| /* | 
 |  *  Copyright (C) 1995  Linus Torvalds | 
 |  * | 
 |  *  Pentium III FXSR, SSE support | 
 |  *	Gareth Hughes <gareth@valinux.com>, May 2000 | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file handles the architecture-dependent parts of process handling.. | 
 |  */ | 
 |  | 
 | #include <linux/stackprotector.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/elfcore.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/stddef.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/user.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mc146818rtc.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/personality.h> | 
 | #include <linux/tick.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/prctl.h> | 
 | #include <linux/ftrace.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/io.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/cpuidle.h> | 
 |  | 
 | #include <asm/pgtable.h> | 
 | #include <asm/system.h> | 
 | #include <asm/ldt.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/i387.h> | 
 | #include <asm/desc.h> | 
 | #ifdef CONFIG_MATH_EMULATION | 
 | #include <asm/math_emu.h> | 
 | #endif | 
 |  | 
 | #include <linux/err.h> | 
 |  | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/cpu.h> | 
 | #include <asm/idle.h> | 
 | #include <asm/syscalls.h> | 
 | #include <asm/debugreg.h> | 
 | #include <asm/nmi.h> | 
 |  | 
 | asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); | 
 |  | 
 | /* | 
 |  * Return saved PC of a blocked thread. | 
 |  */ | 
 | unsigned long thread_saved_pc(struct task_struct *tsk) | 
 | { | 
 | 	return ((unsigned long *)tsk->thread.sp)[3]; | 
 | } | 
 |  | 
 | #ifndef CONFIG_SMP | 
 | static inline void play_dead(void) | 
 | { | 
 | 	BUG(); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * The idle thread. There's no useful work to be | 
 |  * done, so just try to conserve power and have a | 
 |  * low exit latency (ie sit in a loop waiting for | 
 |  * somebody to say that they'd like to reschedule) | 
 |  */ | 
 | void cpu_idle(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	/* | 
 | 	 * If we're the non-boot CPU, nothing set the stack canary up | 
 | 	 * for us.  CPU0 already has it initialized but no harm in | 
 | 	 * doing it again.  This is a good place for updating it, as | 
 | 	 * we wont ever return from this function (so the invalid | 
 | 	 * canaries already on the stack wont ever trigger). | 
 | 	 */ | 
 | 	boot_init_stack_canary(); | 
 |  | 
 | 	current_thread_info()->status |= TS_POLLING; | 
 |  | 
 | 	/* endless idle loop with no priority at all */ | 
 | 	while (1) { | 
 | 		tick_nohz_idle_enter(); | 
 | 		rcu_idle_enter(); | 
 | 		while (!need_resched()) { | 
 |  | 
 | 			check_pgt_cache(); | 
 | 			rmb(); | 
 |  | 
 | 			if (cpu_is_offline(cpu)) | 
 | 				play_dead(); | 
 |  | 
 | 			local_touch_nmi(); | 
 | 			local_irq_disable(); | 
 | 			/* Don't trace irqs off for idle */ | 
 | 			stop_critical_timings(); | 
 | 			if (cpuidle_idle_call()) | 
 | 				pm_idle(); | 
 | 			start_critical_timings(); | 
 | 		} | 
 | 		rcu_idle_exit(); | 
 | 		tick_nohz_idle_exit(); | 
 | 		preempt_enable_no_resched(); | 
 | 		schedule(); | 
 | 		preempt_disable(); | 
 | 	} | 
 | } | 
 |  | 
 | void __show_regs(struct pt_regs *regs, int all) | 
 | { | 
 | 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; | 
 | 	unsigned long d0, d1, d2, d3, d6, d7; | 
 | 	unsigned long sp; | 
 | 	unsigned short ss, gs; | 
 |  | 
 | 	if (user_mode_vm(regs)) { | 
 | 		sp = regs->sp; | 
 | 		ss = regs->ss & 0xffff; | 
 | 		gs = get_user_gs(regs); | 
 | 	} else { | 
 | 		sp = kernel_stack_pointer(regs); | 
 | 		savesegment(ss, ss); | 
 | 		savesegment(gs, gs); | 
 | 	} | 
 |  | 
 | 	show_regs_common(); | 
 |  | 
 | 	printk(KERN_DEFAULT "EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n", | 
 | 			(u16)regs->cs, regs->ip, regs->flags, | 
 | 			smp_processor_id()); | 
 | 	print_symbol("EIP is at %s\n", regs->ip); | 
 |  | 
 | 	printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", | 
 | 		regs->ax, regs->bx, regs->cx, regs->dx); | 
 | 	printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n", | 
 | 		regs->si, regs->di, regs->bp, sp); | 
 | 	printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n", | 
 | 	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss); | 
 |  | 
 | 	if (!all) | 
 | 		return; | 
 |  | 
 | 	cr0 = read_cr0(); | 
 | 	cr2 = read_cr2(); | 
 | 	cr3 = read_cr3(); | 
 | 	cr4 = read_cr4_safe(); | 
 | 	printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", | 
 | 			cr0, cr2, cr3, cr4); | 
 |  | 
 | 	get_debugreg(d0, 0); | 
 | 	get_debugreg(d1, 1); | 
 | 	get_debugreg(d2, 2); | 
 | 	get_debugreg(d3, 3); | 
 | 	printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", | 
 | 			d0, d1, d2, d3); | 
 |  | 
 | 	get_debugreg(d6, 6); | 
 | 	get_debugreg(d7, 7); | 
 | 	printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n", | 
 | 			d6, d7); | 
 | } | 
 |  | 
 | void release_thread(struct task_struct *dead_task) | 
 | { | 
 | 	BUG_ON(dead_task->mm); | 
 | 	release_vm86_irqs(dead_task); | 
 | } | 
 |  | 
 | /* | 
 |  * This gets called before we allocate a new thread and copy | 
 |  * the current task into it. | 
 |  */ | 
 | void prepare_to_copy(struct task_struct *tsk) | 
 | { | 
 | 	unlazy_fpu(tsk); | 
 | } | 
 |  | 
 | int copy_thread(unsigned long clone_flags, unsigned long sp, | 
 | 	unsigned long unused, | 
 | 	struct task_struct *p, struct pt_regs *regs) | 
 | { | 
 | 	struct pt_regs *childregs; | 
 | 	struct task_struct *tsk; | 
 | 	int err; | 
 |  | 
 | 	childregs = task_pt_regs(p); | 
 | 	*childregs = *regs; | 
 | 	childregs->ax = 0; | 
 | 	childregs->sp = sp; | 
 |  | 
 | 	p->thread.sp = (unsigned long) childregs; | 
 | 	p->thread.sp0 = (unsigned long) (childregs+1); | 
 |  | 
 | 	p->thread.ip = (unsigned long) ret_from_fork; | 
 |  | 
 | 	task_user_gs(p) = get_user_gs(regs); | 
 |  | 
 | 	p->thread.io_bitmap_ptr = NULL; | 
 | 	tsk = current; | 
 | 	err = -ENOMEM; | 
 |  | 
 | 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); | 
 |  | 
 | 	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) { | 
 | 		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr, | 
 | 						IO_BITMAP_BYTES, GFP_KERNEL); | 
 | 		if (!p->thread.io_bitmap_ptr) { | 
 | 			p->thread.io_bitmap_max = 0; | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		set_tsk_thread_flag(p, TIF_IO_BITMAP); | 
 | 	} | 
 |  | 
 | 	err = 0; | 
 |  | 
 | 	/* | 
 | 	 * Set a new TLS for the child thread? | 
 | 	 */ | 
 | 	if (clone_flags & CLONE_SETTLS) | 
 | 		err = do_set_thread_area(p, -1, | 
 | 			(struct user_desc __user *)childregs->si, 0); | 
 |  | 
 | 	if (err && p->thread.io_bitmap_ptr) { | 
 | 		kfree(p->thread.io_bitmap_ptr); | 
 | 		p->thread.io_bitmap_max = 0; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | void | 
 | start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) | 
 | { | 
 | 	set_user_gs(regs, 0); | 
 | 	regs->fs		= 0; | 
 | 	regs->ds		= __USER_DS; | 
 | 	regs->es		= __USER_DS; | 
 | 	regs->ss		= __USER_DS; | 
 | 	regs->cs		= __USER_CS; | 
 | 	regs->ip		= new_ip; | 
 | 	regs->sp		= new_sp; | 
 | 	/* | 
 | 	 * Free the old FP and other extended state | 
 | 	 */ | 
 | 	free_thread_xstate(current); | 
 | } | 
 | EXPORT_SYMBOL_GPL(start_thread); | 
 |  | 
 |  | 
 | /* | 
 |  *	switch_to(x,y) should switch tasks from x to y. | 
 |  * | 
 |  * We fsave/fwait so that an exception goes off at the right time | 
 |  * (as a call from the fsave or fwait in effect) rather than to | 
 |  * the wrong process. Lazy FP saving no longer makes any sense | 
 |  * with modern CPU's, and this simplifies a lot of things (SMP | 
 |  * and UP become the same). | 
 |  * | 
 |  * NOTE! We used to use the x86 hardware context switching. The | 
 |  * reason for not using it any more becomes apparent when you | 
 |  * try to recover gracefully from saved state that is no longer | 
 |  * valid (stale segment register values in particular). With the | 
 |  * hardware task-switch, there is no way to fix up bad state in | 
 |  * a reasonable manner. | 
 |  * | 
 |  * The fact that Intel documents the hardware task-switching to | 
 |  * be slow is a fairly red herring - this code is not noticeably | 
 |  * faster. However, there _is_ some room for improvement here, | 
 |  * so the performance issues may eventually be a valid point. | 
 |  * More important, however, is the fact that this allows us much | 
 |  * more flexibility. | 
 |  * | 
 |  * The return value (in %ax) will be the "prev" task after | 
 |  * the task-switch, and shows up in ret_from_fork in entry.S, | 
 |  * for example. | 
 |  */ | 
 | __notrace_funcgraph struct task_struct * | 
 | __switch_to(struct task_struct *prev_p, struct task_struct *next_p) | 
 | { | 
 | 	struct thread_struct *prev = &prev_p->thread, | 
 | 				 *next = &next_p->thread; | 
 | 	int cpu = smp_processor_id(); | 
 | 	struct tss_struct *tss = &per_cpu(init_tss, cpu); | 
 | 	bool preload_fpu; | 
 |  | 
 | 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ | 
 |  | 
 | 	/* | 
 | 	 * If the task has used fpu the last 5 timeslices, just do a full | 
 | 	 * restore of the math state immediately to avoid the trap; the | 
 | 	 * chances of needing FPU soon are obviously high now | 
 | 	 */ | 
 | 	preload_fpu = tsk_used_math(next_p) && next_p->fpu_counter > 5; | 
 |  | 
 | 	__unlazy_fpu(prev_p); | 
 |  | 
 | 	/* we're going to use this soon, after a few expensive things */ | 
 | 	if (preload_fpu) | 
 | 		prefetch(next->fpu.state); | 
 |  | 
 | 	/* | 
 | 	 * Reload esp0. | 
 | 	 */ | 
 | 	load_sp0(tss, next); | 
 |  | 
 | 	/* | 
 | 	 * Save away %gs. No need to save %fs, as it was saved on the | 
 | 	 * stack on entry.  No need to save %es and %ds, as those are | 
 | 	 * always kernel segments while inside the kernel.  Doing this | 
 | 	 * before setting the new TLS descriptors avoids the situation | 
 | 	 * where we temporarily have non-reloadable segments in %fs | 
 | 	 * and %gs.  This could be an issue if the NMI handler ever | 
 | 	 * used %fs or %gs (it does not today), or if the kernel is | 
 | 	 * running inside of a hypervisor layer. | 
 | 	 */ | 
 | 	lazy_save_gs(prev->gs); | 
 |  | 
 | 	/* | 
 | 	 * Load the per-thread Thread-Local Storage descriptor. | 
 | 	 */ | 
 | 	load_TLS(next, cpu); | 
 |  | 
 | 	/* | 
 | 	 * Restore IOPL if needed.  In normal use, the flags restore | 
 | 	 * in the switch assembly will handle this.  But if the kernel | 
 | 	 * is running virtualized at a non-zero CPL, the popf will | 
 | 	 * not restore flags, so it must be done in a separate step. | 
 | 	 */ | 
 | 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) | 
 | 		set_iopl_mask(next->iopl); | 
 |  | 
 | 	/* | 
 | 	 * Now maybe handle debug registers and/or IO bitmaps | 
 | 	 */ | 
 | 	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV || | 
 | 		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) | 
 | 		__switch_to_xtra(prev_p, next_p, tss); | 
 |  | 
 | 	/* If we're going to preload the fpu context, make sure clts | 
 | 	   is run while we're batching the cpu state updates. */ | 
 | 	if (preload_fpu) | 
 | 		clts(); | 
 |  | 
 | 	/* | 
 | 	 * Leave lazy mode, flushing any hypercalls made here. | 
 | 	 * This must be done before restoring TLS segments so | 
 | 	 * the GDT and LDT are properly updated, and must be | 
 | 	 * done before math_state_restore, so the TS bit is up | 
 | 	 * to date. | 
 | 	 */ | 
 | 	arch_end_context_switch(next_p); | 
 |  | 
 | 	if (preload_fpu) | 
 | 		__math_state_restore(); | 
 |  | 
 | 	/* | 
 | 	 * Restore %gs if needed (which is common) | 
 | 	 */ | 
 | 	if (prev->gs | next->gs) | 
 | 		lazy_load_gs(next->gs); | 
 |  | 
 | 	percpu_write(current_task, next_p); | 
 |  | 
 | 	return prev_p; | 
 | } | 
 |  | 
 | #define top_esp                (THREAD_SIZE - sizeof(unsigned long)) | 
 | #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long)) | 
 |  | 
 | unsigned long get_wchan(struct task_struct *p) | 
 | { | 
 | 	unsigned long bp, sp, ip; | 
 | 	unsigned long stack_page; | 
 | 	int count = 0; | 
 | 	if (!p || p == current || p->state == TASK_RUNNING) | 
 | 		return 0; | 
 | 	stack_page = (unsigned long)task_stack_page(p); | 
 | 	sp = p->thread.sp; | 
 | 	if (!stack_page || sp < stack_page || sp > top_esp+stack_page) | 
 | 		return 0; | 
 | 	/* include/asm-i386/system.h:switch_to() pushes bp last. */ | 
 | 	bp = *(unsigned long *) sp; | 
 | 	do { | 
 | 		if (bp < stack_page || bp > top_ebp+stack_page) | 
 | 			return 0; | 
 | 		ip = *(unsigned long *) (bp+4); | 
 | 		if (!in_sched_functions(ip)) | 
 | 			return ip; | 
 | 		bp = *(unsigned long *) bp; | 
 | 	} while (count++ < 16); | 
 | 	return 0; | 
 | } | 
 |  |