|  | /* | 
|  | *  linux/arch/arm/mm/ioremap.c | 
|  | * | 
|  | * Re-map IO memory to kernel address space so that we can access it. | 
|  | * | 
|  | * (C) Copyright 1995 1996 Linus Torvalds | 
|  | * | 
|  | * Hacked for ARM by Phil Blundell <philb@gnu.org> | 
|  | * Hacked to allow all architectures to build, and various cleanups | 
|  | * by Russell King | 
|  | * | 
|  | * This allows a driver to remap an arbitrary region of bus memory into | 
|  | * virtual space.  One should *only* use readl, writel, memcpy_toio and | 
|  | * so on with such remapped areas. | 
|  | * | 
|  | * Because the ARM only has a 32-bit address space we can't address the | 
|  | * whole of the (physical) PCI space at once.  PCI huge-mode addressing | 
|  | * allows us to circumvent this restriction by splitting PCI space into | 
|  | * two 2GB chunks and mapping only one at a time into processor memory. | 
|  | * We use MMU protection domains to trap any attempt to access the bank | 
|  | * that is not currently mapped.  (This isn't fully implemented yet.) | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/io.h> | 
|  |  | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/sizes.h> | 
|  |  | 
|  | #include <asm/mach/map.h> | 
|  | #include "mm.h" | 
|  |  | 
|  | /* | 
|  | * Used by ioremap() and iounmap() code to mark (super)section-mapped | 
|  | * I/O regions in vm_struct->flags field. | 
|  | */ | 
|  | #define VM_ARM_SECTION_MAPPING	0x80000000 | 
|  |  | 
|  | static int remap_area_pte(pmd_t *pmd, unsigned long addr, unsigned long end, | 
|  | unsigned long phys_addr, const struct mem_type *type) | 
|  | { | 
|  | pgprot_t prot = __pgprot(type->prot_pte); | 
|  | pte_t *pte; | 
|  |  | 
|  | pte = pte_alloc_kernel(pmd, addr); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  |  | 
|  | do { | 
|  | if (!pte_none(*pte)) | 
|  | goto bad; | 
|  |  | 
|  | set_pte_ext(pte, pfn_pte(phys_addr >> PAGE_SHIFT, prot), 0); | 
|  | phys_addr += PAGE_SIZE; | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | return 0; | 
|  |  | 
|  | bad: | 
|  | printk(KERN_CRIT "remap_area_pte: page already exists\n"); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static inline int remap_area_pmd(pgd_t *pgd, unsigned long addr, | 
|  | unsigned long end, unsigned long phys_addr, | 
|  | const struct mem_type *type) | 
|  | { | 
|  | unsigned long next; | 
|  | pmd_t *pmd; | 
|  | int ret = 0; | 
|  |  | 
|  | pmd = pmd_alloc(&init_mm, pgd, addr); | 
|  | if (!pmd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | ret = remap_area_pte(pmd, addr, next, phys_addr, type); | 
|  | if (ret) | 
|  | return ret; | 
|  | phys_addr += next - addr; | 
|  | } while (pmd++, addr = next, addr != end); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int remap_area_pages(unsigned long start, unsigned long pfn, | 
|  | size_t size, const struct mem_type *type) | 
|  | { | 
|  | unsigned long addr = start; | 
|  | unsigned long next, end = start + size; | 
|  | unsigned long phys_addr = __pfn_to_phys(pfn); | 
|  | pgd_t *pgd; | 
|  | int err = 0; | 
|  |  | 
|  | BUG_ON(addr >= end); | 
|  | pgd = pgd_offset_k(addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | err = remap_area_pmd(pgd, addr, next, phys_addr, type); | 
|  | if (err) | 
|  | break; | 
|  | phys_addr += next - addr; | 
|  | } while (pgd++, addr = next, addr != end); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int ioremap_page(unsigned long virt, unsigned long phys, | 
|  | const struct mem_type *mtype) | 
|  | { | 
|  | return remap_area_pages(virt, __phys_to_pfn(phys), PAGE_SIZE, mtype); | 
|  | } | 
|  | EXPORT_SYMBOL(ioremap_page); | 
|  |  | 
|  | void __check_kvm_seq(struct mm_struct *mm) | 
|  | { | 
|  | unsigned int seq; | 
|  |  | 
|  | do { | 
|  | seq = init_mm.context.kvm_seq; | 
|  | memcpy(pgd_offset(mm, VMALLOC_START), | 
|  | pgd_offset_k(VMALLOC_START), | 
|  | sizeof(pgd_t) * (pgd_index(VMALLOC_END) - | 
|  | pgd_index(VMALLOC_START))); | 
|  | mm->context.kvm_seq = seq; | 
|  | } while (seq != init_mm.context.kvm_seq); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_SMP | 
|  | /* | 
|  | * Section support is unsafe on SMP - If you iounmap and ioremap a region, | 
|  | * the other CPUs will not see this change until their next context switch. | 
|  | * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs | 
|  | * which requires the new ioremap'd region to be referenced, the CPU will | 
|  | * reference the _old_ region. | 
|  | * | 
|  | * Note that get_vm_area() allocates a guard 4K page, so we need to mask | 
|  | * the size back to 1MB aligned or we will overflow in the loop below. | 
|  | */ | 
|  | static void unmap_area_sections(unsigned long virt, unsigned long size) | 
|  | { | 
|  | unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1)); | 
|  | pgd_t *pgd; | 
|  |  | 
|  | flush_cache_vunmap(addr, end); | 
|  | pgd = pgd_offset_k(addr); | 
|  | do { | 
|  | pmd_t pmd, *pmdp = pmd_offset(pgd, addr); | 
|  |  | 
|  | pmd = *pmdp; | 
|  | if (!pmd_none(pmd)) { | 
|  | /* | 
|  | * Clear the PMD from the page table, and | 
|  | * increment the kvm sequence so others | 
|  | * notice this change. | 
|  | * | 
|  | * Note: this is still racy on SMP machines. | 
|  | */ | 
|  | pmd_clear(pmdp); | 
|  | init_mm.context.kvm_seq++; | 
|  |  | 
|  | /* | 
|  | * Free the page table, if there was one. | 
|  | */ | 
|  | if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE) | 
|  | pte_free_kernel(&init_mm, pmd_page_vaddr(pmd)); | 
|  | } | 
|  |  | 
|  | addr += PGDIR_SIZE; | 
|  | pgd++; | 
|  | } while (addr < end); | 
|  |  | 
|  | /* | 
|  | * Ensure that the active_mm is up to date - we want to | 
|  | * catch any use-after-iounmap cases. | 
|  | */ | 
|  | if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq) | 
|  | __check_kvm_seq(current->active_mm); | 
|  |  | 
|  | flush_tlb_kernel_range(virt, end); | 
|  | } | 
|  |  | 
|  | static int | 
|  | remap_area_sections(unsigned long virt, unsigned long pfn, | 
|  | size_t size, const struct mem_type *type) | 
|  | { | 
|  | unsigned long addr = virt, end = virt + size; | 
|  | pgd_t *pgd; | 
|  |  | 
|  | /* | 
|  | * Remove and free any PTE-based mapping, and | 
|  | * sync the current kernel mapping. | 
|  | */ | 
|  | unmap_area_sections(virt, size); | 
|  |  | 
|  | pgd = pgd_offset_k(addr); | 
|  | do { | 
|  | pmd_t *pmd = pmd_offset(pgd, addr); | 
|  |  | 
|  | pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect); | 
|  | pfn += SZ_1M >> PAGE_SHIFT; | 
|  | pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect); | 
|  | pfn += SZ_1M >> PAGE_SHIFT; | 
|  | flush_pmd_entry(pmd); | 
|  |  | 
|  | addr += PGDIR_SIZE; | 
|  | pgd++; | 
|  | } while (addr < end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | remap_area_supersections(unsigned long virt, unsigned long pfn, | 
|  | size_t size, const struct mem_type *type) | 
|  | { | 
|  | unsigned long addr = virt, end = virt + size; | 
|  | pgd_t *pgd; | 
|  |  | 
|  | /* | 
|  | * Remove and free any PTE-based mapping, and | 
|  | * sync the current kernel mapping. | 
|  | */ | 
|  | unmap_area_sections(virt, size); | 
|  |  | 
|  | pgd = pgd_offset_k(virt); | 
|  | do { | 
|  | unsigned long super_pmd_val, i; | 
|  |  | 
|  | super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect | | 
|  | PMD_SECT_SUPER; | 
|  | super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20; | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | pmd_t *pmd = pmd_offset(pgd, addr); | 
|  |  | 
|  | pmd[0] = __pmd(super_pmd_val); | 
|  | pmd[1] = __pmd(super_pmd_val); | 
|  | flush_pmd_entry(pmd); | 
|  |  | 
|  | addr += PGDIR_SIZE; | 
|  | pgd++; | 
|  | } | 
|  |  | 
|  | pfn += SUPERSECTION_SIZE >> PAGE_SHIFT; | 
|  | } while (addr < end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Remap an arbitrary physical address space into the kernel virtual | 
|  | * address space. Needed when the kernel wants to access high addresses | 
|  | * directly. | 
|  | * | 
|  | * NOTE! We need to allow non-page-aligned mappings too: we will obviously | 
|  | * have to convert them into an offset in a page-aligned mapping, but the | 
|  | * caller shouldn't need to know that small detail. | 
|  | * | 
|  | * 'flags' are the extra L_PTE_ flags that you want to specify for this | 
|  | * mapping.  See <asm/pgtable.h> for more information. | 
|  | */ | 
|  | void __iomem * | 
|  | __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size, | 
|  | unsigned int mtype) | 
|  | { | 
|  | const struct mem_type *type; | 
|  | int err; | 
|  | unsigned long addr; | 
|  | struct vm_struct * area; | 
|  |  | 
|  | /* | 
|  | * High mappings must be supersection aligned | 
|  | */ | 
|  | if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK)) | 
|  | return NULL; | 
|  |  | 
|  | type = get_mem_type(mtype); | 
|  | if (!type) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Page align the mapping size, taking account of any offset. | 
|  | */ | 
|  | size = PAGE_ALIGN(offset + size); | 
|  |  | 
|  | area = get_vm_area(size, VM_IOREMAP); | 
|  | if (!area) | 
|  | return NULL; | 
|  | addr = (unsigned long)area->addr; | 
|  |  | 
|  | #ifndef CONFIG_SMP | 
|  | if (DOMAIN_IO == 0 && | 
|  | (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) || | 
|  | cpu_is_xsc3()) && pfn >= 0x100000 && | 
|  | !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) { | 
|  | area->flags |= VM_ARM_SECTION_MAPPING; | 
|  | err = remap_area_supersections(addr, pfn, size, type); | 
|  | } else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) { | 
|  | area->flags |= VM_ARM_SECTION_MAPPING; | 
|  | err = remap_area_sections(addr, pfn, size, type); | 
|  | } else | 
|  | #endif | 
|  | err = remap_area_pages(addr, pfn, size, type); | 
|  |  | 
|  | if (err) { | 
|  | vunmap((void *)addr); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | flush_cache_vmap(addr, addr + size); | 
|  | return (void __iomem *) (offset + addr); | 
|  | } | 
|  | EXPORT_SYMBOL(__arm_ioremap_pfn); | 
|  |  | 
|  | void __iomem * | 
|  | __arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype) | 
|  | { | 
|  | unsigned long last_addr; | 
|  | unsigned long offset = phys_addr & ~PAGE_MASK; | 
|  | unsigned long pfn = __phys_to_pfn(phys_addr); | 
|  |  | 
|  | /* | 
|  | * Don't allow wraparound or zero size | 
|  | */ | 
|  | last_addr = phys_addr + size - 1; | 
|  | if (!size || last_addr < phys_addr) | 
|  | return NULL; | 
|  |  | 
|  | return __arm_ioremap_pfn(pfn, offset, size, mtype); | 
|  | } | 
|  | EXPORT_SYMBOL(__arm_ioremap); | 
|  |  | 
|  | void __iounmap(volatile void __iomem *io_addr) | 
|  | { | 
|  | void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr); | 
|  | #ifndef CONFIG_SMP | 
|  | struct vm_struct **p, *tmp; | 
|  |  | 
|  | /* | 
|  | * If this is a section based mapping we need to handle it | 
|  | * specially as the VM subsystem does not know how to handle | 
|  | * such a beast. We need the lock here b/c we need to clear | 
|  | * all the mappings before the area can be reclaimed | 
|  | * by someone else. | 
|  | */ | 
|  | write_lock(&vmlist_lock); | 
|  | for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) { | 
|  | if ((tmp->flags & VM_IOREMAP) && (tmp->addr == addr)) { | 
|  | if (tmp->flags & VM_ARM_SECTION_MAPPING) { | 
|  | unmap_area_sections((unsigned long)tmp->addr, | 
|  | tmp->size); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | write_unlock(&vmlist_lock); | 
|  | #endif | 
|  |  | 
|  | vunmap(addr); | 
|  | } | 
|  | EXPORT_SYMBOL(__iounmap); |