|  | /* | 
|  | * mm/mmap.c | 
|  | * | 
|  | * Written by obz. | 
|  | * | 
|  | * Address space accounting code	<alan@lxorguk.ukuu.org.uk> | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/shm.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/ima.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/perf_counter.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/mmu_context.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | #ifndef arch_mmap_check | 
|  | #define arch_mmap_check(addr, len, flags)	(0) | 
|  | #endif | 
|  |  | 
|  | #ifndef arch_rebalance_pgtables | 
|  | #define arch_rebalance_pgtables(addr, len)		(addr) | 
|  | #endif | 
|  |  | 
|  | static void unmap_region(struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, struct vm_area_struct *prev, | 
|  | unsigned long start, unsigned long end); | 
|  |  | 
|  | /* | 
|  | * WARNING: the debugging will use recursive algorithms so never enable this | 
|  | * unless you know what you are doing. | 
|  | */ | 
|  | #undef DEBUG_MM_RB | 
|  |  | 
|  | /* description of effects of mapping type and prot in current implementation. | 
|  | * this is due to the limited x86 page protection hardware.  The expected | 
|  | * behavior is in parens: | 
|  | * | 
|  | * map_type	prot | 
|  | *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC | 
|  | * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes | 
|  | *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no | 
|  | *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes | 
|  | * | 
|  | * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes | 
|  | *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no | 
|  | *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes | 
|  | * | 
|  | */ | 
|  | pgprot_t protection_map[16] = { | 
|  | __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, | 
|  | __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 | 
|  | }; | 
|  |  | 
|  | pgprot_t vm_get_page_prot(unsigned long vm_flags) | 
|  | { | 
|  | return __pgprot(pgprot_val(protection_map[vm_flags & | 
|  | (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | | 
|  | pgprot_val(arch_vm_get_page_prot(vm_flags))); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_get_page_prot); | 
|  |  | 
|  | int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */ | 
|  | int sysctl_overcommit_ratio = 50;	/* default is 50% */ | 
|  | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; | 
|  | struct percpu_counter vm_committed_as; | 
|  |  | 
|  | /* amount of vm to protect from userspace access */ | 
|  | unsigned long mmap_min_addr = CONFIG_DEFAULT_MMAP_MIN_ADDR; | 
|  |  | 
|  | /* | 
|  | * Check that a process has enough memory to allocate a new virtual | 
|  | * mapping. 0 means there is enough memory for the allocation to | 
|  | * succeed and -ENOMEM implies there is not. | 
|  | * | 
|  | * We currently support three overcommit policies, which are set via the | 
|  | * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting | 
|  | * | 
|  | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. | 
|  | * Additional code 2002 Jul 20 by Robert Love. | 
|  | * | 
|  | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. | 
|  | * | 
|  | * Note this is a helper function intended to be used by LSMs which | 
|  | * wish to use this logic. | 
|  | */ | 
|  | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) | 
|  | { | 
|  | unsigned long free, allowed; | 
|  |  | 
|  | vm_acct_memory(pages); | 
|  |  | 
|  | /* | 
|  | * Sometimes we want to use more memory than we have | 
|  | */ | 
|  | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) | 
|  | return 0; | 
|  |  | 
|  | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { | 
|  | unsigned long n; | 
|  |  | 
|  | free = global_page_state(NR_FILE_PAGES); | 
|  | free += nr_swap_pages; | 
|  |  | 
|  | /* | 
|  | * Any slabs which are created with the | 
|  | * SLAB_RECLAIM_ACCOUNT flag claim to have contents | 
|  | * which are reclaimable, under pressure.  The dentry | 
|  | * cache and most inode caches should fall into this | 
|  | */ | 
|  | free += global_page_state(NR_SLAB_RECLAIMABLE); | 
|  |  | 
|  | /* | 
|  | * Leave the last 3% for root | 
|  | */ | 
|  | if (!cap_sys_admin) | 
|  | free -= free / 32; | 
|  |  | 
|  | if (free > pages) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * nr_free_pages() is very expensive on large systems, | 
|  | * only call if we're about to fail. | 
|  | */ | 
|  | n = nr_free_pages(); | 
|  |  | 
|  | /* | 
|  | * Leave reserved pages. The pages are not for anonymous pages. | 
|  | */ | 
|  | if (n <= totalreserve_pages) | 
|  | goto error; | 
|  | else | 
|  | n -= totalreserve_pages; | 
|  |  | 
|  | /* | 
|  | * Leave the last 3% for root | 
|  | */ | 
|  | if (!cap_sys_admin) | 
|  | n -= n / 32; | 
|  | free += n; | 
|  |  | 
|  | if (free > pages) | 
|  | return 0; | 
|  |  | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | allowed = (totalram_pages - hugetlb_total_pages()) | 
|  | * sysctl_overcommit_ratio / 100; | 
|  | /* | 
|  | * Leave the last 3% for root | 
|  | */ | 
|  | if (!cap_sys_admin) | 
|  | allowed -= allowed / 32; | 
|  | allowed += total_swap_pages; | 
|  |  | 
|  | /* Don't let a single process grow too big: | 
|  | leave 3% of the size of this process for other processes */ | 
|  | if (mm) | 
|  | allowed -= mm->total_vm / 32; | 
|  |  | 
|  | if (percpu_counter_read_positive(&vm_committed_as) < allowed) | 
|  | return 0; | 
|  | error: | 
|  | vm_unacct_memory(pages); | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Requires inode->i_mapping->i_mmap_lock | 
|  | */ | 
|  | static void __remove_shared_vm_struct(struct vm_area_struct *vma, | 
|  | struct file *file, struct address_space *mapping) | 
|  | { | 
|  | if (vma->vm_flags & VM_DENYWRITE) | 
|  | atomic_inc(&file->f_path.dentry->d_inode->i_writecount); | 
|  | if (vma->vm_flags & VM_SHARED) | 
|  | mapping->i_mmap_writable--; | 
|  |  | 
|  | flush_dcache_mmap_lock(mapping); | 
|  | if (unlikely(vma->vm_flags & VM_NONLINEAR)) | 
|  | list_del_init(&vma->shared.vm_set.list); | 
|  | else | 
|  | vma_prio_tree_remove(vma, &mapping->i_mmap); | 
|  | flush_dcache_mmap_unlock(mapping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlink a file-based vm structure from its prio_tree, to hide | 
|  | * vma from rmap and vmtruncate before freeing its page tables. | 
|  | */ | 
|  | void unlink_file_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | struct file *file = vma->vm_file; | 
|  |  | 
|  | if (file) { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | spin_lock(&mapping->i_mmap_lock); | 
|  | __remove_shared_vm_struct(vma, file, mapping); | 
|  | spin_unlock(&mapping->i_mmap_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Close a vm structure and free it, returning the next. | 
|  | */ | 
|  | static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | struct vm_area_struct *next = vma->vm_next; | 
|  |  | 
|  | might_sleep(); | 
|  | if (vma->vm_ops && vma->vm_ops->close) | 
|  | vma->vm_ops->close(vma); | 
|  | if (vma->vm_file) { | 
|  | fput(vma->vm_file); | 
|  | if (vma->vm_flags & VM_EXECUTABLE) | 
|  | removed_exe_file_vma(vma->vm_mm); | 
|  | } | 
|  | mpol_put(vma_policy(vma)); | 
|  | kmem_cache_free(vm_area_cachep, vma); | 
|  | return next; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE1(brk, unsigned long, brk) | 
|  | { | 
|  | unsigned long rlim, retval; | 
|  | unsigned long newbrk, oldbrk; | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long min_brk; | 
|  |  | 
|  | down_write(&mm->mmap_sem); | 
|  |  | 
|  | #ifdef CONFIG_COMPAT_BRK | 
|  | min_brk = mm->end_code; | 
|  | #else | 
|  | min_brk = mm->start_brk; | 
|  | #endif | 
|  | if (brk < min_brk) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Check against rlimit here. If this check is done later after the test | 
|  | * of oldbrk with newbrk then it can escape the test and let the data | 
|  | * segment grow beyond its set limit the in case where the limit is | 
|  | * not page aligned -Ram Gupta | 
|  | */ | 
|  | rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur; | 
|  | if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + | 
|  | (mm->end_data - mm->start_data) > rlim) | 
|  | goto out; | 
|  |  | 
|  | newbrk = PAGE_ALIGN(brk); | 
|  | oldbrk = PAGE_ALIGN(mm->brk); | 
|  | if (oldbrk == newbrk) | 
|  | goto set_brk; | 
|  |  | 
|  | /* Always allow shrinking brk. */ | 
|  | if (brk <= mm->brk) { | 
|  | if (!do_munmap(mm, newbrk, oldbrk-newbrk)) | 
|  | goto set_brk; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Check against existing mmap mappings. */ | 
|  | if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) | 
|  | goto out; | 
|  |  | 
|  | /* Ok, looks good - let it rip. */ | 
|  | if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) | 
|  | goto out; | 
|  | set_brk: | 
|  | mm->brk = brk; | 
|  | out: | 
|  | retval = mm->brk; | 
|  | up_write(&mm->mmap_sem); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG_MM_RB | 
|  | static int browse_rb(struct rb_root *root) | 
|  | { | 
|  | int i = 0, j; | 
|  | struct rb_node *nd, *pn = NULL; | 
|  | unsigned long prev = 0, pend = 0; | 
|  |  | 
|  | for (nd = rb_first(root); nd; nd = rb_next(nd)) { | 
|  | struct vm_area_struct *vma; | 
|  | vma = rb_entry(nd, struct vm_area_struct, vm_rb); | 
|  | if (vma->vm_start < prev) | 
|  | printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; | 
|  | if (vma->vm_start < pend) | 
|  | printk("vm_start %lx pend %lx\n", vma->vm_start, pend); | 
|  | if (vma->vm_start > vma->vm_end) | 
|  | printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); | 
|  | i++; | 
|  | pn = nd; | 
|  | prev = vma->vm_start; | 
|  | pend = vma->vm_end; | 
|  | } | 
|  | j = 0; | 
|  | for (nd = pn; nd; nd = rb_prev(nd)) { | 
|  | j++; | 
|  | } | 
|  | if (i != j) | 
|  | printk("backwards %d, forwards %d\n", j, i), i = 0; | 
|  | return i; | 
|  | } | 
|  |  | 
|  | void validate_mm(struct mm_struct *mm) | 
|  | { | 
|  | int bug = 0; | 
|  | int i = 0; | 
|  | struct vm_area_struct *tmp = mm->mmap; | 
|  | while (tmp) { | 
|  | tmp = tmp->vm_next; | 
|  | i++; | 
|  | } | 
|  | if (i != mm->map_count) | 
|  | printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; | 
|  | i = browse_rb(&mm->mm_rb); | 
|  | if (i != mm->map_count) | 
|  | printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; | 
|  | BUG_ON(bug); | 
|  | } | 
|  | #else | 
|  | #define validate_mm(mm) do { } while (0) | 
|  | #endif | 
|  |  | 
|  | static struct vm_area_struct * | 
|  | find_vma_prepare(struct mm_struct *mm, unsigned long addr, | 
|  | struct vm_area_struct **pprev, struct rb_node ***rb_link, | 
|  | struct rb_node ** rb_parent) | 
|  | { | 
|  | struct vm_area_struct * vma; | 
|  | struct rb_node ** __rb_link, * __rb_parent, * rb_prev; | 
|  |  | 
|  | __rb_link = &mm->mm_rb.rb_node; | 
|  | rb_prev = __rb_parent = NULL; | 
|  | vma = NULL; | 
|  |  | 
|  | while (*__rb_link) { | 
|  | struct vm_area_struct *vma_tmp; | 
|  |  | 
|  | __rb_parent = *__rb_link; | 
|  | vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); | 
|  |  | 
|  | if (vma_tmp->vm_end > addr) { | 
|  | vma = vma_tmp; | 
|  | if (vma_tmp->vm_start <= addr) | 
|  | break; | 
|  | __rb_link = &__rb_parent->rb_left; | 
|  | } else { | 
|  | rb_prev = __rb_parent; | 
|  | __rb_link = &__rb_parent->rb_right; | 
|  | } | 
|  | } | 
|  |  | 
|  | *pprev = NULL; | 
|  | if (rb_prev) | 
|  | *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); | 
|  | *rb_link = __rb_link; | 
|  | *rb_parent = __rb_parent; | 
|  | return vma; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct vm_area_struct *prev, struct rb_node *rb_parent) | 
|  | { | 
|  | if (prev) { | 
|  | vma->vm_next = prev->vm_next; | 
|  | prev->vm_next = vma; | 
|  | } else { | 
|  | mm->mmap = vma; | 
|  | if (rb_parent) | 
|  | vma->vm_next = rb_entry(rb_parent, | 
|  | struct vm_area_struct, vm_rb); | 
|  | else | 
|  | vma->vm_next = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct rb_node **rb_link, struct rb_node *rb_parent) | 
|  | { | 
|  | rb_link_node(&vma->vm_rb, rb_parent, rb_link); | 
|  | rb_insert_color(&vma->vm_rb, &mm->mm_rb); | 
|  | } | 
|  |  | 
|  | static void __vma_link_file(struct vm_area_struct *vma) | 
|  | { | 
|  | struct file *file; | 
|  |  | 
|  | file = vma->vm_file; | 
|  | if (file) { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | if (vma->vm_flags & VM_DENYWRITE) | 
|  | atomic_dec(&file->f_path.dentry->d_inode->i_writecount); | 
|  | if (vma->vm_flags & VM_SHARED) | 
|  | mapping->i_mmap_writable++; | 
|  |  | 
|  | flush_dcache_mmap_lock(mapping); | 
|  | if (unlikely(vma->vm_flags & VM_NONLINEAR)) | 
|  | vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); | 
|  | else | 
|  | vma_prio_tree_insert(vma, &mapping->i_mmap); | 
|  | flush_dcache_mmap_unlock(mapping); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct vm_area_struct *prev, struct rb_node **rb_link, | 
|  | struct rb_node *rb_parent) | 
|  | { | 
|  | __vma_link_list(mm, vma, prev, rb_parent); | 
|  | __vma_link_rb(mm, vma, rb_link, rb_parent); | 
|  | __anon_vma_link(vma); | 
|  | } | 
|  |  | 
|  | static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct vm_area_struct *prev, struct rb_node **rb_link, | 
|  | struct rb_node *rb_parent) | 
|  | { | 
|  | struct address_space *mapping = NULL; | 
|  |  | 
|  | if (vma->vm_file) | 
|  | mapping = vma->vm_file->f_mapping; | 
|  |  | 
|  | if (mapping) { | 
|  | spin_lock(&mapping->i_mmap_lock); | 
|  | vma->vm_truncate_count = mapping->truncate_count; | 
|  | } | 
|  | anon_vma_lock(vma); | 
|  |  | 
|  | __vma_link(mm, vma, prev, rb_link, rb_parent); | 
|  | __vma_link_file(vma); | 
|  |  | 
|  | anon_vma_unlock(vma); | 
|  | if (mapping) | 
|  | spin_unlock(&mapping->i_mmap_lock); | 
|  |  | 
|  | mm->map_count++; | 
|  | validate_mm(mm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper for vma_adjust in the split_vma insert case: | 
|  | * insert vm structure into list and rbtree and anon_vma, | 
|  | * but it has already been inserted into prio_tree earlier. | 
|  | */ | 
|  | static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) | 
|  | { | 
|  | struct vm_area_struct *__vma, *prev; | 
|  | struct rb_node **rb_link, *rb_parent; | 
|  |  | 
|  | __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); | 
|  | BUG_ON(__vma && __vma->vm_start < vma->vm_end); | 
|  | __vma_link(mm, vma, prev, rb_link, rb_parent); | 
|  | mm->map_count++; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct vm_area_struct *prev) | 
|  | { | 
|  | prev->vm_next = vma->vm_next; | 
|  | rb_erase(&vma->vm_rb, &mm->mm_rb); | 
|  | if (mm->mmap_cache == vma) | 
|  | mm->mmap_cache = prev; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that | 
|  | * is already present in an i_mmap tree without adjusting the tree. | 
|  | * The following helper function should be used when such adjustments | 
|  | * are necessary.  The "insert" vma (if any) is to be inserted | 
|  | * before we drop the necessary locks. | 
|  | */ | 
|  | void vma_adjust(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct vm_area_struct *next = vma->vm_next; | 
|  | struct vm_area_struct *importer = NULL; | 
|  | struct address_space *mapping = NULL; | 
|  | struct prio_tree_root *root = NULL; | 
|  | struct file *file = vma->vm_file; | 
|  | struct anon_vma *anon_vma = NULL; | 
|  | long adjust_next = 0; | 
|  | int remove_next = 0; | 
|  |  | 
|  | if (next && !insert) { | 
|  | if (end >= next->vm_end) { | 
|  | /* | 
|  | * vma expands, overlapping all the next, and | 
|  | * perhaps the one after too (mprotect case 6). | 
|  | */ | 
|  | again:			remove_next = 1 + (end > next->vm_end); | 
|  | end = next->vm_end; | 
|  | anon_vma = next->anon_vma; | 
|  | importer = vma; | 
|  | } else if (end > next->vm_start) { | 
|  | /* | 
|  | * vma expands, overlapping part of the next: | 
|  | * mprotect case 5 shifting the boundary up. | 
|  | */ | 
|  | adjust_next = (end - next->vm_start) >> PAGE_SHIFT; | 
|  | anon_vma = next->anon_vma; | 
|  | importer = vma; | 
|  | } else if (end < vma->vm_end) { | 
|  | /* | 
|  | * vma shrinks, and !insert tells it's not | 
|  | * split_vma inserting another: so it must be | 
|  | * mprotect case 4 shifting the boundary down. | 
|  | */ | 
|  | adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); | 
|  | anon_vma = next->anon_vma; | 
|  | importer = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (file) { | 
|  | mapping = file->f_mapping; | 
|  | if (!(vma->vm_flags & VM_NONLINEAR)) | 
|  | root = &mapping->i_mmap; | 
|  | spin_lock(&mapping->i_mmap_lock); | 
|  | if (importer && | 
|  | vma->vm_truncate_count != next->vm_truncate_count) { | 
|  | /* | 
|  | * unmap_mapping_range might be in progress: | 
|  | * ensure that the expanding vma is rescanned. | 
|  | */ | 
|  | importer->vm_truncate_count = 0; | 
|  | } | 
|  | if (insert) { | 
|  | insert->vm_truncate_count = vma->vm_truncate_count; | 
|  | /* | 
|  | * Put into prio_tree now, so instantiated pages | 
|  | * are visible to arm/parisc __flush_dcache_page | 
|  | * throughout; but we cannot insert into address | 
|  | * space until vma start or end is updated. | 
|  | */ | 
|  | __vma_link_file(insert); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When changing only vma->vm_end, we don't really need | 
|  | * anon_vma lock: but is that case worth optimizing out? | 
|  | */ | 
|  | if (vma->anon_vma) | 
|  | anon_vma = vma->anon_vma; | 
|  | if (anon_vma) { | 
|  | spin_lock(&anon_vma->lock); | 
|  | /* | 
|  | * Easily overlooked: when mprotect shifts the boundary, | 
|  | * make sure the expanding vma has anon_vma set if the | 
|  | * shrinking vma had, to cover any anon pages imported. | 
|  | */ | 
|  | if (importer && !importer->anon_vma) { | 
|  | importer->anon_vma = anon_vma; | 
|  | __anon_vma_link(importer); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (root) { | 
|  | flush_dcache_mmap_lock(mapping); | 
|  | vma_prio_tree_remove(vma, root); | 
|  | if (adjust_next) | 
|  | vma_prio_tree_remove(next, root); | 
|  | } | 
|  |  | 
|  | vma->vm_start = start; | 
|  | vma->vm_end = end; | 
|  | vma->vm_pgoff = pgoff; | 
|  | if (adjust_next) { | 
|  | next->vm_start += adjust_next << PAGE_SHIFT; | 
|  | next->vm_pgoff += adjust_next; | 
|  | } | 
|  |  | 
|  | if (root) { | 
|  | if (adjust_next) | 
|  | vma_prio_tree_insert(next, root); | 
|  | vma_prio_tree_insert(vma, root); | 
|  | flush_dcache_mmap_unlock(mapping); | 
|  | } | 
|  |  | 
|  | if (remove_next) { | 
|  | /* | 
|  | * vma_merge has merged next into vma, and needs | 
|  | * us to remove next before dropping the locks. | 
|  | */ | 
|  | __vma_unlink(mm, next, vma); | 
|  | if (file) | 
|  | __remove_shared_vm_struct(next, file, mapping); | 
|  | if (next->anon_vma) | 
|  | __anon_vma_merge(vma, next); | 
|  | } else if (insert) { | 
|  | /* | 
|  | * split_vma has split insert from vma, and needs | 
|  | * us to insert it before dropping the locks | 
|  | * (it may either follow vma or precede it). | 
|  | */ | 
|  | __insert_vm_struct(mm, insert); | 
|  | } | 
|  |  | 
|  | if (anon_vma) | 
|  | spin_unlock(&anon_vma->lock); | 
|  | if (mapping) | 
|  | spin_unlock(&mapping->i_mmap_lock); | 
|  |  | 
|  | if (remove_next) { | 
|  | if (file) { | 
|  | fput(file); | 
|  | if (next->vm_flags & VM_EXECUTABLE) | 
|  | removed_exe_file_vma(mm); | 
|  | } | 
|  | mm->map_count--; | 
|  | mpol_put(vma_policy(next)); | 
|  | kmem_cache_free(vm_area_cachep, next); | 
|  | /* | 
|  | * In mprotect's case 6 (see comments on vma_merge), | 
|  | * we must remove another next too. It would clutter | 
|  | * up the code too much to do both in one go. | 
|  | */ | 
|  | if (remove_next == 2) { | 
|  | next = vma->vm_next; | 
|  | goto again; | 
|  | } | 
|  | } | 
|  |  | 
|  | validate_mm(mm); | 
|  | } | 
|  |  | 
|  | /* Flags that can be inherited from an existing mapping when merging */ | 
|  | #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR) | 
|  |  | 
|  | /* | 
|  | * If the vma has a ->close operation then the driver probably needs to release | 
|  | * per-vma resources, so we don't attempt to merge those. | 
|  | */ | 
|  | static inline int is_mergeable_vma(struct vm_area_struct *vma, | 
|  | struct file *file, unsigned long vm_flags) | 
|  | { | 
|  | if ((vma->vm_flags ^ vm_flags) & ~VM_MERGEABLE_FLAGS) | 
|  | return 0; | 
|  | if (vma->vm_file != file) | 
|  | return 0; | 
|  | if (vma->vm_ops && vma->vm_ops->close) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, | 
|  | struct anon_vma *anon_vma2) | 
|  | { | 
|  | return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) | 
|  | * in front of (at a lower virtual address and file offset than) the vma. | 
|  | * | 
|  | * We cannot merge two vmas if they have differently assigned (non-NULL) | 
|  | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. | 
|  | * | 
|  | * We don't check here for the merged mmap wrapping around the end of pagecache | 
|  | * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which | 
|  | * wrap, nor mmaps which cover the final page at index -1UL. | 
|  | */ | 
|  | static int | 
|  | can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, | 
|  | struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) | 
|  | { | 
|  | if (is_mergeable_vma(vma, file, vm_flags) && | 
|  | is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { | 
|  | if (vma->vm_pgoff == vm_pgoff) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) | 
|  | * beyond (at a higher virtual address and file offset than) the vma. | 
|  | * | 
|  | * We cannot merge two vmas if they have differently assigned (non-NULL) | 
|  | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. | 
|  | */ | 
|  | static int | 
|  | can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, | 
|  | struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) | 
|  | { | 
|  | if (is_mergeable_vma(vma, file, vm_flags) && | 
|  | is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { | 
|  | pgoff_t vm_pglen; | 
|  | vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; | 
|  | if (vma->vm_pgoff + vm_pglen == vm_pgoff) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out | 
|  | * whether that can be merged with its predecessor or its successor. | 
|  | * Or both (it neatly fills a hole). | 
|  | * | 
|  | * In most cases - when called for mmap, brk or mremap - [addr,end) is | 
|  | * certain not to be mapped by the time vma_merge is called; but when | 
|  | * called for mprotect, it is certain to be already mapped (either at | 
|  | * an offset within prev, or at the start of next), and the flags of | 
|  | * this area are about to be changed to vm_flags - and the no-change | 
|  | * case has already been eliminated. | 
|  | * | 
|  | * The following mprotect cases have to be considered, where AAAA is | 
|  | * the area passed down from mprotect_fixup, never extending beyond one | 
|  | * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: | 
|  | * | 
|  | *     AAAA             AAAA                AAAA          AAAA | 
|  | *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX | 
|  | *    cannot merge    might become    might become    might become | 
|  | *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or | 
|  | *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or | 
|  | *    mremap move:                                    PPPPNNNNNNNN 8 | 
|  | *        AAAA | 
|  | *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN | 
|  | *    might become    case 1 below    case 2 below    case 3 below | 
|  | * | 
|  | * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: | 
|  | * mprotect_fixup updates vm_flags & vm_page_prot on successful return. | 
|  | */ | 
|  | struct vm_area_struct *vma_merge(struct mm_struct *mm, | 
|  | struct vm_area_struct *prev, unsigned long addr, | 
|  | unsigned long end, unsigned long vm_flags, | 
|  | struct anon_vma *anon_vma, struct file *file, | 
|  | pgoff_t pgoff, struct mempolicy *policy) | 
|  | { | 
|  | pgoff_t pglen = (end - addr) >> PAGE_SHIFT; | 
|  | struct vm_area_struct *area, *next; | 
|  |  | 
|  | /* | 
|  | * We later require that vma->vm_flags == vm_flags, | 
|  | * so this tests vma->vm_flags & VM_SPECIAL, too. | 
|  | */ | 
|  | if (vm_flags & VM_SPECIAL) | 
|  | return NULL; | 
|  |  | 
|  | if (prev) | 
|  | next = prev->vm_next; | 
|  | else | 
|  | next = mm->mmap; | 
|  | area = next; | 
|  | if (next && next->vm_end == end)		/* cases 6, 7, 8 */ | 
|  | next = next->vm_next; | 
|  |  | 
|  | /* | 
|  | * Can it merge with the predecessor? | 
|  | */ | 
|  | if (prev && prev->vm_end == addr && | 
|  | mpol_equal(vma_policy(prev), policy) && | 
|  | can_vma_merge_after(prev, vm_flags, | 
|  | anon_vma, file, pgoff)) { | 
|  | /* | 
|  | * OK, it can.  Can we now merge in the successor as well? | 
|  | */ | 
|  | if (next && end == next->vm_start && | 
|  | mpol_equal(policy, vma_policy(next)) && | 
|  | can_vma_merge_before(next, vm_flags, | 
|  | anon_vma, file, pgoff+pglen) && | 
|  | is_mergeable_anon_vma(prev->anon_vma, | 
|  | next->anon_vma)) { | 
|  | /* cases 1, 6 */ | 
|  | vma_adjust(prev, prev->vm_start, | 
|  | next->vm_end, prev->vm_pgoff, NULL); | 
|  | } else					/* cases 2, 5, 7 */ | 
|  | vma_adjust(prev, prev->vm_start, | 
|  | end, prev->vm_pgoff, NULL); | 
|  | return prev; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Can this new request be merged in front of next? | 
|  | */ | 
|  | if (next && end == next->vm_start && | 
|  | mpol_equal(policy, vma_policy(next)) && | 
|  | can_vma_merge_before(next, vm_flags, | 
|  | anon_vma, file, pgoff+pglen)) { | 
|  | if (prev && addr < prev->vm_end)	/* case 4 */ | 
|  | vma_adjust(prev, prev->vm_start, | 
|  | addr, prev->vm_pgoff, NULL); | 
|  | else					/* cases 3, 8 */ | 
|  | vma_adjust(area, addr, next->vm_end, | 
|  | next->vm_pgoff - pglen, NULL); | 
|  | return area; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_mergeable_anon_vma is used by anon_vma_prepare, to check | 
|  | * neighbouring vmas for a suitable anon_vma, before it goes off | 
|  | * to allocate a new anon_vma.  It checks because a repetitive | 
|  | * sequence of mprotects and faults may otherwise lead to distinct | 
|  | * anon_vmas being allocated, preventing vma merge in subsequent | 
|  | * mprotect. | 
|  | */ | 
|  | struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | struct vm_area_struct *near; | 
|  | unsigned long vm_flags; | 
|  |  | 
|  | near = vma->vm_next; | 
|  | if (!near) | 
|  | goto try_prev; | 
|  |  | 
|  | /* | 
|  | * Since only mprotect tries to remerge vmas, match flags | 
|  | * which might be mprotected into each other later on. | 
|  | * Neither mlock nor madvise tries to remerge at present, | 
|  | * so leave their flags as obstructing a merge. | 
|  | */ | 
|  | vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); | 
|  | vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); | 
|  |  | 
|  | if (near->anon_vma && vma->vm_end == near->vm_start && | 
|  | mpol_equal(vma_policy(vma), vma_policy(near)) && | 
|  | can_vma_merge_before(near, vm_flags, | 
|  | NULL, vma->vm_file, vma->vm_pgoff + | 
|  | ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT))) | 
|  | return near->anon_vma; | 
|  | try_prev: | 
|  | /* | 
|  | * It is potentially slow to have to call find_vma_prev here. | 
|  | * But it's only on the first write fault on the vma, not | 
|  | * every time, and we could devise a way to avoid it later | 
|  | * (e.g. stash info in next's anon_vma_node when assigning | 
|  | * an anon_vma, or when trying vma_merge).  Another time. | 
|  | */ | 
|  | BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); | 
|  | if (!near) | 
|  | goto none; | 
|  |  | 
|  | vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); | 
|  | vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); | 
|  |  | 
|  | if (near->anon_vma && near->vm_end == vma->vm_start && | 
|  | mpol_equal(vma_policy(near), vma_policy(vma)) && | 
|  | can_vma_merge_after(near, vm_flags, | 
|  | NULL, vma->vm_file, vma->vm_pgoff)) | 
|  | return near->anon_vma; | 
|  | none: | 
|  | /* | 
|  | * There's no absolute need to look only at touching neighbours: | 
|  | * we could search further afield for "compatible" anon_vmas. | 
|  | * But it would probably just be a waste of time searching, | 
|  | * or lead to too many vmas hanging off the same anon_vma. | 
|  | * We're trying to allow mprotect remerging later on, | 
|  | * not trying to minimize memory used for anon_vmas. | 
|  | */ | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | void vm_stat_account(struct mm_struct *mm, unsigned long flags, | 
|  | struct file *file, long pages) | 
|  | { | 
|  | const unsigned long stack_flags | 
|  | = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); | 
|  |  | 
|  | if (file) { | 
|  | mm->shared_vm += pages; | 
|  | if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) | 
|  | mm->exec_vm += pages; | 
|  | } else if (flags & stack_flags) | 
|  | mm->stack_vm += pages; | 
|  | if (flags & (VM_RESERVED|VM_IO)) | 
|  | mm->reserved_vm += pages; | 
|  | } | 
|  | #endif /* CONFIG_PROC_FS */ | 
|  |  | 
|  | /* | 
|  | * The caller must hold down_write(current->mm->mmap_sem). | 
|  | */ | 
|  |  | 
|  | unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long prot, | 
|  | unsigned long flags, unsigned long pgoff) | 
|  | { | 
|  | struct mm_struct * mm = current->mm; | 
|  | struct inode *inode; | 
|  | unsigned int vm_flags; | 
|  | int error; | 
|  | unsigned long reqprot = prot; | 
|  |  | 
|  | /* | 
|  | * Does the application expect PROT_READ to imply PROT_EXEC? | 
|  | * | 
|  | * (the exception is when the underlying filesystem is noexec | 
|  | *  mounted, in which case we dont add PROT_EXEC.) | 
|  | */ | 
|  | if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) | 
|  | if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) | 
|  | prot |= PROT_EXEC; | 
|  |  | 
|  | if (!len) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!(flags & MAP_FIXED)) | 
|  | addr = round_hint_to_min(addr); | 
|  |  | 
|  | error = arch_mmap_check(addr, len, flags); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* Careful about overflows.. */ | 
|  | len = PAGE_ALIGN(len); | 
|  | if (!len || len > TASK_SIZE) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* offset overflow? */ | 
|  | if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) | 
|  | return -EOVERFLOW; | 
|  |  | 
|  | /* Too many mappings? */ | 
|  | if (mm->map_count > sysctl_max_map_count) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Obtain the address to map to. we verify (or select) it and ensure | 
|  | * that it represents a valid section of the address space. | 
|  | */ | 
|  | addr = get_unmapped_area(file, addr, len, pgoff, flags); | 
|  | if (addr & ~PAGE_MASK) | 
|  | return addr; | 
|  |  | 
|  | /* Do simple checking here so the lower-level routines won't have | 
|  | * to. we assume access permissions have been handled by the open | 
|  | * of the memory object, so we don't do any here. | 
|  | */ | 
|  | vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | | 
|  | mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; | 
|  |  | 
|  | if (flags & MAP_LOCKED) { | 
|  | if (!can_do_mlock()) | 
|  | return -EPERM; | 
|  | vm_flags |= VM_LOCKED; | 
|  | } | 
|  |  | 
|  | /* mlock MCL_FUTURE? */ | 
|  | if (vm_flags & VM_LOCKED) { | 
|  | unsigned long locked, lock_limit; | 
|  | locked = len >> PAGE_SHIFT; | 
|  | locked += mm->locked_vm; | 
|  | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | 
|  | lock_limit >>= PAGE_SHIFT; | 
|  | if (locked > lock_limit && !capable(CAP_IPC_LOCK)) | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | inode = file ? file->f_path.dentry->d_inode : NULL; | 
|  |  | 
|  | if (file) { | 
|  | switch (flags & MAP_TYPE) { | 
|  | case MAP_SHARED: | 
|  | if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) | 
|  | return -EACCES; | 
|  |  | 
|  | /* | 
|  | * Make sure we don't allow writing to an append-only | 
|  | * file.. | 
|  | */ | 
|  | if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) | 
|  | return -EACCES; | 
|  |  | 
|  | /* | 
|  | * Make sure there are no mandatory locks on the file. | 
|  | */ | 
|  | if (locks_verify_locked(inode)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | vm_flags |= VM_SHARED | VM_MAYSHARE; | 
|  | if (!(file->f_mode & FMODE_WRITE)) | 
|  | vm_flags &= ~(VM_MAYWRITE | VM_SHARED); | 
|  |  | 
|  | /* fall through */ | 
|  | case MAP_PRIVATE: | 
|  | if (!(file->f_mode & FMODE_READ)) | 
|  | return -EACCES; | 
|  | if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { | 
|  | if (vm_flags & VM_EXEC) | 
|  | return -EPERM; | 
|  | vm_flags &= ~VM_MAYEXEC; | 
|  | } | 
|  |  | 
|  | if (!file->f_op || !file->f_op->mmap) | 
|  | return -ENODEV; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | switch (flags & MAP_TYPE) { | 
|  | case MAP_SHARED: | 
|  | /* | 
|  | * Ignore pgoff. | 
|  | */ | 
|  | pgoff = 0; | 
|  | vm_flags |= VM_SHARED | VM_MAYSHARE; | 
|  | break; | 
|  | case MAP_PRIVATE: | 
|  | /* | 
|  | * Set pgoff according to addr for anon_vma. | 
|  | */ | 
|  | pgoff = addr >> PAGE_SHIFT; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | error = security_file_mmap(file, reqprot, prot, flags, addr, 0); | 
|  | if (error) | 
|  | return error; | 
|  | error = ima_file_mmap(file, prot); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | return mmap_region(file, addr, len, flags, vm_flags, pgoff); | 
|  | } | 
|  | EXPORT_SYMBOL(do_mmap_pgoff); | 
|  |  | 
|  | /* | 
|  | * Some shared mappigns will want the pages marked read-only | 
|  | * to track write events. If so, we'll downgrade vm_page_prot | 
|  | * to the private version (using protection_map[] without the | 
|  | * VM_SHARED bit). | 
|  | */ | 
|  | int vma_wants_writenotify(struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned int vm_flags = vma->vm_flags; | 
|  |  | 
|  | /* If it was private or non-writable, the write bit is already clear */ | 
|  | if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) | 
|  | return 0; | 
|  |  | 
|  | /* The backer wishes to know when pages are first written to? */ | 
|  | if (vma->vm_ops && vma->vm_ops->page_mkwrite) | 
|  | return 1; | 
|  |  | 
|  | /* The open routine did something to the protections already? */ | 
|  | if (pgprot_val(vma->vm_page_prot) != | 
|  | pgprot_val(vm_get_page_prot(vm_flags))) | 
|  | return 0; | 
|  |  | 
|  | /* Specialty mapping? */ | 
|  | if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) | 
|  | return 0; | 
|  |  | 
|  | /* Can the mapping track the dirty pages? */ | 
|  | return vma->vm_file && vma->vm_file->f_mapping && | 
|  | mapping_cap_account_dirty(vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We account for memory if it's a private writeable mapping, | 
|  | * not hugepages and VM_NORESERVE wasn't set. | 
|  | */ | 
|  | static inline int accountable_mapping(struct file *file, unsigned int vm_flags) | 
|  | { | 
|  | /* | 
|  | * hugetlb has its own accounting separate from the core VM | 
|  | * VM_HUGETLB may not be set yet so we cannot check for that flag. | 
|  | */ | 
|  | if (file && is_file_hugepages(file)) | 
|  | return 0; | 
|  |  | 
|  | return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; | 
|  | } | 
|  |  | 
|  | unsigned long mmap_region(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long flags, | 
|  | unsigned int vm_flags, unsigned long pgoff) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma, *prev; | 
|  | int correct_wcount = 0; | 
|  | int error; | 
|  | struct rb_node **rb_link, *rb_parent; | 
|  | unsigned long charged = 0; | 
|  | struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL; | 
|  |  | 
|  | /* Clear old maps */ | 
|  | error = -ENOMEM; | 
|  | munmap_back: | 
|  | vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); | 
|  | if (vma && vma->vm_start < addr + len) { | 
|  | if (do_munmap(mm, addr, len)) | 
|  | return -ENOMEM; | 
|  | goto munmap_back; | 
|  | } | 
|  |  | 
|  | /* Check against address space limit. */ | 
|  | if (!may_expand_vm(mm, len >> PAGE_SHIFT)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Set 'VM_NORESERVE' if we should not account for the | 
|  | * memory use of this mapping. | 
|  | */ | 
|  | if ((flags & MAP_NORESERVE)) { | 
|  | /* We honor MAP_NORESERVE if allowed to overcommit */ | 
|  | if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) | 
|  | vm_flags |= VM_NORESERVE; | 
|  |  | 
|  | /* hugetlb applies strict overcommit unless MAP_NORESERVE */ | 
|  | if (file && is_file_hugepages(file)) | 
|  | vm_flags |= VM_NORESERVE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Private writable mapping: check memory availability | 
|  | */ | 
|  | if (accountable_mapping(file, vm_flags)) { | 
|  | charged = len >> PAGE_SHIFT; | 
|  | if (security_vm_enough_memory(charged)) | 
|  | return -ENOMEM; | 
|  | vm_flags |= VM_ACCOUNT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Can we just expand an old mapping? | 
|  | */ | 
|  | vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); | 
|  | if (vma) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Determine the object being mapped and call the appropriate | 
|  | * specific mapper. the address has already been validated, but | 
|  | * not unmapped, but the maps are removed from the list. | 
|  | */ | 
|  | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (!vma) { | 
|  | error = -ENOMEM; | 
|  | goto unacct_error; | 
|  | } | 
|  |  | 
|  | vma->vm_mm = mm; | 
|  | vma->vm_start = addr; | 
|  | vma->vm_end = addr + len; | 
|  | vma->vm_flags = vm_flags; | 
|  | vma->vm_page_prot = vm_get_page_prot(vm_flags); | 
|  | vma->vm_pgoff = pgoff; | 
|  |  | 
|  | if (file) { | 
|  | error = -EINVAL; | 
|  | if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) | 
|  | goto free_vma; | 
|  | if (vm_flags & VM_DENYWRITE) { | 
|  | error = deny_write_access(file); | 
|  | if (error) | 
|  | goto free_vma; | 
|  | correct_wcount = 1; | 
|  | } | 
|  | vma->vm_file = file; | 
|  | get_file(file); | 
|  | error = file->f_op->mmap(file, vma); | 
|  | if (error) | 
|  | goto unmap_and_free_vma; | 
|  | if (vm_flags & VM_EXECUTABLE) | 
|  | added_exe_file_vma(mm); | 
|  | } else if (vm_flags & VM_SHARED) { | 
|  | error = shmem_zero_setup(vma); | 
|  | if (error) | 
|  | goto free_vma; | 
|  | } | 
|  |  | 
|  | /* Can addr have changed?? | 
|  | * | 
|  | * Answer: Yes, several device drivers can do it in their | 
|  | *         f_op->mmap method. -DaveM | 
|  | */ | 
|  | addr = vma->vm_start; | 
|  | pgoff = vma->vm_pgoff; | 
|  | vm_flags = vma->vm_flags; | 
|  |  | 
|  | if (vma_wants_writenotify(vma)) | 
|  | vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); | 
|  |  | 
|  | vma_link(mm, vma, prev, rb_link, rb_parent); | 
|  | file = vma->vm_file; | 
|  |  | 
|  | /* Once vma denies write, undo our temporary denial count */ | 
|  | if (correct_wcount) | 
|  | atomic_inc(&inode->i_writecount); | 
|  | out: | 
|  | perf_counter_mmap(vma); | 
|  |  | 
|  | mm->total_vm += len >> PAGE_SHIFT; | 
|  | vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); | 
|  | if (vm_flags & VM_LOCKED) { | 
|  | /* | 
|  | * makes pages present; downgrades, drops, reacquires mmap_sem | 
|  | */ | 
|  | long nr_pages = mlock_vma_pages_range(vma, addr, addr + len); | 
|  | if (nr_pages < 0) | 
|  | return nr_pages;	/* vma gone! */ | 
|  | mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages; | 
|  | } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) | 
|  | make_pages_present(addr, addr + len); | 
|  | return addr; | 
|  |  | 
|  | unmap_and_free_vma: | 
|  | if (correct_wcount) | 
|  | atomic_inc(&inode->i_writecount); | 
|  | vma->vm_file = NULL; | 
|  | fput(file); | 
|  |  | 
|  | /* Undo any partial mapping done by a device driver. */ | 
|  | unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); | 
|  | charged = 0; | 
|  | free_vma: | 
|  | kmem_cache_free(vm_area_cachep, vma); | 
|  | unacct_error: | 
|  | if (charged) | 
|  | vm_unacct_memory(charged); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Get an address range which is currently unmapped. | 
|  | * For shmat() with addr=0. | 
|  | * | 
|  | * Ugly calling convention alert: | 
|  | * Return value with the low bits set means error value, | 
|  | * ie | 
|  | *	if (ret & ~PAGE_MASK) | 
|  | *		error = ret; | 
|  | * | 
|  | * This function "knows" that -ENOMEM has the bits set. | 
|  | */ | 
|  | #ifndef HAVE_ARCH_UNMAPPED_AREA | 
|  | unsigned long | 
|  | arch_get_unmapped_area(struct file *filp, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, unsigned long flags) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long start_addr; | 
|  |  | 
|  | if (len > TASK_SIZE) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (flags & MAP_FIXED) | 
|  | return addr; | 
|  |  | 
|  | if (addr) { | 
|  | addr = PAGE_ALIGN(addr); | 
|  | vma = find_vma(mm, addr); | 
|  | if (TASK_SIZE - len >= addr && | 
|  | (!vma || addr + len <= vma->vm_start)) | 
|  | return addr; | 
|  | } | 
|  | if (len > mm->cached_hole_size) { | 
|  | start_addr = addr = mm->free_area_cache; | 
|  | } else { | 
|  | start_addr = addr = TASK_UNMAPPED_BASE; | 
|  | mm->cached_hole_size = 0; | 
|  | } | 
|  |  | 
|  | full_search: | 
|  | for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { | 
|  | /* At this point:  (!vma || addr < vma->vm_end). */ | 
|  | if (TASK_SIZE - len < addr) { | 
|  | /* | 
|  | * Start a new search - just in case we missed | 
|  | * some holes. | 
|  | */ | 
|  | if (start_addr != TASK_UNMAPPED_BASE) { | 
|  | addr = TASK_UNMAPPED_BASE; | 
|  | start_addr = addr; | 
|  | mm->cached_hole_size = 0; | 
|  | goto full_search; | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (!vma || addr + len <= vma->vm_start) { | 
|  | /* | 
|  | * Remember the place where we stopped the search: | 
|  | */ | 
|  | mm->free_area_cache = addr + len; | 
|  | return addr; | 
|  | } | 
|  | if (addr + mm->cached_hole_size < vma->vm_start) | 
|  | mm->cached_hole_size = vma->vm_start - addr; | 
|  | addr = vma->vm_end; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void arch_unmap_area(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | /* | 
|  | * Is this a new hole at the lowest possible address? | 
|  | */ | 
|  | if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { | 
|  | mm->free_area_cache = addr; | 
|  | mm->cached_hole_size = ~0UL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This mmap-allocator allocates new areas top-down from below the | 
|  | * stack's low limit (the base): | 
|  | */ | 
|  | #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN | 
|  | unsigned long | 
|  | arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, | 
|  | const unsigned long len, const unsigned long pgoff, | 
|  | const unsigned long flags) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long addr = addr0; | 
|  |  | 
|  | /* requested length too big for entire address space */ | 
|  | if (len > TASK_SIZE) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (flags & MAP_FIXED) | 
|  | return addr; | 
|  |  | 
|  | /* requesting a specific address */ | 
|  | if (addr) { | 
|  | addr = PAGE_ALIGN(addr); | 
|  | vma = find_vma(mm, addr); | 
|  | if (TASK_SIZE - len >= addr && | 
|  | (!vma || addr + len <= vma->vm_start)) | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* check if free_area_cache is useful for us */ | 
|  | if (len <= mm->cached_hole_size) { | 
|  | mm->cached_hole_size = 0; | 
|  | mm->free_area_cache = mm->mmap_base; | 
|  | } | 
|  |  | 
|  | /* either no address requested or can't fit in requested address hole */ | 
|  | addr = mm->free_area_cache; | 
|  |  | 
|  | /* make sure it can fit in the remaining address space */ | 
|  | if (addr > len) { | 
|  | vma = find_vma(mm, addr-len); | 
|  | if (!vma || addr <= vma->vm_start) | 
|  | /* remember the address as a hint for next time */ | 
|  | return (mm->free_area_cache = addr-len); | 
|  | } | 
|  |  | 
|  | if (mm->mmap_base < len) | 
|  | goto bottomup; | 
|  |  | 
|  | addr = mm->mmap_base-len; | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * Lookup failure means no vma is above this address, | 
|  | * else if new region fits below vma->vm_start, | 
|  | * return with success: | 
|  | */ | 
|  | vma = find_vma(mm, addr); | 
|  | if (!vma || addr+len <= vma->vm_start) | 
|  | /* remember the address as a hint for next time */ | 
|  | return (mm->free_area_cache = addr); | 
|  |  | 
|  | /* remember the largest hole we saw so far */ | 
|  | if (addr + mm->cached_hole_size < vma->vm_start) | 
|  | mm->cached_hole_size = vma->vm_start - addr; | 
|  |  | 
|  | /* try just below the current vma->vm_start */ | 
|  | addr = vma->vm_start-len; | 
|  | } while (len < vma->vm_start); | 
|  |  | 
|  | bottomup: | 
|  | /* | 
|  | * A failed mmap() very likely causes application failure, | 
|  | * so fall back to the bottom-up function here. This scenario | 
|  | * can happen with large stack limits and large mmap() | 
|  | * allocations. | 
|  | */ | 
|  | mm->cached_hole_size = ~0UL; | 
|  | mm->free_area_cache = TASK_UNMAPPED_BASE; | 
|  | addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); | 
|  | /* | 
|  | * Restore the topdown base: | 
|  | */ | 
|  | mm->free_area_cache = mm->mmap_base; | 
|  | mm->cached_hole_size = ~0UL; | 
|  |  | 
|  | return addr; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | /* | 
|  | * Is this a new hole at the highest possible address? | 
|  | */ | 
|  | if (addr > mm->free_area_cache) | 
|  | mm->free_area_cache = addr; | 
|  |  | 
|  | /* dont allow allocations above current base */ | 
|  | if (mm->free_area_cache > mm->mmap_base) | 
|  | mm->free_area_cache = mm->mmap_base; | 
|  | } | 
|  |  | 
|  | unsigned long | 
|  | get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, | 
|  | unsigned long pgoff, unsigned long flags) | 
|  | { | 
|  | unsigned long (*get_area)(struct file *, unsigned long, | 
|  | unsigned long, unsigned long, unsigned long); | 
|  |  | 
|  | get_area = current->mm->get_unmapped_area; | 
|  | if (file && file->f_op && file->f_op->get_unmapped_area) | 
|  | get_area = file->f_op->get_unmapped_area; | 
|  | addr = get_area(file, addr, len, pgoff, flags); | 
|  | if (IS_ERR_VALUE(addr)) | 
|  | return addr; | 
|  |  | 
|  | if (addr > TASK_SIZE - len) | 
|  | return -ENOMEM; | 
|  | if (addr & ~PAGE_MASK) | 
|  | return -EINVAL; | 
|  |  | 
|  | return arch_rebalance_pgtables(addr, len); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(get_unmapped_area); | 
|  |  | 
|  | /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */ | 
|  | struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | struct vm_area_struct *vma = NULL; | 
|  |  | 
|  | if (mm) { | 
|  | /* Check the cache first. */ | 
|  | /* (Cache hit rate is typically around 35%.) */ | 
|  | vma = mm->mmap_cache; | 
|  | if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { | 
|  | struct rb_node * rb_node; | 
|  |  | 
|  | rb_node = mm->mm_rb.rb_node; | 
|  | vma = NULL; | 
|  |  | 
|  | while (rb_node) { | 
|  | struct vm_area_struct * vma_tmp; | 
|  |  | 
|  | vma_tmp = rb_entry(rb_node, | 
|  | struct vm_area_struct, vm_rb); | 
|  |  | 
|  | if (vma_tmp->vm_end > addr) { | 
|  | vma = vma_tmp; | 
|  | if (vma_tmp->vm_start <= addr) | 
|  | break; | 
|  | rb_node = rb_node->rb_left; | 
|  | } else | 
|  | rb_node = rb_node->rb_right; | 
|  | } | 
|  | if (vma) | 
|  | mm->mmap_cache = vma; | 
|  | } | 
|  | } | 
|  | return vma; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(find_vma); | 
|  |  | 
|  | /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ | 
|  | struct vm_area_struct * | 
|  | find_vma_prev(struct mm_struct *mm, unsigned long addr, | 
|  | struct vm_area_struct **pprev) | 
|  | { | 
|  | struct vm_area_struct *vma = NULL, *prev = NULL; | 
|  | struct rb_node *rb_node; | 
|  | if (!mm) | 
|  | goto out; | 
|  |  | 
|  | /* Guard against addr being lower than the first VMA */ | 
|  | vma = mm->mmap; | 
|  |  | 
|  | /* Go through the RB tree quickly. */ | 
|  | rb_node = mm->mm_rb.rb_node; | 
|  |  | 
|  | while (rb_node) { | 
|  | struct vm_area_struct *vma_tmp; | 
|  | vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); | 
|  |  | 
|  | if (addr < vma_tmp->vm_end) { | 
|  | rb_node = rb_node->rb_left; | 
|  | } else { | 
|  | prev = vma_tmp; | 
|  | if (!prev->vm_next || (addr < prev->vm_next->vm_end)) | 
|  | break; | 
|  | rb_node = rb_node->rb_right; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | *pprev = prev; | 
|  | return prev ? prev->vm_next : vma; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify that the stack growth is acceptable and | 
|  | * update accounting. This is shared with both the | 
|  | * grow-up and grow-down cases. | 
|  | */ | 
|  | static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct rlimit *rlim = current->signal->rlim; | 
|  | unsigned long new_start; | 
|  |  | 
|  | /* address space limit tests */ | 
|  | if (!may_expand_vm(mm, grow)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Stack limit test */ | 
|  | if (size > rlim[RLIMIT_STACK].rlim_cur) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* mlock limit tests */ | 
|  | if (vma->vm_flags & VM_LOCKED) { | 
|  | unsigned long locked; | 
|  | unsigned long limit; | 
|  | locked = mm->locked_vm + grow; | 
|  | limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; | 
|  | if (locked > limit && !capable(CAP_IPC_LOCK)) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Check to ensure the stack will not grow into a hugetlb-only region */ | 
|  | new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : | 
|  | vma->vm_end - size; | 
|  | if (is_hugepage_only_range(vma->vm_mm, new_start, size)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * Overcommit..  This must be the final test, as it will | 
|  | * update security statistics. | 
|  | */ | 
|  | if (security_vm_enough_memory_mm(mm, grow)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Ok, everything looks good - let it rip */ | 
|  | mm->total_vm += grow; | 
|  | if (vma->vm_flags & VM_LOCKED) | 
|  | mm->locked_vm += grow; | 
|  | vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) | 
|  | /* | 
|  | * PA-RISC uses this for its stack; IA64 for its Register Backing Store. | 
|  | * vma is the last one with address > vma->vm_end.  Have to extend vma. | 
|  | */ | 
|  | #ifndef CONFIG_IA64 | 
|  | static | 
|  | #endif | 
|  | int expand_upwards(struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | if (!(vma->vm_flags & VM_GROWSUP)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * We must make sure the anon_vma is allocated | 
|  | * so that the anon_vma locking is not a noop. | 
|  | */ | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | return -ENOMEM; | 
|  | anon_vma_lock(vma); | 
|  |  | 
|  | /* | 
|  | * vma->vm_start/vm_end cannot change under us because the caller | 
|  | * is required to hold the mmap_sem in read mode.  We need the | 
|  | * anon_vma lock to serialize against concurrent expand_stacks. | 
|  | * Also guard against wrapping around to address 0. | 
|  | */ | 
|  | if (address < PAGE_ALIGN(address+4)) | 
|  | address = PAGE_ALIGN(address+4); | 
|  | else { | 
|  | anon_vma_unlock(vma); | 
|  | return -ENOMEM; | 
|  | } | 
|  | error = 0; | 
|  |  | 
|  | /* Somebody else might have raced and expanded it already */ | 
|  | if (address > vma->vm_end) { | 
|  | unsigned long size, grow; | 
|  |  | 
|  | size = address - vma->vm_start; | 
|  | grow = (address - vma->vm_end) >> PAGE_SHIFT; | 
|  |  | 
|  | error = acct_stack_growth(vma, size, grow); | 
|  | if (!error) | 
|  | vma->vm_end = address; | 
|  | } | 
|  | anon_vma_unlock(vma); | 
|  | return error; | 
|  | } | 
|  | #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ | 
|  |  | 
|  | /* | 
|  | * vma is the first one with address < vma->vm_start.  Have to extend vma. | 
|  | */ | 
|  | static int expand_downwards(struct vm_area_struct *vma, | 
|  | unsigned long address) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | /* | 
|  | * We must make sure the anon_vma is allocated | 
|  | * so that the anon_vma locking is not a noop. | 
|  | */ | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | return -ENOMEM; | 
|  |  | 
|  | address &= PAGE_MASK; | 
|  | error = security_file_mmap(NULL, 0, 0, 0, address, 1); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | anon_vma_lock(vma); | 
|  |  | 
|  | /* | 
|  | * vma->vm_start/vm_end cannot change under us because the caller | 
|  | * is required to hold the mmap_sem in read mode.  We need the | 
|  | * anon_vma lock to serialize against concurrent expand_stacks. | 
|  | */ | 
|  |  | 
|  | /* Somebody else might have raced and expanded it already */ | 
|  | if (address < vma->vm_start) { | 
|  | unsigned long size, grow; | 
|  |  | 
|  | size = vma->vm_end - address; | 
|  | grow = (vma->vm_start - address) >> PAGE_SHIFT; | 
|  |  | 
|  | error = acct_stack_growth(vma, size, grow); | 
|  | if (!error) { | 
|  | vma->vm_start = address; | 
|  | vma->vm_pgoff -= grow; | 
|  | } | 
|  | } | 
|  | anon_vma_unlock(vma); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | return expand_downwards(vma, address); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | int expand_stack(struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | return expand_upwards(vma, address); | 
|  | } | 
|  |  | 
|  | struct vm_area_struct * | 
|  | find_extend_vma(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | struct vm_area_struct *vma, *prev; | 
|  |  | 
|  | addr &= PAGE_MASK; | 
|  | vma = find_vma_prev(mm, addr, &prev); | 
|  | if (vma && (vma->vm_start <= addr)) | 
|  | return vma; | 
|  | if (!prev || expand_stack(prev, addr)) | 
|  | return NULL; | 
|  | if (prev->vm_flags & VM_LOCKED) { | 
|  | if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0) | 
|  | return NULL;	/* vma gone! */ | 
|  | } | 
|  | return prev; | 
|  | } | 
|  | #else | 
|  | int expand_stack(struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | return expand_downwards(vma, address); | 
|  | } | 
|  |  | 
|  | struct vm_area_struct * | 
|  | find_extend_vma(struct mm_struct * mm, unsigned long addr) | 
|  | { | 
|  | struct vm_area_struct * vma; | 
|  | unsigned long start; | 
|  |  | 
|  | addr &= PAGE_MASK; | 
|  | vma = find_vma(mm,addr); | 
|  | if (!vma) | 
|  | return NULL; | 
|  | if (vma->vm_start <= addr) | 
|  | return vma; | 
|  | if (!(vma->vm_flags & VM_GROWSDOWN)) | 
|  | return NULL; | 
|  | start = vma->vm_start; | 
|  | if (expand_stack(vma, addr)) | 
|  | return NULL; | 
|  | if (vma->vm_flags & VM_LOCKED) { | 
|  | if (mlock_vma_pages_range(vma, addr, start) < 0) | 
|  | return NULL;	/* vma gone! */ | 
|  | } | 
|  | return vma; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Ok - we have the memory areas we should free on the vma list, | 
|  | * so release them, and do the vma updates. | 
|  | * | 
|  | * Called with the mm semaphore held. | 
|  | */ | 
|  | static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) | 
|  | { | 
|  | /* Update high watermark before we lower total_vm */ | 
|  | update_hiwater_vm(mm); | 
|  | do { | 
|  | long nrpages = vma_pages(vma); | 
|  |  | 
|  | mm->total_vm -= nrpages; | 
|  | vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); | 
|  | vma = remove_vma(vma); | 
|  | } while (vma); | 
|  | validate_mm(mm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get rid of page table information in the indicated region. | 
|  | * | 
|  | * Called with the mm semaphore held. | 
|  | */ | 
|  | static void unmap_region(struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, struct vm_area_struct *prev, | 
|  | unsigned long start, unsigned long end) | 
|  | { | 
|  | struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; | 
|  | struct mmu_gather *tlb; | 
|  | unsigned long nr_accounted = 0; | 
|  |  | 
|  | lru_add_drain(); | 
|  | tlb = tlb_gather_mmu(mm, 0); | 
|  | update_hiwater_rss(mm); | 
|  | unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); | 
|  | vm_unacct_memory(nr_accounted); | 
|  | free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, | 
|  | next? next->vm_start: 0); | 
|  | tlb_finish_mmu(tlb, start, end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a list of vma's touched by the unmap, removing them from the mm's | 
|  | * vma list as we go.. | 
|  | */ | 
|  | static void | 
|  | detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct vm_area_struct *prev, unsigned long end) | 
|  | { | 
|  | struct vm_area_struct **insertion_point; | 
|  | struct vm_area_struct *tail_vma = NULL; | 
|  | unsigned long addr; | 
|  |  | 
|  | insertion_point = (prev ? &prev->vm_next : &mm->mmap); | 
|  | do { | 
|  | rb_erase(&vma->vm_rb, &mm->mm_rb); | 
|  | mm->map_count--; | 
|  | tail_vma = vma; | 
|  | vma = vma->vm_next; | 
|  | } while (vma && vma->vm_start < end); | 
|  | *insertion_point = vma; | 
|  | tail_vma->vm_next = NULL; | 
|  | if (mm->unmap_area == arch_unmap_area) | 
|  | addr = prev ? prev->vm_end : mm->mmap_base; | 
|  | else | 
|  | addr = vma ?  vma->vm_start : mm->mmap_base; | 
|  | mm->unmap_area(mm, addr); | 
|  | mm->mmap_cache = NULL;		/* Kill the cache. */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Split a vma into two pieces at address 'addr', a new vma is allocated | 
|  | * either for the first part or the tail. | 
|  | */ | 
|  | int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, | 
|  | unsigned long addr, int new_below) | 
|  | { | 
|  | struct mempolicy *pol; | 
|  | struct vm_area_struct *new; | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma) && (addr & | 
|  | ~(huge_page_mask(hstate_vma(vma))))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (mm->map_count >= sysctl_max_map_count) | 
|  | return -ENOMEM; | 
|  |  | 
|  | new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* most fields are the same, copy all, and then fixup */ | 
|  | *new = *vma; | 
|  |  | 
|  | if (new_below) | 
|  | new->vm_end = addr; | 
|  | else { | 
|  | new->vm_start = addr; | 
|  | new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | pol = mpol_dup(vma_policy(vma)); | 
|  | if (IS_ERR(pol)) { | 
|  | kmem_cache_free(vm_area_cachep, new); | 
|  | return PTR_ERR(pol); | 
|  | } | 
|  | vma_set_policy(new, pol); | 
|  |  | 
|  | if (new->vm_file) { | 
|  | get_file(new->vm_file); | 
|  | if (vma->vm_flags & VM_EXECUTABLE) | 
|  | added_exe_file_vma(mm); | 
|  | } | 
|  |  | 
|  | if (new->vm_ops && new->vm_ops->open) | 
|  | new->vm_ops->open(new); | 
|  |  | 
|  | if (new_below) | 
|  | vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + | 
|  | ((addr - new->vm_start) >> PAGE_SHIFT), new); | 
|  | else | 
|  | vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Munmap is split into 2 main parts -- this part which finds | 
|  | * what needs doing, and the areas themselves, which do the | 
|  | * work.  This now handles partial unmappings. | 
|  | * Jeremy Fitzhardinge <jeremy@goop.org> | 
|  | */ | 
|  | int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) | 
|  | { | 
|  | unsigned long end; | 
|  | struct vm_area_struct *vma, *prev, *last; | 
|  |  | 
|  | if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ((len = PAGE_ALIGN(len)) == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Find the first overlapping VMA */ | 
|  | vma = find_vma_prev(mm, start, &prev); | 
|  | if (!vma) | 
|  | return 0; | 
|  | /* we have  start < vma->vm_end  */ | 
|  |  | 
|  | /* if it doesn't overlap, we have nothing.. */ | 
|  | end = start + len; | 
|  | if (vma->vm_start >= end) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If we need to split any vma, do it now to save pain later. | 
|  | * | 
|  | * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially | 
|  | * unmapped vm_area_struct will remain in use: so lower split_vma | 
|  | * places tmp vma above, and higher split_vma places tmp vma below. | 
|  | */ | 
|  | if (start > vma->vm_start) { | 
|  | int error = split_vma(mm, vma, start, 0); | 
|  | if (error) | 
|  | return error; | 
|  | prev = vma; | 
|  | } | 
|  |  | 
|  | /* Does it split the last one? */ | 
|  | last = find_vma(mm, end); | 
|  | if (last && end > last->vm_start) { | 
|  | int error = split_vma(mm, last, end, 1); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  | vma = prev? prev->vm_next: mm->mmap; | 
|  |  | 
|  | /* | 
|  | * unlock any mlock()ed ranges before detaching vmas | 
|  | */ | 
|  | if (mm->locked_vm) { | 
|  | struct vm_area_struct *tmp = vma; | 
|  | while (tmp && tmp->vm_start < end) { | 
|  | if (tmp->vm_flags & VM_LOCKED) { | 
|  | mm->locked_vm -= vma_pages(tmp); | 
|  | munlock_vma_pages_all(tmp); | 
|  | } | 
|  | tmp = tmp->vm_next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove the vma's, and unmap the actual pages | 
|  | */ | 
|  | detach_vmas_to_be_unmapped(mm, vma, prev, end); | 
|  | unmap_region(mm, vma, prev, start, end); | 
|  |  | 
|  | /* Fix up all other VM information */ | 
|  | remove_vma_list(mm, vma); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(do_munmap); | 
|  |  | 
|  | SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) | 
|  | { | 
|  | int ret; | 
|  | struct mm_struct *mm = current->mm; | 
|  |  | 
|  | profile_munmap(addr); | 
|  |  | 
|  | down_write(&mm->mmap_sem); | 
|  | ret = do_munmap(mm, addr, len); | 
|  | up_write(&mm->mmap_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void verify_mm_writelocked(struct mm_struct *mm) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | if (unlikely(down_read_trylock(&mm->mmap_sem))) { | 
|  | WARN_ON(1); | 
|  | up_read(&mm->mmap_sem); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  this is really a simplified "do_mmap".  it only handles | 
|  | *  anonymous maps.  eventually we may be able to do some | 
|  | *  brk-specific accounting here. | 
|  | */ | 
|  | unsigned long do_brk(unsigned long addr, unsigned long len) | 
|  | { | 
|  | struct mm_struct * mm = current->mm; | 
|  | struct vm_area_struct * vma, * prev; | 
|  | unsigned long flags; | 
|  | struct rb_node ** rb_link, * rb_parent; | 
|  | pgoff_t pgoff = addr >> PAGE_SHIFT; | 
|  | int error; | 
|  |  | 
|  | len = PAGE_ALIGN(len); | 
|  | if (!len) | 
|  | return addr; | 
|  |  | 
|  | if ((addr + len) > TASK_SIZE || (addr + len) < addr) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (is_hugepage_only_range(mm, addr, len)) | 
|  | return -EINVAL; | 
|  |  | 
|  | error = security_file_mmap(NULL, 0, 0, 0, addr, 1); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; | 
|  |  | 
|  | error = arch_mmap_check(addr, len, flags); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * mlock MCL_FUTURE? | 
|  | */ | 
|  | if (mm->def_flags & VM_LOCKED) { | 
|  | unsigned long locked, lock_limit; | 
|  | locked = len >> PAGE_SHIFT; | 
|  | locked += mm->locked_vm; | 
|  | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | 
|  | lock_limit >>= PAGE_SHIFT; | 
|  | if (locked > lock_limit && !capable(CAP_IPC_LOCK)) | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mm->mmap_sem is required to protect against another thread | 
|  | * changing the mappings in case we sleep. | 
|  | */ | 
|  | verify_mm_writelocked(mm); | 
|  |  | 
|  | /* | 
|  | * Clear old maps.  this also does some error checking for us | 
|  | */ | 
|  | munmap_back: | 
|  | vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); | 
|  | if (vma && vma->vm_start < addr + len) { | 
|  | if (do_munmap(mm, addr, len)) | 
|  | return -ENOMEM; | 
|  | goto munmap_back; | 
|  | } | 
|  |  | 
|  | /* Check against address space limits *after* clearing old maps... */ | 
|  | if (!may_expand_vm(mm, len >> PAGE_SHIFT)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (mm->map_count > sysctl_max_map_count) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (security_vm_enough_memory(len >> PAGE_SHIFT)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Can we just expand an old private anonymous mapping? */ | 
|  | vma = vma_merge(mm, prev, addr, addr + len, flags, | 
|  | NULL, NULL, pgoff, NULL); | 
|  | if (vma) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * create a vma struct for an anonymous mapping | 
|  | */ | 
|  | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (!vma) { | 
|  | vm_unacct_memory(len >> PAGE_SHIFT); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | vma->vm_mm = mm; | 
|  | vma->vm_start = addr; | 
|  | vma->vm_end = addr + len; | 
|  | vma->vm_pgoff = pgoff; | 
|  | vma->vm_flags = flags; | 
|  | vma->vm_page_prot = vm_get_page_prot(flags); | 
|  | vma_link(mm, vma, prev, rb_link, rb_parent); | 
|  | out: | 
|  | mm->total_vm += len >> PAGE_SHIFT; | 
|  | if (flags & VM_LOCKED) { | 
|  | if (!mlock_vma_pages_range(vma, addr, addr + len)) | 
|  | mm->locked_vm += (len >> PAGE_SHIFT); | 
|  | } | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(do_brk); | 
|  |  | 
|  | /* Release all mmaps. */ | 
|  | void exit_mmap(struct mm_struct *mm) | 
|  | { | 
|  | struct mmu_gather *tlb; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long nr_accounted = 0; | 
|  | unsigned long end; | 
|  |  | 
|  | /* mm's last user has gone, and its about to be pulled down */ | 
|  | mmu_notifier_release(mm); | 
|  |  | 
|  | if (mm->locked_vm) { | 
|  | vma = mm->mmap; | 
|  | while (vma) { | 
|  | if (vma->vm_flags & VM_LOCKED) | 
|  | munlock_vma_pages_all(vma); | 
|  | vma = vma->vm_next; | 
|  | } | 
|  | } | 
|  |  | 
|  | arch_exit_mmap(mm); | 
|  |  | 
|  | vma = mm->mmap; | 
|  | if (!vma)	/* Can happen if dup_mmap() received an OOM */ | 
|  | return; | 
|  |  | 
|  | lru_add_drain(); | 
|  | flush_cache_mm(mm); | 
|  | tlb = tlb_gather_mmu(mm, 1); | 
|  | /* update_hiwater_rss(mm) here? but nobody should be looking */ | 
|  | /* Use -1 here to ensure all VMAs in the mm are unmapped */ | 
|  | end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); | 
|  | vm_unacct_memory(nr_accounted); | 
|  | free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0); | 
|  | tlb_finish_mmu(tlb, 0, end); | 
|  |  | 
|  | /* | 
|  | * Walk the list again, actually closing and freeing it, | 
|  | * with preemption enabled, without holding any MM locks. | 
|  | */ | 
|  | while (vma) | 
|  | vma = remove_vma(vma); | 
|  |  | 
|  | BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); | 
|  | } | 
|  |  | 
|  | /* Insert vm structure into process list sorted by address | 
|  | * and into the inode's i_mmap tree.  If vm_file is non-NULL | 
|  | * then i_mmap_lock is taken here. | 
|  | */ | 
|  | int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) | 
|  | { | 
|  | struct vm_area_struct * __vma, * prev; | 
|  | struct rb_node ** rb_link, * rb_parent; | 
|  |  | 
|  | /* | 
|  | * The vm_pgoff of a purely anonymous vma should be irrelevant | 
|  | * until its first write fault, when page's anon_vma and index | 
|  | * are set.  But now set the vm_pgoff it will almost certainly | 
|  | * end up with (unless mremap moves it elsewhere before that | 
|  | * first wfault), so /proc/pid/maps tells a consistent story. | 
|  | * | 
|  | * By setting it to reflect the virtual start address of the | 
|  | * vma, merges and splits can happen in a seamless way, just | 
|  | * using the existing file pgoff checks and manipulations. | 
|  | * Similarly in do_mmap_pgoff and in do_brk. | 
|  | */ | 
|  | if (!vma->vm_file) { | 
|  | BUG_ON(vma->anon_vma); | 
|  | vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; | 
|  | } | 
|  | __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); | 
|  | if (__vma && __vma->vm_start < vma->vm_end) | 
|  | return -ENOMEM; | 
|  | if ((vma->vm_flags & VM_ACCOUNT) && | 
|  | security_vm_enough_memory_mm(mm, vma_pages(vma))) | 
|  | return -ENOMEM; | 
|  | vma_link(mm, vma, prev, rb_link, rb_parent); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the vma structure to a new location in the same mm, | 
|  | * prior to moving page table entries, to effect an mremap move. | 
|  | */ | 
|  | struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, | 
|  | unsigned long addr, unsigned long len, pgoff_t pgoff) | 
|  | { | 
|  | struct vm_area_struct *vma = *vmap; | 
|  | unsigned long vma_start = vma->vm_start; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct vm_area_struct *new_vma, *prev; | 
|  | struct rb_node **rb_link, *rb_parent; | 
|  | struct mempolicy *pol; | 
|  |  | 
|  | /* | 
|  | * If anonymous vma has not yet been faulted, update new pgoff | 
|  | * to match new location, to increase its chance of merging. | 
|  | */ | 
|  | if (!vma->vm_file && !vma->anon_vma) | 
|  | pgoff = addr >> PAGE_SHIFT; | 
|  |  | 
|  | find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); | 
|  | new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, | 
|  | vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); | 
|  | if (new_vma) { | 
|  | /* | 
|  | * Source vma may have been merged into new_vma | 
|  | */ | 
|  | if (vma_start >= new_vma->vm_start && | 
|  | vma_start < new_vma->vm_end) | 
|  | *vmap = new_vma; | 
|  | } else { | 
|  | new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (new_vma) { | 
|  | *new_vma = *vma; | 
|  | pol = mpol_dup(vma_policy(vma)); | 
|  | if (IS_ERR(pol)) { | 
|  | kmem_cache_free(vm_area_cachep, new_vma); | 
|  | return NULL; | 
|  | } | 
|  | vma_set_policy(new_vma, pol); | 
|  | new_vma->vm_start = addr; | 
|  | new_vma->vm_end = addr + len; | 
|  | new_vma->vm_pgoff = pgoff; | 
|  | if (new_vma->vm_file) { | 
|  | get_file(new_vma->vm_file); | 
|  | if (vma->vm_flags & VM_EXECUTABLE) | 
|  | added_exe_file_vma(mm); | 
|  | } | 
|  | if (new_vma->vm_ops && new_vma->vm_ops->open) | 
|  | new_vma->vm_ops->open(new_vma); | 
|  | vma_link(mm, new_vma, prev, rb_link, rb_parent); | 
|  | } | 
|  | } | 
|  | return new_vma; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if the calling process may expand its vm space by the passed | 
|  | * number of pages | 
|  | */ | 
|  | int may_expand_vm(struct mm_struct *mm, unsigned long npages) | 
|  | { | 
|  | unsigned long cur = mm->total_vm;	/* pages */ | 
|  | unsigned long lim; | 
|  |  | 
|  | lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; | 
|  |  | 
|  | if (cur + npages > lim) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int special_mapping_fault(struct vm_area_struct *vma, | 
|  | struct vm_fault *vmf) | 
|  | { | 
|  | pgoff_t pgoff; | 
|  | struct page **pages; | 
|  |  | 
|  | /* | 
|  | * special mappings have no vm_file, and in that case, the mm | 
|  | * uses vm_pgoff internally. So we have to subtract it from here. | 
|  | * We are allowed to do this because we are the mm; do not copy | 
|  | * this code into drivers! | 
|  | */ | 
|  | pgoff = vmf->pgoff - vma->vm_pgoff; | 
|  |  | 
|  | for (pages = vma->vm_private_data; pgoff && *pages; ++pages) | 
|  | pgoff--; | 
|  |  | 
|  | if (*pages) { | 
|  | struct page *page = *pages; | 
|  | get_page(page); | 
|  | vmf->page = page; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Having a close hook prevents vma merging regardless of flags. | 
|  | */ | 
|  | static void special_mapping_close(struct vm_area_struct *vma) | 
|  | { | 
|  | } | 
|  |  | 
|  | static struct vm_operations_struct special_mapping_vmops = { | 
|  | .close = special_mapping_close, | 
|  | .fault = special_mapping_fault, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Called with mm->mmap_sem held for writing. | 
|  | * Insert a new vma covering the given region, with the given flags. | 
|  | * Its pages are supplied by the given array of struct page *. | 
|  | * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. | 
|  | * The region past the last page supplied will always produce SIGBUS. | 
|  | * The array pointer and the pages it points to are assumed to stay alive | 
|  | * for as long as this mapping might exist. | 
|  | */ | 
|  | int install_special_mapping(struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long len, | 
|  | unsigned long vm_flags, struct page **pages) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (unlikely(vma == NULL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vma->vm_mm = mm; | 
|  | vma->vm_start = addr; | 
|  | vma->vm_end = addr + len; | 
|  |  | 
|  | vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; | 
|  | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); | 
|  |  | 
|  | vma->vm_ops = &special_mapping_vmops; | 
|  | vma->vm_private_data = pages; | 
|  |  | 
|  | if (unlikely(insert_vm_struct(mm, vma))) { | 
|  | kmem_cache_free(vm_area_cachep, vma); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | mm->total_vm += len >> PAGE_SHIFT; | 
|  |  | 
|  | perf_counter_mmap(vma); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(mm_all_locks_mutex); | 
|  |  | 
|  | static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) | 
|  | { | 
|  | if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) { | 
|  | /* | 
|  | * The LSB of head.next can't change from under us | 
|  | * because we hold the mm_all_locks_mutex. | 
|  | */ | 
|  | spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem); | 
|  | /* | 
|  | * We can safely modify head.next after taking the | 
|  | * anon_vma->lock. If some other vma in this mm shares | 
|  | * the same anon_vma we won't take it again. | 
|  | * | 
|  | * No need of atomic instructions here, head.next | 
|  | * can't change from under us thanks to the | 
|  | * anon_vma->lock. | 
|  | */ | 
|  | if (__test_and_set_bit(0, (unsigned long *) | 
|  | &anon_vma->head.next)) | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) | 
|  | { | 
|  | if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { | 
|  | /* | 
|  | * AS_MM_ALL_LOCKS can't change from under us because | 
|  | * we hold the mm_all_locks_mutex. | 
|  | * | 
|  | * Operations on ->flags have to be atomic because | 
|  | * even if AS_MM_ALL_LOCKS is stable thanks to the | 
|  | * mm_all_locks_mutex, there may be other cpus | 
|  | * changing other bitflags in parallel to us. | 
|  | */ | 
|  | if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) | 
|  | BUG(); | 
|  | spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This operation locks against the VM for all pte/vma/mm related | 
|  | * operations that could ever happen on a certain mm. This includes | 
|  | * vmtruncate, try_to_unmap, and all page faults. | 
|  | * | 
|  | * The caller must take the mmap_sem in write mode before calling | 
|  | * mm_take_all_locks(). The caller isn't allowed to release the | 
|  | * mmap_sem until mm_drop_all_locks() returns. | 
|  | * | 
|  | * mmap_sem in write mode is required in order to block all operations | 
|  | * that could modify pagetables and free pages without need of | 
|  | * altering the vma layout (for example populate_range() with | 
|  | * nonlinear vmas). It's also needed in write mode to avoid new | 
|  | * anon_vmas to be associated with existing vmas. | 
|  | * | 
|  | * A single task can't take more than one mm_take_all_locks() in a row | 
|  | * or it would deadlock. | 
|  | * | 
|  | * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in | 
|  | * mapping->flags avoid to take the same lock twice, if more than one | 
|  | * vma in this mm is backed by the same anon_vma or address_space. | 
|  | * | 
|  | * We can take all the locks in random order because the VM code | 
|  | * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never | 
|  | * takes more than one of them in a row. Secondly we're protected | 
|  | * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. | 
|  | * | 
|  | * mm_take_all_locks() and mm_drop_all_locks are expensive operations | 
|  | * that may have to take thousand of locks. | 
|  | * | 
|  | * mm_take_all_locks() can fail if it's interrupted by signals. | 
|  | */ | 
|  | int mm_take_all_locks(struct mm_struct *mm) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | int ret = -EINTR; | 
|  |  | 
|  | BUG_ON(down_read_trylock(&mm->mmap_sem)); | 
|  |  | 
|  | mutex_lock(&mm_all_locks_mutex); | 
|  |  | 
|  | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
|  | if (signal_pending(current)) | 
|  | goto out_unlock; | 
|  | if (vma->vm_file && vma->vm_file->f_mapping) | 
|  | vm_lock_mapping(mm, vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
|  | if (signal_pending(current)) | 
|  | goto out_unlock; | 
|  | if (vma->anon_vma) | 
|  | vm_lock_anon_vma(mm, vma->anon_vma); | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | out_unlock: | 
|  | if (ret) | 
|  | mm_drop_all_locks(mm); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void vm_unlock_anon_vma(struct anon_vma *anon_vma) | 
|  | { | 
|  | if (test_bit(0, (unsigned long *) &anon_vma->head.next)) { | 
|  | /* | 
|  | * The LSB of head.next can't change to 0 from under | 
|  | * us because we hold the mm_all_locks_mutex. | 
|  | * | 
|  | * We must however clear the bitflag before unlocking | 
|  | * the vma so the users using the anon_vma->head will | 
|  | * never see our bitflag. | 
|  | * | 
|  | * No need of atomic instructions here, head.next | 
|  | * can't change from under us until we release the | 
|  | * anon_vma->lock. | 
|  | */ | 
|  | if (!__test_and_clear_bit(0, (unsigned long *) | 
|  | &anon_vma->head.next)) | 
|  | BUG(); | 
|  | spin_unlock(&anon_vma->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vm_unlock_mapping(struct address_space *mapping) | 
|  | { | 
|  | if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { | 
|  | /* | 
|  | * AS_MM_ALL_LOCKS can't change to 0 from under us | 
|  | * because we hold the mm_all_locks_mutex. | 
|  | */ | 
|  | spin_unlock(&mapping->i_mmap_lock); | 
|  | if (!test_and_clear_bit(AS_MM_ALL_LOCKS, | 
|  | &mapping->flags)) | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The mmap_sem cannot be released by the caller until | 
|  | * mm_drop_all_locks() returns. | 
|  | */ | 
|  | void mm_drop_all_locks(struct mm_struct *mm) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | BUG_ON(down_read_trylock(&mm->mmap_sem)); | 
|  | BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); | 
|  |  | 
|  | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
|  | if (vma->anon_vma) | 
|  | vm_unlock_anon_vma(vma->anon_vma); | 
|  | if (vma->vm_file && vma->vm_file->f_mapping) | 
|  | vm_unlock_mapping(vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&mm_all_locks_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * initialise the VMA slab | 
|  | */ | 
|  | void __init mmap_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = percpu_counter_init(&vm_committed_as, 0); | 
|  | VM_BUG_ON(ret); | 
|  | } |