
 | 				jffs2_do_clear_inode(c, f); | 
 | 				return ret; | 
 | 			} | 
 |  | 
 | 			f->target[je32_to_cpu(latest_node->csize)] = '\0'; | 
 | 			dbg_readinode("symlink's target '%s' cached\n", f->target); | 
 | 		} | 
 |  | 
 | 		/* fall through... */ | 
 |  | 
 | 	case S_IFBLK: | 
 | 	case S_IFCHR: | 
 | 		/* Certain inode types should have only one data node, and it's | 
 | 		   kept as the metadata node */ | 
 | 		if (f->metadata) { | 
 | 			JFFS2_ERROR("Argh. Special inode #%u with mode 0%o had metadata node\n", | 
 | 			       f->inocache->ino, jemode_to_cpu(latest_node->mode)); | 
 | 			mutex_unlock(&f->sem); | 
 | 			jffs2_do_clear_inode(c, f); | 
 | 			return -EIO; | 
 | 		} | 
 | 		if (!frag_first(&f->fragtree)) { | 
 | 			JFFS2_ERROR("Argh. Special inode #%u with mode 0%o has no fragments\n", | 
 | 			       f->inocache->ino, jemode_to_cpu(latest_node->mode)); | 
 | 			mutex_unlock(&f->sem); | 
 | 			jffs2_do_clear_inode(c, f); | 
 | 			return -EIO; | 
 | 		} | 
 | 		/* ASSERT: f->fraglist != NULL */ | 
 | 		if (frag_next(frag_first(&f->fragtree))) { | 
 | 			JFFS2_ERROR("Argh. Special inode #%u with mode 0x%x had more than one node\n", | 
 | 			       f->inocache->ino, jemode_to_cpu(latest_node->mode)); | 
 | 			/* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */ | 
 | 			mutex_unlock(&f->sem); | 
 | 			jffs2_do_clear_inode(c, f); | 
 | 			return -EIO; | 
 | 		} | 
 | 		/* OK. We're happy */ | 
 | 		f->metadata = frag_first(&f->fragtree)->node; | 
 | 		jffs2_free_node_frag(frag_first(&f->fragtree)); | 
 | 		f->fragtree = RB_ROOT; | 
 | 		break; | 
 | 	} | 
 | 	if (f->inocache->state == INO_STATE_READING) | 
 | 		jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Scan the list of all nodes present for this ino, build map of versions, etc. */ | 
 | int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, | 
 | 			uint32_t ino, struct jffs2_raw_inode *latest_node) | 
 | { | 
 | 	dbg_readinode("read inode #%u\n", ino); | 
 |  | 
 |  retry_inocache: | 
 | 	spin_lock(&c->inocache_lock); | 
 | 	f->inocache = jffs2_get_ino_cache(c, ino); | 
 |  | 
 | 	if (f->inocache) { | 
 | 		/* Check its state. We may need to wait before we can use it */ | 
 | 		switch(f->inocache->state) { | 
 | 		case INO_STATE_UNCHECKED: | 
 | 		case INO_STATE_CHECKEDABSENT: | 
 | 			f->inocache->state = INO_STATE_READING; | 
 | 			break; | 
 |  | 
 | 		case INO_STATE_CHECKING: | 
 | 		case INO_STATE_GC: | 
 | 			/* If it's in either of these states, we need | 
 | 			   to wait for whoever's got it to finish and | 
 | 			   put it back. */ | 
 | 			dbg_readinode("waiting for ino #%u in state %d\n", ino, f->inocache->state); | 
 | 			sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); | 
 | 			goto retry_inocache; | 
 |  | 
 | 		case INO_STATE_READING: | 
 | 		case INO_STATE_PRESENT: | 
 | 			/* Eep. This should never happen. It can | 
 | 			happen if Linux calls read_inode() again | 
 | 			before clear_inode() has finished though. */ | 
 | 			JFFS2_ERROR("Eep. Trying to read_inode #%u when it's already in state %d!\n", ino, f->inocache->state); | 
 | 			/* Fail. That's probably better than allowing it to succeed */ | 
 | 			f->inocache = NULL; | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			BUG(); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&c->inocache_lock); | 
 |  | 
 | 	if (!f->inocache && ino == 1) { | 
 | 		/* Special case - no root inode on medium */ | 
 | 		f->inocache = jffs2_alloc_inode_cache(); | 
 | 		if (!f->inocache) { | 
 | 			JFFS2_ERROR("cannot allocate inocache for root inode\n"); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		dbg_readinode("creating inocache for root inode\n"); | 
 | 		memset(f->inocache, 0, sizeof(struct jffs2_inode_cache)); | 
 | 		f->inocache->ino = f->inocache->pino_nlink = 1; | 
 | 		f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache; | 
 | 		f->inocache->state = INO_STATE_READING; | 
 | 		jffs2_add_ino_cache(c, f->inocache); | 
 | 	} | 
 | 	if (!f->inocache) { | 
 | 		JFFS2_ERROR("requestied to read an nonexistent ino %u\n", ino); | 
 | 		return -ENOENT; | 
 | 	} | 
 |  | 
 | 	return jffs2_do_read_inode_internal(c, f, latest_node); | 
 | } | 
 |  | 
 | int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic) | 
 | { | 
 | 	struct jffs2_raw_inode n; | 
 | 	struct jffs2_inode_info *f = kzalloc(sizeof(*f), GFP_KERNEL); | 
 | 	int ret; | 
 |  | 
 | 	if (!f) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	mutex_init(&f->sem); | 
 | 	mutex_lock(&f->sem); | 
 | 	f->inocache = ic; | 
 |  | 
 | 	ret = jffs2_do_read_inode_internal(c, f, &n); | 
 | 	if (!ret) { | 
 | 		mutex_unlock(&f->sem); | 
 | 		jffs2_do_clear_inode(c, f); | 
 | 	} | 
 | 	kfree (f); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f) | 
 | { | 
 | 	struct jffs2_full_dirent *fd, *fds; | 
 | 	int deleted; | 
 |  | 
 | 	jffs2_xattr_delete_inode(c, f->inocache); | 
 | 	mutex_lock(&f->sem); | 
 | 	deleted = f->inocache && !f->inocache->pino_nlink; | 
 |  | 
 | 	if (f->inocache && f->inocache->state != INO_STATE_CHECKING) | 
 | 		jffs2_set_inocache_state(c, f->inocache, INO_STATE_CLEARING); | 
 |  | 
 | 	if (f->metadata) { | 
 | 		if (deleted) | 
 | 			jffs2_mark_node_obsolete(c, f->metadata->raw); | 
 | 		jffs2_free_full_dnode(f->metadata); | 
 | 	} | 
 |  | 
 | 	jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL); | 
 |  | 
 | 	if (f->target) { | 
 | 		kfree(f->target); | 
 | 		f->target = NULL; | 
 | 	} | 
 |  | 
 | 	fds = f->dents; | 
 | 	while(fds) { | 
 | 		fd = fds; | 
 | 		fds = fd->next; | 
 | 		jffs2_free_full_dirent(fd); | 
 | 	} | 
 |  | 
 | 	if (f->inocache && f->inocache->state != INO_STATE_CHECKING) { | 
 | 		jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); | 
 | 		if (f->inocache->nodes == (void *)f->inocache) | 
 | 			jffs2_del_ino_cache(c, f->inocache); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&f->sem); | 
 | } |