|  | /* | 
|  | * Twofish for CryptoAPI | 
|  | * | 
|  | * Originally Twofish for GPG | 
|  | * By Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998 | 
|  | * 256-bit key length added March 20, 1999 | 
|  | * Some modifications to reduce the text size by Werner Koch, April, 1998 | 
|  | * Ported to the kerneli patch by Marc Mutz <Marc@Mutz.com> | 
|  | * Ported to CryptoAPI by Colin Slater <hoho@tacomeat.net> | 
|  | * | 
|  | * The original author has disclaimed all copyright interest in this | 
|  | * code and thus put it in the public domain. The subsequent authors | 
|  | * have put this under the GNU General Public License. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 | 
|  | * USA | 
|  | * | 
|  | * This code is a "clean room" implementation, written from the paper | 
|  | * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey, | 
|  | * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available | 
|  | * through http://www.counterpane.com/twofish.html | 
|  | * | 
|  | * For background information on multiplication in finite fields, used for | 
|  | * the matrix operations in the key schedule, see the book _Contemporary | 
|  | * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the | 
|  | * Third Edition. | 
|  | */ | 
|  |  | 
|  | #include <asm/byteorder.h> | 
|  | #include <crypto/twofish.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <linux/bitops.h> | 
|  |  | 
|  | /* Macros to compute the g() function in the encryption and decryption | 
|  | * rounds.  G1 is the straight g() function; G2 includes the 8-bit | 
|  | * rotation for the high 32-bit word. */ | 
|  |  | 
|  | #define G1(a) \ | 
|  | (ctx->s[0][(a) & 0xFF]) ^ (ctx->s[1][((a) >> 8) & 0xFF]) \ | 
|  | ^ (ctx->s[2][((a) >> 16) & 0xFF]) ^ (ctx->s[3][(a) >> 24]) | 
|  |  | 
|  | #define G2(b) \ | 
|  | (ctx->s[1][(b) & 0xFF]) ^ (ctx->s[2][((b) >> 8) & 0xFF]) \ | 
|  | ^ (ctx->s[3][((b) >> 16) & 0xFF]) ^ (ctx->s[0][(b) >> 24]) | 
|  |  | 
|  | /* Encryption and decryption Feistel rounds.  Each one calls the two g() | 
|  | * macros, does the PHT, and performs the XOR and the appropriate bit | 
|  | * rotations.  The parameters are the round number (used to select subkeys), | 
|  | * and the four 32-bit chunks of the text. */ | 
|  |  | 
|  | #define ENCROUND(n, a, b, c, d) \ | 
|  | x = G1 (a); y = G2 (b); \ | 
|  | x += y; y += x + ctx->k[2 * (n) + 1]; \ | 
|  | (c) ^= x + ctx->k[2 * (n)]; \ | 
|  | (c) = ror32((c), 1); \ | 
|  | (d) = rol32((d), 1) ^ y | 
|  |  | 
|  | #define DECROUND(n, a, b, c, d) \ | 
|  | x = G1 (a); y = G2 (b); \ | 
|  | x += y; y += x; \ | 
|  | (d) ^= y + ctx->k[2 * (n) + 1]; \ | 
|  | (d) = ror32((d), 1); \ | 
|  | (c) = rol32((c), 1); \ | 
|  | (c) ^= (x + ctx->k[2 * (n)]) | 
|  |  | 
|  | /* Encryption and decryption cycles; each one is simply two Feistel rounds | 
|  | * with the 32-bit chunks re-ordered to simulate the "swap" */ | 
|  |  | 
|  | #define ENCCYCLE(n) \ | 
|  | ENCROUND (2 * (n), a, b, c, d); \ | 
|  | ENCROUND (2 * (n) + 1, c, d, a, b) | 
|  |  | 
|  | #define DECCYCLE(n) \ | 
|  | DECROUND (2 * (n) + 1, c, d, a, b); \ | 
|  | DECROUND (2 * (n), a, b, c, d) | 
|  |  | 
|  | /* Macros to convert the input and output bytes into 32-bit words, | 
|  | * and simultaneously perform the whitening step.  INPACK packs word | 
|  | * number n into the variable named by x, using whitening subkey number m. | 
|  | * OUTUNPACK unpacks word number n from the variable named by x, using | 
|  | * whitening subkey number m. */ | 
|  |  | 
|  | #define INPACK(n, x, m) \ | 
|  | x = le32_to_cpu(src[n]) ^ ctx->w[m] | 
|  |  | 
|  | #define OUTUNPACK(n, x, m) \ | 
|  | x ^= ctx->w[m]; \ | 
|  | dst[n] = cpu_to_le32(x) | 
|  |  | 
|  |  | 
|  |  | 
|  | /* Encrypt one block.  in and out may be the same. */ | 
|  | static void twofish_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | 
|  | { | 
|  | struct twofish_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | const __le32 *src = (const __le32 *)in; | 
|  | __le32 *dst = (__le32 *)out; | 
|  |  | 
|  | /* The four 32-bit chunks of the text. */ | 
|  | u32 a, b, c, d; | 
|  |  | 
|  | /* Temporaries used by the round function. */ | 
|  | u32 x, y; | 
|  |  | 
|  | /* Input whitening and packing. */ | 
|  | INPACK (0, a, 0); | 
|  | INPACK (1, b, 1); | 
|  | INPACK (2, c, 2); | 
|  | INPACK (3, d, 3); | 
|  |  | 
|  | /* Encryption Feistel cycles. */ | 
|  | ENCCYCLE (0); | 
|  | ENCCYCLE (1); | 
|  | ENCCYCLE (2); | 
|  | ENCCYCLE (3); | 
|  | ENCCYCLE (4); | 
|  | ENCCYCLE (5); | 
|  | ENCCYCLE (6); | 
|  | ENCCYCLE (7); | 
|  |  | 
|  | /* Output whitening and unpacking. */ | 
|  | OUTUNPACK (0, c, 4); | 
|  | OUTUNPACK (1, d, 5); | 
|  | OUTUNPACK (2, a, 6); | 
|  | OUTUNPACK (3, b, 7); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Decrypt one block.  in and out may be the same. */ | 
|  | static void twofish_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | 
|  | { | 
|  | struct twofish_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | const __le32 *src = (const __le32 *)in; | 
|  | __le32 *dst = (__le32 *)out; | 
|  |  | 
|  | /* The four 32-bit chunks of the text. */ | 
|  | u32 a, b, c, d; | 
|  |  | 
|  | /* Temporaries used by the round function. */ | 
|  | u32 x, y; | 
|  |  | 
|  | /* Input whitening and packing. */ | 
|  | INPACK (0, c, 4); | 
|  | INPACK (1, d, 5); | 
|  | INPACK (2, a, 6); | 
|  | INPACK (3, b, 7); | 
|  |  | 
|  | /* Encryption Feistel cycles. */ | 
|  | DECCYCLE (7); | 
|  | DECCYCLE (6); | 
|  | DECCYCLE (5); | 
|  | DECCYCLE (4); | 
|  | DECCYCLE (3); | 
|  | DECCYCLE (2); | 
|  | DECCYCLE (1); | 
|  | DECCYCLE (0); | 
|  |  | 
|  | /* Output whitening and unpacking. */ | 
|  | OUTUNPACK (0, a, 0); | 
|  | OUTUNPACK (1, b, 1); | 
|  | OUTUNPACK (2, c, 2); | 
|  | OUTUNPACK (3, d, 3); | 
|  |  | 
|  | } | 
|  |  | 
|  | static struct crypto_alg alg = { | 
|  | .cra_name           =   "twofish", | 
|  | .cra_driver_name    =   "twofish-generic", | 
|  | .cra_priority       =   100, | 
|  | .cra_flags          =   CRYPTO_ALG_TYPE_CIPHER, | 
|  | .cra_blocksize      =   TF_BLOCK_SIZE, | 
|  | .cra_ctxsize        =   sizeof(struct twofish_ctx), | 
|  | .cra_alignmask      =	3, | 
|  | .cra_module         =   THIS_MODULE, | 
|  | .cra_list           =   LIST_HEAD_INIT(alg.cra_list), | 
|  | .cra_u              =   { .cipher = { | 
|  | .cia_min_keysize    =   TF_MIN_KEY_SIZE, | 
|  | .cia_max_keysize    =   TF_MAX_KEY_SIZE, | 
|  | .cia_setkey         =   twofish_setkey, | 
|  | .cia_encrypt        =   twofish_encrypt, | 
|  | .cia_decrypt        =   twofish_decrypt } } | 
|  | }; | 
|  |  | 
|  | static int __init twofish_mod_init(void) | 
|  | { | 
|  | return crypto_register_alg(&alg); | 
|  | } | 
|  |  | 
|  | static void __exit twofish_mod_fini(void) | 
|  | { | 
|  | crypto_unregister_alg(&alg); | 
|  | } | 
|  |  | 
|  | module_init(twofish_mod_init); | 
|  | module_exit(twofish_mod_fini); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION ("Twofish Cipher Algorithm"); |