| /* | 
 |  * PPC64 (POWER4) Huge TLB Page Support for Kernel. | 
 |  * | 
 |  * Copyright (C) 2003 David Gibson, IBM Corporation. | 
 |  * | 
 |  * Based on the IA-32 version: | 
 |  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> | 
 |  */ | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/smp_lock.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/err.h> | 
 | #include <linux/sysctl.h> | 
 | #include <asm/mman.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/machdep.h> | 
 | #include <asm/cputable.h> | 
 | #include <asm/tlb.h> | 
 |  | 
 | #include <linux/sysctl.h> | 
 |  | 
 | #define NUM_LOW_AREAS	(0x100000000UL >> SID_SHIFT) | 
 | #define NUM_HIGH_AREAS	(PGTABLE_RANGE >> HTLB_AREA_SHIFT) | 
 |  | 
 | #ifdef CONFIG_PPC_64K_PAGES | 
 | #define HUGEPTE_INDEX_SIZE	(PMD_SHIFT-HPAGE_SHIFT) | 
 | #else | 
 | #define HUGEPTE_INDEX_SIZE	(PUD_SHIFT-HPAGE_SHIFT) | 
 | #endif | 
 | #define PTRS_PER_HUGEPTE	(1 << HUGEPTE_INDEX_SIZE) | 
 | #define HUGEPTE_TABLE_SIZE	(sizeof(pte_t) << HUGEPTE_INDEX_SIZE) | 
 |  | 
 | #define HUGEPD_SHIFT		(HPAGE_SHIFT + HUGEPTE_INDEX_SIZE) | 
 | #define HUGEPD_SIZE		(1UL << HUGEPD_SHIFT) | 
 | #define HUGEPD_MASK		(~(HUGEPD_SIZE-1)) | 
 |  | 
 | #define huge_pgtable_cache	(pgtable_cache[HUGEPTE_CACHE_NUM]) | 
 |  | 
 | /* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad() | 
 |  * will choke on pointers to hugepte tables, which is handy for | 
 |  * catching screwups early. */ | 
 | #define HUGEPD_OK	0x1 | 
 |  | 
 | typedef struct { unsigned long pd; } hugepd_t; | 
 |  | 
 | #define hugepd_none(hpd)	((hpd).pd == 0) | 
 |  | 
 | static inline pte_t *hugepd_page(hugepd_t hpd) | 
 | { | 
 | 	BUG_ON(!(hpd.pd & HUGEPD_OK)); | 
 | 	return (pte_t *)(hpd.pd & ~HUGEPD_OK); | 
 | } | 
 |  | 
 | static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr) | 
 | { | 
 | 	unsigned long idx = ((addr >> HPAGE_SHIFT) & (PTRS_PER_HUGEPTE-1)); | 
 | 	pte_t *dir = hugepd_page(*hpdp); | 
 |  | 
 | 	return dir + idx; | 
 | } | 
 |  | 
 | static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, | 
 | 			   unsigned long address) | 
 | { | 
 | 	pte_t *new = kmem_cache_alloc(huge_pgtable_cache, | 
 | 				      GFP_KERNEL|__GFP_REPEAT); | 
 |  | 
 | 	if (! new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	if (!hugepd_none(*hpdp)) | 
 | 		kmem_cache_free(huge_pgtable_cache, new); | 
 | 	else | 
 | 		hpdp->pd = (unsigned long)new | HUGEPD_OK; | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Modelled after find_linux_pte() */ | 
 | pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) | 
 | { | 
 | 	pgd_t *pg; | 
 | 	pud_t *pu; | 
 |  | 
 | 	BUG_ON(! in_hugepage_area(mm->context, addr)); | 
 |  | 
 | 	addr &= HPAGE_MASK; | 
 |  | 
 | 	pg = pgd_offset(mm, addr); | 
 | 	if (!pgd_none(*pg)) { | 
 | 		pu = pud_offset(pg, addr); | 
 | 		if (!pud_none(*pu)) { | 
 | #ifdef CONFIG_PPC_64K_PAGES | 
 | 			pmd_t *pm; | 
 | 			pm = pmd_offset(pu, addr); | 
 | 			if (!pmd_none(*pm)) | 
 | 				return hugepte_offset((hugepd_t *)pm, addr); | 
 | #else | 
 | 			return hugepte_offset((hugepd_t *)pu, addr); | 
 | #endif | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr) | 
 | { | 
 | 	pgd_t *pg; | 
 | 	pud_t *pu; | 
 | 	hugepd_t *hpdp = NULL; | 
 |  | 
 | 	BUG_ON(! in_hugepage_area(mm->context, addr)); | 
 |  | 
 | 	addr &= HPAGE_MASK; | 
 |  | 
 | 	pg = pgd_offset(mm, addr); | 
 | 	pu = pud_alloc(mm, pg, addr); | 
 |  | 
 | 	if (pu) { | 
 | #ifdef CONFIG_PPC_64K_PAGES | 
 | 		pmd_t *pm; | 
 | 		pm = pmd_alloc(mm, pu, addr); | 
 | 		if (pm) | 
 | 			hpdp = (hugepd_t *)pm; | 
 | #else | 
 | 		hpdp = (hugepd_t *)pu; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	if (! hpdp) | 
 | 		return NULL; | 
 |  | 
 | 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr)) | 
 | 		return NULL; | 
 |  | 
 | 	return hugepte_offset(hpdp, addr); | 
 | } | 
 |  | 
 | static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp) | 
 | { | 
 | 	pte_t *hugepte = hugepd_page(*hpdp); | 
 |  | 
 | 	hpdp->pd = 0; | 
 | 	tlb->need_flush = 1; | 
 | 	pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, HUGEPTE_CACHE_NUM, | 
 | 						 PGF_CACHENUM_MASK)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PPC_64K_PAGES | 
 | static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 
 | 				   unsigned long addr, unsigned long end, | 
 | 				   unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 | 	unsigned long start; | 
 |  | 
 | 	start = addr; | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (pmd_none(*pmd)) | 
 | 			continue; | 
 | 		free_hugepte_range(tlb, (hugepd_t *)pmd); | 
 | 	} while (pmd++, addr = next, addr != end); | 
 |  | 
 | 	start &= PUD_MASK; | 
 | 	if (start < floor) | 
 | 		return; | 
 | 	if (ceiling) { | 
 | 		ceiling &= PUD_MASK; | 
 | 		if (!ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		return; | 
 |  | 
 | 	pmd = pmd_offset(pud, start); | 
 | 	pud_clear(pud); | 
 | 	pmd_free_tlb(tlb, pmd); | 
 | } | 
 | #endif | 
 |  | 
 | static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 
 | 				   unsigned long addr, unsigned long end, | 
 | 				   unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 | 	unsigned long start; | 
 |  | 
 | 	start = addr; | 
 | 	pud = pud_offset(pgd, addr); | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | #ifdef CONFIG_PPC_64K_PAGES | 
 | 		if (pud_none_or_clear_bad(pud)) | 
 | 			continue; | 
 | 		hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling); | 
 | #else | 
 | 		if (pud_none(*pud)) | 
 | 			continue; | 
 | 		free_hugepte_range(tlb, (hugepd_t *)pud); | 
 | #endif | 
 | 	} while (pud++, addr = next, addr != end); | 
 |  | 
 | 	start &= PGDIR_MASK; | 
 | 	if (start < floor) | 
 | 		return; | 
 | 	if (ceiling) { | 
 | 		ceiling &= PGDIR_MASK; | 
 | 		if (!ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		return; | 
 |  | 
 | 	pud = pud_offset(pgd, start); | 
 | 	pgd_clear(pgd); | 
 | 	pud_free_tlb(tlb, pud); | 
 | } | 
 |  | 
 | /* | 
 |  * This function frees user-level page tables of a process. | 
 |  * | 
 |  * Must be called with pagetable lock held. | 
 |  */ | 
 | void hugetlb_free_pgd_range(struct mmu_gather **tlb, | 
 | 			    unsigned long addr, unsigned long end, | 
 | 			    unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 | 	unsigned long start; | 
 |  | 
 | 	/* | 
 | 	 * Comments below take from the normal free_pgd_range().  They | 
 | 	 * apply here too.  The tests against HUGEPD_MASK below are | 
 | 	 * essential, because we *don't* test for this at the bottom | 
 | 	 * level.  Without them we'll attempt to free a hugepte table | 
 | 	 * when we unmap just part of it, even if there are other | 
 | 	 * active mappings using it. | 
 | 	 * | 
 | 	 * The next few lines have given us lots of grief... | 
 | 	 * | 
 | 	 * Why are we testing HUGEPD* at this top level?  Because | 
 | 	 * often there will be no work to do at all, and we'd prefer | 
 | 	 * not to go all the way down to the bottom just to discover | 
 | 	 * that. | 
 | 	 * | 
 | 	 * Why all these "- 1"s?  Because 0 represents both the bottom | 
 | 	 * of the address space and the top of it (using -1 for the | 
 | 	 * top wouldn't help much: the masks would do the wrong thing). | 
 | 	 * The rule is that addr 0 and floor 0 refer to the bottom of | 
 | 	 * the address space, but end 0 and ceiling 0 refer to the top | 
 | 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though | 
 | 	 * that end 0 case should be mythical). | 
 | 	 * | 
 | 	 * Wherever addr is brought up or ceiling brought down, we | 
 | 	 * must be careful to reject "the opposite 0" before it | 
 | 	 * confuses the subsequent tests.  But what about where end is | 
 | 	 * brought down by HUGEPD_SIZE below? no, end can't go down to | 
 | 	 * 0 there. | 
 | 	 * | 
 | 	 * Whereas we round start (addr) and ceiling down, by different | 
 | 	 * masks at different levels, in order to test whether a table | 
 | 	 * now has no other vmas using it, so can be freed, we don't | 
 | 	 * bother to round floor or end up - the tests don't need that. | 
 | 	 */ | 
 |  | 
 | 	addr &= HUGEPD_MASK; | 
 | 	if (addr < floor) { | 
 | 		addr += HUGEPD_SIZE; | 
 | 		if (!addr) | 
 | 			return; | 
 | 	} | 
 | 	if (ceiling) { | 
 | 		ceiling &= HUGEPD_MASK; | 
 | 		if (!ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		end -= HUGEPD_SIZE; | 
 | 	if (addr > end - 1) | 
 | 		return; | 
 |  | 
 | 	start = addr; | 
 | 	pgd = pgd_offset((*tlb)->mm, addr); | 
 | 	do { | 
 | 		BUG_ON(! in_hugepage_area((*tlb)->mm->context, addr)); | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_none_or_clear_bad(pgd)) | 
 | 			continue; | 
 | 		hugetlb_free_pud_range(*tlb, pgd, addr, next, floor, ceiling); | 
 | 	} while (pgd++, addr = next, addr != end); | 
 | } | 
 |  | 
 | void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, | 
 | 		     pte_t *ptep, pte_t pte) | 
 | { | 
 | 	if (pte_present(*ptep)) { | 
 | 		/* We open-code pte_clear because we need to pass the right | 
 | 		 * argument to hpte_update (huge / !huge) | 
 | 		 */ | 
 | 		unsigned long old = pte_update(ptep, ~0UL); | 
 | 		if (old & _PAGE_HASHPTE) | 
 | 			hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1); | 
 | 		flush_tlb_pending(); | 
 | 	} | 
 | 	*ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); | 
 | } | 
 |  | 
 | pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, | 
 | 			      pte_t *ptep) | 
 | { | 
 | 	unsigned long old = pte_update(ptep, ~0UL); | 
 |  | 
 | 	if (old & _PAGE_HASHPTE) | 
 | 		hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1); | 
 | 	*ptep = __pte(0); | 
 |  | 
 | 	return __pte(old); | 
 | } | 
 |  | 
 | struct slb_flush_info { | 
 | 	struct mm_struct *mm; | 
 | 	u16 newareas; | 
 | }; | 
 |  | 
 | static void flush_low_segments(void *parm) | 
 | { | 
 | 	struct slb_flush_info *fi = parm; | 
 | 	unsigned long i; | 
 |  | 
 | 	BUILD_BUG_ON((sizeof(fi->newareas)*8) != NUM_LOW_AREAS); | 
 |  | 
 | 	if (current->active_mm != fi->mm) | 
 | 		return; | 
 |  | 
 | 	/* Only need to do anything if this CPU is working in the same | 
 | 	 * mm as the one which has changed */ | 
 |  | 
 | 	/* update the paca copy of the context struct */ | 
 | 	get_paca()->context = current->active_mm->context; | 
 |  | 
 | 	asm volatile("isync" : : : "memory"); | 
 | 	for (i = 0; i < NUM_LOW_AREAS; i++) { | 
 | 		if (! (fi->newareas & (1U << i))) | 
 | 			continue; | 
 | 		asm volatile("slbie %0" | 
 | 			     : : "r" ((i << SID_SHIFT) | SLBIE_C)); | 
 | 	} | 
 | 	asm volatile("isync" : : : "memory"); | 
 | } | 
 |  | 
 | static void flush_high_segments(void *parm) | 
 | { | 
 | 	struct slb_flush_info *fi = parm; | 
 | 	unsigned long i, j; | 
 |  | 
 |  | 
 | 	BUILD_BUG_ON((sizeof(fi->newareas)*8) != NUM_HIGH_AREAS); | 
 |  | 
 | 	if (current->active_mm != fi->mm) | 
 | 		return; | 
 |  | 
 | 	/* Only need to do anything if this CPU is working in the same | 
 | 	 * mm as the one which has changed */ | 
 |  | 
 | 	/* update the paca copy of the context struct */ | 
 | 	get_paca()->context = current->active_mm->context; | 
 |  | 
 | 	asm volatile("isync" : : : "memory"); | 
 | 	for (i = 0; i < NUM_HIGH_AREAS; i++) { | 
 | 		if (! (fi->newareas & (1U << i))) | 
 | 			continue; | 
 | 		for (j = 0; j < (1UL << (HTLB_AREA_SHIFT-SID_SHIFT)); j++) | 
 | 			asm volatile("slbie %0" | 
 | 				     :: "r" (((i << HTLB_AREA_SHIFT) | 
 | 					      + (j << SID_SHIFT)) | SLBIE_C)); | 
 | 	} | 
 | 	asm volatile("isync" : : : "memory"); | 
 | } | 
 |  | 
 | static int prepare_low_area_for_htlb(struct mm_struct *mm, unsigned long area) | 
 | { | 
 | 	unsigned long start = area << SID_SHIFT; | 
 | 	unsigned long end = (area+1) << SID_SHIFT; | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	BUG_ON(area >= NUM_LOW_AREAS); | 
 |  | 
 | 	/* Check no VMAs are in the region */ | 
 | 	vma = find_vma(mm, start); | 
 | 	if (vma && (vma->vm_start < end)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int prepare_high_area_for_htlb(struct mm_struct *mm, unsigned long area) | 
 | { | 
 | 	unsigned long start = area << HTLB_AREA_SHIFT; | 
 | 	unsigned long end = (area+1) << HTLB_AREA_SHIFT; | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	BUG_ON(area >= NUM_HIGH_AREAS); | 
 |  | 
 | 	/* Hack, so that each addresses is controlled by exactly one | 
 | 	 * of the high or low area bitmaps, the first high area starts | 
 | 	 * at 4GB, not 0 */ | 
 | 	if (start == 0) | 
 | 		start = 0x100000000UL; | 
 |  | 
 | 	/* Check no VMAs are in the region */ | 
 | 	vma = find_vma(mm, start); | 
 | 	if (vma && (vma->vm_start < end)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int open_low_hpage_areas(struct mm_struct *mm, u16 newareas) | 
 | { | 
 | 	unsigned long i; | 
 | 	struct slb_flush_info fi; | 
 |  | 
 | 	BUILD_BUG_ON((sizeof(newareas)*8) != NUM_LOW_AREAS); | 
 | 	BUILD_BUG_ON((sizeof(mm->context.low_htlb_areas)*8) != NUM_LOW_AREAS); | 
 |  | 
 | 	newareas &= ~(mm->context.low_htlb_areas); | 
 | 	if (! newareas) | 
 | 		return 0; /* The segments we want are already open */ | 
 |  | 
 | 	for (i = 0; i < NUM_LOW_AREAS; i++) | 
 | 		if ((1 << i) & newareas) | 
 | 			if (prepare_low_area_for_htlb(mm, i) != 0) | 
 | 				return -EBUSY; | 
 |  | 
 | 	mm->context.low_htlb_areas |= newareas; | 
 |  | 
 | 	/* the context change must make it to memory before the flush, | 
 | 	 * so that further SLB misses do the right thing. */ | 
 | 	mb(); | 
 |  | 
 | 	fi.mm = mm; | 
 | 	fi.newareas = newareas; | 
 | 	on_each_cpu(flush_low_segments, &fi, 0, 1); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int open_high_hpage_areas(struct mm_struct *mm, u16 newareas) | 
 | { | 
 | 	struct slb_flush_info fi; | 
 | 	unsigned long i; | 
 |  | 
 | 	BUILD_BUG_ON((sizeof(newareas)*8) != NUM_HIGH_AREAS); | 
 | 	BUILD_BUG_ON((sizeof(mm->context.high_htlb_areas)*8) | 
 | 		     != NUM_HIGH_AREAS); | 
 |  | 
 | 	newareas &= ~(mm->context.high_htlb_areas); | 
 | 	if (! newareas) | 
 | 		return 0; /* The areas we want are already open */ | 
 |  | 
 | 	for (i = 0; i < NUM_HIGH_AREAS; i++) | 
 | 		if ((1 << i) & newareas) | 
 | 			if (prepare_high_area_for_htlb(mm, i) != 0) | 
 | 				return -EBUSY; | 
 |  | 
 | 	mm->context.high_htlb_areas |= newareas; | 
 |  | 
 | 	/* the context change must make it to memory before the flush, | 
 | 	 * so that further SLB misses do the right thing. */ | 
 | 	mb(); | 
 |  | 
 | 	fi.mm = mm; | 
 | 	fi.newareas = newareas; | 
 | 	on_each_cpu(flush_high_segments, &fi, 0, 1); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int prepare_hugepage_range(unsigned long addr, unsigned long len, pgoff_t pgoff) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	if (pgoff & (~HPAGE_MASK >> PAGE_SHIFT)) | 
 | 		return -EINVAL; | 
 | 	if (len & ~HPAGE_MASK) | 
 | 		return -EINVAL; | 
 | 	if (addr & ~HPAGE_MASK) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (addr < 0x100000000UL) | 
 | 		err = open_low_hpage_areas(current->mm, | 
 | 					  LOW_ESID_MASK(addr, len)); | 
 | 	if ((addr + len) > 0x100000000UL) | 
 | 		err = open_high_hpage_areas(current->mm, | 
 | 					    HTLB_AREA_MASK(addr, len)); | 
 | 	if (err) { | 
 | 		printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)" | 
 | 		       " failed (lowmask: 0x%04hx, highmask: 0x%04hx)\n", | 
 | 		       addr, len, | 
 | 		       LOW_ESID_MASK(addr, len), HTLB_AREA_MASK(addr, len)); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct page * | 
 | follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) | 
 | { | 
 | 	pte_t *ptep; | 
 | 	struct page *page; | 
 |  | 
 | 	if (! in_hugepage_area(mm->context, address)) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	ptep = huge_pte_offset(mm, address); | 
 | 	page = pte_page(*ptep); | 
 | 	if (page) | 
 | 		page += (address % HPAGE_SIZE) / PAGE_SIZE; | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | int pmd_huge(pmd_t pmd) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct page * | 
 | follow_huge_pmd(struct mm_struct *mm, unsigned long address, | 
 | 		pmd_t *pmd, int write) | 
 | { | 
 | 	BUG(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* Because we have an exclusive hugepage region which lies within the | 
 |  * normal user address space, we have to take special measures to make | 
 |  * non-huge mmap()s evade the hugepage reserved regions. */ | 
 | unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr, | 
 | 				     unsigned long len, unsigned long pgoff, | 
 | 				     unsigned long flags) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	struct vm_area_struct *vma; | 
 | 	unsigned long start_addr; | 
 |  | 
 | 	if (len > TASK_SIZE) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (addr) { | 
 | 		addr = PAGE_ALIGN(addr); | 
 | 		vma = find_vma(mm, addr); | 
 | 		if (((TASK_SIZE - len) >= addr) | 
 | 		    && (!vma || (addr+len) <= vma->vm_start) | 
 | 		    && !is_hugepage_only_range(mm, addr,len)) | 
 | 			return addr; | 
 | 	} | 
 | 	if (len > mm->cached_hole_size) { | 
 | 	        start_addr = addr = mm->free_area_cache; | 
 | 	} else { | 
 | 	        start_addr = addr = TASK_UNMAPPED_BASE; | 
 | 	        mm->cached_hole_size = 0; | 
 | 	} | 
 |  | 
 | full_search: | 
 | 	vma = find_vma(mm, addr); | 
 | 	while (TASK_SIZE - len >= addr) { | 
 | 		BUG_ON(vma && (addr >= vma->vm_end)); | 
 |  | 
 | 		if (touches_hugepage_low_range(mm, addr, len)) { | 
 | 			addr = ALIGN(addr+1, 1<<SID_SHIFT); | 
 | 			vma = find_vma(mm, addr); | 
 | 			continue; | 
 | 		} | 
 | 		if (touches_hugepage_high_range(mm, addr, len)) { | 
 | 			addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT); | 
 | 			vma = find_vma(mm, addr); | 
 | 			continue; | 
 | 		} | 
 | 		if (!vma || addr + len <= vma->vm_start) { | 
 | 			/* | 
 | 			 * Remember the place where we stopped the search: | 
 | 			 */ | 
 | 			mm->free_area_cache = addr + len; | 
 | 			return addr; | 
 | 		} | 
 | 		if (addr + mm->cached_hole_size < vma->vm_start) | 
 | 		        mm->cached_hole_size = vma->vm_start - addr; | 
 | 		addr = vma->vm_end; | 
 | 		vma = vma->vm_next; | 
 | 	} | 
 |  | 
 | 	/* Make sure we didn't miss any holes */ | 
 | 	if (start_addr != TASK_UNMAPPED_BASE) { | 
 | 		start_addr = addr = TASK_UNMAPPED_BASE; | 
 | 		mm->cached_hole_size = 0; | 
 | 		goto full_search; | 
 | 	} | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* | 
 |  * This mmap-allocator allocates new areas top-down from below the | 
 |  * stack's low limit (the base): | 
 |  * | 
 |  * Because we have an exclusive hugepage region which lies within the | 
 |  * normal user address space, we have to take special measures to make | 
 |  * non-huge mmap()s evade the hugepage reserved regions. | 
 |  */ | 
 | unsigned long | 
 | arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, | 
 | 			  const unsigned long len, const unsigned long pgoff, | 
 | 			  const unsigned long flags) | 
 | { | 
 | 	struct vm_area_struct *vma, *prev_vma; | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	unsigned long base = mm->mmap_base, addr = addr0; | 
 | 	unsigned long largest_hole = mm->cached_hole_size; | 
 | 	int first_time = 1; | 
 |  | 
 | 	/* requested length too big for entire address space */ | 
 | 	if (len > TASK_SIZE) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* dont allow allocations above current base */ | 
 | 	if (mm->free_area_cache > base) | 
 | 		mm->free_area_cache = base; | 
 |  | 
 | 	/* requesting a specific address */ | 
 | 	if (addr) { | 
 | 		addr = PAGE_ALIGN(addr); | 
 | 		vma = find_vma(mm, addr); | 
 | 		if (TASK_SIZE - len >= addr && | 
 | 				(!vma || addr + len <= vma->vm_start) | 
 | 				&& !is_hugepage_only_range(mm, addr,len)) | 
 | 			return addr; | 
 | 	} | 
 |  | 
 | 	if (len <= largest_hole) { | 
 | 	        largest_hole = 0; | 
 | 		mm->free_area_cache = base; | 
 | 	} | 
 | try_again: | 
 | 	/* make sure it can fit in the remaining address space */ | 
 | 	if (mm->free_area_cache < len) | 
 | 		goto fail; | 
 |  | 
 | 	/* either no address requested or cant fit in requested address hole */ | 
 | 	addr = (mm->free_area_cache - len) & PAGE_MASK; | 
 | 	do { | 
 | hugepage_recheck: | 
 | 		if (touches_hugepage_low_range(mm, addr, len)) { | 
 | 			addr = (addr & ((~0) << SID_SHIFT)) - len; | 
 | 			goto hugepage_recheck; | 
 | 		} else if (touches_hugepage_high_range(mm, addr, len)) { | 
 | 			addr = (addr & ((~0UL) << HTLB_AREA_SHIFT)) - len; | 
 | 			goto hugepage_recheck; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Lookup failure means no vma is above this address, | 
 | 		 * i.e. return with success: | 
 | 		 */ | 
 |  	 	if (!(vma = find_vma_prev(mm, addr, &prev_vma))) | 
 | 			return addr; | 
 |  | 
 | 		/* | 
 | 		 * new region fits between prev_vma->vm_end and | 
 | 		 * vma->vm_start, use it: | 
 | 		 */ | 
 | 		if (addr+len <= vma->vm_start && | 
 | 		          (!prev_vma || (addr >= prev_vma->vm_end))) { | 
 | 			/* remember the address as a hint for next time */ | 
 | 		        mm->cached_hole_size = largest_hole; | 
 | 		        return (mm->free_area_cache = addr); | 
 | 		} else { | 
 | 			/* pull free_area_cache down to the first hole */ | 
 | 		        if (mm->free_area_cache == vma->vm_end) { | 
 | 				mm->free_area_cache = vma->vm_start; | 
 | 				mm->cached_hole_size = largest_hole; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* remember the largest hole we saw so far */ | 
 | 		if (addr + largest_hole < vma->vm_start) | 
 | 		        largest_hole = vma->vm_start - addr; | 
 |  | 
 | 		/* try just below the current vma->vm_start */ | 
 | 		addr = vma->vm_start-len; | 
 | 	} while (len <= vma->vm_start); | 
 |  | 
 | fail: | 
 | 	/* | 
 | 	 * if hint left us with no space for the requested | 
 | 	 * mapping then try again: | 
 | 	 */ | 
 | 	if (first_time) { | 
 | 		mm->free_area_cache = base; | 
 | 		largest_hole = 0; | 
 | 		first_time = 0; | 
 | 		goto try_again; | 
 | 	} | 
 | 	/* | 
 | 	 * A failed mmap() very likely causes application failure, | 
 | 	 * so fall back to the bottom-up function here. This scenario | 
 | 	 * can happen with large stack limits and large mmap() | 
 | 	 * allocations. | 
 | 	 */ | 
 | 	mm->free_area_cache = TASK_UNMAPPED_BASE; | 
 | 	mm->cached_hole_size = ~0UL; | 
 | 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); | 
 | 	/* | 
 | 	 * Restore the topdown base: | 
 | 	 */ | 
 | 	mm->free_area_cache = base; | 
 | 	mm->cached_hole_size = ~0UL; | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | static int htlb_check_hinted_area(unsigned long addr, unsigned long len) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	vma = find_vma(current->mm, addr); | 
 | 	if (!vma || ((addr + len) <= vma->vm_start)) | 
 | 		return 0; | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static unsigned long htlb_get_low_area(unsigned long len, u16 segmask) | 
 | { | 
 | 	unsigned long addr = 0; | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	vma = find_vma(current->mm, addr); | 
 | 	while (addr + len <= 0x100000000UL) { | 
 | 		BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */ | 
 |  | 
 | 		if (! __within_hugepage_low_range(addr, len, segmask)) { | 
 | 			addr = ALIGN(addr+1, 1<<SID_SHIFT); | 
 | 			vma = find_vma(current->mm, addr); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!vma || (addr + len) <= vma->vm_start) | 
 | 			return addr; | 
 | 		addr = ALIGN(vma->vm_end, HPAGE_SIZE); | 
 | 		/* Depending on segmask this might not be a confirmed | 
 | 		 * hugepage region, so the ALIGN could have skipped | 
 | 		 * some VMAs */ | 
 | 		vma = find_vma(current->mm, addr); | 
 | 	} | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static unsigned long htlb_get_high_area(unsigned long len, u16 areamask) | 
 | { | 
 | 	unsigned long addr = 0x100000000UL; | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	vma = find_vma(current->mm, addr); | 
 | 	while (addr + len <= TASK_SIZE_USER64) { | 
 | 		BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */ | 
 |  | 
 | 		if (! __within_hugepage_high_range(addr, len, areamask)) { | 
 | 			addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT); | 
 | 			vma = find_vma(current->mm, addr); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!vma || (addr + len) <= vma->vm_start) | 
 | 			return addr; | 
 | 		addr = ALIGN(vma->vm_end, HPAGE_SIZE); | 
 | 		/* Depending on segmask this might not be a confirmed | 
 | 		 * hugepage region, so the ALIGN could have skipped | 
 | 		 * some VMAs */ | 
 | 		vma = find_vma(current->mm, addr); | 
 | 	} | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, | 
 | 					unsigned long len, unsigned long pgoff, | 
 | 					unsigned long flags) | 
 | { | 
 | 	int lastshift; | 
 | 	u16 areamask, curareas; | 
 |  | 
 | 	if (HPAGE_SHIFT == 0) | 
 | 		return -EINVAL; | 
 | 	if (len & ~HPAGE_MASK) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!cpu_has_feature(CPU_FTR_16M_PAGE)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Paranoia, caller should have dealt with this */ | 
 | 	BUG_ON((addr + len)  < addr); | 
 |  | 
 | 	if (test_thread_flag(TIF_32BIT)) { | 
 | 		/* Paranoia, caller should have dealt with this */ | 
 | 		BUG_ON((addr + len) > 0x100000000UL); | 
 |  | 
 | 		curareas = current->mm->context.low_htlb_areas; | 
 |  | 
 | 		/* First see if we can use the hint address */ | 
 | 		if (addr && (htlb_check_hinted_area(addr, len) == 0)) { | 
 | 			areamask = LOW_ESID_MASK(addr, len); | 
 | 			if (open_low_hpage_areas(current->mm, areamask) == 0) | 
 | 				return addr; | 
 | 		} | 
 |  | 
 | 		/* Next see if we can map in the existing low areas */ | 
 | 		addr = htlb_get_low_area(len, curareas); | 
 | 		if (addr != -ENOMEM) | 
 | 			return addr; | 
 |  | 
 | 		/* Finally go looking for areas to open */ | 
 | 		lastshift = 0; | 
 | 		for (areamask = LOW_ESID_MASK(0x100000000UL-len, len); | 
 | 		     ! lastshift; areamask >>=1) { | 
 | 			if (areamask & 1) | 
 | 				lastshift = 1; | 
 |  | 
 | 			addr = htlb_get_low_area(len, curareas | areamask); | 
 | 			if ((addr != -ENOMEM) | 
 | 			    && open_low_hpage_areas(current->mm, areamask) == 0) | 
 | 				return addr; | 
 | 		} | 
 | 	} else { | 
 | 		curareas = current->mm->context.high_htlb_areas; | 
 |  | 
 | 		/* First see if we can use the hint address */ | 
 | 		/* We discourage 64-bit processes from doing hugepage | 
 | 		 * mappings below 4GB (must use MAP_FIXED) */ | 
 | 		if ((addr >= 0x100000000UL) | 
 | 		    && (htlb_check_hinted_area(addr, len) == 0)) { | 
 | 			areamask = HTLB_AREA_MASK(addr, len); | 
 | 			if (open_high_hpage_areas(current->mm, areamask) == 0) | 
 | 				return addr; | 
 | 		} | 
 |  | 
 | 		/* Next see if we can map in the existing high areas */ | 
 | 		addr = htlb_get_high_area(len, curareas); | 
 | 		if (addr != -ENOMEM) | 
 | 			return addr; | 
 |  | 
 | 		/* Finally go looking for areas to open */ | 
 | 		lastshift = 0; | 
 | 		for (areamask = HTLB_AREA_MASK(TASK_SIZE_USER64-len, len); | 
 | 		     ! lastshift; areamask >>=1) { | 
 | 			if (areamask & 1) | 
 | 				lastshift = 1; | 
 |  | 
 | 			addr = htlb_get_high_area(len, curareas | areamask); | 
 | 			if ((addr != -ENOMEM) | 
 | 			    && open_high_hpage_areas(current->mm, areamask) == 0) | 
 | 				return addr; | 
 | 		} | 
 | 	} | 
 | 	printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open" | 
 | 	       " enough areas\n"); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* | 
 |  * Called by asm hashtable.S for doing lazy icache flush | 
 |  */ | 
 | static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags, | 
 | 						  pte_t pte, int trap) | 
 | { | 
 | 	struct page *page; | 
 | 	int i; | 
 |  | 
 | 	if (!pfn_valid(pte_pfn(pte))) | 
 | 		return rflags; | 
 |  | 
 | 	page = pte_page(pte); | 
 |  | 
 | 	/* page is dirty */ | 
 | 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) { | 
 | 		if (trap == 0x400) { | 
 | 			for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) | 
 | 				__flush_dcache_icache(page_address(page+i)); | 
 | 			set_bit(PG_arch_1, &page->flags); | 
 | 		} else { | 
 | 			rflags |= HPTE_R_N; | 
 | 		} | 
 | 	} | 
 | 	return rflags; | 
 | } | 
 |  | 
 | int hash_huge_page(struct mm_struct *mm, unsigned long access, | 
 | 		   unsigned long ea, unsigned long vsid, int local, | 
 | 		   unsigned long trap) | 
 | { | 
 | 	pte_t *ptep; | 
 | 	unsigned long old_pte, new_pte; | 
 | 	unsigned long va, rflags, pa; | 
 | 	long slot; | 
 | 	int err = 1; | 
 |  | 
 | 	ptep = huge_pte_offset(mm, ea); | 
 |  | 
 | 	/* Search the Linux page table for a match with va */ | 
 | 	va = (vsid << 28) | (ea & 0x0fffffff); | 
 |  | 
 | 	/* | 
 | 	 * If no pte found or not present, send the problem up to | 
 | 	 * do_page_fault | 
 | 	 */ | 
 | 	if (unlikely(!ptep || pte_none(*ptep))) | 
 | 		goto out; | 
 |  | 
 | 	/*  | 
 | 	 * Check the user's access rights to the page.  If access should be | 
 | 	 * prevented then send the problem up to do_page_fault. | 
 | 	 */ | 
 | 	if (unlikely(access & ~pte_val(*ptep))) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * At this point, we have a pte (old_pte) which can be used to build | 
 | 	 * or update an HPTE. There are 2 cases: | 
 | 	 * | 
 | 	 * 1. There is a valid (present) pte with no associated HPTE (this is  | 
 | 	 *	the most common case) | 
 | 	 * 2. There is a valid (present) pte with an associated HPTE. The | 
 | 	 *	current values of the pp bits in the HPTE prevent access | 
 | 	 *	because we are doing software DIRTY bit management and the | 
 | 	 *	page is currently not DIRTY.  | 
 | 	 */ | 
 |  | 
 |  | 
 | 	do { | 
 | 		old_pte = pte_val(*ptep); | 
 | 		if (old_pte & _PAGE_BUSY) | 
 | 			goto out; | 
 | 		new_pte = old_pte | _PAGE_BUSY | | 
 | 			_PAGE_ACCESSED | _PAGE_HASHPTE; | 
 | 	} while(old_pte != __cmpxchg_u64((unsigned long *)ptep, | 
 | 					 old_pte, new_pte)); | 
 |  | 
 | 	rflags = 0x2 | (!(new_pte & _PAGE_RW)); | 
 |  	/* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */ | 
 | 	rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N); | 
 | 	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) | 
 | 		/* No CPU has hugepages but lacks no execute, so we | 
 | 		 * don't need to worry about that case */ | 
 | 		rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte), | 
 | 						       trap); | 
 |  | 
 | 	/* Check if pte already has an hpte (case 2) */ | 
 | 	if (unlikely(old_pte & _PAGE_HASHPTE)) { | 
 | 		/* There MIGHT be an HPTE for this pte */ | 
 | 		unsigned long hash, slot; | 
 |  | 
 | 		hash = hpt_hash(va, HPAGE_SHIFT); | 
 | 		if (old_pte & _PAGE_F_SECOND) | 
 | 			hash = ~hash; | 
 | 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; | 
 | 		slot += (old_pte & _PAGE_F_GIX) >> 12; | 
 |  | 
 | 		if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize, | 
 | 					 local) == -1) | 
 | 			old_pte &= ~_PAGE_HPTEFLAGS; | 
 | 	} | 
 |  | 
 | 	if (likely(!(old_pte & _PAGE_HASHPTE))) { | 
 | 		unsigned long hash = hpt_hash(va, HPAGE_SHIFT); | 
 | 		unsigned long hpte_group; | 
 |  | 
 | 		pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT; | 
 |  | 
 | repeat: | 
 | 		hpte_group = ((hash & htab_hash_mask) * | 
 | 			      HPTES_PER_GROUP) & ~0x7UL; | 
 |  | 
 | 		/* clear HPTE slot informations in new PTE */ | 
 | 		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE; | 
 |  | 
 | 		/* Add in WIMG bits */ | 
 | 		/* XXX We should store these in the pte */ | 
 | 		/* --BenH: I think they are ... */ | 
 | 		rflags |= _PAGE_COHERENT; | 
 |  | 
 | 		/* Insert into the hash table, primary slot */ | 
 | 		slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0, | 
 | 					  mmu_huge_psize); | 
 |  | 
 | 		/* Primary is full, try the secondary */ | 
 | 		if (unlikely(slot == -1)) { | 
 | 			new_pte |= _PAGE_F_SECOND; | 
 | 			hpte_group = ((~hash & htab_hash_mask) * | 
 | 				      HPTES_PER_GROUP) & ~0x7UL;  | 
 | 			slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, | 
 | 						  HPTE_V_SECONDARY, | 
 | 						  mmu_huge_psize); | 
 | 			if (slot == -1) { | 
 | 				if (mftb() & 0x1) | 
 | 					hpte_group = ((hash & htab_hash_mask) * | 
 | 						      HPTES_PER_GROUP)&~0x7UL; | 
 |  | 
 | 				ppc_md.hpte_remove(hpte_group); | 
 | 				goto repeat; | 
 |                         } | 
 | 		} | 
 |  | 
 | 		if (unlikely(slot == -2)) | 
 | 			panic("hash_huge_page: pte_insert failed\n"); | 
 |  | 
 | 		new_pte |= (slot << 12) & _PAGE_F_GIX; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * No need to use ldarx/stdcx here | 
 | 	 */ | 
 | 	*ptep = __pte(new_pte & ~_PAGE_BUSY); | 
 |  | 
 | 	err = 0; | 
 |  | 
 |  out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags) | 
 | { | 
 | 	memset(addr, 0, kmem_cache_size(cache)); | 
 | } | 
 |  | 
 | static int __init hugetlbpage_init(void) | 
 | { | 
 | 	if (!cpu_has_feature(CPU_FTR_16M_PAGE)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	huge_pgtable_cache = kmem_cache_create("hugepte_cache", | 
 | 					       HUGEPTE_TABLE_SIZE, | 
 | 					       HUGEPTE_TABLE_SIZE, | 
 | 					       SLAB_HWCACHE_ALIGN | | 
 | 					       SLAB_MUST_HWCACHE_ALIGN, | 
 | 					       zero_ctor, NULL); | 
 | 	if (! huge_pgtable_cache) | 
 | 		panic("hugetlbpage_init(): could not create hugepte cache\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | module_init(hugetlbpage_init); |