|  | /* | 
|  | * Copyright (C) 2008 Red Hat.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include "ctree.h" | 
|  | #include "free-space-cache.h" | 
|  | #include "transaction.h" | 
|  |  | 
|  | struct btrfs_free_space { | 
|  | struct rb_node bytes_index; | 
|  | struct rb_node offset_index; | 
|  | u64 offset; | 
|  | u64 bytes; | 
|  | }; | 
|  |  | 
|  | static int tree_insert_offset(struct rb_root *root, u64 offset, | 
|  | struct rb_node *node) | 
|  | { | 
|  | struct rb_node **p = &root->rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct btrfs_free_space *info; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | info = rb_entry(parent, struct btrfs_free_space, offset_index); | 
|  |  | 
|  | if (offset < info->offset) | 
|  | p = &(*p)->rb_left; | 
|  | else if (offset > info->offset) | 
|  | p = &(*p)->rb_right; | 
|  | else | 
|  | return -EEXIST; | 
|  | } | 
|  |  | 
|  | rb_link_node(node, parent, p); | 
|  | rb_insert_color(node, root); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tree_insert_bytes(struct rb_root *root, u64 bytes, | 
|  | struct rb_node *node) | 
|  | { | 
|  | struct rb_node **p = &root->rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct btrfs_free_space *info; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | info = rb_entry(parent, struct btrfs_free_space, bytes_index); | 
|  |  | 
|  | if (bytes < info->bytes) | 
|  | p = &(*p)->rb_left; | 
|  | else | 
|  | p = &(*p)->rb_right; | 
|  | } | 
|  |  | 
|  | rb_link_node(node, parent, p); | 
|  | rb_insert_color(node, root); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * searches the tree for the given offset. | 
|  | * | 
|  | * fuzzy == 1: this is used for allocations where we are given a hint of where | 
|  | * to look for free space.  Because the hint may not be completely on an offset | 
|  | * mark, or the hint may no longer point to free space we need to fudge our | 
|  | * results a bit.  So we look for free space starting at or after offset with at | 
|  | * least bytes size.  We prefer to find as close to the given offset as we can. | 
|  | * Also if the offset is within a free space range, then we will return the free | 
|  | * space that contains the given offset, which means we can return a free space | 
|  | * chunk with an offset before the provided offset. | 
|  | * | 
|  | * fuzzy == 0: this is just a normal tree search.  Give us the free space that | 
|  | * starts at the given offset which is at least bytes size, and if its not there | 
|  | * return NULL. | 
|  | */ | 
|  | static struct btrfs_free_space *tree_search_offset(struct rb_root *root, | 
|  | u64 offset, u64 bytes, | 
|  | int fuzzy) | 
|  | { | 
|  | struct rb_node *n = root->rb_node; | 
|  | struct btrfs_free_space *entry, *ret = NULL; | 
|  |  | 
|  | while (n) { | 
|  | entry = rb_entry(n, struct btrfs_free_space, offset_index); | 
|  |  | 
|  | if (offset < entry->offset) { | 
|  | if (fuzzy && | 
|  | (!ret || entry->offset < ret->offset) && | 
|  | (bytes <= entry->bytes)) | 
|  | ret = entry; | 
|  | n = n->rb_left; | 
|  | } else if (offset > entry->offset) { | 
|  | if (fuzzy && | 
|  | (entry->offset + entry->bytes - 1) >= offset && | 
|  | bytes <= entry->bytes) { | 
|  | ret = entry; | 
|  | break; | 
|  | } | 
|  | n = n->rb_right; | 
|  | } else { | 
|  | if (bytes > entry->bytes) { | 
|  | n = n->rb_right; | 
|  | continue; | 
|  | } | 
|  | ret = entry; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return a chunk at least bytes size, as close to offset that we can get. | 
|  | */ | 
|  | static struct btrfs_free_space *tree_search_bytes(struct rb_root *root, | 
|  | u64 offset, u64 bytes) | 
|  | { | 
|  | struct rb_node *n = root->rb_node; | 
|  | struct btrfs_free_space *entry, *ret = NULL; | 
|  |  | 
|  | while (n) { | 
|  | entry = rb_entry(n, struct btrfs_free_space, bytes_index); | 
|  |  | 
|  | if (bytes < entry->bytes) { | 
|  | /* | 
|  | * We prefer to get a hole size as close to the size we | 
|  | * are asking for so we don't take small slivers out of | 
|  | * huge holes, but we also want to get as close to the | 
|  | * offset as possible so we don't have a whole lot of | 
|  | * fragmentation. | 
|  | */ | 
|  | if (offset <= entry->offset) { | 
|  | if (!ret) | 
|  | ret = entry; | 
|  | else if (entry->bytes < ret->bytes) | 
|  | ret = entry; | 
|  | else if (entry->offset < ret->offset) | 
|  | ret = entry; | 
|  | } | 
|  | n = n->rb_left; | 
|  | } else if (bytes > entry->bytes) { | 
|  | n = n->rb_right; | 
|  | } else { | 
|  | /* | 
|  | * Ok we may have multiple chunks of the wanted size, | 
|  | * so we don't want to take the first one we find, we | 
|  | * want to take the one closest to our given offset, so | 
|  | * keep searching just in case theres a better match. | 
|  | */ | 
|  | n = n->rb_right; | 
|  | if (offset > entry->offset) | 
|  | continue; | 
|  | else if (!ret || entry->offset < ret->offset) | 
|  | ret = entry; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void unlink_free_space(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_space *info) | 
|  | { | 
|  | rb_erase(&info->offset_index, &block_group->free_space_offset); | 
|  | rb_erase(&info->bytes_index, &block_group->free_space_bytes); | 
|  | } | 
|  |  | 
|  | static int link_free_space(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_space *info) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  |  | 
|  | BUG_ON(!info->bytes); | 
|  | ret = tree_insert_offset(&block_group->free_space_offset, info->offset, | 
|  | &info->offset_index); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = tree_insert_bytes(&block_group->free_space_bytes, info->bytes, | 
|  | &info->bytes_index); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_add_free_space(struct btrfs_block_group_cache *block_group, | 
|  | u64 offset, u64 bytes) | 
|  | { | 
|  | struct btrfs_free_space *right_info; | 
|  | struct btrfs_free_space *left_info; | 
|  | struct btrfs_free_space *info = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | info->offset = offset; | 
|  | info->bytes = bytes; | 
|  |  | 
|  | spin_lock(&block_group->tree_lock); | 
|  |  | 
|  | /* | 
|  | * first we want to see if there is free space adjacent to the range we | 
|  | * are adding, if there is remove that struct and add a new one to | 
|  | * cover the entire range | 
|  | */ | 
|  | right_info = tree_search_offset(&block_group->free_space_offset, | 
|  | offset+bytes, 0, 0); | 
|  | left_info = tree_search_offset(&block_group->free_space_offset, | 
|  | offset-1, 0, 1); | 
|  |  | 
|  | if (right_info) { | 
|  | unlink_free_space(block_group, right_info); | 
|  | info->bytes += right_info->bytes; | 
|  | kfree(right_info); | 
|  | } | 
|  |  | 
|  | if (left_info && left_info->offset + left_info->bytes == offset) { | 
|  | unlink_free_space(block_group, left_info); | 
|  | info->offset = left_info->offset; | 
|  | info->bytes += left_info->bytes; | 
|  | kfree(left_info); | 
|  | } | 
|  |  | 
|  | ret = link_free_space(block_group, info); | 
|  | if (ret) | 
|  | kfree(info); | 
|  |  | 
|  | spin_unlock(&block_group->tree_lock); | 
|  |  | 
|  | if (ret) { | 
|  | printk(KERN_ERR "btrfs: unable to add free space :%d\n", ret); | 
|  | BUG_ON(ret == -EEXIST); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, | 
|  | u64 offset, u64 bytes) | 
|  | { | 
|  | struct btrfs_free_space *info; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&block_group->tree_lock); | 
|  |  | 
|  | info = tree_search_offset(&block_group->free_space_offset, offset, 0, | 
|  | 1); | 
|  | if (info && info->offset == offset) { | 
|  | if (info->bytes < bytes) { | 
|  | printk(KERN_ERR "Found free space at %llu, size %llu," | 
|  | "trying to use %llu\n", | 
|  | (unsigned long long)info->offset, | 
|  | (unsigned long long)info->bytes, | 
|  | (unsigned long long)bytes); | 
|  | WARN_ON(1); | 
|  | ret = -EINVAL; | 
|  | spin_unlock(&block_group->tree_lock); | 
|  | goto out; | 
|  | } | 
|  | unlink_free_space(block_group, info); | 
|  |  | 
|  | if (info->bytes == bytes) { | 
|  | kfree(info); | 
|  | spin_unlock(&block_group->tree_lock); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | info->offset += bytes; | 
|  | info->bytes -= bytes; | 
|  |  | 
|  | ret = link_free_space(block_group, info); | 
|  | spin_unlock(&block_group->tree_lock); | 
|  | BUG_ON(ret); | 
|  | } else if (info && info->offset < offset && | 
|  | info->offset + info->bytes >= offset + bytes) { | 
|  | u64 old_start = info->offset; | 
|  | /* | 
|  | * we're freeing space in the middle of the info, | 
|  | * this can happen during tree log replay | 
|  | * | 
|  | * first unlink the old info and then | 
|  | * insert it again after the hole we're creating | 
|  | */ | 
|  | unlink_free_space(block_group, info); | 
|  | if (offset + bytes < info->offset + info->bytes) { | 
|  | u64 old_end = info->offset + info->bytes; | 
|  |  | 
|  | info->offset = offset + bytes; | 
|  | info->bytes = old_end - info->offset; | 
|  | ret = link_free_space(block_group, info); | 
|  | BUG_ON(ret); | 
|  | } else { | 
|  | /* the hole we're creating ends at the end | 
|  | * of the info struct, just free the info | 
|  | */ | 
|  | kfree(info); | 
|  | } | 
|  | spin_unlock(&block_group->tree_lock); | 
|  | /* step two, insert a new info struct to cover anything | 
|  | * before the hole | 
|  | */ | 
|  | ret = btrfs_add_free_space(block_group, old_start, | 
|  | offset - old_start); | 
|  | BUG_ON(ret); | 
|  | } else { | 
|  | spin_unlock(&block_group->tree_lock); | 
|  | if (!info) { | 
|  | printk(KERN_ERR "couldn't find space %llu to free\n", | 
|  | (unsigned long long)offset); | 
|  | printk(KERN_ERR "cached is %d, offset %llu bytes %llu\n", | 
|  | block_group->cached, | 
|  | (unsigned long long)block_group->key.objectid, | 
|  | (unsigned long long)block_group->key.offset); | 
|  | btrfs_dump_free_space(block_group, bytes); | 
|  | } else if (info) { | 
|  | printk(KERN_ERR "hmm, found offset=%llu bytes=%llu, " | 
|  | "but wanted offset=%llu bytes=%llu\n", | 
|  | (unsigned long long)info->offset, | 
|  | (unsigned long long)info->bytes, | 
|  | (unsigned long long)offset, | 
|  | (unsigned long long)bytes); | 
|  | } | 
|  | WARN_ON(1); | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, | 
|  | u64 bytes) | 
|  | { | 
|  | struct btrfs_free_space *info; | 
|  | struct rb_node *n; | 
|  | int count = 0; | 
|  |  | 
|  | for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) { | 
|  | info = rb_entry(n, struct btrfs_free_space, offset_index); | 
|  | if (info->bytes >= bytes) | 
|  | count++; | 
|  | printk(KERN_ERR "entry offset %llu, bytes %llu\n", | 
|  | (unsigned long long)info->offset, | 
|  | (unsigned long long)info->bytes); | 
|  | } | 
|  | printk(KERN_INFO "%d blocks of free space at or bigger than bytes is" | 
|  | "\n", count); | 
|  | } | 
|  |  | 
|  | u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group) | 
|  | { | 
|  | struct btrfs_free_space *info; | 
|  | struct rb_node *n; | 
|  | u64 ret = 0; | 
|  |  | 
|  | for (n = rb_first(&block_group->free_space_offset); n; | 
|  | n = rb_next(n)) { | 
|  | info = rb_entry(n, struct btrfs_free_space, offset_index); | 
|  | ret += info->bytes; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * for a given cluster, put all of its extents back into the free | 
|  | * space cache.  If the block group passed doesn't match the block group | 
|  | * pointed to by the cluster, someone else raced in and freed the | 
|  | * cluster already.  In that case, we just return without changing anything | 
|  | */ | 
|  | static int | 
|  | __btrfs_return_cluster_to_free_space( | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster) | 
|  | { | 
|  | struct btrfs_free_space *entry; | 
|  | struct rb_node *node; | 
|  |  | 
|  | spin_lock(&cluster->lock); | 
|  | if (cluster->block_group != block_group) | 
|  | goto out; | 
|  |  | 
|  | cluster->window_start = 0; | 
|  | node = rb_first(&cluster->root); | 
|  | while(node) { | 
|  | entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  | node = rb_next(&entry->offset_index); | 
|  | rb_erase(&entry->offset_index, &cluster->root); | 
|  | link_free_space(block_group, entry); | 
|  | } | 
|  | list_del_init(&cluster->block_group_list); | 
|  |  | 
|  | btrfs_put_block_group(cluster->block_group); | 
|  | cluster->block_group = NULL; | 
|  | cluster->root.rb_node = NULL; | 
|  | out: | 
|  | spin_unlock(&cluster->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) | 
|  | { | 
|  | struct btrfs_free_space *info; | 
|  | struct rb_node *node; | 
|  | struct btrfs_free_cluster *cluster; | 
|  | struct btrfs_free_cluster *safe; | 
|  |  | 
|  | spin_lock(&block_group->tree_lock); | 
|  |  | 
|  | list_for_each_entry_safe(cluster, safe, &block_group->cluster_list, | 
|  | block_group_list) { | 
|  |  | 
|  | WARN_ON(cluster->block_group != block_group); | 
|  | __btrfs_return_cluster_to_free_space(block_group, cluster); | 
|  | } | 
|  |  | 
|  | while ((node = rb_last(&block_group->free_space_bytes)) != NULL) { | 
|  | info = rb_entry(node, struct btrfs_free_space, bytes_index); | 
|  | unlink_free_space(block_group, info); | 
|  | kfree(info); | 
|  | if (need_resched()) { | 
|  | spin_unlock(&block_group->tree_lock); | 
|  | cond_resched(); | 
|  | spin_lock(&block_group->tree_lock); | 
|  | } | 
|  | } | 
|  | spin_unlock(&block_group->tree_lock); | 
|  | } | 
|  |  | 
|  | u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, | 
|  | u64 offset, u64 bytes, u64 empty_size) | 
|  | { | 
|  | struct btrfs_free_space *entry = NULL; | 
|  | u64 ret = 0; | 
|  |  | 
|  | spin_lock(&block_group->tree_lock); | 
|  | entry = tree_search_offset(&block_group->free_space_offset, offset, | 
|  | bytes + empty_size, 1); | 
|  | if (!entry) | 
|  | entry = tree_search_bytes(&block_group->free_space_bytes, | 
|  | offset, bytes + empty_size); | 
|  | if (entry) { | 
|  | unlink_free_space(block_group, entry); | 
|  | ret = entry->offset; | 
|  | entry->offset += bytes; | 
|  | entry->bytes -= bytes; | 
|  |  | 
|  | if (!entry->bytes) | 
|  | kfree(entry); | 
|  | else | 
|  | link_free_space(block_group, entry); | 
|  | } | 
|  | spin_unlock(&block_group->tree_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * given a cluster, put all of its extents back into the free space | 
|  | * cache.  If a block group is passed, this function will only free | 
|  | * a cluster that belongs to the passed block group. | 
|  | * | 
|  | * Otherwise, it'll get a reference on the block group pointed to by the | 
|  | * cluster and remove the cluster from it. | 
|  | */ | 
|  | int btrfs_return_cluster_to_free_space( | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* first, get a safe pointer to the block group */ | 
|  | spin_lock(&cluster->lock); | 
|  | if (!block_group) { | 
|  | block_group = cluster->block_group; | 
|  | if (!block_group) { | 
|  | spin_unlock(&cluster->lock); | 
|  | return 0; | 
|  | } | 
|  | } else if (cluster->block_group != block_group) { | 
|  | /* someone else has already freed it don't redo their work */ | 
|  | spin_unlock(&cluster->lock); | 
|  | return 0; | 
|  | } | 
|  | atomic_inc(&block_group->count); | 
|  | spin_unlock(&cluster->lock); | 
|  |  | 
|  | /* now return any extents the cluster had on it */ | 
|  | spin_lock(&block_group->tree_lock); | 
|  | ret = __btrfs_return_cluster_to_free_space(block_group, cluster); | 
|  | spin_unlock(&block_group->tree_lock); | 
|  |  | 
|  | /* finally drop our ref */ | 
|  | btrfs_put_block_group(block_group); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * given a cluster, try to allocate 'bytes' from it, returns 0 | 
|  | * if it couldn't find anything suitably large, or a logical disk offset | 
|  | * if things worked out | 
|  | */ | 
|  | u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster, u64 bytes, | 
|  | u64 min_start) | 
|  | { | 
|  | struct btrfs_free_space *entry = NULL; | 
|  | struct rb_node *node; | 
|  | u64 ret = 0; | 
|  |  | 
|  | spin_lock(&cluster->lock); | 
|  | if (bytes > cluster->max_size) | 
|  | goto out; | 
|  |  | 
|  | if (cluster->block_group != block_group) | 
|  | goto out; | 
|  |  | 
|  | node = rb_first(&cluster->root); | 
|  | if (!node) | 
|  | goto out; | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  |  | 
|  | while(1) { | 
|  | if (entry->bytes < bytes || entry->offset < min_start) { | 
|  | struct rb_node *node; | 
|  |  | 
|  | node = rb_next(&entry->offset_index); | 
|  | if (!node) | 
|  | break; | 
|  | entry = rb_entry(node, struct btrfs_free_space, | 
|  | offset_index); | 
|  | continue; | 
|  | } | 
|  | ret = entry->offset; | 
|  |  | 
|  | entry->offset += bytes; | 
|  | entry->bytes -= bytes; | 
|  |  | 
|  | if (entry->bytes == 0) { | 
|  | rb_erase(&entry->offset_index, &cluster->root); | 
|  | kfree(entry); | 
|  | } | 
|  | break; | 
|  | } | 
|  | out: | 
|  | spin_unlock(&cluster->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * here we try to find a cluster of blocks in a block group.  The goal | 
|  | * is to find at least bytes free and up to empty_size + bytes free. | 
|  | * We might not find them all in one contiguous area. | 
|  | * | 
|  | * returns zero and sets up cluster if things worked out, otherwise | 
|  | * it returns -enospc | 
|  | */ | 
|  | int btrfs_find_space_cluster(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster, | 
|  | u64 offset, u64 bytes, u64 empty_size) | 
|  | { | 
|  | struct btrfs_free_space *entry = NULL; | 
|  | struct rb_node *node; | 
|  | struct btrfs_free_space *next; | 
|  | struct btrfs_free_space *last; | 
|  | u64 min_bytes; | 
|  | u64 window_start; | 
|  | u64 window_free; | 
|  | u64 max_extent = 0; | 
|  | int total_retries = 0; | 
|  | int ret; | 
|  |  | 
|  | /* for metadata, allow allocates with more holes */ | 
|  | if (btrfs_test_opt(root, SSD_SPREAD)) { | 
|  | min_bytes = bytes + empty_size; | 
|  | } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { | 
|  | /* | 
|  | * we want to do larger allocations when we are | 
|  | * flushing out the delayed refs, it helps prevent | 
|  | * making more work as we go along. | 
|  | */ | 
|  | if (trans->transaction->delayed_refs.flushing) | 
|  | min_bytes = max(bytes, (bytes + empty_size) >> 1); | 
|  | else | 
|  | min_bytes = max(bytes, (bytes + empty_size) >> 4); | 
|  | } else | 
|  | min_bytes = max(bytes, (bytes + empty_size) >> 2); | 
|  |  | 
|  | spin_lock(&block_group->tree_lock); | 
|  | spin_lock(&cluster->lock); | 
|  |  | 
|  | /* someone already found a cluster, hooray */ | 
|  | if (cluster->block_group) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | again: | 
|  | min_bytes = min(min_bytes, bytes + empty_size); | 
|  | entry = tree_search_bytes(&block_group->free_space_bytes, | 
|  | offset, min_bytes); | 
|  | if (!entry) { | 
|  | ret = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  | window_start = entry->offset; | 
|  | window_free = entry->bytes; | 
|  | last = entry; | 
|  | max_extent = entry->bytes; | 
|  |  | 
|  | while(1) { | 
|  | /* out window is just right, lets fill it */ | 
|  | if (window_free >= bytes + empty_size) | 
|  | break; | 
|  |  | 
|  | node = rb_next(&last->offset_index); | 
|  | if (!node) { | 
|  | ret = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  | next = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  |  | 
|  | /* | 
|  | * we haven't filled the empty size and the window is | 
|  | * very large.  reset and try again | 
|  | */ | 
|  | if (next->offset - (last->offset + last->bytes) > 128 * 1024 || | 
|  | next->offset - window_start > (bytes + empty_size) * 2) { | 
|  | entry = next; | 
|  | window_start = entry->offset; | 
|  | window_free = entry->bytes; | 
|  | last = entry; | 
|  | max_extent = 0; | 
|  | total_retries++; | 
|  | if (total_retries % 64 == 0) { | 
|  | if (min_bytes >= (bytes + empty_size)) { | 
|  | ret = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * grow our allocation a bit, we're not having | 
|  | * much luck | 
|  | */ | 
|  | min_bytes *= 2; | 
|  | goto again; | 
|  | } | 
|  | } else { | 
|  | last = next; | 
|  | window_free += next->bytes; | 
|  | if (entry->bytes > max_extent) | 
|  | max_extent = entry->bytes; | 
|  | } | 
|  | } | 
|  |  | 
|  | cluster->window_start = entry->offset; | 
|  |  | 
|  | /* | 
|  | * now we've found our entries, pull them out of the free space | 
|  | * cache and put them into the cluster rbtree | 
|  | * | 
|  | * The cluster includes an rbtree, but only uses the offset index | 
|  | * of each free space cache entry. | 
|  | */ | 
|  | while(1) { | 
|  | node = rb_next(&entry->offset_index); | 
|  | unlink_free_space(block_group, entry); | 
|  | ret = tree_insert_offset(&cluster->root, entry->offset, | 
|  | &entry->offset_index); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | if (!node || entry == last) | 
|  | break; | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  | } | 
|  | ret = 0; | 
|  | cluster->max_size = max_extent; | 
|  | atomic_inc(&block_group->count); | 
|  | list_add_tail(&cluster->block_group_list, &block_group->cluster_list); | 
|  | cluster->block_group = block_group; | 
|  | out: | 
|  | spin_unlock(&cluster->lock); | 
|  | spin_unlock(&block_group->tree_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * simple code to zero out a cluster | 
|  | */ | 
|  | void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) | 
|  | { | 
|  | spin_lock_init(&cluster->lock); | 
|  | spin_lock_init(&cluster->refill_lock); | 
|  | cluster->root.rb_node = NULL; | 
|  | cluster->max_size = 0; | 
|  | INIT_LIST_HEAD(&cluster->block_group_list); | 
|  | cluster->block_group = NULL; | 
|  | } | 
|  |  |