| /* | 
 |  * Copyright (C) 2007 Oracle.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public | 
 |  * License v2 as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public | 
 |  * License along with this program; if not, write to the | 
 |  * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
 |  * Boston, MA 021110-1307, USA. | 
 |  */ | 
 | #include <linux/sched.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/ratelimit.h> | 
 | #include "compat.h" | 
 | #include "hash.h" | 
 | #include "ctree.h" | 
 | #include "disk-io.h" | 
 | #include "print-tree.h" | 
 | #include "transaction.h" | 
 | #include "volumes.h" | 
 | #include "locking.h" | 
 | #include "free-space-cache.h" | 
 |  | 
 | /* control flags for do_chunk_alloc's force field | 
 |  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk | 
 |  * if we really need one. | 
 |  * | 
 |  * CHUNK_ALLOC_FORCE means it must try to allocate one | 
 |  * | 
 |  * CHUNK_ALLOC_LIMITED means to only try and allocate one | 
 |  * if we have very few chunks already allocated.  This is | 
 |  * used as part of the clustering code to help make sure | 
 |  * we have a good pool of storage to cluster in, without | 
 |  * filling the FS with empty chunks | 
 |  * | 
 |  */ | 
 | enum { | 
 | 	CHUNK_ALLOC_NO_FORCE = 0, | 
 | 	CHUNK_ALLOC_FORCE = 1, | 
 | 	CHUNK_ALLOC_LIMITED = 2, | 
 | }; | 
 |  | 
 | /* | 
 |  * Control how reservations are dealt with. | 
 |  * | 
 |  * RESERVE_FREE - freeing a reservation. | 
 |  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for | 
 |  *   ENOSPC accounting | 
 |  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update | 
 |  *   bytes_may_use as the ENOSPC accounting is done elsewhere | 
 |  */ | 
 | enum { | 
 | 	RESERVE_FREE = 0, | 
 | 	RESERVE_ALLOC = 1, | 
 | 	RESERVE_ALLOC_NO_ACCOUNT = 2, | 
 | }; | 
 |  | 
 | static int update_block_group(struct btrfs_trans_handle *trans, | 
 | 			      struct btrfs_root *root, | 
 | 			      u64 bytenr, u64 num_bytes, int alloc); | 
 | static int __btrfs_free_extent(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root, | 
 | 				u64 bytenr, u64 num_bytes, u64 parent, | 
 | 				u64 root_objectid, u64 owner_objectid, | 
 | 				u64 owner_offset, int refs_to_drop, | 
 | 				struct btrfs_delayed_extent_op *extra_op); | 
 | static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, | 
 | 				    struct extent_buffer *leaf, | 
 | 				    struct btrfs_extent_item *ei); | 
 | static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *root, | 
 | 				      u64 parent, u64 root_objectid, | 
 | 				      u64 flags, u64 owner, u64 offset, | 
 | 				      struct btrfs_key *ins, int ref_mod); | 
 | static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, | 
 | 				     struct btrfs_root *root, | 
 | 				     u64 parent, u64 root_objectid, | 
 | 				     u64 flags, struct btrfs_disk_key *key, | 
 | 				     int level, struct btrfs_key *ins); | 
 | static int do_chunk_alloc(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *extent_root, u64 alloc_bytes, | 
 | 			  u64 flags, int force); | 
 | static int find_next_key(struct btrfs_path *path, int level, | 
 | 			 struct btrfs_key *key); | 
 | static void dump_space_info(struct btrfs_space_info *info, u64 bytes, | 
 | 			    int dump_block_groups); | 
 | static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, | 
 | 				       u64 num_bytes, int reserve); | 
 |  | 
 | static noinline int | 
 | block_group_cache_done(struct btrfs_block_group_cache *cache) | 
 | { | 
 | 	smp_mb(); | 
 | 	return cache->cached == BTRFS_CACHE_FINISHED; | 
 | } | 
 |  | 
 | static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) | 
 | { | 
 | 	return (cache->flags & bits) == bits; | 
 | } | 
 |  | 
 | static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) | 
 | { | 
 | 	atomic_inc(&cache->count); | 
 | } | 
 |  | 
 | void btrfs_put_block_group(struct btrfs_block_group_cache *cache) | 
 | { | 
 | 	if (atomic_dec_and_test(&cache->count)) { | 
 | 		WARN_ON(cache->pinned > 0); | 
 | 		WARN_ON(cache->reserved > 0); | 
 | 		kfree(cache->free_space_ctl); | 
 | 		kfree(cache); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * this adds the block group to the fs_info rb tree for the block group | 
 |  * cache | 
 |  */ | 
 | static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, | 
 | 				struct btrfs_block_group_cache *block_group) | 
 | { | 
 | 	struct rb_node **p; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct btrfs_block_group_cache *cache; | 
 |  | 
 | 	spin_lock(&info->block_group_cache_lock); | 
 | 	p = &info->block_group_cache_tree.rb_node; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		cache = rb_entry(parent, struct btrfs_block_group_cache, | 
 | 				 cache_node); | 
 | 		if (block_group->key.objectid < cache->key.objectid) { | 
 | 			p = &(*p)->rb_left; | 
 | 		} else if (block_group->key.objectid > cache->key.objectid) { | 
 | 			p = &(*p)->rb_right; | 
 | 		} else { | 
 | 			spin_unlock(&info->block_group_cache_lock); | 
 | 			return -EEXIST; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rb_link_node(&block_group->cache_node, parent, p); | 
 | 	rb_insert_color(&block_group->cache_node, | 
 | 			&info->block_group_cache_tree); | 
 | 	spin_unlock(&info->block_group_cache_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This will return the block group at or after bytenr if contains is 0, else | 
 |  * it will return the block group that contains the bytenr | 
 |  */ | 
 | static struct btrfs_block_group_cache * | 
 | block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, | 
 | 			      int contains) | 
 | { | 
 | 	struct btrfs_block_group_cache *cache, *ret = NULL; | 
 | 	struct rb_node *n; | 
 | 	u64 end, start; | 
 |  | 
 | 	spin_lock(&info->block_group_cache_lock); | 
 | 	n = info->block_group_cache_tree.rb_node; | 
 |  | 
 | 	while (n) { | 
 | 		cache = rb_entry(n, struct btrfs_block_group_cache, | 
 | 				 cache_node); | 
 | 		end = cache->key.objectid + cache->key.offset - 1; | 
 | 		start = cache->key.objectid; | 
 |  | 
 | 		if (bytenr < start) { | 
 | 			if (!contains && (!ret || start < ret->key.objectid)) | 
 | 				ret = cache; | 
 | 			n = n->rb_left; | 
 | 		} else if (bytenr > start) { | 
 | 			if (contains && bytenr <= end) { | 
 | 				ret = cache; | 
 | 				break; | 
 | 			} | 
 | 			n = n->rb_right; | 
 | 		} else { | 
 | 			ret = cache; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (ret) | 
 | 		btrfs_get_block_group(ret); | 
 | 	spin_unlock(&info->block_group_cache_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int add_excluded_extent(struct btrfs_root *root, | 
 | 			       u64 start, u64 num_bytes) | 
 | { | 
 | 	u64 end = start + num_bytes - 1; | 
 | 	set_extent_bits(&root->fs_info->freed_extents[0], | 
 | 			start, end, EXTENT_UPTODATE, GFP_NOFS); | 
 | 	set_extent_bits(&root->fs_info->freed_extents[1], | 
 | 			start, end, EXTENT_UPTODATE, GFP_NOFS); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_excluded_extents(struct btrfs_root *root, | 
 | 				  struct btrfs_block_group_cache *cache) | 
 | { | 
 | 	u64 start, end; | 
 |  | 
 | 	start = cache->key.objectid; | 
 | 	end = start + cache->key.offset - 1; | 
 |  | 
 | 	clear_extent_bits(&root->fs_info->freed_extents[0], | 
 | 			  start, end, EXTENT_UPTODATE, GFP_NOFS); | 
 | 	clear_extent_bits(&root->fs_info->freed_extents[1], | 
 | 			  start, end, EXTENT_UPTODATE, GFP_NOFS); | 
 | } | 
 |  | 
 | static int exclude_super_stripes(struct btrfs_root *root, | 
 | 				 struct btrfs_block_group_cache *cache) | 
 | { | 
 | 	u64 bytenr; | 
 | 	u64 *logical; | 
 | 	int stripe_len; | 
 | 	int i, nr, ret; | 
 |  | 
 | 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { | 
 | 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; | 
 | 		cache->bytes_super += stripe_len; | 
 | 		ret = add_excluded_extent(root, cache->key.objectid, | 
 | 					  stripe_len); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { | 
 | 		bytenr = btrfs_sb_offset(i); | 
 | 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree, | 
 | 				       cache->key.objectid, bytenr, | 
 | 				       0, &logical, &nr, &stripe_len); | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		while (nr--) { | 
 | 			cache->bytes_super += stripe_len; | 
 | 			ret = add_excluded_extent(root, logical[nr], | 
 | 						  stripe_len); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 |  | 
 | 		kfree(logical); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct btrfs_caching_control * | 
 | get_caching_control(struct btrfs_block_group_cache *cache) | 
 | { | 
 | 	struct btrfs_caching_control *ctl; | 
 |  | 
 | 	spin_lock(&cache->lock); | 
 | 	if (cache->cached != BTRFS_CACHE_STARTED) { | 
 | 		spin_unlock(&cache->lock); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* We're loading it the fast way, so we don't have a caching_ctl. */ | 
 | 	if (!cache->caching_ctl) { | 
 | 		spin_unlock(&cache->lock); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	ctl = cache->caching_ctl; | 
 | 	atomic_inc(&ctl->count); | 
 | 	spin_unlock(&cache->lock); | 
 | 	return ctl; | 
 | } | 
 |  | 
 | static void put_caching_control(struct btrfs_caching_control *ctl) | 
 | { | 
 | 	if (atomic_dec_and_test(&ctl->count)) | 
 | 		kfree(ctl); | 
 | } | 
 |  | 
 | /* | 
 |  * this is only called by cache_block_group, since we could have freed extents | 
 |  * we need to check the pinned_extents for any extents that can't be used yet | 
 |  * since their free space will be released as soon as the transaction commits. | 
 |  */ | 
 | static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, | 
 | 			      struct btrfs_fs_info *info, u64 start, u64 end) | 
 | { | 
 | 	u64 extent_start, extent_end, size, total_added = 0; | 
 | 	int ret; | 
 |  | 
 | 	while (start < end) { | 
 | 		ret = find_first_extent_bit(info->pinned_extents, start, | 
 | 					    &extent_start, &extent_end, | 
 | 					    EXTENT_DIRTY | EXTENT_UPTODATE); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		if (extent_start <= start) { | 
 | 			start = extent_end + 1; | 
 | 		} else if (extent_start > start && extent_start < end) { | 
 | 			size = extent_start - start; | 
 | 			total_added += size; | 
 | 			ret = btrfs_add_free_space(block_group, start, | 
 | 						   size); | 
 | 			BUG_ON(ret); | 
 | 			start = extent_end + 1; | 
 | 		} else { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (start < end) { | 
 | 		size = end - start; | 
 | 		total_added += size; | 
 | 		ret = btrfs_add_free_space(block_group, start, size); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 |  | 
 | 	return total_added; | 
 | } | 
 |  | 
 | static noinline void caching_thread(struct btrfs_work *work) | 
 | { | 
 | 	struct btrfs_block_group_cache *block_group; | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct btrfs_caching_control *caching_ctl; | 
 | 	struct btrfs_root *extent_root; | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 | 	u64 total_found = 0; | 
 | 	u64 last = 0; | 
 | 	u32 nritems; | 
 | 	int ret = 0; | 
 |  | 
 | 	caching_ctl = container_of(work, struct btrfs_caching_control, work); | 
 | 	block_group = caching_ctl->block_group; | 
 | 	fs_info = block_group->fs_info; | 
 | 	extent_root = fs_info->extent_root; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		goto out; | 
 |  | 
 | 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); | 
 |  | 
 | 	/* | 
 | 	 * We don't want to deadlock with somebody trying to allocate a new | 
 | 	 * extent for the extent root while also trying to search the extent | 
 | 	 * root to add free space.  So we skip locking and search the commit | 
 | 	 * root, since its read-only | 
 | 	 */ | 
 | 	path->skip_locking = 1; | 
 | 	path->search_commit_root = 1; | 
 | 	path->reada = 1; | 
 |  | 
 | 	key.objectid = last; | 
 | 	key.offset = 0; | 
 | 	key.type = BTRFS_EXTENT_ITEM_KEY; | 
 | again: | 
 | 	mutex_lock(&caching_ctl->mutex); | 
 | 	/* need to make sure the commit_root doesn't disappear */ | 
 | 	down_read(&fs_info->extent_commit_sem); | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto err; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	nritems = btrfs_header_nritems(leaf); | 
 |  | 
 | 	while (1) { | 
 | 		if (btrfs_fs_closing(fs_info) > 1) { | 
 | 			last = (u64)-1; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (path->slots[0] < nritems) { | 
 | 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 | 		} else { | 
 | 			ret = find_next_key(path, 0, &key); | 
 | 			if (ret) | 
 | 				break; | 
 |  | 
 | 			if (need_resched() || | 
 | 			    btrfs_next_leaf(extent_root, path)) { | 
 | 				caching_ctl->progress = last; | 
 | 				btrfs_release_path(path); | 
 | 				up_read(&fs_info->extent_commit_sem); | 
 | 				mutex_unlock(&caching_ctl->mutex); | 
 | 				cond_resched(); | 
 | 				goto again; | 
 | 			} | 
 | 			leaf = path->nodes[0]; | 
 | 			nritems = btrfs_header_nritems(leaf); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (key.objectid < block_group->key.objectid) { | 
 | 			path->slots[0]++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (key.objectid >= block_group->key.objectid + | 
 | 		    block_group->key.offset) | 
 | 			break; | 
 |  | 
 | 		if (key.type == BTRFS_EXTENT_ITEM_KEY) { | 
 | 			total_found += add_new_free_space(block_group, | 
 | 							  fs_info, last, | 
 | 							  key.objectid); | 
 | 			last = key.objectid + key.offset; | 
 |  | 
 | 			if (total_found > (1024 * 1024 * 2)) { | 
 | 				total_found = 0; | 
 | 				wake_up(&caching_ctl->wait); | 
 | 			} | 
 | 		} | 
 | 		path->slots[0]++; | 
 | 	} | 
 | 	ret = 0; | 
 |  | 
 | 	total_found += add_new_free_space(block_group, fs_info, last, | 
 | 					  block_group->key.objectid + | 
 | 					  block_group->key.offset); | 
 | 	caching_ctl->progress = (u64)-1; | 
 |  | 
 | 	spin_lock(&block_group->lock); | 
 | 	block_group->caching_ctl = NULL; | 
 | 	block_group->cached = BTRFS_CACHE_FINISHED; | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | err: | 
 | 	btrfs_free_path(path); | 
 | 	up_read(&fs_info->extent_commit_sem); | 
 |  | 
 | 	free_excluded_extents(extent_root, block_group); | 
 |  | 
 | 	mutex_unlock(&caching_ctl->mutex); | 
 | out: | 
 | 	wake_up(&caching_ctl->wait); | 
 |  | 
 | 	put_caching_control(caching_ctl); | 
 | 	btrfs_put_block_group(block_group); | 
 | } | 
 |  | 
 | static int cache_block_group(struct btrfs_block_group_cache *cache, | 
 | 			     struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_root *root, | 
 | 			     int load_cache_only) | 
 | { | 
 | 	DEFINE_WAIT(wait); | 
 | 	struct btrfs_fs_info *fs_info = cache->fs_info; | 
 | 	struct btrfs_caching_control *caching_ctl; | 
 | 	int ret = 0; | 
 |  | 
 | 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); | 
 | 	BUG_ON(!caching_ctl); | 
 |  | 
 | 	INIT_LIST_HEAD(&caching_ctl->list); | 
 | 	mutex_init(&caching_ctl->mutex); | 
 | 	init_waitqueue_head(&caching_ctl->wait); | 
 | 	caching_ctl->block_group = cache; | 
 | 	caching_ctl->progress = cache->key.objectid; | 
 | 	atomic_set(&caching_ctl->count, 1); | 
 | 	caching_ctl->work.func = caching_thread; | 
 |  | 
 | 	spin_lock(&cache->lock); | 
 | 	/* | 
 | 	 * This should be a rare occasion, but this could happen I think in the | 
 | 	 * case where one thread starts to load the space cache info, and then | 
 | 	 * some other thread starts a transaction commit which tries to do an | 
 | 	 * allocation while the other thread is still loading the space cache | 
 | 	 * info.  The previous loop should have kept us from choosing this block | 
 | 	 * group, but if we've moved to the state where we will wait on caching | 
 | 	 * block groups we need to first check if we're doing a fast load here, | 
 | 	 * so we can wait for it to finish, otherwise we could end up allocating | 
 | 	 * from a block group who's cache gets evicted for one reason or | 
 | 	 * another. | 
 | 	 */ | 
 | 	while (cache->cached == BTRFS_CACHE_FAST) { | 
 | 		struct btrfs_caching_control *ctl; | 
 |  | 
 | 		ctl = cache->caching_ctl; | 
 | 		atomic_inc(&ctl->count); | 
 | 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); | 
 | 		spin_unlock(&cache->lock); | 
 |  | 
 | 		schedule(); | 
 |  | 
 | 		finish_wait(&ctl->wait, &wait); | 
 | 		put_caching_control(ctl); | 
 | 		spin_lock(&cache->lock); | 
 | 	} | 
 |  | 
 | 	if (cache->cached != BTRFS_CACHE_NO) { | 
 | 		spin_unlock(&cache->lock); | 
 | 		kfree(caching_ctl); | 
 | 		return 0; | 
 | 	} | 
 | 	WARN_ON(cache->caching_ctl); | 
 | 	cache->caching_ctl = caching_ctl; | 
 | 	cache->cached = BTRFS_CACHE_FAST; | 
 | 	spin_unlock(&cache->lock); | 
 |  | 
 | 	/* | 
 | 	 * We can't do the read from on-disk cache during a commit since we need | 
 | 	 * to have the normal tree locking.  Also if we are currently trying to | 
 | 	 * allocate blocks for the tree root we can't do the fast caching since | 
 | 	 * we likely hold important locks. | 
 | 	 */ | 
 | 	if (trans && (!trans->transaction->in_commit) && | 
 | 	    (root && root != root->fs_info->tree_root) && | 
 | 	    btrfs_test_opt(root, SPACE_CACHE)) { | 
 | 		ret = load_free_space_cache(fs_info, cache); | 
 |  | 
 | 		spin_lock(&cache->lock); | 
 | 		if (ret == 1) { | 
 | 			cache->caching_ctl = NULL; | 
 | 			cache->cached = BTRFS_CACHE_FINISHED; | 
 | 			cache->last_byte_to_unpin = (u64)-1; | 
 | 		} else { | 
 | 			if (load_cache_only) { | 
 | 				cache->caching_ctl = NULL; | 
 | 				cache->cached = BTRFS_CACHE_NO; | 
 | 			} else { | 
 | 				cache->cached = BTRFS_CACHE_STARTED; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock(&cache->lock); | 
 | 		wake_up(&caching_ctl->wait); | 
 | 		if (ret == 1) { | 
 | 			put_caching_control(caching_ctl); | 
 | 			free_excluded_extents(fs_info->extent_root, cache); | 
 | 			return 0; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * We are not going to do the fast caching, set cached to the | 
 | 		 * appropriate value and wakeup any waiters. | 
 | 		 */ | 
 | 		spin_lock(&cache->lock); | 
 | 		if (load_cache_only) { | 
 | 			cache->caching_ctl = NULL; | 
 | 			cache->cached = BTRFS_CACHE_NO; | 
 | 		} else { | 
 | 			cache->cached = BTRFS_CACHE_STARTED; | 
 | 		} | 
 | 		spin_unlock(&cache->lock); | 
 | 		wake_up(&caching_ctl->wait); | 
 | 	} | 
 |  | 
 | 	if (load_cache_only) { | 
 | 		put_caching_control(caching_ctl); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	down_write(&fs_info->extent_commit_sem); | 
 | 	atomic_inc(&caching_ctl->count); | 
 | 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); | 
 | 	up_write(&fs_info->extent_commit_sem); | 
 |  | 
 | 	btrfs_get_block_group(cache); | 
 |  | 
 | 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * return the block group that starts at or after bytenr | 
 |  */ | 
 | static struct btrfs_block_group_cache * | 
 | btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) | 
 | { | 
 | 	struct btrfs_block_group_cache *cache; | 
 |  | 
 | 	cache = block_group_cache_tree_search(info, bytenr, 0); | 
 |  | 
 | 	return cache; | 
 | } | 
 |  | 
 | /* | 
 |  * return the block group that contains the given bytenr | 
 |  */ | 
 | struct btrfs_block_group_cache *btrfs_lookup_block_group( | 
 | 						 struct btrfs_fs_info *info, | 
 | 						 u64 bytenr) | 
 | { | 
 | 	struct btrfs_block_group_cache *cache; | 
 |  | 
 | 	cache = block_group_cache_tree_search(info, bytenr, 1); | 
 |  | 
 | 	return cache; | 
 | } | 
 |  | 
 | static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, | 
 | 						  u64 flags) | 
 | { | 
 | 	struct list_head *head = &info->space_info; | 
 | 	struct btrfs_space_info *found; | 
 |  | 
 | 	flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM | | 
 | 		 BTRFS_BLOCK_GROUP_METADATA; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(found, head, list) { | 
 | 		if (found->flags & flags) { | 
 | 			rcu_read_unlock(); | 
 | 			return found; | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * after adding space to the filesystem, we need to clear the full flags | 
 |  * on all the space infos. | 
 |  */ | 
 | void btrfs_clear_space_info_full(struct btrfs_fs_info *info) | 
 | { | 
 | 	struct list_head *head = &info->space_info; | 
 | 	struct btrfs_space_info *found; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(found, head, list) | 
 | 		found->full = 0; | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static u64 div_factor(u64 num, int factor) | 
 | { | 
 | 	if (factor == 10) | 
 | 		return num; | 
 | 	num *= factor; | 
 | 	do_div(num, 10); | 
 | 	return num; | 
 | } | 
 |  | 
 | static u64 div_factor_fine(u64 num, int factor) | 
 | { | 
 | 	if (factor == 100) | 
 | 		return num; | 
 | 	num *= factor; | 
 | 	do_div(num, 100); | 
 | 	return num; | 
 | } | 
 |  | 
 | u64 btrfs_find_block_group(struct btrfs_root *root, | 
 | 			   u64 search_start, u64 search_hint, int owner) | 
 | { | 
 | 	struct btrfs_block_group_cache *cache; | 
 | 	u64 used; | 
 | 	u64 last = max(search_hint, search_start); | 
 | 	u64 group_start = 0; | 
 | 	int full_search = 0; | 
 | 	int factor = 9; | 
 | 	int wrapped = 0; | 
 | again: | 
 | 	while (1) { | 
 | 		cache = btrfs_lookup_first_block_group(root->fs_info, last); | 
 | 		if (!cache) | 
 | 			break; | 
 |  | 
 | 		spin_lock(&cache->lock); | 
 | 		last = cache->key.objectid + cache->key.offset; | 
 | 		used = btrfs_block_group_used(&cache->item); | 
 |  | 
 | 		if ((full_search || !cache->ro) && | 
 | 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { | 
 | 			if (used + cache->pinned + cache->reserved < | 
 | 			    div_factor(cache->key.offset, factor)) { | 
 | 				group_start = cache->key.objectid; | 
 | 				spin_unlock(&cache->lock); | 
 | 				btrfs_put_block_group(cache); | 
 | 				goto found; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock(&cache->lock); | 
 | 		btrfs_put_block_group(cache); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	if (!wrapped) { | 
 | 		last = search_start; | 
 | 		wrapped = 1; | 
 | 		goto again; | 
 | 	} | 
 | 	if (!full_search && factor < 10) { | 
 | 		last = search_start; | 
 | 		full_search = 1; | 
 | 		factor = 10; | 
 | 		goto again; | 
 | 	} | 
 | found: | 
 | 	return group_start; | 
 | } | 
 |  | 
 | /* simple helper to search for an existing extent at a given offset */ | 
 | int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_path *path; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = start; | 
 | 	key.offset = len; | 
 | 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); | 
 | 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, | 
 | 				0, 0); | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to lookup reference count and flags of extent. | 
 |  * | 
 |  * the head node for delayed ref is used to store the sum of all the | 
 |  * reference count modifications queued up in the rbtree. the head | 
 |  * node may also store the extent flags to set. This way you can check | 
 |  * to see what the reference count and extent flags would be if all of | 
 |  * the delayed refs are not processed. | 
 |  */ | 
 | int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_root *root, u64 bytenr, | 
 | 			     u64 num_bytes, u64 *refs, u64 *flags) | 
 | { | 
 | 	struct btrfs_delayed_ref_head *head; | 
 | 	struct btrfs_delayed_ref_root *delayed_refs; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_extent_item *ei; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 | 	u32 item_size; | 
 | 	u64 num_refs; | 
 | 	u64 extent_flags; | 
 | 	int ret; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = bytenr; | 
 | 	key.type = BTRFS_EXTENT_ITEM_KEY; | 
 | 	key.offset = num_bytes; | 
 | 	if (!trans) { | 
 | 		path->skip_locking = 1; | 
 | 		path->search_commit_root = 1; | 
 | 	} | 
 | again: | 
 | 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, | 
 | 				&key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out_free; | 
 |  | 
 | 	if (ret == 0) { | 
 | 		leaf = path->nodes[0]; | 
 | 		item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
 | 		if (item_size >= sizeof(*ei)) { | 
 | 			ei = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					    struct btrfs_extent_item); | 
 | 			num_refs = btrfs_extent_refs(leaf, ei); | 
 | 			extent_flags = btrfs_extent_flags(leaf, ei); | 
 | 		} else { | 
 | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
 | 			struct btrfs_extent_item_v0 *ei0; | 
 | 			BUG_ON(item_size != sizeof(*ei0)); | 
 | 			ei0 = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					     struct btrfs_extent_item_v0); | 
 | 			num_refs = btrfs_extent_refs_v0(leaf, ei0); | 
 | 			/* FIXME: this isn't correct for data */ | 
 | 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
 | #else | 
 | 			BUG(); | 
 | #endif | 
 | 		} | 
 | 		BUG_ON(num_refs == 0); | 
 | 	} else { | 
 | 		num_refs = 0; | 
 | 		extent_flags = 0; | 
 | 		ret = 0; | 
 | 	} | 
 |  | 
 | 	if (!trans) | 
 | 		goto out; | 
 |  | 
 | 	delayed_refs = &trans->transaction->delayed_refs; | 
 | 	spin_lock(&delayed_refs->lock); | 
 | 	head = btrfs_find_delayed_ref_head(trans, bytenr); | 
 | 	if (head) { | 
 | 		if (!mutex_trylock(&head->mutex)) { | 
 | 			atomic_inc(&head->node.refs); | 
 | 			spin_unlock(&delayed_refs->lock); | 
 |  | 
 | 			btrfs_release_path(path); | 
 |  | 
 | 			/* | 
 | 			 * Mutex was contended, block until it's released and try | 
 | 			 * again | 
 | 			 */ | 
 | 			mutex_lock(&head->mutex); | 
 | 			mutex_unlock(&head->mutex); | 
 | 			btrfs_put_delayed_ref(&head->node); | 
 | 			goto again; | 
 | 		} | 
 | 		if (head->extent_op && head->extent_op->update_flags) | 
 | 			extent_flags |= head->extent_op->flags_to_set; | 
 | 		else | 
 | 			BUG_ON(num_refs == 0); | 
 |  | 
 | 		num_refs += head->node.ref_mod; | 
 | 		mutex_unlock(&head->mutex); | 
 | 	} | 
 | 	spin_unlock(&delayed_refs->lock); | 
 | out: | 
 | 	WARN_ON(num_refs == 0); | 
 | 	if (refs) | 
 | 		*refs = num_refs; | 
 | 	if (flags) | 
 | 		*flags = extent_flags; | 
 | out_free: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Back reference rules.  Back refs have three main goals: | 
 |  * | 
 |  * 1) differentiate between all holders of references to an extent so that | 
 |  *    when a reference is dropped we can make sure it was a valid reference | 
 |  *    before freeing the extent. | 
 |  * | 
 |  * 2) Provide enough information to quickly find the holders of an extent | 
 |  *    if we notice a given block is corrupted or bad. | 
 |  * | 
 |  * 3) Make it easy to migrate blocks for FS shrinking or storage pool | 
 |  *    maintenance.  This is actually the same as #2, but with a slightly | 
 |  *    different use case. | 
 |  * | 
 |  * There are two kinds of back refs. The implicit back refs is optimized | 
 |  * for pointers in non-shared tree blocks. For a given pointer in a block, | 
 |  * back refs of this kind provide information about the block's owner tree | 
 |  * and the pointer's key. These information allow us to find the block by | 
 |  * b-tree searching. The full back refs is for pointers in tree blocks not | 
 |  * referenced by their owner trees. The location of tree block is recorded | 
 |  * in the back refs. Actually the full back refs is generic, and can be | 
 |  * used in all cases the implicit back refs is used. The major shortcoming | 
 |  * of the full back refs is its overhead. Every time a tree block gets | 
 |  * COWed, we have to update back refs entry for all pointers in it. | 
 |  * | 
 |  * For a newly allocated tree block, we use implicit back refs for | 
 |  * pointers in it. This means most tree related operations only involve | 
 |  * implicit back refs. For a tree block created in old transaction, the | 
 |  * only way to drop a reference to it is COW it. So we can detect the | 
 |  * event that tree block loses its owner tree's reference and do the | 
 |  * back refs conversion. | 
 |  * | 
 |  * When a tree block is COW'd through a tree, there are four cases: | 
 |  * | 
 |  * The reference count of the block is one and the tree is the block's | 
 |  * owner tree. Nothing to do in this case. | 
 |  * | 
 |  * The reference count of the block is one and the tree is not the | 
 |  * block's owner tree. In this case, full back refs is used for pointers | 
 |  * in the block. Remove these full back refs, add implicit back refs for | 
 |  * every pointers in the new block. | 
 |  * | 
 |  * The reference count of the block is greater than one and the tree is | 
 |  * the block's owner tree. In this case, implicit back refs is used for | 
 |  * pointers in the block. Add full back refs for every pointers in the | 
 |  * block, increase lower level extents' reference counts. The original | 
 |  * implicit back refs are entailed to the new block. | 
 |  * | 
 |  * The reference count of the block is greater than one and the tree is | 
 |  * not the block's owner tree. Add implicit back refs for every pointer in | 
 |  * the new block, increase lower level extents' reference count. | 
 |  * | 
 |  * Back Reference Key composing: | 
 |  * | 
 |  * The key objectid corresponds to the first byte in the extent, | 
 |  * The key type is used to differentiate between types of back refs. | 
 |  * There are different meanings of the key offset for different types | 
 |  * of back refs. | 
 |  * | 
 |  * File extents can be referenced by: | 
 |  * | 
 |  * - multiple snapshots, subvolumes, or different generations in one subvol | 
 |  * - different files inside a single subvolume | 
 |  * - different offsets inside a file (bookend extents in file.c) | 
 |  * | 
 |  * The extent ref structure for the implicit back refs has fields for: | 
 |  * | 
 |  * - Objectid of the subvolume root | 
 |  * - objectid of the file holding the reference | 
 |  * - original offset in the file | 
 |  * - how many bookend extents | 
 |  * | 
 |  * The key offset for the implicit back refs is hash of the first | 
 |  * three fields. | 
 |  * | 
 |  * The extent ref structure for the full back refs has field for: | 
 |  * | 
 |  * - number of pointers in the tree leaf | 
 |  * | 
 |  * The key offset for the implicit back refs is the first byte of | 
 |  * the tree leaf | 
 |  * | 
 |  * When a file extent is allocated, The implicit back refs is used. | 
 |  * the fields are filled in: | 
 |  * | 
 |  *     (root_key.objectid, inode objectid, offset in file, 1) | 
 |  * | 
 |  * When a file extent is removed file truncation, we find the | 
 |  * corresponding implicit back refs and check the following fields: | 
 |  * | 
 |  *     (btrfs_header_owner(leaf), inode objectid, offset in file) | 
 |  * | 
 |  * Btree extents can be referenced by: | 
 |  * | 
 |  * - Different subvolumes | 
 |  * | 
 |  * Both the implicit back refs and the full back refs for tree blocks | 
 |  * only consist of key. The key offset for the implicit back refs is | 
 |  * objectid of block's owner tree. The key offset for the full back refs | 
 |  * is the first byte of parent block. | 
 |  * | 
 |  * When implicit back refs is used, information about the lowest key and | 
 |  * level of the tree block are required. These information are stored in | 
 |  * tree block info structure. | 
 |  */ | 
 |  | 
 | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
 | static int convert_extent_item_v0(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_root *root, | 
 | 				  struct btrfs_path *path, | 
 | 				  u64 owner, u32 extra_size) | 
 | { | 
 | 	struct btrfs_extent_item *item; | 
 | 	struct btrfs_extent_item_v0 *ei0; | 
 | 	struct btrfs_extent_ref_v0 *ref0; | 
 | 	struct btrfs_tree_block_info *bi; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	u32 new_size = sizeof(*item); | 
 | 	u64 refs; | 
 | 	int ret; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); | 
 |  | 
 | 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 | 	ei0 = btrfs_item_ptr(leaf, path->slots[0], | 
 | 			     struct btrfs_extent_item_v0); | 
 | 	refs = btrfs_extent_refs_v0(leaf, ei0); | 
 |  | 
 | 	if (owner == (u64)-1) { | 
 | 		while (1) { | 
 | 			if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
 | 				ret = btrfs_next_leaf(root, path); | 
 | 				if (ret < 0) | 
 | 					return ret; | 
 | 				BUG_ON(ret > 0); | 
 | 				leaf = path->nodes[0]; | 
 | 			} | 
 | 			btrfs_item_key_to_cpu(leaf, &found_key, | 
 | 					      path->slots[0]); | 
 | 			BUG_ON(key.objectid != found_key.objectid); | 
 | 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { | 
 | 				path->slots[0]++; | 
 | 				continue; | 
 | 			} | 
 | 			ref0 = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					      struct btrfs_extent_ref_v0); | 
 | 			owner = btrfs_ref_objectid_v0(leaf, ref0); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	if (owner < BTRFS_FIRST_FREE_OBJECTID) | 
 | 		new_size += sizeof(*bi); | 
 |  | 
 | 	new_size -= sizeof(*ei0); | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, | 
 | 				new_size + extra_size, 1); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	ret = btrfs_extend_item(trans, root, path, new_size); | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
 | 	btrfs_set_extent_refs(leaf, item, refs); | 
 | 	/* FIXME: get real generation */ | 
 | 	btrfs_set_extent_generation(leaf, item, 0); | 
 | 	if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		btrfs_set_extent_flags(leaf, item, | 
 | 				       BTRFS_EXTENT_FLAG_TREE_BLOCK | | 
 | 				       BTRFS_BLOCK_FLAG_FULL_BACKREF); | 
 | 		bi = (struct btrfs_tree_block_info *)(item + 1); | 
 | 		/* FIXME: get first key of the block */ | 
 | 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); | 
 | 		btrfs_set_tree_block_level(leaf, bi, (int)owner); | 
 | 	} else { | 
 | 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); | 
 | 	} | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) | 
 | { | 
 | 	u32 high_crc = ~(u32)0; | 
 | 	u32 low_crc = ~(u32)0; | 
 | 	__le64 lenum; | 
 |  | 
 | 	lenum = cpu_to_le64(root_objectid); | 
 | 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); | 
 | 	lenum = cpu_to_le64(owner); | 
 | 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); | 
 | 	lenum = cpu_to_le64(offset); | 
 | 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); | 
 |  | 
 | 	return ((u64)high_crc << 31) ^ (u64)low_crc; | 
 | } | 
 |  | 
 | static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, | 
 | 				     struct btrfs_extent_data_ref *ref) | 
 | { | 
 | 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), | 
 | 				    btrfs_extent_data_ref_objectid(leaf, ref), | 
 | 				    btrfs_extent_data_ref_offset(leaf, ref)); | 
 | } | 
 |  | 
 | static int match_extent_data_ref(struct extent_buffer *leaf, | 
 | 				 struct btrfs_extent_data_ref *ref, | 
 | 				 u64 root_objectid, u64 owner, u64 offset) | 
 | { | 
 | 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || | 
 | 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner || | 
 | 	    btrfs_extent_data_ref_offset(leaf, ref) != offset) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, | 
 | 					   struct btrfs_root *root, | 
 | 					   struct btrfs_path *path, | 
 | 					   u64 bytenr, u64 parent, | 
 | 					   u64 root_objectid, | 
 | 					   u64 owner, u64 offset) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_extent_data_ref *ref; | 
 | 	struct extent_buffer *leaf; | 
 | 	u32 nritems; | 
 | 	int ret; | 
 | 	int recow; | 
 | 	int err = -ENOENT; | 
 |  | 
 | 	key.objectid = bytenr; | 
 | 	if (parent) { | 
 | 		key.type = BTRFS_SHARED_DATA_REF_KEY; | 
 | 		key.offset = parent; | 
 | 	} else { | 
 | 		key.type = BTRFS_EXTENT_DATA_REF_KEY; | 
 | 		key.offset = hash_extent_data_ref(root_objectid, | 
 | 						  owner, offset); | 
 | 	} | 
 | again: | 
 | 	recow = 0; | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 	if (ret < 0) { | 
 | 		err = ret; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	if (parent) { | 
 | 		if (!ret) | 
 | 			return 0; | 
 | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
 | 		key.type = BTRFS_EXTENT_REF_V0_KEY; | 
 | 		btrfs_release_path(path); | 
 | 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 		if (ret < 0) { | 
 | 			err = ret; | 
 | 			goto fail; | 
 | 		} | 
 | 		if (!ret) | 
 | 			return 0; | 
 | #endif | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	nritems = btrfs_header_nritems(leaf); | 
 | 	while (1) { | 
 | 		if (path->slots[0] >= nritems) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) | 
 | 				err = ret; | 
 | 			if (ret) | 
 | 				goto fail; | 
 |  | 
 | 			leaf = path->nodes[0]; | 
 | 			nritems = btrfs_header_nritems(leaf); | 
 | 			recow = 1; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 | 		if (key.objectid != bytenr || | 
 | 		    key.type != BTRFS_EXTENT_DATA_REF_KEY) | 
 | 			goto fail; | 
 |  | 
 | 		ref = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				     struct btrfs_extent_data_ref); | 
 |  | 
 | 		if (match_extent_data_ref(leaf, ref, root_objectid, | 
 | 					  owner, offset)) { | 
 | 			if (recow) { | 
 | 				btrfs_release_path(path); | 
 | 				goto again; | 
 | 			} | 
 | 			err = 0; | 
 | 			break; | 
 | 		} | 
 | 		path->slots[0]++; | 
 | 	} | 
 | fail: | 
 | 	return err; | 
 | } | 
 |  | 
 | static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, | 
 | 					   struct btrfs_root *root, | 
 | 					   struct btrfs_path *path, | 
 | 					   u64 bytenr, u64 parent, | 
 | 					   u64 root_objectid, u64 owner, | 
 | 					   u64 offset, int refs_to_add) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct extent_buffer *leaf; | 
 | 	u32 size; | 
 | 	u32 num_refs; | 
 | 	int ret; | 
 |  | 
 | 	key.objectid = bytenr; | 
 | 	if (parent) { | 
 | 		key.type = BTRFS_SHARED_DATA_REF_KEY; | 
 | 		key.offset = parent; | 
 | 		size = sizeof(struct btrfs_shared_data_ref); | 
 | 	} else { | 
 | 		key.type = BTRFS_EXTENT_DATA_REF_KEY; | 
 | 		key.offset = hash_extent_data_ref(root_objectid, | 
 | 						  owner, offset); | 
 | 		size = sizeof(struct btrfs_extent_data_ref); | 
 | 	} | 
 |  | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, &key, size); | 
 | 	if (ret && ret != -EEXIST) | 
 | 		goto fail; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	if (parent) { | 
 | 		struct btrfs_shared_data_ref *ref; | 
 | 		ref = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				     struct btrfs_shared_data_ref); | 
 | 		if (ret == 0) { | 
 | 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); | 
 | 		} else { | 
 | 			num_refs = btrfs_shared_data_ref_count(leaf, ref); | 
 | 			num_refs += refs_to_add; | 
 | 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs); | 
 | 		} | 
 | 	} else { | 
 | 		struct btrfs_extent_data_ref *ref; | 
 | 		while (ret == -EEXIST) { | 
 | 			ref = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					     struct btrfs_extent_data_ref); | 
 | 			if (match_extent_data_ref(leaf, ref, root_objectid, | 
 | 						  owner, offset)) | 
 | 				break; | 
 | 			btrfs_release_path(path); | 
 | 			key.offset++; | 
 | 			ret = btrfs_insert_empty_item(trans, root, path, &key, | 
 | 						      size); | 
 | 			if (ret && ret != -EEXIST) | 
 | 				goto fail; | 
 |  | 
 | 			leaf = path->nodes[0]; | 
 | 		} | 
 | 		ref = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				     struct btrfs_extent_data_ref); | 
 | 		if (ret == 0) { | 
 | 			btrfs_set_extent_data_ref_root(leaf, ref, | 
 | 						       root_objectid); | 
 | 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner); | 
 | 			btrfs_set_extent_data_ref_offset(leaf, ref, offset); | 
 | 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); | 
 | 		} else { | 
 | 			num_refs = btrfs_extent_data_ref_count(leaf, ref); | 
 | 			num_refs += refs_to_add; | 
 | 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs); | 
 | 		} | 
 | 	} | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | 	ret = 0; | 
 | fail: | 
 | 	btrfs_release_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, | 
 | 					   struct btrfs_root *root, | 
 | 					   struct btrfs_path *path, | 
 | 					   int refs_to_drop) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_extent_data_ref *ref1 = NULL; | 
 | 	struct btrfs_shared_data_ref *ref2 = NULL; | 
 | 	struct extent_buffer *leaf; | 
 | 	u32 num_refs = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 |  | 
 | 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { | 
 | 		ref1 = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				      struct btrfs_extent_data_ref); | 
 | 		num_refs = btrfs_extent_data_ref_count(leaf, ref1); | 
 | 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { | 
 | 		ref2 = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				      struct btrfs_shared_data_ref); | 
 | 		num_refs = btrfs_shared_data_ref_count(leaf, ref2); | 
 | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
 | 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { | 
 | 		struct btrfs_extent_ref_v0 *ref0; | 
 | 		ref0 = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				      struct btrfs_extent_ref_v0); | 
 | 		num_refs = btrfs_ref_count_v0(leaf, ref0); | 
 | #endif | 
 | 	} else { | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	BUG_ON(num_refs < refs_to_drop); | 
 | 	num_refs -= refs_to_drop; | 
 |  | 
 | 	if (num_refs == 0) { | 
 | 		ret = btrfs_del_item(trans, root, path); | 
 | 	} else { | 
 | 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY) | 
 | 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); | 
 | 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY) | 
 | 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); | 
 | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
 | 		else { | 
 | 			struct btrfs_extent_ref_v0 *ref0; | 
 | 			ref0 = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					struct btrfs_extent_ref_v0); | 
 | 			btrfs_set_ref_count_v0(leaf, ref0, num_refs); | 
 | 		} | 
 | #endif | 
 | 		btrfs_mark_buffer_dirty(leaf); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline u32 extent_data_ref_count(struct btrfs_root *root, | 
 | 					  struct btrfs_path *path, | 
 | 					  struct btrfs_extent_inline_ref *iref) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_extent_data_ref *ref1; | 
 | 	struct btrfs_shared_data_ref *ref2; | 
 | 	u32 num_refs = 0; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 | 	if (iref) { | 
 | 		if (btrfs_extent_inline_ref_type(leaf, iref) == | 
 | 		    BTRFS_EXTENT_DATA_REF_KEY) { | 
 | 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); | 
 | 			num_refs = btrfs_extent_data_ref_count(leaf, ref1); | 
 | 		} else { | 
 | 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1); | 
 | 			num_refs = btrfs_shared_data_ref_count(leaf, ref2); | 
 | 		} | 
 | 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { | 
 | 		ref1 = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				      struct btrfs_extent_data_ref); | 
 | 		num_refs = btrfs_extent_data_ref_count(leaf, ref1); | 
 | 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { | 
 | 		ref2 = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				      struct btrfs_shared_data_ref); | 
 | 		num_refs = btrfs_shared_data_ref_count(leaf, ref2); | 
 | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
 | 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { | 
 | 		struct btrfs_extent_ref_v0 *ref0; | 
 | 		ref0 = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				      struct btrfs_extent_ref_v0); | 
 | 		num_refs = btrfs_ref_count_v0(leaf, ref0); | 
 | #endif | 
 | 	} else { | 
 | 		WARN_ON(1); | 
 | 	} | 
 | 	return num_refs; | 
 | } | 
 |  | 
 | static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, | 
 | 					  struct btrfs_root *root, | 
 | 					  struct btrfs_path *path, | 
 | 					  u64 bytenr, u64 parent, | 
 | 					  u64 root_objectid) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	int ret; | 
 |  | 
 | 	key.objectid = bytenr; | 
 | 	if (parent) { | 
 | 		key.type = BTRFS_SHARED_BLOCK_REF_KEY; | 
 | 		key.offset = parent; | 
 | 	} else { | 
 | 		key.type = BTRFS_TREE_BLOCK_REF_KEY; | 
 | 		key.offset = root_objectid; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 	if (ret > 0) | 
 | 		ret = -ENOENT; | 
 | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
 | 	if (ret == -ENOENT && parent) { | 
 | 		btrfs_release_path(path); | 
 | 		key.type = BTRFS_EXTENT_REF_V0_KEY; | 
 | 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 		if (ret > 0) | 
 | 			ret = -ENOENT; | 
 | 	} | 
 | #endif | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, | 
 | 					  struct btrfs_root *root, | 
 | 					  struct btrfs_path *path, | 
 | 					  u64 bytenr, u64 parent, | 
 | 					  u64 root_objectid) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	int ret; | 
 |  | 
 | 	key.objectid = bytenr; | 
 | 	if (parent) { | 
 | 		key.type = BTRFS_SHARED_BLOCK_REF_KEY; | 
 | 		key.offset = parent; | 
 | 	} else { | 
 | 		key.type = BTRFS_TREE_BLOCK_REF_KEY; | 
 | 		key.offset = root_objectid; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | 
 | 	btrfs_release_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int extent_ref_type(u64 parent, u64 owner) | 
 | { | 
 | 	int type; | 
 | 	if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		if (parent > 0) | 
 | 			type = BTRFS_SHARED_BLOCK_REF_KEY; | 
 | 		else | 
 | 			type = BTRFS_TREE_BLOCK_REF_KEY; | 
 | 	} else { | 
 | 		if (parent > 0) | 
 | 			type = BTRFS_SHARED_DATA_REF_KEY; | 
 | 		else | 
 | 			type = BTRFS_EXTENT_DATA_REF_KEY; | 
 | 	} | 
 | 	return type; | 
 | } | 
 |  | 
 | static int find_next_key(struct btrfs_path *path, int level, | 
 | 			 struct btrfs_key *key) | 
 |  | 
 | { | 
 | 	for (; level < BTRFS_MAX_LEVEL; level++) { | 
 | 		if (!path->nodes[level]) | 
 | 			break; | 
 | 		if (path->slots[level] + 1 >= | 
 | 		    btrfs_header_nritems(path->nodes[level])) | 
 | 			continue; | 
 | 		if (level == 0) | 
 | 			btrfs_item_key_to_cpu(path->nodes[level], key, | 
 | 					      path->slots[level] + 1); | 
 | 		else | 
 | 			btrfs_node_key_to_cpu(path->nodes[level], key, | 
 | 					      path->slots[level] + 1); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * look for inline back ref. if back ref is found, *ref_ret is set | 
 |  * to the address of inline back ref, and 0 is returned. | 
 |  * | 
 |  * if back ref isn't found, *ref_ret is set to the address where it | 
 |  * should be inserted, and -ENOENT is returned. | 
 |  * | 
 |  * if insert is true and there are too many inline back refs, the path | 
 |  * points to the extent item, and -EAGAIN is returned. | 
 |  * | 
 |  * NOTE: inline back refs are ordered in the same way that back ref | 
 |  *	 items in the tree are ordered. | 
 |  */ | 
 | static noinline_for_stack | 
 | int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, | 
 | 				 struct btrfs_extent_inline_ref **ref_ret, | 
 | 				 u64 bytenr, u64 num_bytes, | 
 | 				 u64 parent, u64 root_objectid, | 
 | 				 u64 owner, u64 offset, int insert) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_extent_item *ei; | 
 | 	struct btrfs_extent_inline_ref *iref; | 
 | 	u64 flags; | 
 | 	u64 item_size; | 
 | 	unsigned long ptr; | 
 | 	unsigned long end; | 
 | 	int extra_size; | 
 | 	int type; | 
 | 	int want; | 
 | 	int ret; | 
 | 	int err = 0; | 
 |  | 
 | 	key.objectid = bytenr; | 
 | 	key.type = BTRFS_EXTENT_ITEM_KEY; | 
 | 	key.offset = num_bytes; | 
 |  | 
 | 	want = extent_ref_type(parent, owner); | 
 | 	if (insert) { | 
 | 		extra_size = btrfs_extent_inline_ref_size(want); | 
 | 		path->keep_locks = 1; | 
 | 	} else | 
 | 		extra_size = -1; | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); | 
 | 	if (ret < 0) { | 
 | 		err = ret; | 
 | 		goto out; | 
 | 	} | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
 | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
 | 	if (item_size < sizeof(*ei)) { | 
 | 		if (!insert) { | 
 | 			err = -ENOENT; | 
 | 			goto out; | 
 | 		} | 
 | 		ret = convert_extent_item_v0(trans, root, path, owner, | 
 | 					     extra_size); | 
 | 		if (ret < 0) { | 
 | 			err = ret; | 
 | 			goto out; | 
 | 		} | 
 | 		leaf = path->nodes[0]; | 
 | 		item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
 | 	} | 
 | #endif | 
 | 	BUG_ON(item_size < sizeof(*ei)); | 
 |  | 
 | 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
 | 	flags = btrfs_extent_flags(leaf, ei); | 
 |  | 
 | 	ptr = (unsigned long)(ei + 1); | 
 | 	end = (unsigned long)ei + item_size; | 
 |  | 
 | 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
 | 		ptr += sizeof(struct btrfs_tree_block_info); | 
 | 		BUG_ON(ptr > end); | 
 | 	} else { | 
 | 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); | 
 | 	} | 
 |  | 
 | 	err = -ENOENT; | 
 | 	while (1) { | 
 | 		if (ptr >= end) { | 
 | 			WARN_ON(ptr > end); | 
 | 			break; | 
 | 		} | 
 | 		iref = (struct btrfs_extent_inline_ref *)ptr; | 
 | 		type = btrfs_extent_inline_ref_type(leaf, iref); | 
 | 		if (want < type) | 
 | 			break; | 
 | 		if (want > type) { | 
 | 			ptr += btrfs_extent_inline_ref_size(type); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
 | 			struct btrfs_extent_data_ref *dref; | 
 | 			dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
 | 			if (match_extent_data_ref(leaf, dref, root_objectid, | 
 | 						  owner, offset)) { | 
 | 				err = 0; | 
 | 				break; | 
 | 			} | 
 | 			if (hash_extent_data_ref_item(leaf, dref) < | 
 | 			    hash_extent_data_ref(root_objectid, owner, offset)) | 
 | 				break; | 
 | 		} else { | 
 | 			u64 ref_offset; | 
 | 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); | 
 | 			if (parent > 0) { | 
 | 				if (parent == ref_offset) { | 
 | 					err = 0; | 
 | 					break; | 
 | 				} | 
 | 				if (ref_offset < parent) | 
 | 					break; | 
 | 			} else { | 
 | 				if (root_objectid == ref_offset) { | 
 | 					err = 0; | 
 | 					break; | 
 | 				} | 
 | 				if (ref_offset < root_objectid) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 | 		ptr += btrfs_extent_inline_ref_size(type); | 
 | 	} | 
 | 	if (err == -ENOENT && insert) { | 
 | 		if (item_size + extra_size >= | 
 | 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { | 
 | 			err = -EAGAIN; | 
 | 			goto out; | 
 | 		} | 
 | 		/* | 
 | 		 * To add new inline back ref, we have to make sure | 
 | 		 * there is no corresponding back ref item. | 
 | 		 * For simplicity, we just do not add new inline back | 
 | 		 * ref if there is any kind of item for this block | 
 | 		 */ | 
 | 		if (find_next_key(path, 0, &key) == 0 && | 
 | 		    key.objectid == bytenr && | 
 | 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { | 
 | 			err = -EAGAIN; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr; | 
 | out: | 
 | 	if (insert) { | 
 | 		path->keep_locks = 0; | 
 | 		btrfs_unlock_up_safe(path, 1); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * helper to add new inline back ref | 
 |  */ | 
 | static noinline_for_stack | 
 | int setup_inline_extent_backref(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root, | 
 | 				struct btrfs_path *path, | 
 | 				struct btrfs_extent_inline_ref *iref, | 
 | 				u64 parent, u64 root_objectid, | 
 | 				u64 owner, u64 offset, int refs_to_add, | 
 | 				struct btrfs_delayed_extent_op *extent_op) | 
 | { | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_extent_item *ei; | 
 | 	unsigned long ptr; | 
 | 	unsigned long end; | 
 | 	unsigned long item_offset; | 
 | 	u64 refs; | 
 | 	int size; | 
 | 	int type; | 
 | 	int ret; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
 | 	item_offset = (unsigned long)iref - (unsigned long)ei; | 
 |  | 
 | 	type = extent_ref_type(parent, owner); | 
 | 	size = btrfs_extent_inline_ref_size(type); | 
 |  | 
 | 	ret = btrfs_extend_item(trans, root, path, size); | 
 |  | 
 | 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
 | 	refs = btrfs_extent_refs(leaf, ei); | 
 | 	refs += refs_to_add; | 
 | 	btrfs_set_extent_refs(leaf, ei, refs); | 
 | 	if (extent_op) | 
 | 		__run_delayed_extent_op(extent_op, leaf, ei); | 
 |  | 
 | 	ptr = (unsigned long)ei + item_offset; | 
 | 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); | 
 | 	if (ptr < end - size) | 
 | 		memmove_extent_buffer(leaf, ptr + size, ptr, | 
 | 				      end - size - ptr); | 
 |  | 
 | 	iref = (struct btrfs_extent_inline_ref *)ptr; | 
 | 	btrfs_set_extent_inline_ref_type(leaf, iref, type); | 
 | 	if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
 | 		struct btrfs_extent_data_ref *dref; | 
 | 		dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
 | 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); | 
 | 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner); | 
 | 		btrfs_set_extent_data_ref_offset(leaf, dref, offset); | 
 | 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); | 
 | 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) { | 
 | 		struct btrfs_shared_data_ref *sref; | 
 | 		sref = (struct btrfs_shared_data_ref *)(iref + 1); | 
 | 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); | 
 | 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
 | 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { | 
 | 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
 | 	} else { | 
 | 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); | 
 | 	} | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int lookup_extent_backref(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, | 
 | 				 struct btrfs_extent_inline_ref **ref_ret, | 
 | 				 u64 bytenr, u64 num_bytes, u64 parent, | 
 | 				 u64 root_objectid, u64 owner, u64 offset) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret, | 
 | 					   bytenr, num_bytes, parent, | 
 | 					   root_objectid, owner, offset, 0); | 
 | 	if (ret != -ENOENT) | 
 | 		return ret; | 
 |  | 
 | 	btrfs_release_path(path); | 
 | 	*ref_ret = NULL; | 
 |  | 
 | 	if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, | 
 | 					    root_objectid); | 
 | 	} else { | 
 | 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, | 
 | 					     root_objectid, owner, offset); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper to update/remove inline back ref | 
 |  */ | 
 | static noinline_for_stack | 
 | int update_inline_extent_backref(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, | 
 | 				 struct btrfs_extent_inline_ref *iref, | 
 | 				 int refs_to_mod, | 
 | 				 struct btrfs_delayed_extent_op *extent_op) | 
 | { | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_extent_item *ei; | 
 | 	struct btrfs_extent_data_ref *dref = NULL; | 
 | 	struct btrfs_shared_data_ref *sref = NULL; | 
 | 	unsigned long ptr; | 
 | 	unsigned long end; | 
 | 	u32 item_size; | 
 | 	int size; | 
 | 	int type; | 
 | 	int ret; | 
 | 	u64 refs; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
 | 	refs = btrfs_extent_refs(leaf, ei); | 
 | 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); | 
 | 	refs += refs_to_mod; | 
 | 	btrfs_set_extent_refs(leaf, ei, refs); | 
 | 	if (extent_op) | 
 | 		__run_delayed_extent_op(extent_op, leaf, ei); | 
 |  | 
 | 	type = btrfs_extent_inline_ref_type(leaf, iref); | 
 |  | 
 | 	if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
 | 		dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
 | 		refs = btrfs_extent_data_ref_count(leaf, dref); | 
 | 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) { | 
 | 		sref = (struct btrfs_shared_data_ref *)(iref + 1); | 
 | 		refs = btrfs_shared_data_ref_count(leaf, sref); | 
 | 	} else { | 
 | 		refs = 1; | 
 | 		BUG_ON(refs_to_mod != -1); | 
 | 	} | 
 |  | 
 | 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); | 
 | 	refs += refs_to_mod; | 
 |  | 
 | 	if (refs > 0) { | 
 | 		if (type == BTRFS_EXTENT_DATA_REF_KEY) | 
 | 			btrfs_set_extent_data_ref_count(leaf, dref, refs); | 
 | 		else | 
 | 			btrfs_set_shared_data_ref_count(leaf, sref, refs); | 
 | 	} else { | 
 | 		size =  btrfs_extent_inline_ref_size(type); | 
 | 		item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
 | 		ptr = (unsigned long)iref; | 
 | 		end = (unsigned long)ei + item_size; | 
 | 		if (ptr + size < end) | 
 | 			memmove_extent_buffer(leaf, ptr, ptr + size, | 
 | 					      end - ptr - size); | 
 | 		item_size -= size; | 
 | 		ret = btrfs_truncate_item(trans, root, path, item_size, 1); | 
 | 	} | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline_for_stack | 
 | int insert_inline_extent_backref(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, | 
 | 				 u64 bytenr, u64 num_bytes, u64 parent, | 
 | 				 u64 root_objectid, u64 owner, | 
 | 				 u64 offset, int refs_to_add, | 
 | 				 struct btrfs_delayed_extent_op *extent_op) | 
 | { | 
 | 	struct btrfs_extent_inline_ref *iref; | 
 | 	int ret; | 
 |  | 
 | 	ret = lookup_inline_extent_backref(trans, root, path, &iref, | 
 | 					   bytenr, num_bytes, parent, | 
 | 					   root_objectid, owner, offset, 1); | 
 | 	if (ret == 0) { | 
 | 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); | 
 | 		ret = update_inline_extent_backref(trans, root, path, iref, | 
 | 						   refs_to_add, extent_op); | 
 | 	} else if (ret == -ENOENT) { | 
 | 		ret = setup_inline_extent_backref(trans, root, path, iref, | 
 | 						  parent, root_objectid, | 
 | 						  owner, offset, refs_to_add, | 
 | 						  extent_op); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int insert_extent_backref(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, | 
 | 				 u64 bytenr, u64 parent, u64 root_objectid, | 
 | 				 u64 owner, u64 offset, int refs_to_add) | 
 | { | 
 | 	int ret; | 
 | 	if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		BUG_ON(refs_to_add != 1); | 
 | 		ret = insert_tree_block_ref(trans, root, path, bytenr, | 
 | 					    parent, root_objectid); | 
 | 	} else { | 
 | 		ret = insert_extent_data_ref(trans, root, path, bytenr, | 
 | 					     parent, root_objectid, | 
 | 					     owner, offset, refs_to_add); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int remove_extent_backref(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, | 
 | 				 struct btrfs_extent_inline_ref *iref, | 
 | 				 int refs_to_drop, int is_data) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	BUG_ON(!is_data && refs_to_drop != 1); | 
 | 	if (iref) { | 
 | 		ret = update_inline_extent_backref(trans, root, path, iref, | 
 | 						   -refs_to_drop, NULL); | 
 | 	} else if (is_data) { | 
 | 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop); | 
 | 	} else { | 
 | 		ret = btrfs_del_item(trans, root, path); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_issue_discard(struct block_device *bdev, | 
 | 				u64 start, u64 len) | 
 | { | 
 | 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); | 
 | } | 
 |  | 
 | static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, | 
 | 				u64 num_bytes, u64 *actual_bytes) | 
 | { | 
 | 	int ret; | 
 | 	u64 discarded_bytes = 0; | 
 | 	struct btrfs_bio *bbio = NULL; | 
 |  | 
 |  | 
 | 	/* Tell the block device(s) that the sectors can be discarded */ | 
 | 	ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD, | 
 | 			      bytenr, &num_bytes, &bbio, 0); | 
 | 	if (!ret) { | 
 | 		struct btrfs_bio_stripe *stripe = bbio->stripes; | 
 | 		int i; | 
 |  | 
 |  | 
 | 		for (i = 0; i < bbio->num_stripes; i++, stripe++) { | 
 | 			if (!stripe->dev->can_discard) | 
 | 				continue; | 
 |  | 
 | 			ret = btrfs_issue_discard(stripe->dev->bdev, | 
 | 						  stripe->physical, | 
 | 						  stripe->length); | 
 | 			if (!ret) | 
 | 				discarded_bytes += stripe->length; | 
 | 			else if (ret != -EOPNOTSUPP) | 
 | 				break; | 
 |  | 
 | 			/* | 
 | 			 * Just in case we get back EOPNOTSUPP for some reason, | 
 | 			 * just ignore the return value so we don't screw up | 
 | 			 * people calling discard_extent. | 
 | 			 */ | 
 | 			ret = 0; | 
 | 		} | 
 | 		kfree(bbio); | 
 | 	} | 
 |  | 
 | 	if (actual_bytes) | 
 | 		*actual_bytes = discarded_bytes; | 
 |  | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, | 
 | 			 struct btrfs_root *root, | 
 | 			 u64 bytenr, u64 num_bytes, u64 parent, | 
 | 			 u64 root_objectid, u64 owner, u64 offset) | 
 | { | 
 | 	int ret; | 
 | 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && | 
 | 	       root_objectid == BTRFS_TREE_LOG_OBJECTID); | 
 |  | 
 | 	if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes, | 
 | 					parent, root_objectid, (int)owner, | 
 | 					BTRFS_ADD_DELAYED_REF, NULL); | 
 | 	} else { | 
 | 		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes, | 
 | 					parent, root_objectid, owner, offset, | 
 | 					BTRFS_ADD_DELAYED_REF, NULL); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_root *root, | 
 | 				  u64 bytenr, u64 num_bytes, | 
 | 				  u64 parent, u64 root_objectid, | 
 | 				  u64 owner, u64 offset, int refs_to_add, | 
 | 				  struct btrfs_delayed_extent_op *extent_op) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_extent_item *item; | 
 | 	u64 refs; | 
 | 	int ret; | 
 | 	int err = 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	path->reada = 1; | 
 | 	path->leave_spinning = 1; | 
 | 	/* this will setup the path even if it fails to insert the back ref */ | 
 | 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, | 
 | 					   path, bytenr, num_bytes, parent, | 
 | 					   root_objectid, owner, offset, | 
 | 					   refs_to_add, extent_op); | 
 | 	if (ret == 0) | 
 | 		goto out; | 
 |  | 
 | 	if (ret != -EAGAIN) { | 
 | 		err = ret; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
 | 	refs = btrfs_extent_refs(leaf, item); | 
 | 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add); | 
 | 	if (extent_op) | 
 | 		__run_delayed_extent_op(extent_op, leaf, item); | 
 |  | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	path->reada = 1; | 
 | 	path->leave_spinning = 1; | 
 |  | 
 | 	/* now insert the actual backref */ | 
 | 	ret = insert_extent_backref(trans, root->fs_info->extent_root, | 
 | 				    path, bytenr, parent, root_objectid, | 
 | 				    owner, offset, refs_to_add); | 
 | 	BUG_ON(ret); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int run_delayed_data_ref(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root, | 
 | 				struct btrfs_delayed_ref_node *node, | 
 | 				struct btrfs_delayed_extent_op *extent_op, | 
 | 				int insert_reserved) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_delayed_data_ref *ref; | 
 | 	struct btrfs_key ins; | 
 | 	u64 parent = 0; | 
 | 	u64 ref_root = 0; | 
 | 	u64 flags = 0; | 
 |  | 
 | 	ins.objectid = node->bytenr; | 
 | 	ins.offset = node->num_bytes; | 
 | 	ins.type = BTRFS_EXTENT_ITEM_KEY; | 
 |  | 
 | 	ref = btrfs_delayed_node_to_data_ref(node); | 
 | 	if (node->type == BTRFS_SHARED_DATA_REF_KEY) | 
 | 		parent = ref->parent; | 
 | 	else | 
 | 		ref_root = ref->root; | 
 |  | 
 | 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { | 
 | 		if (extent_op) { | 
 | 			BUG_ON(extent_op->update_key); | 
 | 			flags |= extent_op->flags_to_set; | 
 | 		} | 
 | 		ret = alloc_reserved_file_extent(trans, root, | 
 | 						 parent, ref_root, flags, | 
 | 						 ref->objectid, ref->offset, | 
 | 						 &ins, node->ref_mod); | 
 | 	} else if (node->action == BTRFS_ADD_DELAYED_REF) { | 
 | 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, | 
 | 					     node->num_bytes, parent, | 
 | 					     ref_root, ref->objectid, | 
 | 					     ref->offset, node->ref_mod, | 
 | 					     extent_op); | 
 | 	} else if (node->action == BTRFS_DROP_DELAYED_REF) { | 
 | 		ret = __btrfs_free_extent(trans, root, node->bytenr, | 
 | 					  node->num_bytes, parent, | 
 | 					  ref_root, ref->objectid, | 
 | 					  ref->offset, node->ref_mod, | 
 | 					  extent_op); | 
 | 	} else { | 
 | 		BUG(); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, | 
 | 				    struct extent_buffer *leaf, | 
 | 				    struct btrfs_extent_item *ei) | 
 | { | 
 | 	u64 flags = btrfs_extent_flags(leaf, ei); | 
 | 	if (extent_op->update_flags) { | 
 | 		flags |= extent_op->flags_to_set; | 
 | 		btrfs_set_extent_flags(leaf, ei, flags); | 
 | 	} | 
 |  | 
 | 	if (extent_op->update_key) { | 
 | 		struct btrfs_tree_block_info *bi; | 
 | 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); | 
 | 		bi = (struct btrfs_tree_block_info *)(ei + 1); | 
 | 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key); | 
 | 	} | 
 | } | 
 |  | 
 | static int run_delayed_extent_op(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_delayed_ref_node *node, | 
 | 				 struct btrfs_delayed_extent_op *extent_op) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_extent_item *ei; | 
 | 	struct extent_buffer *leaf; | 
 | 	u32 item_size; | 
 | 	int ret; | 
 | 	int err = 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = node->bytenr; | 
 | 	key.type = BTRFS_EXTENT_ITEM_KEY; | 
 | 	key.offset = node->num_bytes; | 
 |  | 
 | 	path->reada = 1; | 
 | 	path->leave_spinning = 1; | 
 | 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, | 
 | 				path, 0, 1); | 
 | 	if (ret < 0) { | 
 | 		err = ret; | 
 | 		goto out; | 
 | 	} | 
 | 	if (ret > 0) { | 
 | 		err = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
 | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
 | 	if (item_size < sizeof(*ei)) { | 
 | 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root, | 
 | 					     path, (u64)-1, 0); | 
 | 		if (ret < 0) { | 
 | 			err = ret; | 
 | 			goto out; | 
 | 		} | 
 | 		leaf = path->nodes[0]; | 
 | 		item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
 | 	} | 
 | #endif | 
 | 	BUG_ON(item_size < sizeof(*ei)); | 
 | 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
 | 	__run_delayed_extent_op(extent_op, leaf, ei); | 
 |  | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root, | 
 | 				struct btrfs_delayed_ref_node *node, | 
 | 				struct btrfs_delayed_extent_op *extent_op, | 
 | 				int insert_reserved) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_delayed_tree_ref *ref; | 
 | 	struct btrfs_key ins; | 
 | 	u64 parent = 0; | 
 | 	u64 ref_root = 0; | 
 |  | 
 | 	ins.objectid = node->bytenr; | 
 | 	ins.offset = node->num_bytes; | 
 | 	ins.type = BTRFS_EXTENT_ITEM_KEY; | 
 |  | 
 | 	ref = btrfs_delayed_node_to_tree_ref(node); | 
 | 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) | 
 | 		parent = ref->parent; | 
 | 	else | 
 | 		ref_root = ref->root; | 
 |  | 
 | 	BUG_ON(node->ref_mod != 1); | 
 | 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { | 
 | 		BUG_ON(!extent_op || !extent_op->update_flags || | 
 | 		       !extent_op->update_key); | 
 | 		ret = alloc_reserved_tree_block(trans, root, | 
 | 						parent, ref_root, | 
 | 						extent_op->flags_to_set, | 
 | 						&extent_op->key, | 
 | 						ref->level, &ins); | 
 | 	} else if (node->action == BTRFS_ADD_DELAYED_REF) { | 
 | 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, | 
 | 					     node->num_bytes, parent, ref_root, | 
 | 					     ref->level, 0, 1, extent_op); | 
 | 	} else if (node->action == BTRFS_DROP_DELAYED_REF) { | 
 | 		ret = __btrfs_free_extent(trans, root, node->bytenr, | 
 | 					  node->num_bytes, parent, ref_root, | 
 | 					  ref->level, 0, 1, extent_op); | 
 | 	} else { | 
 | 		BUG(); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* helper function to actually process a single delayed ref entry */ | 
 | static int run_one_delayed_ref(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *root, | 
 | 			       struct btrfs_delayed_ref_node *node, | 
 | 			       struct btrfs_delayed_extent_op *extent_op, | 
 | 			       int insert_reserved) | 
 | { | 
 | 	int ret; | 
 | 	if (btrfs_delayed_ref_is_head(node)) { | 
 | 		struct btrfs_delayed_ref_head *head; | 
 | 		/* | 
 | 		 * we've hit the end of the chain and we were supposed | 
 | 		 * to insert this extent into the tree.  But, it got | 
 | 		 * deleted before we ever needed to insert it, so all | 
 | 		 * we have to do is clean up the accounting | 
 | 		 */ | 
 | 		BUG_ON(extent_op); | 
 | 		head = btrfs_delayed_node_to_head(node); | 
 | 		if (insert_reserved) { | 
 | 			btrfs_pin_extent(root, node->bytenr, | 
 | 					 node->num_bytes, 1); | 
 | 			if (head->is_data) { | 
 | 				ret = btrfs_del_csums(trans, root, | 
 | 						      node->bytenr, | 
 | 						      node->num_bytes); | 
 | 				BUG_ON(ret); | 
 | 			} | 
 | 		} | 
 | 		mutex_unlock(&head->mutex); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY || | 
 | 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY) | 
 | 		ret = run_delayed_tree_ref(trans, root, node, extent_op, | 
 | 					   insert_reserved); | 
 | 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || | 
 | 		 node->type == BTRFS_SHARED_DATA_REF_KEY) | 
 | 		ret = run_delayed_data_ref(trans, root, node, extent_op, | 
 | 					   insert_reserved); | 
 | 	else | 
 | 		BUG(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline struct btrfs_delayed_ref_node * | 
 | select_delayed_ref(struct btrfs_delayed_ref_head *head) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_delayed_ref_node *ref; | 
 | 	int action = BTRFS_ADD_DELAYED_REF; | 
 | again: | 
 | 	/* | 
 | 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. | 
 | 	 * this prevents ref count from going down to zero when | 
 | 	 * there still are pending delayed ref. | 
 | 	 */ | 
 | 	node = rb_prev(&head->node.rb_node); | 
 | 	while (1) { | 
 | 		if (!node) | 
 | 			break; | 
 | 		ref = rb_entry(node, struct btrfs_delayed_ref_node, | 
 | 				rb_node); | 
 | 		if (ref->bytenr != head->node.bytenr) | 
 | 			break; | 
 | 		if (ref->action == action) | 
 | 			return ref; | 
 | 		node = rb_prev(node); | 
 | 	} | 
 | 	if (action == BTRFS_ADD_DELAYED_REF) { | 
 | 		action = BTRFS_DROP_DELAYED_REF; | 
 | 		goto again; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, | 
 | 				       struct btrfs_root *root, | 
 | 				       struct list_head *cluster) | 
 | { | 
 | 	struct btrfs_delayed_ref_root *delayed_refs; | 
 | 	struct btrfs_delayed_ref_node *ref; | 
 | 	struct btrfs_delayed_ref_head *locked_ref = NULL; | 
 | 	struct btrfs_delayed_extent_op *extent_op; | 
 | 	int ret; | 
 | 	int count = 0; | 
 | 	int must_insert_reserved = 0; | 
 |  | 
 | 	delayed_refs = &trans->transaction->delayed_refs; | 
 | 	while (1) { | 
 | 		if (!locked_ref) { | 
 | 			/* pick a new head ref from the cluster list */ | 
 | 			if (list_empty(cluster)) | 
 | 				break; | 
 |  | 
 | 			locked_ref = list_entry(cluster->next, | 
 | 				     struct btrfs_delayed_ref_head, cluster); | 
 |  | 
 | 			/* grab the lock that says we are going to process | 
 | 			 * all the refs for this head */ | 
 | 			ret = btrfs_delayed_ref_lock(trans, locked_ref); | 
 |  | 
 | 			/* | 
 | 			 * we may have dropped the spin lock to get the head | 
 | 			 * mutex lock, and that might have given someone else | 
 | 			 * time to free the head.  If that's true, it has been | 
 | 			 * removed from our list and we can move on. | 
 | 			 */ | 
 | 			if (ret == -EAGAIN) { | 
 | 				locked_ref = NULL; | 
 | 				count++; | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * record the must insert reserved flag before we | 
 | 		 * drop the spin lock. | 
 | 		 */ | 
 | 		must_insert_reserved = locked_ref->must_insert_reserved; | 
 | 		locked_ref->must_insert_reserved = 0; | 
 |  | 
 | 		extent_op = locked_ref->extent_op; | 
 | 		locked_ref->extent_op = NULL; | 
 |  | 
 | 		/* | 
 | 		 * locked_ref is the head node, so we have to go one | 
 | 		 * node back for any delayed ref updates | 
 | 		 */ | 
 | 		ref = select_delayed_ref(locked_ref); | 
 | 		if (!ref) { | 
 | 			/* All delayed refs have been processed, Go ahead | 
 | 			 * and send the head node to run_one_delayed_ref, | 
 | 			 * so that any accounting fixes can happen | 
 | 			 */ | 
 | 			ref = &locked_ref->node; | 
 |  | 
 | 			if (extent_op && must_insert_reserved) { | 
 | 				kfree(extent_op); | 
 | 				extent_op = NULL; | 
 | 			} | 
 |  | 
 | 			if (extent_op) { | 
 | 				spin_unlock(&delayed_refs->lock); | 
 |  | 
 | 				ret = run_delayed_extent_op(trans, root, | 
 | 							    ref, extent_op); | 
 | 				BUG_ON(ret); | 
 | 				kfree(extent_op); | 
 |  | 
 | 				cond_resched(); | 
 | 				spin_lock(&delayed_refs->lock); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			list_del_init(&locked_ref->cluster); | 
 | 			locked_ref = NULL; | 
 | 		} | 
 |  | 
 | 		ref->in_tree = 0; | 
 | 		rb_erase(&ref->rb_node, &delayed_refs->root); | 
 | 		delayed_refs->num_entries--; | 
 |  | 
 | 		spin_unlock(&delayed_refs->lock); | 
 |  | 
 | 		ret = run_one_delayed_ref(trans, root, ref, extent_op, | 
 | 					  must_insert_reserved); | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		btrfs_put_delayed_ref(ref); | 
 | 		kfree(extent_op); | 
 | 		count++; | 
 |  | 
 | 		cond_resched(); | 
 | 		spin_lock(&delayed_refs->lock); | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * this starts processing the delayed reference count updates and | 
 |  * extent insertions we have queued up so far.  count can be | 
 |  * 0, which means to process everything in the tree at the start | 
 |  * of the run (but not newly added entries), or it can be some target | 
 |  * number you'd like to process. | 
 |  */ | 
 | int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_root *root, unsigned long count) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_delayed_ref_root *delayed_refs; | 
 | 	struct btrfs_delayed_ref_node *ref; | 
 | 	struct list_head cluster; | 
 | 	int ret; | 
 | 	int run_all = count == (unsigned long)-1; | 
 | 	int run_most = 0; | 
 |  | 
 | 	if (root == root->fs_info->extent_root) | 
 | 		root = root->fs_info->tree_root; | 
 |  | 
 | 	delayed_refs = &trans->transaction->delayed_refs; | 
 | 	INIT_LIST_HEAD(&cluster); | 
 | again: | 
 | 	spin_lock(&delayed_refs->lock); | 
 | 	if (count == 0) { | 
 | 		count = delayed_refs->num_entries * 2; | 
 | 		run_most = 1; | 
 | 	} | 
 | 	while (1) { | 
 | 		if (!(run_all || run_most) && | 
 | 		    delayed_refs->num_heads_ready < 64) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * go find something we can process in the rbtree.  We start at | 
 | 		 * the beginning of the tree, and then build a cluster | 
 | 		 * of refs to process starting at the first one we are able to | 
 | 		 * lock | 
 | 		 */ | 
 | 		ret = btrfs_find_ref_cluster(trans, &cluster, | 
 | 					     delayed_refs->run_delayed_start); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		ret = run_clustered_refs(trans, root, &cluster); | 
 | 		BUG_ON(ret < 0); | 
 |  | 
 | 		count -= min_t(unsigned long, ret, count); | 
 |  | 
 | 		if (count == 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (run_all) { | 
 | 		node = rb_first(&delayed_refs->root); | 
 | 		if (!node) | 
 | 			goto out; | 
 | 		count = (unsigned long)-1; | 
 |  | 
 | 		while (node) { | 
 | 			ref = rb_entry(node, struct btrfs_delayed_ref_node, | 
 | 				       rb_node); | 
 | 			if (btrfs_delayed_ref_is_head(ref)) { | 
 | 				struct btrfs_delayed_ref_head *head; | 
 |  | 
 | 				head = btrfs_delayed_node_to_head(ref); | 
 | 				atomic_inc(&ref->refs); | 
 |  | 
 | 				spin_unlock(&delayed_refs->lock); | 
 | 				/* | 
 | 				 * Mutex was contended, block until it's | 
 | 				 * released and try again | 
 | 				 */ | 
 | 				mutex_lock(&head->mutex); | 
 | 				mutex_unlock(&head->mutex); | 
 |  | 
 | 				btrfs_put_delayed_ref(ref); | 
 | 				cond_resched(); | 
 | 				goto again; | 
 | 			} | 
 | 			node = rb_next(node); | 
 | 		} | 
 | 		spin_unlock(&delayed_refs->lock); | 
 | 		schedule_timeout(1); | 
 | 		goto again; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&delayed_refs->lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root, | 
 | 				u64 bytenr, u64 num_bytes, u64 flags, | 
 | 				int is_data) | 
 | { | 
 | 	struct btrfs_delayed_extent_op *extent_op; | 
 | 	int ret; | 
 |  | 
 | 	extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); | 
 | 	if (!extent_op) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	extent_op->flags_to_set = flags; | 
 | 	extent_op->update_flags = 1; | 
 | 	extent_op->update_key = 0; | 
 | 	extent_op->is_data = is_data ? 1 : 0; | 
 |  | 
 | 	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op); | 
 | 	if (ret) | 
 | 		kfree(extent_op); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *root, | 
 | 				      struct btrfs_path *path, | 
 | 				      u64 objectid, u64 offset, u64 bytenr) | 
 | { | 
 | 	struct btrfs_delayed_ref_head *head; | 
 | 	struct btrfs_delayed_ref_node *ref; | 
 | 	struct btrfs_delayed_data_ref *data_ref; | 
 | 	struct btrfs_delayed_ref_root *delayed_refs; | 
 | 	struct rb_node *node; | 
 | 	int ret = 0; | 
 |  | 
 | 	ret = -ENOENT; | 
 | 	delayed_refs = &trans->transaction->delayed_refs; | 
 | 	spin_lock(&delayed_refs->lock); | 
 | 	head = btrfs_find_delayed_ref_head(trans, bytenr); | 
 | 	if (!head) | 
 | 		goto out; | 
 |  | 
 | 	if (!mutex_trylock(&head->mutex)) { | 
 | 		atomic_inc(&head->node.refs); | 
 | 		spin_unlock(&delayed_refs->lock); | 
 |  | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		/* | 
 | 		 * Mutex was contended, block until it's released and let | 
 | 		 * caller try again | 
 | 		 */ | 
 | 		mutex_lock(&head->mutex); | 
 | 		mutex_unlock(&head->mutex); | 
 | 		btrfs_put_delayed_ref(&head->node); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	node = rb_prev(&head->node.rb_node); | 
 | 	if (!node) | 
 | 		goto out_unlock; | 
 |  | 
 | 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); | 
 |  | 
 | 	if (ref->bytenr != bytenr) | 
 | 		goto out_unlock; | 
 |  | 
 | 	ret = 1; | 
 | 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) | 
 | 		goto out_unlock; | 
 |  | 
 | 	data_ref = btrfs_delayed_node_to_data_ref(ref); | 
 |  | 
 | 	node = rb_prev(node); | 
 | 	if (node) { | 
 | 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); | 
 | 		if (ref->bytenr == bytenr) | 
 | 			goto out_unlock; | 
 | 	} | 
 |  | 
 | 	if (data_ref->root != root->root_key.objectid || | 
 | 	    data_ref->objectid != objectid || data_ref->offset != offset) | 
 | 		goto out_unlock; | 
 |  | 
 | 	ret = 0; | 
 | out_unlock: | 
 | 	mutex_unlock(&head->mutex); | 
 | out: | 
 | 	spin_unlock(&delayed_refs->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline int check_committed_ref(struct btrfs_trans_handle *trans, | 
 | 					struct btrfs_root *root, | 
 | 					struct btrfs_path *path, | 
 | 					u64 objectid, u64 offset, u64 bytenr) | 
 | { | 
 | 	struct btrfs_root *extent_root = root->fs_info->extent_root; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_extent_data_ref *ref; | 
 | 	struct btrfs_extent_inline_ref *iref; | 
 | 	struct btrfs_extent_item *ei; | 
 | 	struct btrfs_key key; | 
 | 	u32 item_size; | 
 | 	int ret; | 
 |  | 
 | 	key.objectid = bytenr; | 
 | 	key.offset = (u64)-1; | 
 | 	key.type = BTRFS_EXTENT_ITEM_KEY; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	BUG_ON(ret == 0); | 
 |  | 
 | 	ret = -ENOENT; | 
 | 	if (path->slots[0] == 0) | 
 | 		goto out; | 
 |  | 
 | 	path->slots[0]--; | 
 | 	leaf = path->nodes[0]; | 
 | 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 |  | 
 | 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) | 
 | 		goto out; | 
 |  | 
 | 	ret = 1; | 
 | 	item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
 | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
 | 	if (item_size < sizeof(*ei)) { | 
 | 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); | 
 | 		goto out; | 
 | 	} | 
 | #endif | 
 | 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
 |  | 
 | 	if (item_size != sizeof(*ei) + | 
 | 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) | 
 | 		goto out; | 
 |  | 
 | 	if (btrfs_extent_generation(leaf, ei) <= | 
 | 	    btrfs_root_last_snapshot(&root->root_item)) | 
 | 		goto out; | 
 |  | 
 | 	iref = (struct btrfs_extent_inline_ref *)(ei + 1); | 
 | 	if (btrfs_extent_inline_ref_type(leaf, iref) != | 
 | 	    BTRFS_EXTENT_DATA_REF_KEY) | 
 | 		goto out; | 
 |  | 
 | 	ref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
 | 	if (btrfs_extent_refs(leaf, ei) != | 
 | 	    btrfs_extent_data_ref_count(leaf, ref) || | 
 | 	    btrfs_extent_data_ref_root(leaf, ref) != | 
 | 	    root->root_key.objectid || | 
 | 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid || | 
 | 	    btrfs_extent_data_ref_offset(leaf, ref) != offset) | 
 | 		goto out; | 
 |  | 
 | 	ret = 0; | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *root, | 
 | 			  u64 objectid, u64 offset, u64 bytenr) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	int ret; | 
 | 	int ret2; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOENT; | 
 |  | 
 | 	do { | 
 | 		ret = check_committed_ref(trans, root, path, objectid, | 
 | 					  offset, bytenr); | 
 | 		if (ret && ret != -ENOENT) | 
 | 			goto out; | 
 |  | 
 | 		ret2 = check_delayed_ref(trans, root, path, objectid, | 
 | 					 offset, bytenr); | 
 | 	} while (ret2 == -EAGAIN); | 
 |  | 
 | 	if (ret2 && ret2 != -ENOENT) { | 
 | 		ret = ret2; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (ret != -ENOENT || ret2 != -ENOENT) | 
 | 		ret = 0; | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) | 
 | 		WARN_ON(ret > 0); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_root *root, | 
 | 			   struct extent_buffer *buf, | 
 | 			   int full_backref, int inc) | 
 | { | 
 | 	u64 bytenr; | 
 | 	u64 num_bytes; | 
 | 	u64 parent; | 
 | 	u64 ref_root; | 
 | 	u32 nritems; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_file_extent_item *fi; | 
 | 	int i; | 
 | 	int level; | 
 | 	int ret = 0; | 
 | 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, | 
 | 			    u64, u64, u64, u64, u64, u64); | 
 |  | 
 | 	ref_root = btrfs_header_owner(buf); | 
 | 	nritems = btrfs_header_nritems(buf); | 
 | 	level = btrfs_header_level(buf); | 
 |  | 
 | 	if (!root->ref_cows && level == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (inc) | 
 | 		process_func = btrfs_inc_extent_ref; | 
 | 	else | 
 | 		process_func = btrfs_free_extent; | 
 |  | 
 | 	if (full_backref) | 
 | 		parent = buf->start; | 
 | 	else | 
 | 		parent = 0; | 
 |  | 
 | 	for (i = 0; i < nritems; i++) { | 
 | 		if (level == 0) { | 
 | 			btrfs_item_key_to_cpu(buf, &key, i); | 
 | 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) | 
 | 				continue; | 
 | 			fi = btrfs_item_ptr(buf, i, | 
 | 					    struct btrfs_file_extent_item); | 
 | 			if (btrfs_file_extent_type(buf, fi) == | 
 | 			    BTRFS_FILE_EXTENT_INLINE) | 
 | 				continue; | 
 | 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi); | 
 | 			if (bytenr == 0) | 
 | 				continue; | 
 |  | 
 | 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); | 
 | 			key.offset -= btrfs_file_extent_offset(buf, fi); | 
 | 			ret = process_func(trans, root, bytenr, num_bytes, | 
 | 					   parent, ref_root, key.objectid, | 
 | 					   key.offset); | 
 | 			if (ret) | 
 | 				goto fail; | 
 | 		} else { | 
 | 			bytenr = btrfs_node_blockptr(buf, i); | 
 | 			num_bytes = btrfs_level_size(root, level - 1); | 
 | 			ret = process_func(trans, root, bytenr, num_bytes, | 
 | 					   parent, ref_root, level - 1, 0); | 
 | 			if (ret) | 
 | 				goto fail; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | fail: | 
 | 	BUG(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
 | 		  struct extent_buffer *buf, int full_backref) | 
 | { | 
 | 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1); | 
 | } | 
 |  | 
 | int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
 | 		  struct extent_buffer *buf, int full_backref) | 
 | { | 
 | 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0); | 
 | } | 
 |  | 
 | static int write_one_cache_group(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, | 
 | 				 struct btrfs_block_group_cache *cache) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_root *extent_root = root->fs_info->extent_root; | 
 | 	unsigned long bi; | 
 | 	struct extent_buffer *leaf; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); | 
 | 	if (ret < 0) | 
 | 		goto fail; | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
 | 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | 	btrfs_release_path(path); | 
 | fail: | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	return 0; | 
 |  | 
 | } | 
 |  | 
 | static struct btrfs_block_group_cache * | 
 | next_block_group(struct btrfs_root *root, | 
 | 		 struct btrfs_block_group_cache *cache) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	spin_lock(&root->fs_info->block_group_cache_lock); | 
 | 	node = rb_next(&cache->cache_node); | 
 | 	btrfs_put_block_group(cache); | 
 | 	if (node) { | 
 | 		cache = rb_entry(node, struct btrfs_block_group_cache, | 
 | 				 cache_node); | 
 | 		btrfs_get_block_group(cache); | 
 | 	} else | 
 | 		cache = NULL; | 
 | 	spin_unlock(&root->fs_info->block_group_cache_lock); | 
 | 	return cache; | 
 | } | 
 |  | 
 | static int cache_save_setup(struct btrfs_block_group_cache *block_group, | 
 | 			    struct btrfs_trans_handle *trans, | 
 | 			    struct btrfs_path *path) | 
 | { | 
 | 	struct btrfs_root *root = block_group->fs_info->tree_root; | 
 | 	struct inode *inode = NULL; | 
 | 	u64 alloc_hint = 0; | 
 | 	int dcs = BTRFS_DC_ERROR; | 
 | 	int num_pages = 0; | 
 | 	int retries = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * If this block group is smaller than 100 megs don't bother caching the | 
 | 	 * block group. | 
 | 	 */ | 
 | 	if (block_group->key.offset < (100 * 1024 * 1024)) { | 
 | 		spin_lock(&block_group->lock); | 
 | 		block_group->disk_cache_state = BTRFS_DC_WRITTEN; | 
 | 		spin_unlock(&block_group->lock); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | again: | 
 | 	inode = lookup_free_space_inode(root, block_group, path); | 
 | 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { | 
 | 		ret = PTR_ERR(inode); | 
 | 		btrfs_release_path(path); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (IS_ERR(inode)) { | 
 | 		BUG_ON(retries); | 
 | 		retries++; | 
 |  | 
 | 		if (block_group->ro) | 
 | 			goto out_free; | 
 |  | 
 | 		ret = create_free_space_inode(root, trans, block_group, path); | 
 | 		if (ret) | 
 | 			goto out_free; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	/* We've already setup this transaction, go ahead and exit */ | 
 | 	if (block_group->cache_generation == trans->transid && | 
 | 	    i_size_read(inode)) { | 
 | 		dcs = BTRFS_DC_SETUP; | 
 | 		goto out_put; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We want to set the generation to 0, that way if anything goes wrong | 
 | 	 * from here on out we know not to trust this cache when we load up next | 
 | 	 * time. | 
 | 	 */ | 
 | 	BTRFS_I(inode)->generation = 0; | 
 | 	ret = btrfs_update_inode(trans, root, inode); | 
 | 	WARN_ON(ret); | 
 |  | 
 | 	if (i_size_read(inode) > 0) { | 
 | 		ret = btrfs_truncate_free_space_cache(root, trans, path, | 
 | 						      inode); | 
 | 		if (ret) | 
 | 			goto out_put; | 
 | 	} | 
 |  | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (block_group->cached != BTRFS_CACHE_FINISHED) { | 
 | 		/* We're not cached, don't bother trying to write stuff out */ | 
 | 		dcs = BTRFS_DC_WRITTEN; | 
 | 		spin_unlock(&block_group->lock); | 
 | 		goto out_put; | 
 | 	} | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024); | 
 | 	if (!num_pages) | 
 | 		num_pages = 1; | 
 |  | 
 | 	/* | 
 | 	 * Just to make absolutely sure we have enough space, we're going to | 
 | 	 * preallocate 12 pages worth of space for each block group.  In | 
 | 	 * practice we ought to use at most 8, but we need extra space so we can | 
 | 	 * add our header and have a terminator between the extents and the | 
 | 	 * bitmaps. | 
 | 	 */ | 
 | 	num_pages *= 16; | 
 | 	num_pages *= PAGE_CACHE_SIZE; | 
 |  | 
 | 	ret = btrfs_check_data_free_space(inode, num_pages); | 
 | 	if (ret) | 
 | 		goto out_put; | 
 |  | 
 | 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, | 
 | 					      num_pages, num_pages, | 
 | 					      &alloc_hint); | 
 | 	if (!ret) | 
 | 		dcs = BTRFS_DC_SETUP; | 
 | 	btrfs_free_reserved_data_space(inode, num_pages); | 
 |  | 
 | out_put: | 
 | 	iput(inode); | 
 | out_free: | 
 | 	btrfs_release_path(path); | 
 | out: | 
 | 	spin_lock(&block_group->lock); | 
 | 	if (!ret && dcs == BTRFS_DC_SETUP) | 
 | 		block_group->cache_generation = trans->transid; | 
 | 	block_group->disk_cache_state = dcs; | 
 | 	spin_unlock(&block_group->lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_block_group_cache *cache; | 
 | 	int err = 0; | 
 | 	struct btrfs_path *path; | 
 | 	u64 last = 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | again: | 
 | 	while (1) { | 
 | 		cache = btrfs_lookup_first_block_group(root->fs_info, last); | 
 | 		while (cache) { | 
 | 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) | 
 | 				break; | 
 | 			cache = next_block_group(root, cache); | 
 | 		} | 
 | 		if (!cache) { | 
 | 			if (last == 0) | 
 | 				break; | 
 | 			last = 0; | 
 | 			continue; | 
 | 		} | 
 | 		err = cache_save_setup(cache, trans, path); | 
 | 		last = cache->key.objectid + cache->key.offset; | 
 | 		btrfs_put_block_group(cache); | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		if (last == 0) { | 
 | 			err = btrfs_run_delayed_refs(trans, root, | 
 | 						     (unsigned long)-1); | 
 | 			BUG_ON(err); | 
 | 		} | 
 |  | 
 | 		cache = btrfs_lookup_first_block_group(root->fs_info, last); | 
 | 		while (cache) { | 
 | 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) { | 
 | 				btrfs_put_block_group(cache); | 
 | 				goto again; | 
 | 			} | 
 |  | 
 | 			if (cache->dirty) | 
 | 				break; | 
 | 			cache = next_block_group(root, cache); | 
 | 		} | 
 | 		if (!cache) { | 
 | 			if (last == 0) | 
 | 				break; | 
 | 			last = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (cache->disk_cache_state == BTRFS_DC_SETUP) | 
 | 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE; | 
 | 		cache->dirty = 0; | 
 | 		last = cache->key.objectid + cache->key.offset; | 
 |  | 
 | 		err = write_one_cache_group(trans, root, path, cache); | 
 | 		BUG_ON(err); | 
 | 		btrfs_put_block_group(cache); | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		/* | 
 | 		 * I don't think this is needed since we're just marking our | 
 | 		 * preallocated extent as written, but just in case it can't | 
 | 		 * hurt. | 
 | 		 */ | 
 | 		if (last == 0) { | 
 | 			err = btrfs_run_delayed_refs(trans, root, | 
 | 						     (unsigned long)-1); | 
 | 			BUG_ON(err); | 
 | 		} | 
 |  | 
 | 		cache = btrfs_lookup_first_block_group(root->fs_info, last); | 
 | 		while (cache) { | 
 | 			/* | 
 | 			 * Really this shouldn't happen, but it could if we | 
 | 			 * couldn't write the entire preallocated extent and | 
 | 			 * splitting the extent resulted in a new block. | 
 | 			 */ | 
 | 			if (cache->dirty) { | 
 | 				btrfs_put_block_group(cache); | 
 | 				goto again; | 
 | 			} | 
 | 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) | 
 | 				break; | 
 | 			cache = next_block_group(root, cache); | 
 | 		} | 
 | 		if (!cache) { | 
 | 			if (last == 0) | 
 | 				break; | 
 | 			last = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_write_out_cache(root, trans, cache, path); | 
 |  | 
 | 		/* | 
 | 		 * If we didn't have an error then the cache state is still | 
 | 		 * NEED_WRITE, so we can set it to WRITTEN. | 
 | 		 */ | 
 | 		if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) | 
 | 			cache->disk_cache_state = BTRFS_DC_WRITTEN; | 
 | 		last = cache->key.objectid + cache->key.offset; | 
 | 		btrfs_put_block_group(cache); | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) | 
 | { | 
 | 	struct btrfs_block_group_cache *block_group; | 
 | 	int readonly = 0; | 
 |  | 
 | 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr); | 
 | 	if (!block_group || block_group->ro) | 
 | 		readonly = 1; | 
 | 	if (block_group) | 
 | 		btrfs_put_block_group(block_group); | 
 | 	return readonly; | 
 | } | 
 |  | 
 | static int update_space_info(struct btrfs_fs_info *info, u64 flags, | 
 | 			     u64 total_bytes, u64 bytes_used, | 
 | 			     struct btrfs_space_info **space_info) | 
 | { | 
 | 	struct btrfs_space_info *found; | 
 | 	int i; | 
 | 	int factor; | 
 |  | 
 | 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | | 
 | 		     BTRFS_BLOCK_GROUP_RAID10)) | 
 | 		factor = 2; | 
 | 	else | 
 | 		factor = 1; | 
 |  | 
 | 	found = __find_space_info(info, flags); | 
 | 	if (found) { | 
 | 		spin_lock(&found->lock); | 
 | 		found->total_bytes += total_bytes; | 
 | 		found->disk_total += total_bytes * factor; | 
 | 		found->bytes_used += bytes_used; | 
 | 		found->disk_used += bytes_used * factor; | 
 | 		found->full = 0; | 
 | 		spin_unlock(&found->lock); | 
 | 		*space_info = found; | 
 | 		return 0; | 
 | 	} | 
 | 	found = kzalloc(sizeof(*found), GFP_NOFS); | 
 | 	if (!found) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) | 
 | 		INIT_LIST_HEAD(&found->block_groups[i]); | 
 | 	init_rwsem(&found->groups_sem); | 
 | 	spin_lock_init(&found->lock); | 
 | 	found->flags = flags & (BTRFS_BLOCK_GROUP_DATA | | 
 | 				BTRFS_BLOCK_GROUP_SYSTEM | | 
 | 				BTRFS_BLOCK_GROUP_METADATA); | 
 | 	found->total_bytes = total_bytes; | 
 | 	found->disk_total = total_bytes * factor; | 
 | 	found->bytes_used = bytes_used; | 
 | 	found->disk_used = bytes_used * factor; | 
 | 	found->bytes_pinned = 0; | 
 | 	found->bytes_reserved = 0; | 
 | 	found->bytes_readonly = 0; | 
 | 	found->bytes_may_use = 0; | 
 | 	found->full = 0; | 
 | 	found->force_alloc = CHUNK_ALLOC_NO_FORCE; | 
 | 	found->chunk_alloc = 0; | 
 | 	found->flush = 0; | 
 | 	init_waitqueue_head(&found->wait); | 
 | 	*space_info = found; | 
 | 	list_add_rcu(&found->list, &info->space_info); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) | 
 | { | 
 | 	u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 | | 
 | 				   BTRFS_BLOCK_GROUP_RAID1 | | 
 | 				   BTRFS_BLOCK_GROUP_RAID10 | | 
 | 				   BTRFS_BLOCK_GROUP_DUP); | 
 | 	if (extra_flags) { | 
 | 		if (flags & BTRFS_BLOCK_GROUP_DATA) | 
 | 			fs_info->avail_data_alloc_bits |= extra_flags; | 
 | 		if (flags & BTRFS_BLOCK_GROUP_METADATA) | 
 | 			fs_info->avail_metadata_alloc_bits |= extra_flags; | 
 | 		if (flags & BTRFS_BLOCK_GROUP_SYSTEM) | 
 | 			fs_info->avail_system_alloc_bits |= extra_flags; | 
 | 	} | 
 | } | 
 |  | 
 | u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) | 
 | { | 
 | 	/* | 
 | 	 * we add in the count of missing devices because we want | 
 | 	 * to make sure that any RAID levels on a degraded FS | 
 | 	 * continue to be honored. | 
 | 	 */ | 
 | 	u64 num_devices = root->fs_info->fs_devices->rw_devices + | 
 | 		root->fs_info->fs_devices->missing_devices; | 
 |  | 
 | 	if (num_devices == 1) | 
 | 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); | 
 | 	if (num_devices < 4) | 
 | 		flags &= ~BTRFS_BLOCK_GROUP_RAID10; | 
 |  | 
 | 	if ((flags & BTRFS_BLOCK_GROUP_DUP) && | 
 | 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 | | 
 | 		      BTRFS_BLOCK_GROUP_RAID10))) { | 
 | 		flags &= ~BTRFS_BLOCK_GROUP_DUP; | 
 | 	} | 
 |  | 
 | 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) && | 
 | 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) { | 
 | 		flags &= ~BTRFS_BLOCK_GROUP_RAID1; | 
 | 	} | 
 |  | 
 | 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) && | 
 | 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) | | 
 | 	     (flags & BTRFS_BLOCK_GROUP_RAID10) | | 
 | 	     (flags & BTRFS_BLOCK_GROUP_DUP))) | 
 | 		flags &= ~BTRFS_BLOCK_GROUP_RAID0; | 
 | 	return flags; | 
 | } | 
 |  | 
 | static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) | 
 | { | 
 | 	if (flags & BTRFS_BLOCK_GROUP_DATA) | 
 | 		flags |= root->fs_info->avail_data_alloc_bits & | 
 | 			 root->fs_info->data_alloc_profile; | 
 | 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) | 
 | 		flags |= root->fs_info->avail_system_alloc_bits & | 
 | 			 root->fs_info->system_alloc_profile; | 
 | 	else if (flags & BTRFS_BLOCK_GROUP_METADATA) | 
 | 		flags |= root->fs_info->avail_metadata_alloc_bits & | 
 | 			 root->fs_info->metadata_alloc_profile; | 
 | 	return btrfs_reduce_alloc_profile(root, flags); | 
 | } | 
 |  | 
 | u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) | 
 | { | 
 | 	u64 flags; | 
 |  | 
 | 	if (data) | 
 | 		flags = BTRFS_BLOCK_GROUP_DATA; | 
 | 	else if (root == root->fs_info->chunk_root) | 
 | 		flags = BTRFS_BLOCK_GROUP_SYSTEM; | 
 | 	else | 
 | 		flags = BTRFS_BLOCK_GROUP_METADATA; | 
 |  | 
 | 	return get_alloc_profile(root, flags); | 
 | } | 
 |  | 
 | void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode) | 
 | { | 
 | 	BTRFS_I(inode)->space_info = __find_space_info(root->fs_info, | 
 | 						       BTRFS_BLOCK_GROUP_DATA); | 
 | } | 
 |  | 
 | /* | 
 |  * This will check the space that the inode allocates from to make sure we have | 
 |  * enough space for bytes. | 
 |  */ | 
 | int btrfs_check_data_free_space(struct inode *inode, u64 bytes) | 
 | { | 
 | 	struct btrfs_space_info *data_sinfo; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	u64 used; | 
 | 	int ret = 0, committed = 0, alloc_chunk = 1; | 
 |  | 
 | 	/* make sure bytes are sectorsize aligned */ | 
 | 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); | 
 |  | 
 | 	if (root == root->fs_info->tree_root || | 
 | 	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) { | 
 | 		alloc_chunk = 0; | 
 | 		committed = 1; | 
 | 	} | 
 |  | 
 | 	data_sinfo = BTRFS_I(inode)->space_info; | 
 | 	if (!data_sinfo) | 
 | 		goto alloc; | 
 |  | 
 | again: | 
 | 	/* make sure we have enough space to handle the data first */ | 
 | 	spin_lock(&data_sinfo->lock); | 
 | 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + | 
 | 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + | 
 | 		data_sinfo->bytes_may_use; | 
 |  | 
 | 	if (used + bytes > data_sinfo->total_bytes) { | 
 | 		struct btrfs_trans_handle *trans; | 
 |  | 
 | 		/* | 
 | 		 * if we don't have enough free bytes in this space then we need | 
 | 		 * to alloc a new chunk. | 
 | 		 */ | 
 | 		if (!data_sinfo->full && alloc_chunk) { | 
 | 			u64 alloc_target; | 
 |  | 
 | 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; | 
 | 			spin_unlock(&data_sinfo->lock); | 
 | alloc: | 
 | 			alloc_target = btrfs_get_alloc_profile(root, 1); | 
 | 			trans = btrfs_join_transaction(root); | 
 | 			if (IS_ERR(trans)) | 
 | 				return PTR_ERR(trans); | 
 |  | 
 | 			ret = do_chunk_alloc(trans, root->fs_info->extent_root, | 
 | 					     bytes + 2 * 1024 * 1024, | 
 | 					     alloc_target, | 
 | 					     CHUNK_ALLOC_NO_FORCE); | 
 | 			btrfs_end_transaction(trans, root); | 
 | 			if (ret < 0) { | 
 | 				if (ret != -ENOSPC) | 
 | 					return ret; | 
 | 				else | 
 | 					goto commit_trans; | 
 | 			} | 
 |  | 
 | 			if (!data_sinfo) { | 
 | 				btrfs_set_inode_space_info(root, inode); | 
 | 				data_sinfo = BTRFS_I(inode)->space_info; | 
 | 			} | 
 | 			goto again; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If we have less pinned bytes than we want to allocate then | 
 | 		 * don't bother committing the transaction, it won't help us. | 
 | 		 */ | 
 | 		if (data_sinfo->bytes_pinned < bytes) | 
 | 			committed = 1; | 
 | 		spin_unlock(&data_sinfo->lock); | 
 |  | 
 | 		/* commit the current transaction and try again */ | 
 | commit_trans: | 
 | 		if (!committed && | 
 | 		    !atomic_read(&root->fs_info->open_ioctl_trans)) { | 
 | 			committed = 1; | 
 | 			trans = btrfs_join_transaction(root); | 
 | 			if (IS_ERR(trans)) | 
 | 				return PTR_ERR(trans); | 
 | 			ret = btrfs_commit_transaction(trans, root); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 			goto again; | 
 | 		} | 
 |  | 
 | 		return -ENOSPC; | 
 | 	} | 
 | 	data_sinfo->bytes_may_use += bytes; | 
 | 	spin_unlock(&data_sinfo->lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Called if we need to clear a data reservation for this inode. | 
 |  */ | 
 | void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct btrfs_space_info *data_sinfo; | 
 |  | 
 | 	/* make sure bytes are sectorsize aligned */ | 
 | 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); | 
 |  | 
 | 	data_sinfo = BTRFS_I(inode)->space_info; | 
 | 	spin_lock(&data_sinfo->lock); | 
 | 	data_sinfo->bytes_may_use -= bytes; | 
 | 	spin_unlock(&data_sinfo->lock); | 
 | } | 
 |  | 
 | static void force_metadata_allocation(struct btrfs_fs_info *info) | 
 | { | 
 | 	struct list_head *head = &info->space_info; | 
 | 	struct btrfs_space_info *found; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(found, head, list) { | 
 | 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA) | 
 | 			found->force_alloc = CHUNK_ALLOC_FORCE; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static int should_alloc_chunk(struct btrfs_root *root, | 
 | 			      struct btrfs_space_info *sinfo, u64 alloc_bytes, | 
 | 			      int force) | 
 | { | 
 | 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; | 
 | 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; | 
 | 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; | 
 | 	u64 thresh; | 
 |  | 
 | 	if (force == CHUNK_ALLOC_FORCE) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * We need to take into account the global rsv because for all intents | 
 | 	 * and purposes it's used space.  Don't worry about locking the | 
 | 	 * global_rsv, it doesn't change except when the transaction commits. | 
 | 	 */ | 
 | 	num_allocated += global_rsv->size; | 
 |  | 
 | 	/* | 
 | 	 * in limited mode, we want to have some free space up to | 
 | 	 * about 1% of the FS size. | 
 | 	 */ | 
 | 	if (force == CHUNK_ALLOC_LIMITED) { | 
 | 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy); | 
 | 		thresh = max_t(u64, 64 * 1024 * 1024, | 
 | 			       div_factor_fine(thresh, 1)); | 
 |  | 
 | 		if (num_bytes - num_allocated < thresh) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * we have two similar checks here, one based on percentage | 
 | 	 * and once based on a hard number of 256MB.  The idea | 
 | 	 * is that if we have a good amount of free | 
 | 	 * room, don't allocate a chunk.  A good mount is | 
 | 	 * less than 80% utilized of the chunks we have allocated, | 
 | 	 * or more than 256MB free | 
 | 	 */ | 
 | 	if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes) | 
 | 		return 0; | 
 |  | 
 | 	if (num_allocated + alloc_bytes < div_factor(num_bytes, 8)) | 
 | 		return 0; | 
 |  | 
 | 	thresh = btrfs_super_total_bytes(root->fs_info->super_copy); | 
 |  | 
 | 	/* 256MB or 5% of the FS */ | 
 | 	thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5)); | 
 |  | 
 | 	if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3)) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int do_chunk_alloc(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *extent_root, u64 alloc_bytes, | 
 | 			  u64 flags, int force) | 
 | { | 
 | 	struct btrfs_space_info *space_info; | 
 | 	struct btrfs_fs_info *fs_info = extent_root->fs_info; | 
 | 	int wait_for_alloc = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	flags = btrfs_reduce_alloc_profile(extent_root, flags); | 
 |  | 
 | 	space_info = __find_space_info(extent_root->fs_info, flags); | 
 | 	if (!space_info) { | 
 | 		ret = update_space_info(extent_root->fs_info, flags, | 
 | 					0, 0, &space_info); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 | 	BUG_ON(!space_info); | 
 |  | 
 | again: | 
 | 	spin_lock(&space_info->lock); | 
 | 	if (space_info->force_alloc) | 
 | 		force = space_info->force_alloc; | 
 | 	if (space_info->full) { | 
 | 		spin_unlock(&space_info->lock); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) { | 
 | 		spin_unlock(&space_info->lock); | 
 | 		return 0; | 
 | 	} else if (space_info->chunk_alloc) { | 
 | 		wait_for_alloc = 1; | 
 | 	} else { | 
 | 		space_info->chunk_alloc = 1; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&space_info->lock); | 
 |  | 
 | 	mutex_lock(&fs_info->chunk_mutex); | 
 |  | 
 | 	/* | 
 | 	 * The chunk_mutex is held throughout the entirety of a chunk | 
 | 	 * allocation, so once we've acquired the chunk_mutex we know that the | 
 | 	 * other guy is done and we need to recheck and see if we should | 
 | 	 * allocate. | 
 | 	 */ | 
 | 	if (wait_for_alloc) { | 
 | 		mutex_unlock(&fs_info->chunk_mutex); | 
 | 		wait_for_alloc = 0; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we have mixed data/metadata chunks we want to make sure we keep | 
 | 	 * allocating mixed chunks instead of individual chunks. | 
 | 	 */ | 
 | 	if (btrfs_mixed_space_info(space_info)) | 
 | 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); | 
 |  | 
 | 	/* | 
 | 	 * if we're doing a data chunk, go ahead and make sure that | 
 | 	 * we keep a reasonable number of metadata chunks allocated in the | 
 | 	 * FS as well. | 
 | 	 */ | 
 | 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { | 
 | 		fs_info->data_chunk_allocations++; | 
 | 		if (!(fs_info->data_chunk_allocations % | 
 | 		      fs_info->metadata_ratio)) | 
 | 			force_metadata_allocation(fs_info); | 
 | 	} | 
 |  | 
 | 	ret = btrfs_alloc_chunk(trans, extent_root, flags); | 
 | 	if (ret < 0 && ret != -ENOSPC) | 
 | 		goto out; | 
 |  | 
 | 	spin_lock(&space_info->lock); | 
 | 	if (ret) | 
 | 		space_info->full = 1; | 
 | 	else | 
 | 		ret = 1; | 
 |  | 
 | 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; | 
 | 	space_info->chunk_alloc = 0; | 
 | 	spin_unlock(&space_info->lock); | 
 | out: | 
 | 	mutex_unlock(&extent_root->fs_info->chunk_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * shrink metadata reservation for delalloc | 
 |  */ | 
 | static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, | 
 | 			   bool wait_ordered) | 
 | { | 
 | 	struct btrfs_block_rsv *block_rsv; | 
 | 	struct btrfs_space_info *space_info; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	u64 reserved; | 
 | 	u64 max_reclaim; | 
 | 	u64 reclaimed = 0; | 
 | 	long time_left; | 
 | 	unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; | 
 | 	int loops = 0; | 
 | 	unsigned long progress; | 
 |  | 
 | 	trans = (struct btrfs_trans_handle *)current->journal_info; | 
 | 	block_rsv = &root->fs_info->delalloc_block_rsv; | 
 | 	space_info = block_rsv->space_info; | 
 |  | 
 | 	smp_mb(); | 
 | 	reserved = space_info->bytes_may_use; | 
 | 	progress = space_info->reservation_progress; | 
 |  | 
 | 	if (reserved == 0) | 
 | 		return 0; | 
 |  | 
 | 	smp_mb(); | 
 | 	if (root->fs_info->delalloc_bytes == 0) { | 
 | 		if (trans) | 
 | 			return 0; | 
 | 		btrfs_wait_ordered_extents(root, 0, 0); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	max_reclaim = min(reserved, to_reclaim); | 
 | 	nr_pages = max_t(unsigned long, nr_pages, | 
 | 			 max_reclaim >> PAGE_CACHE_SHIFT); | 
 | 	while (loops < 1024) { | 
 | 		/* have the flusher threads jump in and do some IO */ | 
 | 		smp_mb(); | 
 | 		nr_pages = min_t(unsigned long, nr_pages, | 
 | 		       root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT); | 
 | 		writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages, | 
 | 						WB_REASON_FS_FREE_SPACE); | 
 |  | 
 | 		spin_lock(&space_info->lock); | 
 | 		if (reserved > space_info->bytes_may_use) | 
 | 			reclaimed += reserved - space_info->bytes_may_use; | 
 | 		reserved = space_info->bytes_may_use; | 
 | 		spin_unlock(&space_info->lock); | 
 |  | 
 | 		loops++; | 
 |  | 
 | 		if (reserved == 0 || reclaimed >= max_reclaim) | 
 | 			break; | 
 |  | 
 | 		if (trans && trans->transaction->blocked) | 
 | 			return -EAGAIN; | 
 |  | 
 | 		if (wait_ordered && !trans) { | 
 | 			btrfs_wait_ordered_extents(root, 0, 0); | 
 | 		} else { | 
 | 			time_left = schedule_timeout_interruptible(1); | 
 |  | 
 | 			/* We were interrupted, exit */ | 
 | 			if (time_left) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		/* we've kicked the IO a few times, if anything has been freed, | 
 | 		 * exit.  There is no sense in looping here for a long time | 
 | 		 * when we really need to commit the transaction, or there are | 
 | 		 * just too many writers without enough free space | 
 | 		 */ | 
 |  | 
 | 		if (loops > 3) { | 
 | 			smp_mb(); | 
 | 			if (progress != space_info->reservation_progress) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 	} | 
 |  | 
 | 	return reclaimed >= to_reclaim; | 
 | } | 
 |  | 
 | /** | 
 |  * maybe_commit_transaction - possibly commit the transaction if its ok to | 
 |  * @root - the root we're allocating for | 
 |  * @bytes - the number of bytes we want to reserve | 
 |  * @force - force the commit | 
 |  * | 
 |  * This will check to make sure that committing the transaction will actually | 
 |  * get us somewhere and then commit the transaction if it does.  Otherwise it | 
 |  * will return -ENOSPC. | 
 |  */ | 
 | static int may_commit_transaction(struct btrfs_root *root, | 
 | 				  struct btrfs_space_info *space_info, | 
 | 				  u64 bytes, int force) | 
 | { | 
 | 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; | 
 | 	struct btrfs_trans_handle *trans; | 
 |  | 
 | 	trans = (struct btrfs_trans_handle *)current->journal_info; | 
 | 	if (trans) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	if (force) | 
 | 		goto commit; | 
 |  | 
 | 	/* See if there is enough pinned space to make this reservation */ | 
 | 	spin_lock(&space_info->lock); | 
 | 	if (space_info->bytes_pinned >= bytes) { | 
 | 		spin_unlock(&space_info->lock); | 
 | 		goto commit; | 
 | 	} | 
 | 	spin_unlock(&space_info->lock); | 
 |  | 
 | 	/* | 
 | 	 * See if there is some space in the delayed insertion reservation for | 
 | 	 * this reservation. | 
 | 	 */ | 
 | 	if (space_info != delayed_rsv->space_info) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	spin_lock(&delayed_rsv->lock); | 
 | 	if (delayed_rsv->size < bytes) { | 
 | 		spin_unlock(&delayed_rsv->lock); | 
 | 		return -ENOSPC; | 
 | 	} | 
 | 	spin_unlock(&delayed_rsv->lock); | 
 |  | 
 | commit: | 
 | 	trans = btrfs_join_transaction(root); | 
 | 	if (IS_ERR(trans)) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	return btrfs_commit_transaction(trans, root); | 
 | } | 
 |  | 
 | /** | 
 |  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space | 
 |  * @root - the root we're allocating for | 
 |  * @block_rsv - the block_rsv we're allocating for | 
 |  * @orig_bytes - the number of bytes we want | 
 |  * @flush - wether or not we can flush to make our reservation | 
 |  * | 
 |  * This will reserve orgi_bytes number of bytes from the space info associated | 
 |  * with the block_rsv.  If there is not enough space it will make an attempt to | 
 |  * flush out space to make room.  It will do this by flushing delalloc if | 
 |  * possible or committing the transaction.  If flush is 0 then no attempts to | 
 |  * regain reservations will be made and this will fail if there is not enough | 
 |  * space already. | 
 |  */ | 
 | static int reserve_metadata_bytes(struct btrfs_root *root, | 
 | 				  struct btrfs_block_rsv *block_rsv, | 
 | 				  u64 orig_bytes, int flush) | 
 | { | 
 | 	struct btrfs_space_info *space_info = block_rsv->space_info; | 
 | 	u64 used; | 
 | 	u64 num_bytes = orig_bytes; | 
 | 	int retries = 0; | 
 | 	int ret = 0; | 
 | 	bool committed = false; | 
 | 	bool flushing = false; | 
 | 	bool wait_ordered = false; | 
 |  | 
 | again: | 
 | 	ret = 0; | 
 | 	spin_lock(&space_info->lock); | 
 | 	/* | 
 | 	 * We only want to wait if somebody other than us is flushing and we are | 
 | 	 * actually alloed to flush. | 
 | 	 */ | 
 | 	while (flush && !flushing && space_info->flush) { | 
 | 		spin_unlock(&space_info->lock); | 
 | 		/* | 
 | 		 * If we have a trans handle we can't wait because the flusher | 
 | 		 * may have to commit the transaction, which would mean we would | 
 | 		 * deadlock since we are waiting for the flusher to finish, but | 
 | 		 * hold the current transaction open. | 
 | 		 */ | 
 | 		if (current->journal_info) | 
 | 			return -EAGAIN; | 
 | 		ret = wait_event_interruptible(space_info->wait, | 
 | 					       !space_info->flush); | 
 | 		/* Must have been interrupted, return */ | 
 | 		if (ret) | 
 | 			return -EINTR; | 
 |  | 
 | 		spin_lock(&space_info->lock); | 
 | 	} | 
 |  | 
 | 	ret = -ENOSPC; | 
 | 	used = space_info->bytes_used + space_info->bytes_reserved + | 
 | 		space_info->bytes_pinned + space_info->bytes_readonly + | 
 | 		space_info->bytes_may_use; | 
 |  | 
 | 	/* | 
 | 	 * The idea here is that we've not already over-reserved the block group | 
 | 	 * then we can go ahead and save our reservation first and then start | 
 | 	 * flushing if we need to.  Otherwise if we've already overcommitted | 
 | 	 * lets start flushing stuff first and then come back and try to make | 
 | 	 * our reservation. | 
 | 	 */ | 
 | 	if (used <= space_info->total_bytes) { | 
 | 		if (used + orig_bytes <= space_info->total_bytes) { | 
 | 			space_info->bytes_may_use += orig_bytes; | 
 | 			ret = 0; | 
 | 		} else { | 
 | 			/* | 
 | 			 * Ok set num_bytes to orig_bytes since we aren't | 
 | 			 * overocmmitted, this way we only try and reclaim what | 
 | 			 * we need. | 
 | 			 */ | 
 | 			num_bytes = orig_bytes; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * Ok we're over committed, set num_bytes to the overcommitted | 
 | 		 * amount plus the amount of bytes that we need for this | 
 | 		 * reservation. | 
 | 		 */ | 
 | 		wait_ordered = true; | 
 | 		num_bytes = used - space_info->total_bytes + | 
 | 			(orig_bytes * (retries + 1)); | 
 | 	} | 
 |  | 
 | 	if (ret) { | 
 | 		u64 profile = btrfs_get_alloc_profile(root, 0); | 
 | 		u64 avail; | 
 |  | 
 | 		/* | 
 | 		 * If we have a lot of space that's pinned, don't bother doing | 
 | 		 * the overcommit dance yet and just commit the transaction. | 
 | 		 */ | 
 | 		avail = (space_info->total_bytes - space_info->bytes_used) * 8; | 
 | 		do_div(avail, 10); | 
 | 		if (space_info->bytes_pinned >= avail && flush && !committed) { | 
 | 			space_info->flush = 1; | 
 | 			flushing = true; | 
 | 			spin_unlock(&space_info->lock); | 
 | 			ret = may_commit_transaction(root, space_info, | 
 | 						     orig_bytes, 1); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			committed = true; | 
 | 			goto again; | 
 | 		} | 
 |  | 
 | 		spin_lock(&root->fs_info->free_chunk_lock); | 
 | 		avail = root->fs_info->free_chunk_space; | 
 |  | 
 | 		/* | 
 | 		 * If we have dup, raid1 or raid10 then only half of the free | 
 | 		 * space is actually useable. | 
 | 		 */ | 
 | 		if (profile & (BTRFS_BLOCK_GROUP_DUP | | 
 | 			       BTRFS_BLOCK_GROUP_RAID1 | | 
 | 			       BTRFS_BLOCK_GROUP_RAID10)) | 
 | 			avail >>= 1; | 
 |  | 
 | 		/* | 
 | 		 * If we aren't flushing don't let us overcommit too much, say | 
 | 		 * 1/8th of the space.  If we can flush, let it overcommit up to | 
 | 		 * 1/2 of the space. | 
 | 		 */ | 
 | 		if (flush) | 
 | 			avail >>= 3; | 
 | 		else | 
 | 			avail >>= 1; | 
 | 		 spin_unlock(&root->fs_info->free_chunk_lock); | 
 |  | 
 | 		if (used + num_bytes < space_info->total_bytes + avail) { | 
 | 			space_info->bytes_may_use += orig_bytes; | 
 | 			ret = 0; | 
 | 		} else { | 
 | 			wait_ordered = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Couldn't make our reservation, save our place so while we're trying | 
 | 	 * to reclaim space we can actually use it instead of somebody else | 
 | 	 * stealing it from us. | 
 | 	 */ | 
 | 	if (ret && flush) { | 
 | 		flushing = true; | 
 | 		space_info->flush = 1; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&space_info->lock); | 
 |  | 
 | 	if (!ret || !flush) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * We do synchronous shrinking since we don't actually unreserve | 
 | 	 * metadata until after the IO is completed. | 
 | 	 */ | 
 | 	ret = shrink_delalloc(root, num_bytes, wait_ordered); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * So if we were overcommitted it's possible that somebody else flushed | 
 | 	 * out enough space and we simply didn't have enough space to reclaim, | 
 | 	 * so go back around and try again. | 
 | 	 */ | 
 | 	if (retries < 2) { | 
 | 		wait_ordered = true; | 
 | 		retries++; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	ret = -ENOSPC; | 
 | 	if (committed) | 
 | 		goto out; | 
 |  | 
 | 	ret = may_commit_transaction(root, space_info, orig_bytes, 0); | 
 | 	if (!ret) { | 
 | 		committed = true; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (flushing) { | 
 | 		spin_lock(&space_info->lock); | 
 | 		space_info->flush = 0; | 
 | 		wake_up_all(&space_info->wait); | 
 | 		spin_unlock(&space_info->lock); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans, | 
 | 					     struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_block_rsv *block_rsv = NULL; | 
 |  | 
 | 	if (root->ref_cows || root == root->fs_info->csum_root) | 
 | 		block_rsv = trans->block_rsv; | 
 |  | 
 | 	if (!block_rsv) | 
 | 		block_rsv = root->block_rsv; | 
 |  | 
 | 	if (!block_rsv) | 
 | 		block_rsv = &root->fs_info->empty_block_rsv; | 
 |  | 
 | 	return block_rsv; | 
 | } | 
 |  | 
 | static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, | 
 | 			       u64 num_bytes) | 
 | { | 
 | 	int ret = -ENOSPC; | 
 | 	spin_lock(&block_rsv->lock); | 
 | 	if (block_rsv->reserved >= num_bytes) { | 
 | 		block_rsv->reserved -= num_bytes; | 
 | 		if (block_rsv->reserved < block_rsv->size) | 
 | 			block_rsv->full = 0; | 
 | 		ret = 0; | 
 | 	} | 
 | 	spin_unlock(&block_rsv->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, | 
 | 				u64 num_bytes, int update_size) | 
 | { | 
 | 	spin_lock(&block_rsv->lock); | 
 | 	block_rsv->reserved += num_bytes; | 
 | 	if (update_size) | 
 | 		block_rsv->size += num_bytes; | 
 | 	else if (block_rsv->reserved >= block_rsv->size) | 
 | 		block_rsv->full = 1; | 
 | 	spin_unlock(&block_rsv->lock); | 
 | } | 
 |  | 
 | static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv, | 
 | 				    struct btrfs_block_rsv *dest, u64 num_bytes) | 
 | { | 
 | 	struct btrfs_space_info *space_info = block_rsv->space_info; | 
 |  | 
 | 	spin_lock(&block_rsv->lock); | 
 | 	if (num_bytes == (u64)-1) | 
 | 		num_bytes = block_rsv->size; | 
 | 	block_rsv->size -= num_bytes; | 
 | 	if (block_rsv->reserved >= block_rsv->size) { | 
 | 		num_bytes = block_rsv->reserved - block_rsv->size; | 
 | 		block_rsv->reserved = block_rsv->size; | 
 | 		block_rsv->full = 1; | 
 | 	} else { | 
 | 		num_bytes = 0; | 
 | 	} | 
 | 	spin_unlock(&block_rsv->lock); | 
 |  | 
 | 	if (num_bytes > 0) { | 
 | 		if (dest) { | 
 | 			spin_lock(&dest->lock); | 
 | 			if (!dest->full) { | 
 | 				u64 bytes_to_add; | 
 |  | 
 | 				bytes_to_add = dest->size - dest->reserved; | 
 | 				bytes_to_add = min(num_bytes, bytes_to_add); | 
 | 				dest->reserved += bytes_to_add; | 
 | 				if (dest->reserved >= dest->size) | 
 | 					dest->full = 1; | 
 | 				num_bytes -= bytes_to_add; | 
 | 			} | 
 | 			spin_unlock(&dest->lock); | 
 | 		} | 
 | 		if (num_bytes) { | 
 | 			spin_lock(&space_info->lock); | 
 | 			space_info->bytes_may_use -= num_bytes; | 
 | 			space_info->reservation_progress++; | 
 | 			spin_unlock(&space_info->lock); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, | 
 | 				   struct btrfs_block_rsv *dst, u64 num_bytes) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = block_rsv_use_bytes(src, num_bytes); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	block_rsv_add_bytes(dst, num_bytes, 1); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv) | 
 | { | 
 | 	memset(rsv, 0, sizeof(*rsv)); | 
 | 	spin_lock_init(&rsv->lock); | 
 | } | 
 |  | 
 | struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_block_rsv *block_rsv; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 |  | 
 | 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); | 
 | 	if (!block_rsv) | 
 | 		return NULL; | 
 |  | 
 | 	btrfs_init_block_rsv(block_rsv); | 
 | 	block_rsv->space_info = __find_space_info(fs_info, | 
 | 						  BTRFS_BLOCK_GROUP_METADATA); | 
 | 	return block_rsv; | 
 | } | 
 |  | 
 | void btrfs_free_block_rsv(struct btrfs_root *root, | 
 | 			  struct btrfs_block_rsv *rsv) | 
 | { | 
 | 	btrfs_block_rsv_release(root, rsv, (u64)-1); | 
 | 	kfree(rsv); | 
 | } | 
 |  | 
 | static inline int __block_rsv_add(struct btrfs_root *root, | 
 | 				  struct btrfs_block_rsv *block_rsv, | 
 | 				  u64 num_bytes, int flush) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (num_bytes == 0) | 
 | 		return 0; | 
 |  | 
 | 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); | 
 | 	if (!ret) { | 
 | 		block_rsv_add_bytes(block_rsv, num_bytes, 1); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_block_rsv_add(struct btrfs_root *root, | 
 | 			struct btrfs_block_rsv *block_rsv, | 
 | 			u64 num_bytes) | 
 | { | 
 | 	return __block_rsv_add(root, block_rsv, num_bytes, 1); | 
 | } | 
 |  | 
 | int btrfs_block_rsv_add_noflush(struct btrfs_root *root, | 
 | 				struct btrfs_block_rsv *block_rsv, | 
 | 				u64 num_bytes) | 
 | { | 
 | 	return __block_rsv_add(root, block_rsv, num_bytes, 0); | 
 | } | 
 |  | 
 | int btrfs_block_rsv_check(struct btrfs_root *root, | 
 | 			  struct btrfs_block_rsv *block_rsv, int min_factor) | 
 | { | 
 | 	u64 num_bytes = 0; | 
 | 	int ret = -ENOSPC; | 
 |  | 
 | 	if (!block_rsv) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock(&block_rsv->lock); | 
 | 	num_bytes = div_factor(block_rsv->size, min_factor); | 
 | 	if (block_rsv->reserved >= num_bytes) | 
 | 		ret = 0; | 
 | 	spin_unlock(&block_rsv->lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int __btrfs_block_rsv_refill(struct btrfs_root *root, | 
 | 					   struct btrfs_block_rsv *block_rsv, | 
 | 					   u64 min_reserved, int flush) | 
 | { | 
 | 	u64 num_bytes = 0; | 
 | 	int ret = -ENOSPC; | 
 |  | 
 | 	if (!block_rsv) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock(&block_rsv->lock); | 
 | 	num_bytes = min_reserved; | 
 | 	if (block_rsv->reserved >= num_bytes) | 
 | 		ret = 0; | 
 | 	else | 
 | 		num_bytes -= block_rsv->reserved; | 
 | 	spin_unlock(&block_rsv->lock); | 
 |  | 
 | 	if (!ret) | 
 | 		return 0; | 
 |  | 
 | 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); | 
 | 	if (!ret) { | 
 | 		block_rsv_add_bytes(block_rsv, num_bytes, 0); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_block_rsv_refill(struct btrfs_root *root, | 
 | 			   struct btrfs_block_rsv *block_rsv, | 
 | 			   u64 min_reserved) | 
 | { | 
 | 	return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1); | 
 | } | 
 |  | 
 | int btrfs_block_rsv_refill_noflush(struct btrfs_root *root, | 
 | 				   struct btrfs_block_rsv *block_rsv, | 
 | 				   u64 min_reserved) | 
 | { | 
 | 	return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0); | 
 | } | 
 |  | 
 | int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, | 
 | 			    struct btrfs_block_rsv *dst_rsv, | 
 | 			    u64 num_bytes) | 
 | { | 
 | 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); | 
 | } | 
 |  | 
 | void btrfs_block_rsv_release(struct btrfs_root *root, | 
 | 			     struct btrfs_block_rsv *block_rsv, | 
 | 			     u64 num_bytes) | 
 | { | 
 | 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; | 
 | 	if (global_rsv->full || global_rsv == block_rsv || | 
 | 	    block_rsv->space_info != global_rsv->space_info) | 
 | 		global_rsv = NULL; | 
 | 	block_rsv_release_bytes(block_rsv, global_rsv, num_bytes); | 
 | } | 
 |  | 
 | /* | 
 |  * helper to calculate size of global block reservation. | 
 |  * the desired value is sum of space used by extent tree, | 
 |  * checksum tree and root tree | 
 |  */ | 
 | static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_space_info *sinfo; | 
 | 	u64 num_bytes; | 
 | 	u64 meta_used; | 
 | 	u64 data_used; | 
 | 	int csum_size = btrfs_super_csum_size(fs_info->super_copy); | 
 |  | 
 | 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); | 
 | 	spin_lock(&sinfo->lock); | 
 | 	data_used = sinfo->bytes_used; | 
 | 	spin_unlock(&sinfo->lock); | 
 |  | 
 | 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); | 
 | 	spin_lock(&sinfo->lock); | 
 | 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) | 
 | 		data_used = 0; | 
 | 	meta_used = sinfo->bytes_used; | 
 | 	spin_unlock(&sinfo->lock); | 
 |  | 
 | 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * | 
 | 		    csum_size * 2; | 
 | 	num_bytes += div64_u64(data_used + meta_used, 50); | 
 |  | 
 | 	if (num_bytes * 3 > meta_used) | 
 | 		num_bytes = div64_u64(meta_used, 3); | 
 |  | 
 | 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); | 
 | } | 
 |  | 
 | static void update_global_block_rsv(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; | 
 | 	struct btrfs_space_info *sinfo = block_rsv->space_info; | 
 | 	u64 num_bytes; | 
 |  | 
 | 	num_bytes = calc_global_metadata_size(fs_info); | 
 |  | 
 | 	spin_lock(&block_rsv->lock); | 
 | 	spin_lock(&sinfo->lock); | 
 |  | 
 | 	block_rsv->size = num_bytes; | 
 |  | 
 | 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + | 
 | 		    sinfo->bytes_reserved + sinfo->bytes_readonly + | 
 | 		    sinfo->bytes_may_use; | 
 |  | 
 | 	if (sinfo->total_bytes > num_bytes) { | 
 | 		num_bytes = sinfo->total_bytes - num_bytes; | 
 | 		block_rsv->reserved += num_bytes; | 
 | 		sinfo->bytes_may_use += num_bytes; | 
 | 	} | 
 |  | 
 | 	if (block_rsv->reserved >= block_rsv->size) { | 
 | 		num_bytes = block_rsv->reserved - block_rsv->size; | 
 | 		sinfo->bytes_may_use -= num_bytes; | 
 | 		sinfo->reservation_progress++; | 
 | 		block_rsv->reserved = block_rsv->size; | 
 | 		block_rsv->full = 1; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&sinfo->lock); | 
 | 	spin_unlock(&block_rsv->lock); | 
 | } | 
 |  | 
 | static void init_global_block_rsv(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_space_info *space_info; | 
 |  | 
 | 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); | 
 | 	fs_info->chunk_block_rsv.space_info = space_info; | 
 |  | 
 | 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); | 
 | 	fs_info->global_block_rsv.space_info = space_info; | 
 | 	fs_info->delalloc_block_rsv.space_info = space_info; | 
 | 	fs_info->trans_block_rsv.space_info = space_info; | 
 | 	fs_info->empty_block_rsv.space_info = space_info; | 
 | 	fs_info->delayed_block_rsv.space_info = space_info; | 
 |  | 
 | 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; | 
 | 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; | 
 | 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; | 
 | 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; | 
 | 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; | 
 |  | 
 | 	update_global_block_rsv(fs_info); | 
 | } | 
 |  | 
 | static void release_global_block_rsv(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1); | 
 | 	WARN_ON(fs_info->delalloc_block_rsv.size > 0); | 
 | 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); | 
 | 	WARN_ON(fs_info->trans_block_rsv.size > 0); | 
 | 	WARN_ON(fs_info->trans_block_rsv.reserved > 0); | 
 | 	WARN_ON(fs_info->chunk_block_rsv.size > 0); | 
 | 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0); | 
 | 	WARN_ON(fs_info->delayed_block_rsv.size > 0); | 
 | 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0); | 
 | } | 
 |  | 
 | void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_root *root) | 
 | { | 
 | 	if (!trans->bytes_reserved) | 
 | 		return; | 
 |  | 
 | 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); | 
 | 	trans->bytes_reserved = 0; | 
 | } | 
 |  | 
 | int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, | 
 | 				  struct inode *inode) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); | 
 | 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; | 
 |  | 
 | 	/* | 
 | 	 * We need to hold space in order to delete our orphan item once we've | 
 | 	 * added it, so this takes the reservation so we can release it later | 
 | 	 * when we are truly done with the orphan item. | 
 | 	 */ | 
 | 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); | 
 | 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); | 
 | } | 
 |  | 
 | void btrfs_orphan_release_metadata(struct inode *inode) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); | 
 | 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); | 
 | } | 
 |  | 
 | int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_pending_snapshot *pending) | 
 | { | 
 | 	struct btrfs_root *root = pending->root; | 
 | 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); | 
 | 	struct btrfs_block_rsv *dst_rsv = &pending->block_rsv; | 
 | 	/* | 
 | 	 * two for root back/forward refs, two for directory entries | 
 | 	 * and one for root of the snapshot. | 
 | 	 */ | 
 | 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); | 
 | 	dst_rsv->space_info = src_rsv->space_info; | 
 | 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); | 
 | } | 
 |  | 
 | /** | 
 |  * drop_outstanding_extent - drop an outstanding extent | 
 |  * @inode: the inode we're dropping the extent for | 
 |  * | 
 |  * This is called when we are freeing up an outstanding extent, either called | 
 |  * after an error or after an extent is written.  This will return the number of | 
 |  * reserved extents that need to be freed.  This must be called with | 
 |  * BTRFS_I(inode)->lock held. | 
 |  */ | 
 | static unsigned drop_outstanding_extent(struct inode *inode) | 
 | { | 
 | 	unsigned drop_inode_space = 0; | 
 | 	unsigned dropped_extents = 0; | 
 |  | 
 | 	BUG_ON(!BTRFS_I(inode)->outstanding_extents); | 
 | 	BTRFS_I(inode)->outstanding_extents--; | 
 |  | 
 | 	if (BTRFS_I(inode)->outstanding_extents == 0 && | 
 | 	    BTRFS_I(inode)->delalloc_meta_reserved) { | 
 | 		drop_inode_space = 1; | 
 | 		BTRFS_I(inode)->delalloc_meta_reserved = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we have more or the same amount of outsanding extents than we have | 
 | 	 * reserved then we need to leave the reserved extents count alone. | 
 | 	 */ | 
 | 	if (BTRFS_I(inode)->outstanding_extents >= | 
 | 	    BTRFS_I(inode)->reserved_extents) | 
 | 		return drop_inode_space; | 
 |  | 
 | 	dropped_extents = BTRFS_I(inode)->reserved_extents - | 
 | 		BTRFS_I(inode)->outstanding_extents; | 
 | 	BTRFS_I(inode)->reserved_extents -= dropped_extents; | 
 | 	return dropped_extents + drop_inode_space; | 
 | } | 
 |  | 
 | /** | 
 |  * calc_csum_metadata_size - return the amount of metada space that must be | 
 |  *	reserved/free'd for the given bytes. | 
 |  * @inode: the inode we're manipulating | 
 |  * @num_bytes: the number of bytes in question | 
 |  * @reserve: 1 if we are reserving space, 0 if we are freeing space | 
 |  * | 
 |  * This adjusts the number of csum_bytes in the inode and then returns the | 
 |  * correct amount of metadata that must either be reserved or freed.  We | 
 |  * calculate how many checksums we can fit into one leaf and then divide the | 
 |  * number of bytes that will need to be checksumed by this value to figure out | 
 |  * how many checksums will be required.  If we are adding bytes then the number | 
 |  * may go up and we will return the number of additional bytes that must be | 
 |  * reserved.  If it is going down we will return the number of bytes that must | 
 |  * be freed. | 
 |  * | 
 |  * This must be called with BTRFS_I(inode)->lock held. | 
 |  */ | 
 | static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, | 
 | 				   int reserve) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	u64 csum_size; | 
 | 	int num_csums_per_leaf; | 
 | 	int num_csums; | 
 | 	int old_csums; | 
 |  | 
 | 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && | 
 | 	    BTRFS_I(inode)->csum_bytes == 0) | 
 | 		return 0; | 
 |  | 
 | 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); | 
 | 	if (reserve) | 
 | 		BTRFS_I(inode)->csum_bytes += num_bytes; | 
 | 	else | 
 | 		BTRFS_I(inode)->csum_bytes -= num_bytes; | 
 | 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); | 
 | 	num_csums_per_leaf = (int)div64_u64(csum_size, | 
 | 					    sizeof(struct btrfs_csum_item) + | 
 | 					    sizeof(struct btrfs_disk_key)); | 
 | 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); | 
 | 	num_csums = num_csums + num_csums_per_leaf - 1; | 
 | 	num_csums = num_csums / num_csums_per_leaf; | 
 |  | 
 | 	old_csums = old_csums + num_csums_per_leaf - 1; | 
 | 	old_csums = old_csums / num_csums_per_leaf; | 
 |  | 
 | 	/* No change, no need to reserve more */ | 
 | 	if (old_csums == num_csums) | 
 | 		return 0; | 
 |  | 
 | 	if (reserve) | 
 | 		return btrfs_calc_trans_metadata_size(root, | 
 | 						      num_csums - old_csums); | 
 |  | 
 | 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); | 
 | } | 
 |  | 
 | int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; | 
 | 	u64 to_reserve = 0; | 
 | 	u64 csum_bytes; | 
 | 	unsigned nr_extents = 0; | 
 | 	int extra_reserve = 0; | 
 | 	int flush = 1; | 
 | 	int ret; | 
 |  | 
 | 	/* Need to be holding the i_mutex here if we aren't free space cache */ | 
 | 	if (btrfs_is_free_space_inode(root, inode)) | 
 | 		flush = 0; | 
 | 	else | 
 | 		WARN_ON(!mutex_is_locked(&inode->i_mutex)); | 
 |  | 
 | 	if (flush && btrfs_transaction_in_commit(root->fs_info)) | 
 | 		schedule_timeout(1); | 
 |  | 
 | 	num_bytes = ALIGN(num_bytes, root->sectorsize); | 
 |  | 
 | 	spin_lock(&BTRFS_I(inode)->lock); | 
 | 	BTRFS_I(inode)->outstanding_extents++; | 
 |  | 
 | 	if (BTRFS_I(inode)->outstanding_extents > | 
 | 	    BTRFS_I(inode)->reserved_extents) | 
 | 		nr_extents = BTRFS_I(inode)->outstanding_extents - | 
 | 			BTRFS_I(inode)->reserved_extents; | 
 |  | 
 | 	/* | 
 | 	 * Add an item to reserve for updating the inode when we complete the | 
 | 	 * delalloc io. | 
 | 	 */ | 
 | 	if (!BTRFS_I(inode)->delalloc_meta_reserved) { | 
 | 		nr_extents++; | 
 | 		extra_reserve = 1; | 
 | 	} | 
 |  | 
 | 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); | 
 | 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); | 
 | 	csum_bytes = BTRFS_I(inode)->csum_bytes; | 
 | 	spin_unlock(&BTRFS_I(inode)->lock); | 
 |  | 
 | 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); | 
 | 	if (ret) { | 
 | 		u64 to_free = 0; | 
 | 		unsigned dropped; | 
 |  | 
 | 		spin_lock(&BTRFS_I(inode)->lock); | 
 | 		dropped = drop_outstanding_extent(inode); | 
 | 		/* | 
 | 		 * If the inodes csum_bytes is the same as the original | 
 | 		 * csum_bytes then we know we haven't raced with any free()ers | 
 | 		 * so we can just reduce our inodes csum bytes and carry on. | 
 | 		 * Otherwise we have to do the normal free thing to account for | 
 | 		 * the case that the free side didn't free up its reserve | 
 | 		 * because of this outstanding reservation. | 
 | 		 */ | 
 | 		if (BTRFS_I(inode)->csum_bytes == csum_bytes) | 
 | 			calc_csum_metadata_size(inode, num_bytes, 0); | 
 | 		else | 
 | 			to_free = calc_csum_metadata_size(inode, num_bytes, 0); | 
 | 		spin_unlock(&BTRFS_I(inode)->lock); | 
 | 		if (dropped) | 
 | 			to_free += btrfs_calc_trans_metadata_size(root, dropped); | 
 |  | 
 | 		if (to_free) | 
 | 			btrfs_block_rsv_release(root, block_rsv, to_free); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	spin_lock(&BTRFS_I(inode)->lock); | 
 | 	if (extra_reserve) { | 
 | 		BTRFS_I(inode)->delalloc_meta_reserved = 1; | 
 | 		nr_extents--; | 
 | 	} | 
 | 	BTRFS_I(inode)->reserved_extents += nr_extents; | 
 | 	spin_unlock(&BTRFS_I(inode)->lock); | 
 |  | 
 | 	block_rsv_add_bytes(block_rsv, to_reserve, 1); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode | 
 |  * @inode: the inode to release the reservation for | 
 |  * @num_bytes: the number of bytes we're releasing | 
 |  * | 
 |  * This will release the metadata reservation for an inode.  This can be called | 
 |  * once we complete IO for a given set of bytes to release their metadata | 
 |  * reservations. | 
 |  */ | 
 | void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	u64 to_free = 0; | 
 | 	unsigned dropped; | 
 |  | 
 | 	num_bytes = ALIGN(num_bytes, root->sectorsize); | 
 | 	spin_lock(&BTRFS_I(inode)->lock); | 
 | 	dropped = drop_outstanding_extent(inode); | 
 |  | 
 | 	to_free = calc_csum_metadata_size(inode, num_bytes, 0); | 
 | 	spin_unlock(&BTRFS_I(inode)->lock); | 
 | 	if (dropped > 0) | 
 | 		to_free += btrfs_calc_trans_metadata_size(root, dropped); | 
 |  | 
 | 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, | 
 | 				to_free); | 
 | } | 
 |  | 
 | /** | 
 |  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc | 
 |  * @inode: inode we're writing to | 
 |  * @num_bytes: the number of bytes we want to allocate | 
 |  * | 
 |  * This will do the following things | 
 |  * | 
 |  * o reserve space in the data space info for num_bytes | 
 |  * o reserve space in the metadata space info based on number of outstanding | 
 |  *   extents and how much csums will be needed | 
 |  * o add to the inodes ->delalloc_bytes | 
 |  * o add it to the fs_info's delalloc inodes list. | 
 |  * | 
 |  * This will return 0 for success and -ENOSPC if there is no space left. | 
 |  */ | 
 | int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_check_data_free_space(inode, num_bytes); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); | 
 | 	if (ret) { | 
 | 		btrfs_free_reserved_data_space(inode, num_bytes); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * btrfs_delalloc_release_space - release data and metadata space for delalloc | 
 |  * @inode: inode we're releasing space for | 
 |  * @num_bytes: the number of bytes we want to free up | 
 |  * | 
 |  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is | 
 |  * called in the case that we don't need the metadata AND data reservations | 
 |  * anymore.  So if there is an error or we insert an inline extent. | 
 |  * | 
 |  * This function will release the metadata space that was not used and will | 
 |  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes | 
 |  * list if there are no delalloc bytes left. | 
 |  */ | 
 | void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) | 
 | { | 
 | 	btrfs_delalloc_release_metadata(inode, num_bytes); | 
 | 	btrfs_free_reserved_data_space(inode, num_bytes); | 
 | } | 
 |  | 
 | static int update_block_group(struct btrfs_trans_handle *trans, | 
 | 			      struct btrfs_root *root, | 
 | 			      u64 bytenr, u64 num_bytes, int alloc) | 
 | { | 
 | 	struct btrfs_block_group_cache *cache = NULL; | 
 | 	struct btrfs_fs_info *info = root->fs_info; | 
 | 	u64 total = num_bytes; | 
 | 	u64 old_val; | 
 | 	u64 byte_in_group; | 
 | 	int factor; | 
 |  | 
 | 	/* block accounting for super block */ | 
 | 	spin_lock(&info->delalloc_lock); | 
 | 	old_val = btrfs_super_bytes_used(info->super_copy); | 
 | 	if (alloc) | 
 | 		old_val += num_bytes; | 
 | 	else | 
 | 		old_val -= num_bytes; | 
 | 	btrfs_set_super_bytes_used(info->super_copy, old_val); | 
 | 	spin_unlock(&info->delalloc_lock); | 
 |  | 
 | 	while (total) { | 
 | 		cache = btrfs_lookup_block_group(info, bytenr); | 
 | 		if (!cache) | 
 | 			return -1; | 
 | 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | | 
 | 				    BTRFS_BLOCK_GROUP_RAID1 | | 
 | 				    BTRFS_BLOCK_GROUP_RAID10)) | 
 | 			factor = 2; | 
 | 		else | 
 | 			factor = 1; | 
 | 		/* | 
 | 		 * If this block group has free space cache written out, we | 
 | 		 * need to make sure to load it if we are removing space.  This | 
 | 		 * is because we need the unpinning stage to actually add the | 
 | 		 * space back to the block group, otherwise we will leak space. | 
 | 		 */ | 
 | 		if (!alloc && cache->cached == BTRFS_CACHE_NO) | 
 | 			cache_block_group(cache, trans, NULL, 1); | 
 |  | 
 | 		byte_in_group = bytenr - cache->key.objectid; | 
 | 		WARN_ON(byte_in_group > cache->key.offset); | 
 |  | 
 | 		spin_lock(&cache->space_info->lock); | 
 | 		spin_lock(&cache->lock); | 
 |  | 
 | 		if (btrfs_test_opt(root, SPACE_CACHE) && | 
 | 		    cache->disk_cache_state < BTRFS_DC_CLEAR) | 
 | 			cache->disk_cache_state = BTRFS_DC_CLEAR; | 
 |  | 
 | 		cache->dirty = 1; | 
 | 		old_val = btrfs_block_group_used(&cache->item); | 
 | 		num_bytes = min(total, cache->key.offset - byte_in_group); | 
 | 		if (alloc) { | 
 | 			old_val += num_bytes; | 
 | 			btrfs_set_block_group_used(&cache->item, old_val); | 
 | 			cache->reserved -= num_bytes; | 
 | 			cache->space_info->bytes_reserved -= num_bytes; | 
 | 			cache->space_info->bytes_used += num_bytes; | 
 | 			cache->space_info->disk_used += num_bytes * factor; | 
 | 			spin_unlock(&cache->lock); | 
 | 			spin_unlock(&cache->space_info->lock); | 
 | 		} else { | 
 | 			old_val -= num_bytes; | 
 | 			btrfs_set_block_group_used(&cache->item, old_val); | 
 | 			cache->pinned += num_bytes; | 
 | 			cache->space_info->bytes_pinned += num_bytes; | 
 | 			cache->space_info->bytes_used -= num_bytes; | 
 | 			cache->space_info->disk_used -= num_bytes * factor; | 
 | 			spin_unlock(&cache->lock); | 
 | 			spin_unlock(&cache->space_info->lock); | 
 |  | 
 | 			set_extent_dirty(info->pinned_extents, | 
 | 					 bytenr, bytenr + num_bytes - 1, | 
 | 					 GFP_NOFS | __GFP_NOFAIL); | 
 | 		} | 
 | 		btrfs_put_block_group(cache); | 
 | 		total -= num_bytes; | 
 | 		bytenr += num_bytes; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) | 
 | { | 
 | 	struct btrfs_block_group_cache *cache; | 
 | 	u64 bytenr; | 
 |  | 
 | 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start); | 
 | 	if (!cache) | 
 | 		return 0; | 
 |  | 
 | 	bytenr = cache->key.objectid; | 
 | 	btrfs_put_block_group(cache); | 
 |  | 
 | 	return bytenr; | 
 | } | 
 |  | 
 | static int pin_down_extent(struct btrfs_root *root, | 
 | 			   struct btrfs_block_group_cache *cache, | 
 | 			   u64 bytenr, u64 num_bytes, int reserved) | 
 | { | 
 | 	spin_lock(&cache->space_info->lock); | 
 | 	spin_lock(&cache->lock); | 
 | 	cache->pinned += num_bytes; | 
 | 	cache->space_info->bytes_pinned += num_bytes; | 
 | 	if (reserved) { | 
 | 		cache->reserved -= num_bytes; | 
 | 		cache->space_info->bytes_reserved -= num_bytes; | 
 | 	} | 
 | 	spin_unlock(&cache->lock); | 
 | 	spin_unlock(&cache->space_info->lock); | 
 |  | 
 | 	set_extent_dirty(root->fs_info->pinned_extents, bytenr, | 
 | 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * this function must be called within transaction | 
 |  */ | 
 | int btrfs_pin_extent(struct btrfs_root *root, | 
 | 		     u64 bytenr, u64 num_bytes, int reserved) | 
 | { | 
 | 	struct btrfs_block_group_cache *cache; | 
 |  | 
 | 	cache = btrfs_lookup_block_group(root->fs_info, bytenr); | 
 | 	BUG_ON(!cache); | 
 |  | 
 | 	pin_down_extent(root, cache, bytenr, num_bytes, reserved); | 
 |  | 
 | 	btrfs_put_block_group(cache); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * this function must be called within transaction | 
 |  */ | 
 | int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, | 
 | 				    struct btrfs_root *root, | 
 | 				    u64 bytenr, u64 num_bytes) | 
 | { | 
 | 	struct btrfs_block_group_cache *cache; | 
 |  | 
 | 	cache = btrfs_lookup_block_group(root->fs_info, bytenr); | 
 | 	BUG_ON(!cache); | 
 |  | 
 | 	/* | 
 | 	 * pull in the free space cache (if any) so that our pin | 
 | 	 * removes the free space from the cache.  We have load_only set | 
 | 	 * to one because the slow code to read in the free extents does check | 
 | 	 * the pinned extents. | 
 | 	 */ | 
 | 	cache_block_group(cache, trans, root, 1); | 
 |  | 
 | 	pin_down_extent(root, cache, bytenr, num_bytes, 0); | 
 |  | 
 | 	/* remove us from the free space cache (if we're there at all) */ | 
 | 	btrfs_remove_free_space(cache, bytenr, num_bytes); | 
 | 	btrfs_put_block_group(cache); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * btrfs_update_reserved_bytes - update the block_group and space info counters | 
 |  * @cache:	The cache we are manipulating | 
 |  * @num_bytes:	The number of bytes in question | 
 |  * @reserve:	One of the reservation enums | 
 |  * | 
 |  * This is called by the allocator when it reserves space, or by somebody who is | 
 |  * freeing space that was never actually used on disk.  For example if you | 
 |  * reserve some space for a new leaf in transaction A and before transaction A | 
 |  * commits you free that leaf, you call this with reserve set to 0 in order to | 
 |  * clear the reservation. | 
 |  * | 
 |  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper | 
 |  * ENOSPC accounting.  For data we handle the reservation through clearing the | 
 |  * delalloc bits in the io_tree.  We have to do this since we could end up | 
 |  * allocating less disk space for the amount of data we have reserved in the | 
 |  * case of compression. | 
 |  * | 
 |  * If this is a reservation and the block group has become read only we cannot | 
 |  * make the reservation and return -EAGAIN, otherwise this function always | 
 |  * succeeds. | 
 |  */ | 
 | static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, | 
 | 				       u64 num_bytes, int reserve) | 
 | { | 
 | 	struct btrfs_space_info *space_info = cache->space_info; | 
 | 	int ret = 0; | 
 | 	spin_lock(&space_info->lock); | 
 | 	spin_lock(&cache->lock); | 
 | 	if (reserve != RESERVE_FREE) { | 
 | 		if (cache->ro) { | 
 | 			ret = -EAGAIN; | 
 | 		} else { | 
 | 			cache->reserved += num_bytes; | 
 | 			space_info->bytes_reserved += num_bytes; | 
 | 			if (reserve == RESERVE_ALLOC) { | 
 | 				BUG_ON(space_info->bytes_may_use < num_bytes); | 
 | 				space_info->bytes_may_use -= num_bytes; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		if (cache->ro) | 
 | 			space_info->bytes_readonly += num_bytes; | 
 | 		cache->reserved -= num_bytes; | 
 | 		space_info->bytes_reserved -= num_bytes; | 
 | 		space_info->reservation_progress++; | 
 | 	} | 
 | 	spin_unlock(&cache->lock); | 
 | 	spin_unlock(&space_info->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_caching_control *next; | 
 | 	struct btrfs_caching_control *caching_ctl; | 
 | 	struct btrfs_block_group_cache *cache; | 
 |  | 
 | 	down_write(&fs_info->extent_commit_sem); | 
 |  | 
 | 	list_for_each_entry_safe(caching_ctl, next, | 
 | 				 &fs_info->caching_block_groups, list) { | 
 | 		cache = caching_ctl->block_group; | 
 | 		if (block_group_cache_done(cache)) { | 
 | 			cache->last_byte_to_unpin = (u64)-1; | 
 | 			list_del_init(&caching_ctl->list); | 
 | 			put_caching_control(caching_ctl); | 
 | 		} else { | 
 | 			cache->last_byte_to_unpin = caching_ctl->progress; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (fs_info->pinned_extents == &fs_info->freed_extents[0]) | 
 | 		fs_info->pinned_extents = &fs_info->freed_extents[1]; | 
 | 	else | 
 | 		fs_info->pinned_extents = &fs_info->freed_extents[0]; | 
 |  | 
 | 	up_write(&fs_info->extent_commit_sem); | 
 |  | 
 | 	update_global_block_rsv(fs_info); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_block_group_cache *cache = NULL; | 
 | 	u64 len; | 
 |  | 
 | 	while (start <= end) { | 
 | 		if (!cache || | 
 | 		    start >= cache->key.objectid + cache->key.offset) { | 
 | 			if (cache) | 
 | 				btrfs_put_block_group(cache); | 
 | 			cache = btrfs_lookup_block_group(fs_info, start); | 
 | 			BUG_ON(!cache); | 
 | 		} | 
 |  | 
 | 		len = cache->key.objectid + cache->key.offset - start; | 
 | 		len = min(len, end + 1 - start); | 
 |  | 
 | 		if (start < cache->last_byte_to_unpin) { | 
 | 			len = min(len, cache->last_byte_to_unpin - start); | 
 | 			btrfs_add_free_space(cache, start, len); | 
 | 		} | 
 |  | 
 | 		start += len; | 
 |  | 
 | 		spin_lock(&cache->space_info->lock); | 
 | 		spin_lock(&cache->lock); | 
 | 		cache->pinned -= len; | 
 | 		cache->space_info->bytes_pinned -= len; | 
 | 		if (cache->ro) | 
 | 			cache->space_info->bytes_readonly += len; | 
 | 		spin_unlock(&cache->lock); | 
 | 		spin_unlock(&cache->space_info->lock); | 
 | 	} | 
 |  | 
 | 	if (cache) | 
 | 		btrfs_put_block_group(cache); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct extent_io_tree *unpin; | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	int ret; | 
 |  | 
 | 	if (fs_info->pinned_extents == &fs_info->freed_extents[0]) | 
 | 		unpin = &fs_info->freed_extents[1]; | 
 | 	else | 
 | 		unpin = &fs_info->freed_extents[0]; | 
 |  | 
 | 	while (1) { | 
 | 		ret = find_first_extent_bit(unpin, 0, &start, &end, | 
 | 					    EXTENT_DIRTY); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		if (btrfs_test_opt(root, DISCARD)) | 
 | 			ret = btrfs_discard_extent(root, start, | 
 | 						   end + 1 - start, NULL); | 
 |  | 
 | 		clear_extent_dirty(unpin, start, end, GFP_NOFS); | 
 | 		unpin_extent_range(root, start, end); | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __btrfs_free_extent(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root, | 
 | 				u64 bytenr, u64 num_bytes, u64 parent, | 
 | 				u64 root_objectid, u64 owner_objectid, | 
 | 				u64 owner_offset, int refs_to_drop, | 
 | 				struct btrfs_delayed_extent_op *extent_op) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_fs_info *info = root->fs_info; | 
 | 	struct btrfs_root *extent_root = info->extent_root; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_extent_item *ei; | 
 | 	struct btrfs_extent_inline_ref *iref; | 
 | 	int ret; | 
 | 	int is_data; | 
 | 	int extent_slot = 0; | 
 | 	int found_extent = 0; | 
 | 	int num_to_del = 1; | 
 | 	u32 item_size; | 
 | 	u64 refs; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	path->reada = 1; | 
 | 	path->leave_spinning = 1; | 
 |  | 
 | 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; | 
 | 	BUG_ON(!is_data && refs_to_drop != 1); | 
 |  | 
 | 	ret = lookup_extent_backref(trans, extent_root, path, &iref, | 
 | 				    bytenr, num_bytes, parent, | 
 | 				    root_objectid, owner_objectid, | 
 | 				    owner_offset); | 
 | 	if (ret == 0) { | 
 | 		extent_slot = path->slots[0]; | 
 | 		while (extent_slot >= 0) { | 
 | 			btrfs_item_key_to_cpu(path->nodes[0], &key, | 
 | 					      extent_slot); | 
 | 			if (key.objectid != bytenr) | 
 | 				break; | 
 | 			if (key.type == BTRFS_EXTENT_ITEM_KEY && | 
 | 			    key.offset == num_bytes) { | 
 | 				found_extent = 1; | 
 | 				break; | 
 | 			} | 
 | 			if (path->slots[0] - extent_slot > 5) | 
 | 				break; | 
 | 			extent_slot--; | 
 | 		} | 
 | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
 | 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); | 
 | 		if (found_extent && item_size < sizeof(*ei)) | 
 | 			found_extent = 0; | 
 | #endif | 
 | 		if (!found_extent) { | 
 | 			BUG_ON(iref); | 
 | 			ret = remove_extent_backref(trans, extent_root, path, | 
 | 						    NULL, refs_to_drop, | 
 | 						    is_data); | 
 | 			BUG_ON(ret); | 
 | 			btrfs_release_path(path); | 
 | 			path->leave_spinning = 1; | 
 |  | 
 | 			key.objectid = bytenr; | 
 | 			key.type = BTRFS_EXTENT_ITEM_KEY; | 
 | 			key.offset = num_bytes; | 
 |  | 
 | 			ret = btrfs_search_slot(trans, extent_root, | 
 | 						&key, path, -1, 1); | 
 | 			if (ret) { | 
 | 				printk(KERN_ERR "umm, got %d back from search" | 
 | 				       ", was looking for %llu\n", ret, | 
 | 				       (unsigned long long)bytenr); | 
 | 				if (ret > 0) | 
 | 					btrfs_print_leaf(extent_root, | 
 | 							 path->nodes[0]); | 
 | 			} | 
 | 			BUG_ON(ret); | 
 | 			extent_slot = path->slots[0]; | 
 | 		} | 
 | 	} else { | 
 | 		btrfs_print_leaf(extent_root, path->nodes[0]); | 
 | 		WARN_ON(1); | 
 | 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu " | 
 | 		       "parent %llu root %llu  owner %llu offset %llu\n", | 
 | 		       (unsigned long long)bytenr, | 
 | 		       (unsigned long long)parent, | 
 | 		       (unsigned long long)root_objectid, | 
 | 		       (unsigned long long)owner_objectid, | 
 | 		       (unsigned long long)owner_offset); | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	item_size = btrfs_item_size_nr(leaf, extent_slot); | 
 | #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 | 
 | 	if (item_size < sizeof(*ei)) { | 
 | 		BUG_ON(found_extent || extent_slot != path->slots[0]); | 
 | 		ret = convert_extent_item_v0(trans, extent_root, path, | 
 | 					     owner_objectid, 0); | 
 | 		BUG_ON(ret < 0); | 
 |  | 
 | 		btrfs_release_path(path); | 
 | 		path->leave_spinning = 1; | 
 |  | 
 | 		key.objectid = bytenr; | 
 | 		key.type = BTRFS_EXTENT_ITEM_KEY; | 
 | 		key.offset = num_bytes; | 
 |  | 
 | 		ret = btrfs_search_slot(trans, extent_root, &key, path, | 
 | 					-1, 1); | 
 | 		if (ret) { | 
 | 			printk(KERN_ERR "umm, got %d back from search" | 
 | 			       ", was looking for %llu\n", ret, | 
 | 			       (unsigned long long)bytenr); | 
 | 			btrfs_print_leaf(extent_root, path->nodes[0]); | 
 | 		} | 
 | 		BUG_ON(ret); | 
 | 		extent_slot = path->slots[0]; | 
 | 		leaf = path->nodes[0]; | 
 | 		item_size = btrfs_item_size_nr(leaf, extent_slot); | 
 | 	} | 
 | #endif | 
 | 	BUG_ON(item_size < sizeof(*ei)); | 
 | 	ei = btrfs_item_ptr(leaf, extent_slot, | 
 | 			    struct btrfs_extent_item); | 
 | 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		struct btrfs_tree_block_info *bi; | 
 | 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); | 
 | 		bi = (struct btrfs_tree_block_info *)(ei + 1); | 
 | 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); | 
 | 	} | 
 |  | 
 | 	refs = btrfs_extent_refs(leaf, ei); | 
 | 	BUG_ON(refs < refs_to_drop); | 
 | 	refs -= refs_to_drop; | 
 |  | 
 | 	if (refs > 0) { | 
 | 		if (extent_op) | 
 | 			__run_delayed_extent_op(extent_op, leaf, ei); | 
 | 		/* | 
 | 		 * In the case of inline back ref, reference count will | 
 | 		 * be updated by remove_extent_backref | 
 | 		 */ | 
 | 		if (iref) { | 
 | 			BUG_ON(!found_extent); | 
 | 		} else { | 
 | 			btrfs_set_extent_refs(leaf, ei, refs); | 
 | 			btrfs_mark_buffer_dirty(leaf); | 
 | 		} | 
 | 		if (found_extent) { | 
 | 			ret = remove_extent_backref(trans, extent_root, path, | 
 | 						    iref, refs_to_drop, | 
 | 						    is_data); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 	} else { | 
 | 		if (found_extent) { | 
 | 			BUG_ON(is_data && refs_to_drop != | 
 | 			       extent_data_ref_count(root, path, iref)); | 
 | 			if (iref) { | 
 | 				BUG_ON(path->slots[0] != extent_slot); | 
 | 			} else { | 
 | 				BUG_ON(path->slots[0] != extent_slot + 1); | 
 | 				path->slots[0] = extent_slot; | 
 | 				num_to_del = 2; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0], | 
 | 				      num_to_del); | 
 | 		BUG_ON(ret); | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		if (is_data) { | 
 | 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes); | 
 | 			BUG_ON(ret); | 
 | 		} else { | 
 | 			invalidate_mapping_pages(info->btree_inode->i_mapping, | 
 | 			     bytenr >> PAGE_CACHE_SHIFT, | 
 | 			     (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT); | 
 | 		} | 
 |  | 
 | 		ret = update_block_group(trans, root, bytenr, num_bytes, 0); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * when we free an block, it is possible (and likely) that we free the last | 
 |  * delayed ref for that extent as well.  This searches the delayed ref tree for | 
 |  * a given extent, and if there are no other delayed refs to be processed, it | 
 |  * removes it from the tree. | 
 |  */ | 
 | static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *root, u64 bytenr) | 
 | { | 
 | 	struct btrfs_delayed_ref_head *head; | 
 | 	struct btrfs_delayed_ref_root *delayed_refs; | 
 | 	struct btrfs_delayed_ref_node *ref; | 
 | 	struct rb_node *node; | 
 | 	int ret = 0; | 
 |  | 
 | 	delayed_refs = &trans->transaction->delayed_refs; | 
 | 	spin_lock(&delayed_refs->lock); | 
 | 	head = btrfs_find_delayed_ref_head(trans, bytenr); | 
 | 	if (!head) | 
 | 		goto out; | 
 |  | 
 | 	node = rb_prev(&head->node.rb_node); | 
 | 	if (!node) | 
 | 		goto out; | 
 |  | 
 | 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); | 
 |  | 
 | 	/* there are still entries for this ref, we can't drop it */ | 
 | 	if (ref->bytenr == bytenr) | 
 | 		goto out; | 
 |  | 
 | 	if (head->extent_op) { | 
 | 		if (!head->must_insert_reserved) | 
 | 			goto out; | 
 | 		kfree(head->extent_op); | 
 | 		head->extent_op = NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * waiting for the lock here would deadlock.  If someone else has it | 
 | 	 * locked they are already in the process of dropping it anyway | 
 | 	 */ | 
 | 	if (!mutex_trylock(&head->mutex)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * at this point we have a head with no other entries.  Go | 
 | 	 * ahead and process it. | 
 | 	 */ | 
 | 	head->node.in_tree = 0; | 
 | 	rb_erase(&head->node.rb_node, &delayed_refs->root); | 
 |  | 
 | 	delayed_refs->num_entries--; | 
 |  | 
 | 	/* | 
 | 	 * we don't take a ref on the node because we're removing it from the | 
 | 	 * tree, so we just steal the ref the tree was holding. | 
 | 	 */ | 
 | 	delayed_refs->num_heads--; | 
 | 	if (list_empty(&head->cluster)) | 
 | 		delayed_refs->num_heads_ready--; | 
 |  | 
 | 	list_del_init(&head->cluster); | 
 | 	spin_unlock(&delayed_refs->lock); | 
 |  | 
 | 	BUG_ON(head->extent_op); | 
 | 	if (head->must_insert_reserved) | 
 | 		ret = 1; | 
 |  | 
 | 	mutex_unlock(&head->mutex); | 
 | 	btrfs_put_delayed_ref(&head->node); | 
 | 	return ret; | 
 | out: | 
 | 	spin_unlock(&delayed_refs->lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void btrfs_free_tree_block(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_root *root, | 
 | 			   struct extent_buffer *buf, | 
 | 			   u64 parent, int last_ref) | 
 | { | 
 | 	struct btrfs_block_group_cache *cache = NULL; | 
 | 	int ret; | 
 |  | 
 | 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { | 
 | 		ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len, | 
 | 						parent, root->root_key.objectid, | 
 | 						btrfs_header_level(buf), | 
 | 						BTRFS_DROP_DELAYED_REF, NULL); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 |  | 
 | 	if (!last_ref) | 
 | 		return; | 
 |  | 
 | 	cache = btrfs_lookup_block_group(root->fs_info, buf->start); | 
 |  | 
 | 	if (btrfs_header_generation(buf) == trans->transid) { | 
 | 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { | 
 | 			ret = check_ref_cleanup(trans, root, buf->start); | 
 | 			if (!ret) | 
 | 				goto out; | 
 | 		} | 
 |  | 
 | 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { | 
 | 			pin_down_extent(root, cache, buf->start, buf->len, 1); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); | 
 |  | 
 | 		btrfs_add_free_space(cache, buf->start, buf->len); | 
 | 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); | 
 | 	} | 
 | out: | 
 | 	/* | 
 | 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter | 
 | 	 * anymore. | 
 | 	 */ | 
 | 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); | 
 | 	btrfs_put_block_group(cache); | 
 | } | 
 |  | 
 | int btrfs_free_extent(struct btrfs_trans_handle *trans, | 
 | 		      struct btrfs_root *root, | 
 | 		      u64 bytenr, u64 num_bytes, u64 parent, | 
 | 		      u64 root_objectid, u64 owner, u64 offset) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * tree log blocks never actually go into the extent allocation | 
 | 	 * tree, just update pinning info and exit early. | 
 | 	 */ | 
 | 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { | 
 | 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); | 
 | 		/* unlocks the pinned mutex */ | 
 | 		btrfs_pin_extent(root, bytenr, num_bytes, 1); | 
 | 		ret = 0; | 
 | 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes, | 
 | 					parent, root_objectid, (int)owner, | 
 | 					BTRFS_DROP_DELAYED_REF, NULL); | 
 | 		BUG_ON(ret); | 
 | 	} else { | 
 | 		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes, | 
 | 					parent, root_objectid, owner, | 
 | 					offset, BTRFS_DROP_DELAYED_REF, NULL); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u64 stripe_align(struct btrfs_root *root, u64 val) | 
 | { | 
 | 	u64 mask = ((u64)root->stripesize - 1); | 
 | 	u64 ret = (val + mask) & ~mask; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * when we wait for progress in the block group caching, its because | 
 |  * our allocation attempt failed at least once.  So, we must sleep | 
 |  * and let some progress happen before we try again. | 
 |  * | 
 |  * This function will sleep at least once waiting for new free space to | 
 |  * show up, and then it will check the block group free space numbers | 
 |  * for our min num_bytes.  Another option is to have it go ahead | 
 |  * and look in the rbtree for a free extent of a given size, but this | 
 |  * is a good start. | 
 |  */ | 
 | static noinline int | 
 | wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, | 
 | 				u64 num_bytes) | 
 | { | 
 | 	struct btrfs_caching_control *caching_ctl; | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	caching_ctl = get_caching_control(cache); | 
 | 	if (!caching_ctl) | 
 | 		return 0; | 
 |  | 
 | 	wait_event(caching_ctl->wait, block_group_cache_done(cache) || | 
 | 		   (cache->free_space_ctl->free_space >= num_bytes)); | 
 |  | 
 | 	put_caching_control(caching_ctl); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int | 
 | wait_block_group_cache_done(struct btrfs_block_group_cache *cache) | 
 | { | 
 | 	struct btrfs_caching_control *caching_ctl; | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	caching_ctl = get_caching_control(cache); | 
 | 	if (!caching_ctl) | 
 | 		return 0; | 
 |  | 
 | 	wait_event(caching_ctl->wait, block_group_cache_done(cache)); | 
 |  | 
 | 	put_caching_control(caching_ctl); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int get_block_group_index(struct btrfs_block_group_cache *cache) | 
 | { | 
 | 	int index; | 
 | 	if (cache->flags & BTRFS_BLOCK_GROUP_RAID10) | 
 | 		index = 0; | 
 | 	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1) | 
 | 		index = 1; | 
 | 	else if (cache->flags & BTRFS_BLOCK_GROUP_DUP) | 
 | 		index = 2; | 
 | 	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0) | 
 | 		index = 3; | 
 | 	else | 
 | 		index = 4; | 
 | 	return index; | 
 | } | 
 |  | 
 | enum btrfs_loop_type { | 
 | 	LOOP_FIND_IDEAL = 0, | 
 | 	LOOP_CACHING_NOWAIT = 1, | 
 | 	LOOP_CACHING_WAIT = 2, | 
 | 	LOOP_ALLOC_CHUNK = 3, | 
 | 	LOOP_NO_EMPTY_SIZE = 4, | 
 | }; | 
 |  | 
 | /* | 
 |  * walks the btree of allocated extents and find a hole of a given size. | 
 |  * The key ins is changed to record the hole: | 
 |  * ins->objectid == block start | 
 |  * ins->flags = BTRFS_EXTENT_ITEM_KEY | 
 |  * ins->offset == number of blocks | 
 |  * Any available blocks before search_start are skipped. | 
 |  */ | 
 | static noinline int find_free_extent(struct btrfs_trans_handle *trans, | 
 | 				     struct btrfs_root *orig_root, | 
 | 				     u64 num_bytes, u64 empty_size, | 
 | 				     u64 search_start, u64 search_end, | 
 | 				     u64 hint_byte, struct btrfs_key *ins, | 
 | 				     u64 data) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_root *root = orig_root->fs_info->extent_root; | 
 | 	struct btrfs_free_cluster *last_ptr = NULL; | 
 | 	struct btrfs_block_group_cache *block_group = NULL; | 
 | 	struct btrfs_block_group_cache *used_block_group; | 
 | 	int empty_cluster = 2 * 1024 * 1024; | 
 | 	int allowed_chunk_alloc = 0; | 
 | 	int done_chunk_alloc = 0; | 
 | 	struct btrfs_space_info *space_info; | 
 | 	int loop = 0; | 
 | 	int index = 0; | 
 | 	int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ? | 
 | 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; | 
 | 	bool found_uncached_bg = false; | 
 | 	bool failed_cluster_refill = false; | 
 | 	bool failed_alloc = false; | 
 | 	bool use_cluster = true; | 
 | 	bool have_caching_bg = false; | 
 | 	u64 ideal_cache_percent = 0; | 
 | 	u64 ideal_cache_offset = 0; | 
 |  | 
 | 	WARN_ON(num_bytes < root->sectorsize); | 
 | 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); | 
 | 	ins->objectid = 0; | 
 | 	ins->offset = 0; | 
 |  | 
 | 	space_info = __find_space_info(root->fs_info, data); | 
 | 	if (!space_info) { | 
 | 		printk(KERN_ERR "No space info for %llu\n", data); | 
 | 		return -ENOSPC; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the space info is for both data and metadata it means we have a | 
 | 	 * small filesystem and we can't use the clustering stuff. | 
 | 	 */ | 
 | 	if (btrfs_mixed_space_info(space_info)) | 
 | 		use_cluster = false; | 
 |  | 
 | 	if (orig_root->ref_cows || empty_size) | 
 | 		allowed_chunk_alloc = 1; | 
 |  | 
 | 	if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { | 
 | 		last_ptr = &root->fs_info->meta_alloc_cluster; | 
 | 		if (!btrfs_test_opt(root, SSD)) | 
 | 			empty_cluster = 64 * 1024; | 
 | 	} | 
 |  | 
 | 	if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster && | 
 | 	    btrfs_test_opt(root, SSD)) { | 
 | 		last_ptr = &root->fs_info->data_alloc_cluster; | 
 | 	} | 
 |  | 
 | 	if (last_ptr) { | 
 | 		spin_lock(&last_ptr->lock); | 
 | 		if (last_ptr->block_group) | 
 | 			hint_byte = last_ptr->window_start; | 
 | 		spin_unlock(&last_ptr->lock); | 
 | 	} | 
 |  | 
 | 	search_start = max(search_start, first_logical_byte(root, 0)); | 
 | 	search_start = max(search_start, hint_byte); | 
 |  | 
 | 	if (!last_ptr) | 
 | 		empty_cluster = 0; | 
 |  | 
 | 	if (search_start == hint_byte) { | 
 | ideal_cache: | 
 | 		block_group = btrfs_lookup_block_group(root->fs_info, | 
 | 						       search_start); | 
 | 		used_block_group = block_group; | 
 | 		/* | 
 | 		 * we don't want to use the block group if it doesn't match our | 
 | 		 * allocation bits, or if its not cached. | 
 | 		 * | 
 | 		 * However if we are re-searching with an ideal block group | 
 | 		 * picked out then we don't care that the block group is cached. | 
 | 		 */ | 
 | 		if (block_group && block_group_bits(block_group, data) && | 
 | 		    (block_group->cached != BTRFS_CACHE_NO || | 
 | 		     search_start == ideal_cache_offset)) { | 
 | 			down_read(&space_info->groups_sem); | 
 | 			if (list_empty(&block_group->list) || | 
 | 			    block_group->ro) { | 
 | 				/* | 
 | 				 * someone is removing this block group, | 
 | 				 * we can't jump into the have_block_group | 
 | 				 * target because our list pointers are not | 
 | 				 * valid | 
 | 				 */ | 
 | 				btrfs_put_block_group(block_group); | 
 | 				up_read(&space_info->groups_sem); | 
 | 			} else { | 
 | 				index = get_block_group_index(block_group); | 
 | 				goto have_block_group; | 
 | 			} | 
 | 		} else if (block_group) { | 
 | 			btrfs_put_block_group(block_group); | 
 | 		} | 
 | 	} | 
 | search: | 
 | 	have_caching_bg = false; | 
 | 	down_read(&space_info->groups_sem); | 
 | 	list_for_each_entry(block_group, &space_info->block_groups[index], | 
 | 			    list) { | 
 | 		u64 offset; | 
 | 		int cached; | 
 |  | 
 | 		used_block_group = block_group; | 
 | 		btrfs_get_block_group(block_group); | 
 | 		search_start = block_group->key.objectid; | 
 |  | 
 | 		/* | 
 | 		 * this can happen if we end up cycling through all the | 
 | 		 * raid types, but we want to make sure we only allocate | 
 | 		 * for the proper type. | 
 | 		 */ | 
 | 		if (!block_group_bits(block_group, data)) { | 
 | 		    u64 extra = BTRFS_BLOCK_GROUP_DUP | | 
 | 				BTRFS_BLOCK_GROUP_RAID1 | | 
 | 				BTRFS_BLOCK_GROUP_RAID10; | 
 |  | 
 | 			/* | 
 | 			 * if they asked for extra copies and this block group | 
 | 			 * doesn't provide them, bail.  This does allow us to | 
 | 			 * fill raid0 from raid1. | 
 | 			 */ | 
 | 			if ((data & extra) && !(block_group->flags & extra)) | 
 | 				goto loop; | 
 | 		} | 
 |  | 
 | have_block_group: | 
 | 		cached = block_group_cache_done(block_group); | 
 | 		if (unlikely(!cached)) { | 
 | 			u64 free_percent; | 
 |  | 
 | 			found_uncached_bg = true; | 
 | 			ret = cache_block_group(block_group, trans, | 
 | 						orig_root, 1); | 
 | 			if (block_group->cached == BTRFS_CACHE_FINISHED) | 
 | 				goto alloc; | 
 |  | 
 | 			free_percent = btrfs_block_group_used(&block_group->item); | 
 | 			free_percent *= 100; | 
 | 			free_percent = div64_u64(free_percent, | 
 | 						 block_group->key.offset); | 
 | 			free_percent = 100 - free_percent; | 
 | 			if (free_percent > ideal_cache_percent && | 
 | 			    likely(!block_group->ro)) { | 
 | 				ideal_cache_offset = block_group->key.objectid; | 
 | 				ideal_cache_percent = free_percent; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * The caching workers are limited to 2 threads, so we | 
 | 			 * can queue as much work as we care to. | 
 | 			 */ | 
 | 			if (loop > LOOP_FIND_IDEAL) { | 
 | 				ret = cache_block_group(block_group, trans, | 
 | 							orig_root, 0); | 
 | 				BUG_ON(ret); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * If loop is set for cached only, try the next block | 
 | 			 * group. | 
 | 			 */ | 
 | 			if (loop == LOOP_FIND_IDEAL) | 
 | 				goto loop; | 
 | 		} | 
 |  | 
 | alloc: | 
 | 		if (unlikely(block_group->ro)) | 
 | 			goto loop; | 
 |  | 
 | 		spin_lock(&block_group->free_space_ctl->tree_lock); | 
 | 		if (cached && | 
 | 		    block_group->free_space_ctl->free_space < | 
 | 		    num_bytes + empty_cluster + empty_size) { | 
 | 			spin_unlock(&block_group->free_space_ctl->tree_lock); | 
 | 			goto loop; | 
 | 		} | 
 | 		spin_unlock(&block_group->free_space_ctl->tree_lock); | 
 |  | 
 | 		/* | 
 | 		 * Ok we want to try and use the cluster allocator, so | 
 | 		 * lets look there | 
 | 		 */ | 
 | 		if (last_ptr) { | 
 | 			/* | 
 | 			 * the refill lock keeps out other | 
 | 			 * people trying to start a new cluster | 
 | 			 */ | 
 | 			spin_lock(&last_ptr->refill_lock); | 
 | 			used_block_group = last_ptr->block_group; | 
 | 			if (used_block_group != block_group && | 
 | 			    (!used_block_group || | 
 | 			     used_block_group->ro || | 
 | 			     !block_group_bits(used_block_group, data))) { | 
 | 				used_block_group = block_group; | 
 | 				goto refill_cluster; | 
 | 			} | 
 |  | 
 | 			if (used_block_group != block_group) | 
 | 				btrfs_get_block_group(used_block_group); | 
 |  | 
 | 			offset = btrfs_alloc_from_cluster(used_block_group, | 
 | 			  last_ptr, num_bytes, used_block_group->key.objectid); | 
 | 			if (offset) { | 
 | 				/* we have a block, we're done */ | 
 | 				spin_unlock(&last_ptr->refill_lock); | 
 | 				goto checks; | 
 | 			} | 
 |  | 
 | 			WARN_ON(last_ptr->block_group != used_block_group); | 
 | 			if (used_block_group != block_group) { | 
 | 				btrfs_put_block_group(used_block_group); | 
 | 				used_block_group = block_group; | 
 | 			} | 
 | refill_cluster: | 
 | 			BUG_ON(used_block_group != block_group); | 
 | 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't | 
 | 			 * set up a new clusters, so lets just skip it | 
 | 			 * and let the allocator find whatever block | 
 | 			 * it can find.  If we reach this point, we | 
 | 			 * will have tried the cluster allocator | 
 | 			 * plenty of times and not have found | 
 | 			 * anything, so we are likely way too | 
 | 			 * fragmented for the clustering stuff to find | 
 | 			 * anything.  */ | 
 | 			if (loop >= LOOP_NO_EMPTY_SIZE) { | 
 | 				spin_unlock(&last_ptr->refill_lock); | 
 | 				goto unclustered_alloc; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * this cluster didn't work out, free it and | 
 | 			 * start over | 
 | 			 */ | 
 | 			btrfs_return_cluster_to_free_space(NULL, last_ptr); | 
 |  | 
 | 			/* allocate a cluster in this block group */ | 
 | 			ret = btrfs_find_space_cluster(trans, root, | 
 | 					       block_group, last_ptr, | 
 | 					       search_start, num_bytes, | 
 | 					       empty_cluster + empty_size); | 
 | 			if (ret == 0) { | 
 | 				/* | 
 | 				 * now pull our allocation out of this | 
 | 				 * cluster | 
 | 				 */ | 
 | 				offset = btrfs_alloc_from_cluster(block_group, | 
 | 						  last_ptr, num_bytes, | 
 | 						  search_start); | 
 | 				if (offset) { | 
 | 					/* we found one, proceed */ | 
 | 					spin_unlock(&last_ptr->refill_lock); | 
 | 					goto checks; | 
 | 				} | 
 | 			} else if (!cached && loop > LOOP_CACHING_NOWAIT | 
 | 				   && !failed_cluster_refill) { | 
 | 				spin_unlock(&last_ptr->refill_lock); | 
 |  | 
 | 				failed_cluster_refill = true; | 
 | 				wait_block_group_cache_progress(block_group, | 
 | 				       num_bytes + empty_cluster + empty_size); | 
 | 				goto have_block_group; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * at this point we either didn't find a cluster | 
 | 			 * or we weren't able to allocate a block from our | 
 | 			 * cluster.  Free the cluster we've been trying | 
 | 			 * to use, and go to the next block group | 
 | 			 */ | 
 | 			btrfs_return_cluster_to_free_space(NULL, last_ptr); | 
 | 			spin_unlock(&last_ptr->refill_lock); | 
 | 			goto loop; | 
 | 		} | 
 |  | 
 | unclustered_alloc: | 
 | 		offset = btrfs_find_space_for_alloc(block_group, search_start, | 
 | 						    num_bytes, empty_size); | 
 | 		/* | 
 | 		 * If we didn't find a chunk, and we haven't failed on this | 
 | 		 * block group before, and this block group is in the middle of | 
 | 		 * caching and we are ok with waiting, then go ahead and wait | 
 | 		 * for progress to be made, and set failed_alloc to true. | 
 | 		 * | 
 | 		 * If failed_alloc is true then we've already waited on this | 
 | 		 * block group once and should move on to the next block group. | 
 | 		 */ | 
 | 		if (!offset && !failed_alloc && !cached && | 
 | 		    loop > LOOP_CACHING_NOWAIT) { | 
 | 			wait_block_group_cache_progress(block_group, | 
 | 						num_bytes + empty_size); | 
 | 			failed_alloc = true; | 
 | 			goto have_block_group; | 
 | 		} else if (!offset) { | 
 | 			if (!cached) | 
 | 				have_caching_bg = true; | 
 | 			goto loop; | 
 | 		} | 
 | checks: | 
 | 		search_start = stripe_align(root, offset); | 
 | 		/* move on to the next group */ | 
 | 		if (search_start + num_bytes >= search_end) { | 
 | 			btrfs_add_free_space(used_block_group, offset, num_bytes); | 
 | 			goto loop; | 
 | 		} | 
 |  | 
 | 		/* move on to the next group */ | 
 | 		if (search_start + num_bytes > | 
 | 		    used_block_group->key.objectid + used_block_group->key.offset) { | 
 | 			btrfs_add_free_space(used_block_group, offset, num_bytes); | 
 | 			goto loop; | 
 | 		} | 
 |  | 
 | 		ins->objectid = search_start; | 
 | 		ins->offset = num_bytes; | 
 |  | 
 | 		if (offset < search_start) | 
 | 			btrfs_add_free_space(used_block_group, offset, | 
 | 					     search_start - offset); | 
 | 		BUG_ON(offset > search_start); | 
 |  | 
 | 		ret = btrfs_update_reserved_bytes(used_block_group, num_bytes, | 
 | 						  alloc_type); | 
 | 		if (ret == -EAGAIN) { | 
 | 			btrfs_add_free_space(used_block_group, offset, num_bytes); | 
 | 			goto loop; | 
 | 		} | 
 |  | 
 | 		/* we are all good, lets return */ | 
 | 		ins->objectid = search_start; | 
 | 		ins->offset = num_bytes; | 
 |  | 
 | 		if (offset < search_start) | 
 | 			btrfs_add_free_space(used_block_group, offset, | 
 | 					     search_start - offset); | 
 | 		BUG_ON(offset > search_start); | 
 | 		if (used_block_group != block_group) | 
 | 			btrfs_put_block_group(used_block_group); | 
 | 		btrfs_put_block_group(block_group); | 
 | 		break; | 
 | loop: | 
 | 		failed_cluster_refill = false; | 
 | 		failed_alloc = false; | 
 | 		BUG_ON(index != get_block_group_index(block_group)); | 
 | 		if (used_block_group != block_group) | 
 | 			btrfs_put_block_group(used_block_group); | 
 | 		btrfs_put_block_group(block_group); | 
 | 	} | 
 | 	up_read(&space_info->groups_sem); | 
 |  | 
 | 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) | 
 | 		goto search; | 
 |  | 
 | 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) | 
 | 		goto search; | 
 |  | 
 | 	/* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for | 
 | 	 *			for them to make caching progress.  Also | 
 | 	 *			determine the best possible bg to cache | 
 | 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking | 
 | 	 *			caching kthreads as we move along | 
 | 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching | 
 | 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again | 
 | 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try | 
 | 	 *			again | 
 | 	 */ | 
 | 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { | 
 | 		index = 0; | 
 | 		if (loop == LOOP_FIND_IDEAL && found_uncached_bg) { | 
 | 			found_uncached_bg = false; | 
 | 			loop++; | 
 | 			if (!ideal_cache_percent) | 
 | 				goto search; | 
 |  | 
 | 			/* | 
 | 			 * 1 of the following 2 things have happened so far | 
 | 			 * | 
 | 			 * 1) We found an ideal block group for caching that | 
 | 			 * is mostly full and will cache quickly, so we might | 
 | 			 * as well wait for it. | 
 | 			 * | 
 | 			 * 2) We searched for cached only and we didn't find | 
 | 			 * anything, and we didn't start any caching kthreads | 
 | 			 * either, so chances are we will loop through and | 
 | 			 * start a couple caching kthreads, and then come back | 
 | 			 * around and just wait for them.  This will be slower | 
 | 			 * because we will have 2 caching kthreads reading at | 
 | 			 * the same time when we could have just started one | 
 | 			 * and waited for it to get far enough to give us an | 
 | 			 * allocation, so go ahead and go to the wait caching | 
 | 			 * loop. | 
 | 			 */ | 
 | 			loop = LOOP_CACHING_WAIT; | 
 | 			search_start = ideal_cache_offset; | 
 | 			ideal_cache_percent = 0; | 
 | 			goto ideal_cache; | 
 | 		} else if (loop == LOOP_FIND_IDEAL) { | 
 | 			/* | 
 | 			 * Didn't find a uncached bg, wait on anything we find | 
 | 			 * next. | 
 | 			 */ | 
 | 			loop = LOOP_CACHING_WAIT; | 
 | 			goto search; | 
 | 		} | 
 |  | 
 | 		loop++; | 
 |  | 
 | 		if (loop == LOOP_ALLOC_CHUNK) { | 
 | 		       if (allowed_chunk_alloc) { | 
 | 				ret = do_chunk_alloc(trans, root, num_bytes + | 
 | 						     2 * 1024 * 1024, data, | 
 | 						     CHUNK_ALLOC_LIMITED); | 
 | 				allowed_chunk_alloc = 0; | 
 | 				if (ret == 1) | 
 | 					done_chunk_alloc = 1; | 
 | 			} else if (!done_chunk_alloc && | 
 | 				   space_info->force_alloc == | 
 | 				   CHUNK_ALLOC_NO_FORCE) { | 
 | 				space_info->force_alloc = CHUNK_ALLOC_LIMITED; | 
 | 			} | 
 |  | 
 | 		       /* | 
 | 			* We didn't allocate a chunk, go ahead and drop the | 
 | 			* empty size and loop again. | 
 | 			*/ | 
 | 		       if (!done_chunk_alloc) | 
 | 			       loop = LOOP_NO_EMPTY_SIZE; | 
 | 		} | 
 |  | 
 | 		if (loop == LOOP_NO_EMPTY_SIZE) { | 
 | 			empty_size = 0; | 
 | 			empty_cluster = 0; | 
 | 		} | 
 |  | 
 | 		goto search; | 
 | 	} else if (!ins->objectid) { | 
 | 		ret = -ENOSPC; | 
 | 	} else if (ins->objectid) { | 
 | 		ret = 0; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void dump_space_info(struct btrfs_space_info *info, u64 bytes, | 
 | 			    int dump_block_groups) | 
 | { | 
 | 	struct btrfs_block_group_cache *cache; | 
 | 	int index = 0; | 
 |  | 
 | 	spin_lock(&info->lock); | 
 | 	printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n", | 
 | 	       (unsigned long long)info->flags, | 
 | 	       (unsigned long long)(info->total_bytes - info->bytes_used - | 
 | 				    info->bytes_pinned - info->bytes_reserved - | 
 | 				    info->bytes_readonly), | 
 | 	       (info->full) ? "" : "not "); | 
 | 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " | 
 | 	       "reserved=%llu, may_use=%llu, readonly=%llu\n", | 
 | 	       (unsigned long long)info->total_bytes, | 
 | 	       (unsigned long long)info->bytes_used, | 
 | 	       (unsigned long long)info->bytes_pinned, | 
 | 	       (unsigned long long)info->bytes_reserved, | 
 | 	       (unsigned long long)info->bytes_may_use, | 
 | 	       (unsigned long long)info->bytes_readonly); | 
 | 	spin_unlock(&info->lock); | 
 |  | 
 | 	if (!dump_block_groups) | 
 | 		return; | 
 |  | 
 | 	down_read(&info->groups_sem); | 
 | again: | 
 | 	list_for_each_entry(cache, &info->block_groups[index], list) { | 
 | 		spin_lock(&cache->lock); | 
 | 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used " | 
 | 		       "%llu pinned %llu reserved\n", | 
 | 		       (unsigned long long)cache->key.objectid, | 
 | 		       (unsigned long long)cache->key.offset, | 
 | 		       (unsigned long long)btrfs_block_group_used(&cache->item), | 
 | 		       (unsigned long long)cache->pinned, | 
 | 		       (unsigned long long)cache->reserved); | 
 | 		btrfs_dump_free_space(cache, bytes); | 
 | 		spin_unlock(&cache->lock); | 
 | 	} | 
 | 	if (++index < BTRFS_NR_RAID_TYPES) | 
 | 		goto again; | 
 | 	up_read(&info->groups_sem); | 
 | } | 
 |  | 
 | int btrfs_reserve_extent(struct btrfs_trans_handle *trans, | 
 | 			 struct btrfs_root *root, | 
 | 			 u64 num_bytes, u64 min_alloc_size, | 
 | 			 u64 empty_size, u64 hint_byte, | 
 | 			 u64 search_end, struct btrfs_key *ins, | 
 | 			 u64 data) | 
 | { | 
 | 	int ret; | 
 | 	u64 search_start = 0; | 
 |  | 
 | 	data = btrfs_get_alloc_profile(root, data); | 
 | again: | 
 | 	/* | 
 | 	 * the only place that sets empty_size is btrfs_realloc_node, which | 
 | 	 * is not called recursively on allocations | 
 | 	 */ | 
 | 	if (empty_size || root->ref_cows) | 
 | 		ret = do_chunk_alloc(trans, root->fs_info->extent_root, | 
 | 				     num_bytes + 2 * 1024 * 1024, data, | 
 | 				     CHUNK_ALLOC_NO_FORCE); | 
 |  | 
 | 	WARN_ON(num_bytes < root->sectorsize); | 
 | 	ret = find_free_extent(trans, root, num_bytes, empty_size, | 
 | 			       search_start, search_end, hint_byte, | 
 | 			       ins, data); | 
 |  | 
 | 	if (ret == -ENOSPC && num_bytes > min_alloc_size) { | 
 | 		num_bytes = num_bytes >> 1; | 
 | 		num_bytes = num_bytes & ~(root->sectorsize - 1); | 
 | 		num_bytes = max(num_bytes, min_alloc_size); | 
 | 		do_chunk_alloc(trans, root->fs_info->extent_root, | 
 | 			       num_bytes, data, CHUNK_ALLOC_FORCE); | 
 | 		goto again; | 
 | 	} | 
 | 	if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) { | 
 | 		struct btrfs_space_info *sinfo; | 
 |  | 
 | 		sinfo = __find_space_info(root->fs_info, data); | 
 | 		printk(KERN_ERR "btrfs allocation failed flags %llu, " | 
 | 		       "wanted %llu\n", (unsigned long long)data, | 
 | 		       (unsigned long long)num_bytes); | 
 | 		dump_space_info(sinfo, num_bytes, 1); | 
 | 	} | 
 |  | 
 | 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __btrfs_free_reserved_extent(struct btrfs_root *root, | 
 | 					u64 start, u64 len, int pin) | 
 | { | 
 | 	struct btrfs_block_group_cache *cache; | 
 | 	int ret = 0; | 
 |  | 
 | 	cache = btrfs_lookup_block_group(root->fs_info, start); | 
 | 	if (!cache) { | 
 | 		printk(KERN_ERR "Unable to find block group for %llu\n", | 
 | 		       (unsigned long long)start); | 
 | 		return -ENOSPC; | 
 | 	} | 
 |  | 
 | 	if (btrfs_test_opt(root, DISCARD)) | 
 | 		ret = btrfs_discard_extent(root, start, len, NULL); | 
 |  | 
 | 	if (pin) | 
 | 		pin_down_extent(root, cache, start, len, 1); | 
 | 	else { | 
 | 		btrfs_add_free_space(cache, start, len); | 
 | 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); | 
 | 	} | 
 | 	btrfs_put_block_group(cache); | 
 |  | 
 | 	trace_btrfs_reserved_extent_free(root, start, len); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_free_reserved_extent(struct btrfs_root *root, | 
 | 					u64 start, u64 len) | 
 | { | 
 | 	return __btrfs_free_reserved_extent(root, start, len, 0); | 
 | } | 
 |  | 
 | int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, | 
 | 				       u64 start, u64 len) | 
 | { | 
 | 	return __btrfs_free_reserved_extent(root, start, len, 1); | 
 | } | 
 |  | 
 | static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *root, | 
 | 				      u64 parent, u64 root_objectid, | 
 | 				      u64 flags, u64 owner, u64 offset, | 
 | 				      struct btrfs_key *ins, int ref_mod) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_extent_item *extent_item; | 
 | 	struct btrfs_extent_inline_ref *iref; | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	int type; | 
 | 	u32 size; | 
 |  | 
 | 	if (parent > 0) | 
 | 		type = BTRFS_SHARED_DATA_REF_KEY; | 
 | 	else | 
 | 		type = BTRFS_EXTENT_DATA_REF_KEY; | 
 |  | 
 | 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	path->leave_spinning = 1; | 
 | 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, | 
 | 				      ins, size); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	extent_item = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				     struct btrfs_extent_item); | 
 | 	btrfs_set_extent_refs(leaf, extent_item, ref_mod); | 
 | 	btrfs_set_extent_generation(leaf, extent_item, trans->transid); | 
 | 	btrfs_set_extent_flags(leaf, extent_item, | 
 | 			       flags | BTRFS_EXTENT_FLAG_DATA); | 
 |  | 
 | 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); | 
 | 	btrfs_set_extent_inline_ref_type(leaf, iref, type); | 
 | 	if (parent > 0) { | 
 | 		struct btrfs_shared_data_ref *ref; | 
 | 		ref = (struct btrfs_shared_data_ref *)(iref + 1); | 
 | 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
 | 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); | 
 | 	} else { | 
 | 		struct btrfs_extent_data_ref *ref; | 
 | 		ref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
 | 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); | 
 | 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner); | 
 | 		btrfs_set_extent_data_ref_offset(leaf, ref, offset); | 
 | 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); | 
 | 	} | 
 |  | 
 | 	btrfs_mark_buffer_dirty(path->nodes[0]); | 
 | 	btrfs_free_path(path); | 
 |  | 
 | 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); | 
 | 	if (ret) { | 
 | 		printk(KERN_ERR "btrfs update block group failed for %llu " | 
 | 		       "%llu\n", (unsigned long long)ins->objectid, | 
 | 		       (unsigned long long)ins->offset); | 
 | 		BUG(); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, | 
 | 				     struct btrfs_root *root, | 
 | 				     u64 parent, u64 root_objectid, | 
 | 				     u64 flags, struct btrfs_disk_key *key, | 
 | 				     int level, struct btrfs_key *ins) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_extent_item *extent_item; | 
 | 	struct btrfs_tree_block_info *block_info; | 
 | 	struct btrfs_extent_inline_ref *iref; | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	path->leave_spinning = 1; | 
 | 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, | 
 | 				      ins, size); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	extent_item = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				     struct btrfs_extent_item); | 
 | 	btrfs_set_extent_refs(leaf, extent_item, 1); | 
 | 	btrfs_set_extent_generation(leaf, extent_item, trans->transid); | 
 | 	btrfs_set_extent_flags(leaf, extent_item, | 
 | 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); | 
 | 	block_info = (struct btrfs_tree_block_info *)(extent_item + 1); | 
 |  | 
 | 	btrfs_set_tree_block_key(leaf, block_info, key); | 
 | 	btrfs_set_tree_block_level(leaf, block_info, level); | 
 |  | 
 | 	iref = (struct btrfs_extent_inline_ref *)(block_info + 1); | 
 | 	if (parent > 0) { | 
 | 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); | 
 | 		btrfs_set_extent_inline_ref_type(leaf, iref, | 
 | 						 BTRFS_SHARED_BLOCK_REF_KEY); | 
 | 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
 | 	} else { | 
 | 		btrfs_set_extent_inline_ref_type(leaf, iref, | 
 | 						 BTRFS_TREE_BLOCK_REF_KEY); | 
 | 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); | 
 | 	} | 
 |  | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | 	btrfs_free_path(path); | 
 |  | 
 | 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); | 
 | 	if (ret) { | 
 | 		printk(KERN_ERR "btrfs update block group failed for %llu " | 
 | 		       "%llu\n", (unsigned long long)ins->objectid, | 
 | 		       (unsigned long long)ins->offset); | 
 | 		BUG(); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, | 
 | 				     struct btrfs_root *root, | 
 | 				     u64 root_objectid, u64 owner, | 
 | 				     u64 offset, struct btrfs_key *ins) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); | 
 |  | 
 | 	ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset, | 
 | 					 0, root_objectid, owner, offset, | 
 | 					 BTRFS_ADD_DELAYED_EXTENT, NULL); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * this is used by the tree logging recovery code.  It records that | 
 |  * an extent has been allocated and makes sure to clear the free | 
 |  * space cache bits as well | 
 |  */ | 
 | int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_root *root, | 
 | 				   u64 root_objectid, u64 owner, u64 offset, | 
 | 				   struct btrfs_key *ins) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_block_group_cache *block_group; | 
 | 	struct btrfs_caching_control *caching_ctl; | 
 | 	u64 start = ins->objectid; | 
 | 	u64 num_bytes = ins->offset; | 
 |  | 
 | 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); | 
 | 	cache_block_group(block_group, trans, NULL, 0); | 
 | 	caching_ctl = get_caching_control(block_group); | 
 |  | 
 | 	if (!caching_ctl) { | 
 | 		BUG_ON(!block_group_cache_done(block_group)); | 
 | 		ret = btrfs_remove_free_space(block_group, start, num_bytes); | 
 | 		BUG_ON(ret); | 
 | 	} else { | 
 | 		mutex_lock(&caching_ctl->mutex); | 
 |  | 
 | 		if (start >= caching_ctl->progress) { | 
 | 			ret = add_excluded_extent(root, start, num_bytes); | 
 | 			BUG_ON(ret); | 
 | 		} else if (start + num_bytes <= caching_ctl->progress) { | 
 | 			ret = btrfs_remove_free_space(block_group, | 
 | 						      start, num_bytes); | 
 | 			BUG_ON(ret); | 
 | 		} else { | 
 | 			num_bytes = caching_ctl->progress - start; | 
 | 			ret = btrfs_remove_free_space(block_group, | 
 | 						      start, num_bytes); | 
 | 			BUG_ON(ret); | 
 |  | 
 | 			start = caching_ctl->progress; | 
 | 			num_bytes = ins->objectid + ins->offset - | 
 | 				    caching_ctl->progress; | 
 | 			ret = add_excluded_extent(root, start, num_bytes); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 |  | 
 | 		mutex_unlock(&caching_ctl->mutex); | 
 | 		put_caching_control(caching_ctl); | 
 | 	} | 
 |  | 
 | 	ret = btrfs_update_reserved_bytes(block_group, ins->offset, | 
 | 					  RESERVE_ALLOC_NO_ACCOUNT); | 
 | 	BUG_ON(ret); | 
 | 	btrfs_put_block_group(block_group); | 
 | 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, | 
 | 					 0, owner, offset, ins, 1); | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, | 
 | 					    struct btrfs_root *root, | 
 | 					    u64 bytenr, u32 blocksize, | 
 | 					    int level) | 
 | { | 
 | 	struct extent_buffer *buf; | 
 |  | 
 | 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize); | 
 | 	if (!buf) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	btrfs_set_header_generation(buf, trans->transid); | 
 | 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); | 
 | 	btrfs_tree_lock(buf); | 
 | 	clean_tree_block(trans, root, buf); | 
 |  | 
 | 	btrfs_set_lock_blocking(buf); | 
 | 	btrfs_set_buffer_uptodate(buf); | 
 |  | 
 | 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { | 
 | 		/* | 
 | 		 * we allow two log transactions at a time, use different | 
 | 		 * EXENT bit to differentiate dirty pages. | 
 | 		 */ | 
 | 		if (root->log_transid % 2 == 0) | 
 | 			set_extent_dirty(&root->dirty_log_pages, buf->start, | 
 | 					buf->start + buf->len - 1, GFP_NOFS); | 
 | 		else | 
 | 			set_extent_new(&root->dirty_log_pages, buf->start, | 
 | 					buf->start + buf->len - 1, GFP_NOFS); | 
 | 	} else { | 
 | 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start, | 
 | 			 buf->start + buf->len - 1, GFP_NOFS); | 
 | 	} | 
 | 	trans->blocks_used++; | 
 | 	/* this returns a buffer locked for blocking */ | 
 | 	return buf; | 
 | } | 
 |  | 
 | static struct btrfs_block_rsv * | 
 | use_block_rsv(struct btrfs_trans_handle *trans, | 
 | 	      struct btrfs_root *root, u32 blocksize) | 
 | { | 
 | 	struct btrfs_block_rsv *block_rsv; | 
 | 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; | 
 | 	int ret; | 
 |  | 
 | 	block_rsv = get_block_rsv(trans, root); | 
 |  | 
 | 	if (block_rsv->size == 0) { | 
 | 		ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0); | 
 | 		/* | 
 | 		 * If we couldn't reserve metadata bytes try and use some from | 
 | 		 * the global reserve. | 
 | 		 */ | 
 | 		if (ret && block_rsv != global_rsv) { | 
 | 			ret = block_rsv_use_bytes(global_rsv, blocksize); | 
 | 			if (!ret) | 
 | 				return global_rsv; | 
 | 			return ERR_PTR(ret); | 
 | 		} else if (ret) { | 
 | 			return ERR_PTR(ret); | 
 | 		} | 
 | 		return block_rsv; | 
 | 	} | 
 |  | 
 | 	ret = block_rsv_use_bytes(block_rsv, blocksize); | 
 | 	if (!ret) | 
 | 		return block_rsv; | 
 | 	if (ret) { | 
 | 		static DEFINE_RATELIMIT_STATE(_rs, | 
 | 				DEFAULT_RATELIMIT_INTERVAL, | 
 | 				/*DEFAULT_RATELIMIT_BURST*/ 2); | 
 | 		if (__ratelimit(&_rs)) { | 
 | 			printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret); | 
 | 			WARN_ON(1); | 
 | 		} | 
 | 		ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0); | 
 | 		if (!ret) { | 
 | 			return block_rsv; | 
 | 		} else if (ret && block_rsv != global_rsv) { | 
 | 			ret = block_rsv_use_bytes(global_rsv, blocksize); | 
 | 			if (!ret) | 
 | 				return global_rsv; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ERR_PTR(-ENOSPC); | 
 | } | 
 |  | 
 | static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize) | 
 | { | 
 | 	block_rsv_add_bytes(block_rsv, blocksize, 0); | 
 | 	block_rsv_release_bytes(block_rsv, NULL, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * finds a free extent and does all the dirty work required for allocation | 
 |  * returns the key for the extent through ins, and a tree buffer for | 
 |  * the first block of the extent through buf. | 
 |  * | 
 |  * returns the tree buffer or NULL. | 
 |  */ | 
 | struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, | 
 | 					struct btrfs_root *root, u32 blocksize, | 
 | 					u64 parent, u64 root_objectid, | 
 | 					struct btrfs_disk_key *key, int level, | 
 | 					u64 hint, u64 empty_size) | 
 | { | 
 | 	struct btrfs_key ins; | 
 | 	struct btrfs_block_rsv *block_rsv; | 
 | 	struct extent_buffer *buf; | 
 | 	u64 flags = 0; | 
 | 	int ret; | 
 |  | 
 |  | 
 | 	block_rsv = use_block_rsv(trans, root, blocksize); | 
 | 	if (IS_ERR(block_rsv)) | 
 | 		return ERR_CAST(block_rsv); | 
 |  | 
 | 	ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, | 
 | 				   empty_size, hint, (u64)-1, &ins, 0); | 
 | 	if (ret) { | 
 | 		unuse_block_rsv(block_rsv, blocksize); | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, | 
 | 				    blocksize, level); | 
 | 	BUG_ON(IS_ERR(buf)); | 
 |  | 
 | 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { | 
 | 		if (parent == 0) | 
 | 			parent = ins.objectid; | 
 | 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
 | 	} else | 
 | 		BUG_ON(parent > 0); | 
 |  | 
 | 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { | 
 | 		struct btrfs_delayed_extent_op *extent_op; | 
 | 		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); | 
 | 		BUG_ON(!extent_op); | 
 | 		if (key) | 
 | 			memcpy(&extent_op->key, key, sizeof(extent_op->key)); | 
 | 		else | 
 | 			memset(&extent_op->key, 0, sizeof(extent_op->key)); | 
 | 		extent_op->flags_to_set = flags; | 
 | 		extent_op->update_key = 1; | 
 | 		extent_op->update_flags = 1; | 
 | 		extent_op->is_data = 0; | 
 |  | 
 | 		ret = btrfs_add_delayed_tree_ref(trans, ins.objectid, | 
 | 					ins.offset, parent, root_objectid, | 
 | 					level, BTRFS_ADD_DELAYED_EXTENT, | 
 | 					extent_op); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 | 	return buf; | 
 | } | 
 |  | 
 | struct walk_control { | 
 | 	u64 refs[BTRFS_MAX_LEVEL]; | 
 | 	u64 flags[BTRFS_MAX_LEVEL]; | 
 | 	struct btrfs_key update_progress; | 
 | 	int stage; | 
 | 	int level; | 
 | 	int shared_level; | 
 | 	int update_ref; | 
 | 	int keep_locks; | 
 | 	int reada_slot; | 
 | 	int reada_count; | 
 | }; | 
 |  | 
 | #define DROP_REFERENCE	1 | 
 | #define UPDATE_BACKREF	2 | 
 |  | 
 | static noinline void reada_walk_down(struct btrfs_trans_handle *trans, | 
 | 				     struct btrfs_root *root, | 
 | 				     struct walk_control *wc, | 
 | 				     struct btrfs_path *path) | 
 | { | 
 | 	u64 bytenr; | 
 | 	u64 generation; | 
 | 	u64 refs; | 
 | 	u64 flags; | 
 | 	u32 nritems; | 
 | 	u32 blocksize; | 
 | 	struct btrfs_key key; | 
 | 	struct extent_buffer *eb; | 
 | 	int ret; | 
 | 	int slot; | 
 | 	int nread = 0; | 
 |  | 
 | 	if (path->slots[wc->level] < wc->reada_slot) { | 
 | 		wc->reada_count = wc->reada_count * 2 / 3; | 
 | 		wc->reada_count = max(wc->reada_count, 2); | 
 | 	} else { | 
 | 		wc->reada_count = wc->reada_count * 3 / 2; | 
 | 		wc->reada_count = min_t(int, wc->reada_count, | 
 | 					BTRFS_NODEPTRS_PER_BLOCK(root)); | 
 | 	} | 
 |  | 
 | 	eb = path->nodes[wc->level]; | 
 | 	nritems = btrfs_header_nritems(eb); | 
 | 	blocksize = btrfs_level_size(root, wc->level - 1); | 
 |  | 
 | 	for (slot = path->slots[wc->level]; slot < nritems; slot++) { | 
 | 		if (nread >= wc->reada_count) | 
 | 			break; | 
 |  | 
 | 		cond_resched(); | 
 | 		bytenr = btrfs_node_blockptr(eb, slot); | 
 | 		generation = btrfs_node_ptr_generation(eb, slot); | 
 |  | 
 | 		if (slot == path->slots[wc->level]) | 
 | 			goto reada; | 
 |  | 
 | 		if (wc->stage == UPDATE_BACKREF && | 
 | 		    generation <= root->root_key.offset) | 
 | 			continue; | 
 |  | 
 | 		/* We don't lock the tree block, it's OK to be racy here */ | 
 | 		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, | 
 | 					       &refs, &flags); | 
 | 		BUG_ON(ret); | 
 | 		BUG_ON(refs == 0); | 
 |  | 
 | 		if (wc->stage == DROP_REFERENCE) { | 
 | 			if (refs == 1) | 
 | 				goto reada; | 
 |  | 
 | 			if (wc->level == 1 && | 
 | 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
 | 				continue; | 
 | 			if (!wc->update_ref || | 
 | 			    generation <= root->root_key.offset) | 
 | 				continue; | 
 | 			btrfs_node_key_to_cpu(eb, &key, slot); | 
 | 			ret = btrfs_comp_cpu_keys(&key, | 
 | 						  &wc->update_progress); | 
 | 			if (ret < 0) | 
 | 				continue; | 
 | 		} else { | 
 | 			if (wc->level == 1 && | 
 | 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
 | 				continue; | 
 | 		} | 
 | reada: | 
 | 		ret = readahead_tree_block(root, bytenr, blocksize, | 
 | 					   generation); | 
 | 		if (ret) | 
 | 			break; | 
 | 		nread++; | 
 | 	} | 
 | 	wc->reada_slot = slot; | 
 | } | 
 |  | 
 | /* | 
 |  * hepler to process tree block while walking down the tree. | 
 |  * | 
 |  * when wc->stage == UPDATE_BACKREF, this function updates | 
 |  * back refs for pointers in the block. | 
 |  * | 
 |  * NOTE: return value 1 means we should stop walking down. | 
 |  */ | 
 | static noinline int walk_down_proc(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_root *root, | 
 | 				   struct btrfs_path *path, | 
 | 				   struct walk_control *wc, int lookup_info) | 
 | { | 
 | 	int level = wc->level; | 
 | 	struct extent_buffer *eb = path->nodes[level]; | 
 | 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
 | 	int ret; | 
 |  | 
 | 	if (wc->stage == UPDATE_BACKREF && | 
 | 	    btrfs_header_owner(eb) != root->root_key.objectid) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * when reference count of tree block is 1, it won't increase | 
 | 	 * again. once full backref flag is set, we never clear it. | 
 | 	 */ | 
 | 	if (lookup_info && | 
 | 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || | 
 | 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { | 
 | 		BUG_ON(!path->locks[level]); | 
 | 		ret = btrfs_lookup_extent_info(trans, root, | 
 | 					       eb->start, eb->len, | 
 | 					       &wc->refs[level], | 
 | 					       &wc->flags[level]); | 
 | 		BUG_ON(ret); | 
 | 		BUG_ON(wc->refs[level] == 0); | 
 | 	} | 
 |  | 
 | 	if (wc->stage == DROP_REFERENCE) { | 
 | 		if (wc->refs[level] > 1) | 
 | 			return 1; | 
 |  | 
 | 		if (path->locks[level] && !wc->keep_locks) { | 
 | 			btrfs_tree_unlock_rw(eb, path->locks[level]); | 
 | 			path->locks[level] = 0; | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* wc->stage == UPDATE_BACKREF */ | 
 | 	if (!(wc->flags[level] & flag)) { | 
 | 		BUG_ON(!path->locks[level]); | 
 | 		ret = btrfs_inc_ref(trans, root, eb, 1); | 
 | 		BUG_ON(ret); | 
 | 		ret = btrfs_dec_ref(trans, root, eb, 0); | 
 | 		BUG_ON(ret); | 
 | 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start, | 
 | 						  eb->len, flag, 0); | 
 | 		BUG_ON(ret); | 
 | 		wc->flags[level] |= flag; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * the block is shared by multiple trees, so it's not good to | 
 | 	 * keep the tree lock | 
 | 	 */ | 
 | 	if (path->locks[level] && level > 0) { | 
 | 		btrfs_tree_unlock_rw(eb, path->locks[level]); | 
 | 		path->locks[level] = 0; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * hepler to process tree block pointer. | 
 |  * | 
 |  * when wc->stage == DROP_REFERENCE, this function checks | 
 |  * reference count of the block pointed to. if the block | 
 |  * is shared and we need update back refs for the subtree | 
 |  * rooted at the block, this function changes wc->stage to | 
 |  * UPDATE_BACKREF. if the block is shared and there is no | 
 |  * need to update back, this function drops the reference | 
 |  * to the block. | 
 |  * | 
 |  * NOTE: return value 1 means we should stop walking down. | 
 |  */ | 
 | static noinline int do_walk_down(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, | 
 | 				 struct walk_control *wc, int *lookup_info) | 
 | { | 
 | 	u64 bytenr; | 
 | 	u64 generation; | 
 | 	u64 parent; | 
 | 	u32 blocksize; | 
 | 	struct btrfs_key key; | 
 | 	struct extent_buffer *next; | 
 | 	int level = wc->level; | 
 | 	int reada = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	generation = btrfs_node_ptr_generation(path->nodes[level], | 
 | 					       path->slots[level]); | 
 | 	/* | 
 | 	 * if the lower level block was created before the snapshot | 
 | 	 * was created, we know there is no need to update back refs | 
 | 	 * for the subtree | 
 | 	 */ | 
 | 	if (wc->stage == UPDATE_BACKREF && | 
 | 	    generation <= root->root_key.offset) { | 
 | 		*lookup_info = 1; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); | 
 | 	blocksize = btrfs_level_size(root, level - 1); | 
 |  | 
 | 	next = btrfs_find_tree_block(root, bytenr, blocksize); | 
 | 	if (!next) { | 
 | 		next = btrfs_find_create_tree_block(root, bytenr, blocksize); | 
 | 		if (!next) | 
 | 			return -ENOMEM; | 
 | 		reada = 1; | 
 | 	} | 
 | 	btrfs_tree_lock(next); | 
 | 	btrfs_set_lock_blocking(next); | 
 |  | 
 | 	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, | 
 | 				       &wc->refs[level - 1], | 
 | 				       &wc->flags[level - 1]); | 
 | 	BUG_ON(ret); | 
 | 	BUG_ON(wc->refs[level - 1] == 0); | 
 | 	*lookup_info = 0; | 
 |  | 
 | 	if (wc->stage == DROP_REFERENCE) { | 
 | 		if (wc->refs[level - 1] > 1) { | 
 | 			if (level == 1 && | 
 | 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
 | 				goto skip; | 
 |  | 
 | 			if (!wc->update_ref || | 
 | 			    generation <= root->root_key.offset) | 
 | 				goto skip; | 
 |  | 
 | 			btrfs_node_key_to_cpu(path->nodes[level], &key, | 
 | 					      path->slots[level]); | 
 | 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); | 
 | 			if (ret < 0) | 
 | 				goto skip; | 
 |  | 
 | 			wc->stage = UPDATE_BACKREF; | 
 | 			wc->shared_level = level - 1; | 
 | 		} | 
 | 	} else { | 
 | 		if (level == 1 && | 
 | 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
 | 			goto skip; | 
 | 	} | 
 |  | 
 | 	if (!btrfs_buffer_uptodate(next, generation)) { | 
 | 		btrfs_tree_unlock(next); | 
 | 		free_extent_buffer(next); | 
 | 		next = NULL; | 
 | 		*lookup_info = 1; | 
 | 	} | 
 |  | 
 | 	if (!next) { | 
 | 		if (reada && level == 1) | 
 | 			reada_walk_down(trans, root, wc, path); | 
 | 		next = read_tree_block(root, bytenr, blocksize, generation); | 
 | 		if (!next) | 
 | 			return -EIO; | 
 | 		btrfs_tree_lock(next); | 
 | 		btrfs_set_lock_blocking(next); | 
 | 	} | 
 |  | 
 | 	level--; | 
 | 	BUG_ON(level != btrfs_header_level(next)); | 
 | 	path->nodes[level] = next; | 
 | 	path->slots[level] = 0; | 
 | 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
 | 	wc->level = level; | 
 | 	if (wc->level == 1) | 
 | 		wc->reada_slot = 0; | 
 | 	return 0; | 
 | skip: | 
 | 	wc->refs[level - 1] = 0; | 
 | 	wc->flags[level - 1] = 0; | 
 | 	if (wc->stage == DROP_REFERENCE) { | 
 | 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { | 
 | 			parent = path->nodes[level]->start; | 
 | 		} else { | 
 | 			BUG_ON(root->root_key.objectid != | 
 | 			       btrfs_header_owner(path->nodes[level])); | 
 | 			parent = 0; | 
 | 		} | 
 |  | 
 | 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, | 
 | 					root->root_key.objectid, level - 1, 0); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 | 	btrfs_tree_unlock(next); | 
 | 	free_extent_buffer(next); | 
 | 	*lookup_info = 1; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * hepler to process tree block while walking up the tree. | 
 |  * | 
 |  * when wc->stage == DROP_REFERENCE, this function drops | 
 |  * reference count on the block. | 
 |  * | 
 |  * when wc->stage == UPDATE_BACKREF, this function changes | 
 |  * wc->stage back to DROP_REFERENCE if we changed wc->stage | 
 |  * to UPDATE_BACKREF previously while processing the block. | 
 |  * | 
 |  * NOTE: return value 1 means we should stop walking up. | 
 |  */ | 
 | static noinline int walk_up_proc(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, | 
 | 				 struct walk_control *wc) | 
 | { | 
 | 	int ret; | 
 | 	int level = wc->level; | 
 | 	struct extent_buffer *eb = path->nodes[level]; | 
 | 	u64 parent = 0; | 
 |  | 
 | 	if (wc->stage == UPDATE_BACKREF) { | 
 | 		BUG_ON(wc->shared_level < level); | 
 | 		if (level < wc->shared_level) | 
 | 			goto out; | 
 |  | 
 | 		ret = find_next_key(path, level + 1, &wc->update_progress); | 
 | 		if (ret > 0) | 
 | 			wc->update_ref = 0; | 
 |  | 
 | 		wc->stage = DROP_REFERENCE; | 
 | 		wc->shared_level = -1; | 
 | 		path->slots[level] = 0; | 
 |  | 
 | 		/* | 
 | 		 * check reference count again if the block isn't locked. | 
 | 		 * we should start walking down the tree again if reference | 
 | 		 * count is one. | 
 | 		 */ | 
 | 		if (!path->locks[level]) { | 
 | 			BUG_ON(level == 0); | 
 | 			btrfs_tree_lock(eb); | 
 | 			btrfs_set_lock_blocking(eb); | 
 | 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
 |  | 
 | 			ret = btrfs_lookup_extent_info(trans, root, | 
 | 						       eb->start, eb->len, | 
 | 						       &wc->refs[level], | 
 | 						       &wc->flags[level]); | 
 | 			BUG_ON(ret); | 
 | 			BUG_ON(wc->refs[level] == 0); | 
 | 			if (wc->refs[level] == 1) { | 
 | 				btrfs_tree_unlock_rw(eb, path->locks[level]); | 
 | 				return 1; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* wc->stage == DROP_REFERENCE */ | 
 | 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]); | 
 |  | 
 | 	if (wc->refs[level] == 1) { | 
 | 		if (level == 0) { | 
 | 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) | 
 | 				ret = btrfs_dec_ref(trans, root, eb, 1); | 
 | 			else | 
 | 				ret = btrfs_dec_ref(trans, root, eb, 0); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 		/* make block locked assertion in clean_tree_block happy */ | 
 | 		if (!path->locks[level] && | 
 | 		    btrfs_header_generation(eb) == trans->transid) { | 
 | 			btrfs_tree_lock(eb); | 
 | 			btrfs_set_lock_blocking(eb); | 
 | 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
 | 		} | 
 | 		clean_tree_block(trans, root, eb); | 
 | 	} | 
 |  | 
 | 	if (eb == root->node) { | 
 | 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) | 
 | 			parent = eb->start; | 
 | 		else | 
 | 			BUG_ON(root->root_key.objectid != | 
 | 			       btrfs_header_owner(eb)); | 
 | 	} else { | 
 | 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) | 
 | 			parent = path->nodes[level + 1]->start; | 
 | 		else | 
 | 			BUG_ON(root->root_key.objectid != | 
 | 			       btrfs_header_owner(path->nodes[level + 1])); | 
 | 	} | 
 |  | 
 | 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); | 
 | out: | 
 | 	wc->refs[level] = 0; | 
 | 	wc->flags[level] = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int walk_down_tree(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_root *root, | 
 | 				   struct btrfs_path *path, | 
 | 				   struct walk_control *wc) | 
 | { | 
 | 	int level = wc->level; | 
 | 	int lookup_info = 1; | 
 | 	int ret; | 
 |  | 
 | 	while (level >= 0) { | 
 | 		ret = walk_down_proc(trans, root, path, wc, lookup_info); | 
 | 		if (ret > 0) | 
 | 			break; | 
 |  | 
 | 		if (level == 0) | 
 | 			break; | 
 |  | 
 | 		if (path->slots[level] >= | 
 | 		    btrfs_header_nritems(path->nodes[level])) | 
 | 			break; | 
 |  | 
 | 		ret = do_walk_down(trans, root, path, wc, &lookup_info); | 
 | 		if (ret > 0) { | 
 | 			path->slots[level]++; | 
 | 			continue; | 
 | 		} else if (ret < 0) | 
 | 			return ret; | 
 | 		level = wc->level; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int walk_up_tree(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, | 
 | 				 struct walk_control *wc, int max_level) | 
 | { | 
 | 	int level = wc->level; | 
 | 	int ret; | 
 |  | 
 | 	path->slots[level] = btrfs_header_nritems(path->nodes[level]); | 
 | 	while (level < max_level && path->nodes[level]) { | 
 | 		wc->level = level; | 
 | 		if (path->slots[level] + 1 < | 
 | 		    btrfs_header_nritems(path->nodes[level])) { | 
 | 			path->slots[level]++; | 
 | 			return 0; | 
 | 		} else { | 
 | 			ret = walk_up_proc(trans, root, path, wc); | 
 | 			if (ret > 0) | 
 | 				return 0; | 
 |  | 
 | 			if (path->locks[level]) { | 
 | 				btrfs_tree_unlock_rw(path->nodes[level], | 
 | 						     path->locks[level]); | 
 | 				path->locks[level] = 0; | 
 | 			} | 
 | 			free_extent_buffer(path->nodes[level]); | 
 | 			path->nodes[level] = NULL; | 
 | 			level++; | 
 | 		} | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * drop a subvolume tree. | 
 |  * | 
 |  * this function traverses the tree freeing any blocks that only | 
 |  * referenced by the tree. | 
 |  * | 
 |  * when a shared tree block is found. this function decreases its | 
 |  * reference count by one. if update_ref is true, this function | 
 |  * also make sure backrefs for the shared block and all lower level | 
 |  * blocks are properly updated. | 
 |  */ | 
 | void btrfs_drop_snapshot(struct btrfs_root *root, | 
 | 			 struct btrfs_block_rsv *block_rsv, int update_ref) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_root *tree_root = root->fs_info->tree_root; | 
 | 	struct btrfs_root_item *root_item = &root->root_item; | 
 | 	struct walk_control *wc; | 
 | 	struct btrfs_key key; | 
 | 	int err = 0; | 
 | 	int ret; | 
 | 	int level; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	wc = kzalloc(sizeof(*wc), GFP_NOFS); | 
 | 	if (!wc) { | 
 | 		btrfs_free_path(path); | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	trans = btrfs_start_transaction(tree_root, 0); | 
 | 	BUG_ON(IS_ERR(trans)); | 
 |  | 
 | 	if (block_rsv) | 
 | 		trans->block_rsv = block_rsv; | 
 |  | 
 | 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { | 
 | 		level = btrfs_header_level(root->node); | 
 | 		path->nodes[level] = btrfs_lock_root_node(root); | 
 | 		btrfs_set_lock_blocking(path->nodes[level]); | 
 | 		path->slots[level] = 0; | 
 | 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
 | 		memset(&wc->update_progress, 0, | 
 | 		       sizeof(wc->update_progress)); | 
 | 	} else { | 
 | 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); | 
 | 		memcpy(&wc->update_progress, &key, | 
 | 		       sizeof(wc->update_progress)); | 
 |  | 
 | 		level = root_item->drop_level; | 
 | 		BUG_ON(level == 0); | 
 | 		path->lowest_level = level; | 
 | 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 		path->lowest_level = 0; | 
 | 		if (ret < 0) { | 
 | 			err = ret; | 
 | 			goto out_free; | 
 | 		} | 
 | 		WARN_ON(ret > 0); | 
 |  | 
 | 		/* | 
 | 		 * unlock our path, this is safe because only this | 
 | 		 * function is allowed to delete this snapshot | 
 | 		 */ | 
 | 		btrfs_unlock_up_safe(path, 0); | 
 |  | 
 | 		level = btrfs_header_level(root->node); | 
 | 		while (1) { | 
 | 			btrfs_tree_lock(path->nodes[level]); | 
 | 			btrfs_set_lock_blocking(path->nodes[level]); | 
 |  | 
 | 			ret = btrfs_lookup_extent_info(trans, root, | 
 | 						path->nodes[level]->start, | 
 | 						path->nodes[level]->len, | 
 | 						&wc->refs[level], | 
 | 						&wc->flags[level]); | 
 | 			BUG_ON(ret); | 
 | 			BUG_ON(wc->refs[level] == 0); | 
 |  | 
 | 			if (level == root_item->drop_level) | 
 | 				break; | 
 |  | 
 | 			btrfs_tree_unlock(path->nodes[level]); | 
 | 			WARN_ON(wc->refs[level] != 1); | 
 | 			level--; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	wc->level = level; | 
 | 	wc->shared_level = -1; | 
 | 	wc->stage = DROP_REFERENCE; | 
 | 	wc->update_ref = update_ref; | 
 | 	wc->keep_locks = 0; | 
 | 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); | 
 |  | 
 | 	while (1) { | 
 | 		ret = walk_down_tree(trans, root, path, wc); | 
 | 		if (ret < 0) { | 
 | 			err = ret; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); | 
 | 		if (ret < 0) { | 
 | 			err = ret; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (ret > 0) { | 
 | 			BUG_ON(wc->stage != DROP_REFERENCE); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (wc->stage == DROP_REFERENCE) { | 
 | 			level = wc->level; | 
 | 			btrfs_node_key(path->nodes[level], | 
 | 				       &root_item->drop_progress, | 
 | 				       path->slots[level]); | 
 | 			root_item->drop_level = level; | 
 | 		} | 
 |  | 
 | 		BUG_ON(wc->level == 0); | 
 | 		if (btrfs_should_end_transaction(trans, tree_root)) { | 
 | 			ret = btrfs_update_root(trans, tree_root, | 
 | 						&root->root_key, | 
 | 						root_item); | 
 | 			BUG_ON(ret); | 
 |  | 
 | 			btrfs_end_transaction_throttle(trans, tree_root); | 
 | 			trans = btrfs_start_transaction(tree_root, 0); | 
 | 			BUG_ON(IS_ERR(trans)); | 
 | 			if (block_rsv) | 
 | 				trans->block_rsv = block_rsv; | 
 | 		} | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 | 	BUG_ON(err); | 
 |  | 
 | 	ret = btrfs_del_root(trans, tree_root, &root->root_key); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { | 
 | 		ret = btrfs_find_last_root(tree_root, root->root_key.objectid, | 
 | 					   NULL, NULL); | 
 | 		BUG_ON(ret < 0); | 
 | 		if (ret > 0) { | 
 | 			/* if we fail to delete the orphan item this time | 
 | 			 * around, it'll get picked up the next time. | 
 | 			 * | 
 | 			 * The most common failure here is just -ENOENT. | 
 | 			 */ | 
 | 			btrfs_del_orphan_item(trans, tree_root, | 
 | 					      root->root_key.objectid); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (root->in_radix) { | 
 | 		btrfs_free_fs_root(tree_root->fs_info, root); | 
 | 	} else { | 
 | 		free_extent_buffer(root->node); | 
 | 		free_extent_buffer(root->commit_root); | 
 | 		kfree(root); | 
 | 	} | 
 | out_free: | 
 | 	btrfs_end_transaction_throttle(trans, tree_root); | 
 | 	kfree(wc); | 
 | 	btrfs_free_path(path); | 
 | out: | 
 | 	if (err) | 
 | 		btrfs_std_error(root->fs_info, err); | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * drop subtree rooted at tree block 'node'. | 
 |  * | 
 |  * NOTE: this function will unlock and release tree block 'node' | 
 |  */ | 
 | int btrfs_drop_subtree(struct btrfs_trans_handle *trans, | 
 | 			struct btrfs_root *root, | 
 | 			struct extent_buffer *node, | 
 | 			struct extent_buffer *parent) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct walk_control *wc; | 
 | 	int level; | 
 | 	int parent_level; | 
 | 	int ret = 0; | 
 | 	int wret; | 
 |  | 
 | 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	wc = kzalloc(sizeof(*wc), GFP_NOFS); | 
 | 	if (!wc) { | 
 | 		btrfs_free_path(path); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	btrfs_assert_tree_locked(parent); | 
 | 	parent_level = btrfs_header_level(parent); | 
 | 	extent_buffer_get(parent); | 
 | 	path->nodes[parent_level] = parent; | 
 | 	path->slots[parent_level] = btrfs_header_nritems(parent); | 
 |  | 
 | 	btrfs_assert_tree_locked(node); | 
 | 	level = btrfs_header_level(node); | 
 | 	path->nodes[level] = node; | 
 | 	path->slots[level] = 0; | 
 | 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
 |  | 
 | 	wc->refs[parent_level] = 1; | 
 | 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
 | 	wc->level = level; | 
 | 	wc->shared_level = -1; | 
 | 	wc->stage = DROP_REFERENCE; | 
 | 	wc->update_ref = 0; | 
 | 	wc->keep_locks = 1; | 
 | 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); | 
 |  | 
 | 	while (1) { | 
 | 		wret = walk_down_tree(trans, root, path, wc); | 
 | 		if (wret < 0) { | 
 | 			ret = wret; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		wret = walk_up_tree(trans, root, path, wc, parent_level); | 
 | 		if (wret < 0) | 
 | 			ret = wret; | 
 | 		if (wret != 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	kfree(wc); | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) | 
 | { | 
 | 	u64 num_devices; | 
 | 	u64 stripped = BTRFS_BLOCK_GROUP_RAID0 | | 
 | 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; | 
 |  | 
 | 	/* | 
 | 	 * we add in the count of missing devices because we want | 
 | 	 * to make sure that any RAID levels on a degraded FS | 
 | 	 * continue to be honored. | 
 | 	 */ | 
 | 	num_devices = root->fs_info->fs_devices->rw_devices + | 
 | 		root->fs_info->fs_devices->missing_devices; | 
 |  | 
 | 	if (num_devices == 1) { | 
 | 		stripped |= BTRFS_BLOCK_GROUP_DUP; | 
 | 		stripped = flags & ~stripped; | 
 |  | 
 | 		/* turn raid0 into single device chunks */ | 
 | 		if (flags & BTRFS_BLOCK_GROUP_RAID0) | 
 | 			return stripped; | 
 |  | 
 | 		/* turn mirroring into duplication */ | 
 | 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 | | 
 | 			     BTRFS_BLOCK_GROUP_RAID10)) | 
 | 			return stripped | BTRFS_BLOCK_GROUP_DUP; | 
 | 		return flags; | 
 | 	} else { | 
 | 		/* they already had raid on here, just return */ | 
 | 		if (flags & stripped) | 
 | 			return flags; | 
 |  | 
 | 		stripped |= BTRFS_BLOCK_GROUP_DUP; | 
 | 		stripped = flags & ~stripped; | 
 |  | 
 | 		/* switch duplicated blocks with raid1 */ | 
 | 		if (flags & BTRFS_BLOCK_GROUP_DUP) | 
 | 			return stripped | BTRFS_BLOCK_GROUP_RAID1; | 
 |  | 
 | 		/* turn single device chunks into raid0 */ | 
 | 		return stripped | BTRFS_BLOCK_GROUP_RAID0; | 
 | 	} | 
 | 	return flags; | 
 | } | 
 |  | 
 | static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) | 
 | { | 
 | 	struct btrfs_space_info *sinfo = cache->space_info; | 
 | 	u64 num_bytes; | 
 | 	u64 min_allocable_bytes; | 
 | 	int ret = -ENOSPC; | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * We need some metadata space and system metadata space for | 
 | 	 * allocating chunks in some corner cases until we force to set | 
 | 	 * it to be readonly. | 
 | 	 */ | 
 | 	if ((sinfo->flags & | 
 | 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && | 
 | 	    !force) | 
 | 		min_allocable_bytes = 1 * 1024 * 1024; | 
 | 	else | 
 | 		min_allocable_bytes = 0; | 
 |  | 
 | 	spin_lock(&sinfo->lock); | 
 | 	spin_lock(&cache->lock); | 
 |  | 
 | 	if (cache->ro) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	num_bytes = cache->key.offset - cache->reserved - cache->pinned - | 
 | 		    cache->bytes_super - btrfs_block_group_used(&cache->item); | 
 |  | 
 | 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + | 
 | 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + | 
 | 	    min_allocable_bytes <= sinfo->total_bytes) { | 
 | 		sinfo->bytes_readonly += num_bytes; | 
 | 		cache->ro = 1; | 
 | 		ret = 0; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&cache->lock); | 
 | 	spin_unlock(&sinfo->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_set_block_group_ro(struct btrfs_root *root, | 
 | 			     struct btrfs_block_group_cache *cache) | 
 |  | 
 | { | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	u64 alloc_flags; | 
 | 	int ret; | 
 |  | 
 | 	BUG_ON(cache->ro); | 
 |  | 
 | 	trans = btrfs_join_transaction(root); | 
 | 	BUG_ON(IS_ERR(trans)); | 
 |  | 
 | 	alloc_flags = update_block_group_flags(root, cache->flags); | 
 | 	if (alloc_flags != cache->flags) | 
 | 		do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, | 
 | 			       CHUNK_ALLOC_FORCE); | 
 |  | 
 | 	ret = set_block_group_ro(cache, 0); | 
 | 	if (!ret) | 
 | 		goto out; | 
 | 	alloc_flags = get_alloc_profile(root, cache->space_info->flags); | 
 | 	ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, | 
 | 			     CHUNK_ALLOC_FORCE); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	ret = set_block_group_ro(cache, 0); | 
 | out: | 
 | 	btrfs_end_transaction(trans, root); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, | 
 | 			    struct btrfs_root *root, u64 type) | 
 | { | 
 | 	u64 alloc_flags = get_alloc_profile(root, type); | 
 | 	return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, | 
 | 			      CHUNK_ALLOC_FORCE); | 
 | } | 
 |  | 
 | /* | 
 |  * helper to account the unused space of all the readonly block group in the | 
 |  * list. takes mirrors into account. | 
 |  */ | 
 | static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) | 
 | { | 
 | 	struct btrfs_block_group_cache *block_group; | 
 | 	u64 free_bytes = 0; | 
 | 	int factor; | 
 |  | 
 | 	list_for_each_entry(block_group, groups_list, list) { | 
 | 		spin_lock(&block_group->lock); | 
 |  | 
 | 		if (!block_group->ro) { | 
 | 			spin_unlock(&block_group->lock); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | | 
 | 					  BTRFS_BLOCK_GROUP_RAID10 | | 
 | 					  BTRFS_BLOCK_GROUP_DUP)) | 
 | 			factor = 2; | 
 | 		else | 
 | 			factor = 1; | 
 |  | 
 | 		free_bytes += (block_group->key.offset - | 
 | 			       btrfs_block_group_used(&block_group->item)) * | 
 | 			       factor; | 
 |  | 
 | 		spin_unlock(&block_group->lock); | 
 | 	} | 
 |  | 
 | 	return free_bytes; | 
 | } | 
 |  | 
 | /* | 
 |  * helper to account the unused space of all the readonly block group in the | 
 |  * space_info. takes mirrors into account. | 
 |  */ | 
 | u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) | 
 | { | 
 | 	int i; | 
 | 	u64 free_bytes = 0; | 
 |  | 
 | 	spin_lock(&sinfo->lock); | 
 |  | 
 | 	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) | 
 | 		if (!list_empty(&sinfo->block_groups[i])) | 
 | 			free_bytes += __btrfs_get_ro_block_group_free_space( | 
 | 						&sinfo->block_groups[i]); | 
 |  | 
 | 	spin_unlock(&sinfo->lock); | 
 |  | 
 | 	return free_bytes; | 
 | } | 
 |  | 
 | int btrfs_set_block_group_rw(struct btrfs_root *root, | 
 | 			      struct btrfs_block_group_cache *cache) | 
 | { | 
 | 	struct btrfs_space_info *sinfo = cache->space_info; | 
 | 	u64 num_bytes; | 
 |  | 
 | 	BUG_ON(!cache->ro); | 
 |  | 
 | 	spin_lock(&sinfo->lock); | 
 | 	spin_lock(&cache->lock); | 
 | 	num_bytes = cache->key.offset - cache->reserved - cache->pinned - | 
 | 		    cache->bytes_super - btrfs_block_group_used(&cache->item); | 
 | 	sinfo->bytes_readonly -= num_bytes; | 
 | 	cache->ro = 0; | 
 | 	spin_unlock(&cache->lock); | 
 | 	spin_unlock(&sinfo->lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * checks to see if its even possible to relocate this block group. | 
 |  * | 
 |  * @return - -1 if it's not a good idea to relocate this block group, 0 if its | 
 |  * ok to go ahead and try. | 
 |  */ | 
 | int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) | 
 | { | 
 | 	struct btrfs_block_group_cache *block_group; | 
 | 	struct btrfs_space_info *space_info; | 
 | 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | 
 | 	struct btrfs_device *device; | 
 | 	u64 min_free; | 
 | 	u64 dev_min = 1; | 
 | 	u64 dev_nr = 0; | 
 | 	int index; | 
 | 	int full = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr); | 
 |  | 
 | 	/* odd, couldn't find the block group, leave it alone */ | 
 | 	if (!block_group) | 
 | 		return -1; | 
 |  | 
 | 	min_free = btrfs_block_group_used(&block_group->item); | 
 |  | 
 | 	/* no bytes used, we're good */ | 
 | 	if (!min_free) | 
 | 		goto out; | 
 |  | 
 | 	space_info = block_group->space_info; | 
 | 	spin_lock(&space_info->lock); | 
 |  | 
 | 	full = space_info->full; | 
 |  | 
 | 	/* | 
 | 	 * if this is the last block group we have in this space, we can't | 
 | 	 * relocate it unless we're able to allocate a new chunk below. | 
 | 	 * | 
 | 	 * Otherwise, we need to make sure we have room in the space to handle | 
 | 	 * all of the extents from this block group.  If we can, we're good | 
 | 	 */ | 
 | 	if ((space_info->total_bytes != block_group->key.offset) && | 
 | 	    (space_info->bytes_used + space_info->bytes_reserved + | 
 | 	     space_info->bytes_pinned + space_info->bytes_readonly + | 
 | 	     min_free < space_info->total_bytes)) { | 
 | 		spin_unlock(&space_info->lock); | 
 | 		goto out; | 
 | 	} | 
 | 	spin_unlock(&space_info->lock); | 
 |  | 
 | 	/* | 
 | 	 * ok we don't have enough space, but maybe we have free space on our | 
 | 	 * devices to allocate new chunks for relocation, so loop through our | 
 | 	 * alloc devices and guess if we have enough space.  However, if we | 
 | 	 * were marked as full, then we know there aren't enough chunks, and we | 
 | 	 * can just return. | 
 | 	 */ | 
 | 	ret = -1; | 
 | 	if (full) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * index: | 
 | 	 *      0: raid10 | 
 | 	 *      1: raid1 | 
 | 	 *      2: dup | 
 | 	 *      3: raid0 | 
 | 	 *      4: single | 
 | 	 */ | 
 | 	index = get_block_group_index(block_group); | 
 | 	if (index == 0) { | 
 | 		dev_min = 4; | 
 | 		/* Divide by 2 */ | 
 | 		min_free >>= 1; | 
 | 	} else if (index == 1) { | 
 | 		dev_min = 2; | 
 | 	} else if (index == 2) { | 
 | 		/* Multiply by 2 */ | 
 | 		min_free <<= 1; | 
 | 	} else if (index == 3) { | 
 | 		dev_min = fs_devices->rw_devices; | 
 | 		do_div(min_free, dev_min); | 
 | 	} | 
 |  | 
 | 	mutex_lock(&root->fs_info->chunk_mutex); | 
 | 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { | 
 | 		u64 dev_offset; | 
 |  | 
 | 		/* | 
 | 		 * check to make sure we can actually find a chunk with enough | 
 | 		 * space to fit our block group in. | 
 | 		 */ | 
 | 		if (device->total_bytes > device->bytes_used + min_free) { | 
 | 			ret = find_free_dev_extent(NULL, device, min_free, | 
 | 						   &dev_offset, NULL); | 
 | 			if (!ret) | 
 | 				dev_nr++; | 
 |  | 
 | 			if (dev_nr >= dev_min) | 
 | 				break; | 
 |  | 
 | 			ret = -1; | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&root->fs_info->chunk_mutex); | 
 | out: | 
 | 	btrfs_put_block_group(block_group); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int find_first_block_group(struct btrfs_root *root, | 
 | 		struct btrfs_path *path, struct btrfs_key *key) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_buffer *leaf; | 
 | 	int slot; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	while (1) { | 
 | 		slot = path->slots[0]; | 
 | 		leaf = path->nodes[0]; | 
 | 		if (slot >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret == 0) | 
 | 				continue; | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			break; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
 |  | 
 | 		if (found_key.objectid >= key->objectid && | 
 | 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		path->slots[0]++; | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | void btrfs_put_block_group_cache(struct btrfs_fs_info *info) | 
 | { | 
 | 	struct btrfs_block_group_cache *block_group; | 
 | 	u64 last = 0; | 
 |  | 
 | 	while (1) { | 
 | 		struct inode *inode; | 
 |  | 
 | 		block_group = btrfs_lookup_first_block_group(info, last); | 
 | 		while (block_group) { | 
 | 			spin_lock(&block_group->lock); | 
 | 			if (block_group->iref) | 
 | 				break; | 
 | 			spin_unlock(&block_group->lock); | 
 | 			block_group = next_block_group(info->tree_root, | 
 | 						       block_group); | 
 | 		} | 
 | 		if (!block_group) { | 
 | 			if (last == 0) | 
 | 				break; | 
 | 			last = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		inode = block_group->inode; | 
 | 		block_group->iref = 0; | 
 | 		block_group->inode = NULL; | 
 | 		spin_unlock(&block_group->lock); | 
 | 		iput(inode); | 
 | 		last = block_group->key.objectid + block_group->key.offset; | 
 | 		btrfs_put_block_group(block_group); | 
 | 	} | 
 | } | 
 |  | 
 | int btrfs_free_block_groups(struct btrfs_fs_info *info) | 
 | { | 
 | 	struct btrfs_block_group_cache *block_group; | 
 | 	struct btrfs_space_info *space_info; | 
 | 	struct btrfs_caching_control *caching_ctl; | 
 | 	struct rb_node *n; | 
 |  | 
 | 	down_write(&info->extent_commit_sem); | 
 | 	while (!list_empty(&info->caching_block_groups)) { | 
 | 		caching_ctl = list_entry(info->caching_block_groups.next, | 
 | 					 struct btrfs_caching_control, list); | 
 | 		list_del(&caching_ctl->list); | 
 | 		put_caching_control(caching_ctl); | 
 | 	} | 
 | 	up_write(&info->extent_commit_sem); | 
 |  | 
 | 	spin_lock(&info->block_group_cache_lock); | 
 | 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { | 
 | 		block_group = rb_entry(n, struct btrfs_block_group_cache, | 
 | 				       cache_node); | 
 | 		rb_erase(&block_group->cache_node, | 
 | 			 &info->block_group_cache_tree); | 
 | 		spin_unlock(&info->block_group_cache_lock); | 
 |  | 
 | 		down_write(&block_group->space_info->groups_sem); | 
 | 		list_del(&block_group->list); | 
 | 		up_write(&block_group->space_info->groups_sem); | 
 |  | 
 | 		if (block_group->cached == BTRFS_CACHE_STARTED) | 
 | 			wait_block_group_cache_done(block_group); | 
 |  | 
 | 		/* | 
 | 		 * We haven't cached this block group, which means we could | 
 | 		 * possibly have excluded extents on this block group. | 
 | 		 */ | 
 | 		if (block_group->cached == BTRFS_CACHE_NO) | 
 | 			free_excluded_extents(info->extent_root, block_group); | 
 |  | 
 | 		btrfs_remove_free_space_cache(block_group); | 
 | 		btrfs_put_block_group(block_group); | 
 |  | 
 | 		spin_lock(&info->block_group_cache_lock); | 
 | 	} | 
 | 	spin_unlock(&info->block_group_cache_lock); | 
 |  | 
 | 	/* now that all the block groups are freed, go through and | 
 | 	 * free all the space_info structs.  This is only called during | 
 | 	 * the final stages of unmount, and so we know nobody is | 
 | 	 * using them.  We call synchronize_rcu() once before we start, | 
 | 	 * just to be on the safe side. | 
 | 	 */ | 
 | 	synchronize_rcu(); | 
 |  | 
 | 	release_global_block_rsv(info); | 
 |  | 
 | 	while(!list_empty(&info->space_info)) { | 
 | 		space_info = list_entry(info->space_info.next, | 
 | 					struct btrfs_space_info, | 
 | 					list); | 
 | 		if (space_info->bytes_pinned > 0 || | 
 | 		    space_info->bytes_reserved > 0 || | 
 | 		    space_info->bytes_may_use > 0) { | 
 | 			WARN_ON(1); | 
 | 			dump_space_info(space_info, 0, 0); | 
 | 		} | 
 | 		list_del(&space_info->list); | 
 | 		kfree(space_info); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __link_block_group(struct btrfs_space_info *space_info, | 
 | 			       struct btrfs_block_group_cache *cache) | 
 | { | 
 | 	int index = get_block_group_index(cache); | 
 |  | 
 | 	down_write(&space_info->groups_sem); | 
 | 	list_add_tail(&cache->list, &space_info->block_groups[index]); | 
 | 	up_write(&space_info->groups_sem); | 
 | } | 
 |  | 
 | int btrfs_read_block_groups(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	int ret; | 
 | 	struct btrfs_block_group_cache *cache; | 
 | 	struct btrfs_fs_info *info = root->fs_info; | 
 | 	struct btrfs_space_info *space_info; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_buffer *leaf; | 
 | 	int need_clear = 0; | 
 | 	u64 cache_gen; | 
 |  | 
 | 	root = info->extent_root; | 
 | 	key.objectid = 0; | 
 | 	key.offset = 0; | 
 | 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	path->reada = 1; | 
 |  | 
 | 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); | 
 | 	if (btrfs_test_opt(root, SPACE_CACHE) && | 
 | 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen) | 
 | 		need_clear = 1; | 
 | 	if (btrfs_test_opt(root, CLEAR_CACHE)) | 
 | 		need_clear = 1; | 
 |  | 
 | 	while (1) { | 
 | 		ret = find_first_block_group(root, path, &key); | 
 | 		if (ret > 0) | 
 | 			break; | 
 | 		if (ret != 0) | 
 | 			goto error; | 
 | 		leaf = path->nodes[0]; | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
 | 		cache = kzalloc(sizeof(*cache), GFP_NOFS); | 
 | 		if (!cache) { | 
 | 			ret = -ENOMEM; | 
 | 			goto error; | 
 | 		} | 
 | 		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), | 
 | 						GFP_NOFS); | 
 | 		if (!cache->free_space_ctl) { | 
 | 			kfree(cache); | 
 | 			ret = -ENOMEM; | 
 | 			goto error; | 
 | 		} | 
 |  | 
 | 		atomic_set(&cache->count, 1); | 
 | 		spin_lock_init(&cache->lock); | 
 | 		cache->fs_info = info; | 
 | 		INIT_LIST_HEAD(&cache->list); | 
 | 		INIT_LIST_HEAD(&cache->cluster_list); | 
 |  | 
 | 		if (need_clear) | 
 | 			cache->disk_cache_state = BTRFS_DC_CLEAR; | 
 |  | 
 | 		read_extent_buffer(leaf, &cache->item, | 
 | 				   btrfs_item_ptr_offset(leaf, path->slots[0]), | 
 | 				   sizeof(cache->item)); | 
 | 		memcpy(&cache->key, &found_key, sizeof(found_key)); | 
 |  | 
 | 		key.objectid = found_key.objectid + found_key.offset; | 
 | 		btrfs_release_path(path); | 
 | 		cache->flags = btrfs_block_group_flags(&cache->item); | 
 | 		cache->sectorsize = root->sectorsize; | 
 |  | 
 | 		btrfs_init_free_space_ctl(cache); | 
 |  | 
 | 		/* | 
 | 		 * We need to exclude the super stripes now so that the space | 
 | 		 * info has super bytes accounted for, otherwise we'll think | 
 | 		 * we have more space than we actually do. | 
 | 		 */ | 
 | 		exclude_super_stripes(root, cache); | 
 |  | 
 | 		/* | 
 | 		 * check for two cases, either we are full, and therefore | 
 | 		 * don't need to bother with the caching work since we won't | 
 | 		 * find any space, or we are empty, and we can just add all | 
 | 		 * the space in and be done with it.  This saves us _alot_ of | 
 | 		 * time, particularly in the full case. | 
 | 		 */ | 
 | 		if (found_key.offset == btrfs_block_group_used(&cache->item)) { | 
 | 			cache->last_byte_to_unpin = (u64)-1; | 
 | 			cache->cached = BTRFS_CACHE_FINISHED; | 
 | 			free_excluded_extents(root, cache); | 
 | 		} else if (btrfs_block_group_used(&cache->item) == 0) { | 
 | 			cache->last_byte_to_unpin = (u64)-1; | 
 | 			cache->cached = BTRFS_CACHE_FINISHED; | 
 | 			add_new_free_space(cache, root->fs_info, | 
 | 					   found_key.objectid, | 
 | 					   found_key.objectid + | 
 | 					   found_key.offset); | 
 | 			free_excluded_extents(root, cache); | 
 | 		} | 
 |  | 
 | 		ret = update_space_info(info, cache->flags, found_key.offset, | 
 | 					btrfs_block_group_used(&cache->item), | 
 | 					&space_info); | 
 | 		BUG_ON(ret); | 
 | 		cache->space_info = space_info; | 
 | 		spin_lock(&cache->space_info->lock); | 
 | 		cache->space_info->bytes_readonly += cache->bytes_super; | 
 | 		spin_unlock(&cache->space_info->lock); | 
 |  | 
 | 		__link_block_group(space_info, cache); | 
 |  | 
 | 		ret = btrfs_add_block_group_cache(root->fs_info, cache); | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		set_avail_alloc_bits(root->fs_info, cache->flags); | 
 | 		if (btrfs_chunk_readonly(root, cache->key.objectid)) | 
 | 			set_block_group_ro(cache, 1); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { | 
 | 		if (!(get_alloc_profile(root, space_info->flags) & | 
 | 		      (BTRFS_BLOCK_GROUP_RAID10 | | 
 | 		       BTRFS_BLOCK_GROUP_RAID1 | | 
 | 		       BTRFS_BLOCK_GROUP_DUP))) | 
 | 			continue; | 
 | 		/* | 
 | 		 * avoid allocating from un-mirrored block group if there are | 
 | 		 * mirrored block groups. | 
 | 		 */ | 
 | 		list_for_each_entry(cache, &space_info->block_groups[3], list) | 
 | 			set_block_group_ro(cache, 1); | 
 | 		list_for_each_entry(cache, &space_info->block_groups[4], list) | 
 | 			set_block_group_ro(cache, 1); | 
 | 	} | 
 |  | 
 | 	init_global_block_rsv(info); | 
 | 	ret = 0; | 
 | error: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_make_block_group(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_root *root, u64 bytes_used, | 
 | 			   u64 type, u64 chunk_objectid, u64 chunk_offset, | 
 | 			   u64 size) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_root *extent_root; | 
 | 	struct btrfs_block_group_cache *cache; | 
 |  | 
 | 	extent_root = root->fs_info->extent_root; | 
 |  | 
 | 	root->fs_info->last_trans_log_full_commit = trans->transid; | 
 |  | 
 | 	cache = kzalloc(sizeof(*cache), GFP_NOFS); | 
 | 	if (!cache) | 
 | 		return -ENOMEM; | 
 | 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), | 
 | 					GFP_NOFS); | 
 | 	if (!cache->free_space_ctl) { | 
 | 		kfree(cache); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	cache->key.objectid = chunk_offset; | 
 | 	cache->key.offset = size; | 
 | 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; | 
 | 	cache->sectorsize = root->sectorsize; | 
 | 	cache->fs_info = root->fs_info; | 
 |  | 
 | 	atomic_set(&cache->count, 1); | 
 | 	spin_lock_init(&cache->lock); | 
 | 	INIT_LIST_HEAD(&cache->list); | 
 | 	INIT_LIST_HEAD(&cache->cluster_list); | 
 |  | 
 | 	btrfs_init_free_space_ctl(cache); | 
 |  | 
 | 	btrfs_set_block_group_used(&cache->item, bytes_used); | 
 | 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); | 
 | 	cache->flags = type; | 
 | 	btrfs_set_block_group_flags(&cache->item, type); | 
 |  | 
 | 	cache->last_byte_to_unpin = (u64)-1; | 
 | 	cache->cached = BTRFS_CACHE_FINISHED; | 
 | 	exclude_super_stripes(root, cache); | 
 |  | 
 | 	add_new_free_space(cache, root->fs_info, chunk_offset, | 
 | 			   chunk_offset + size); | 
 |  | 
 | 	free_excluded_extents(root, cache); | 
 |  | 
 | 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, | 
 | 				&cache->space_info); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	spin_lock(&cache->space_info->lock); | 
 | 	cache->space_info->bytes_readonly += cache->bytes_super; | 
 | 	spin_unlock(&cache->space_info->lock); | 
 |  | 
 | 	__link_block_group(cache->space_info, cache); | 
 |  | 
 | 	ret = btrfs_add_block_group_cache(root->fs_info, cache); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item, | 
 | 				sizeof(cache->item)); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	set_avail_alloc_bits(extent_root->fs_info, type); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_remove_block_group(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_root *root, u64 group_start) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_block_group_cache *block_group; | 
 | 	struct btrfs_free_cluster *cluster; | 
 | 	struct btrfs_root *tree_root = root->fs_info->tree_root; | 
 | 	struct btrfs_key key; | 
 | 	struct inode *inode; | 
 | 	int ret; | 
 | 	int factor; | 
 |  | 
 | 	root = root->fs_info->extent_root; | 
 |  | 
 | 	block_group = btrfs_lookup_block_group(root->fs_info, group_start); | 
 | 	BUG_ON(!block_group); | 
 | 	BUG_ON(!block_group->ro); | 
 |  | 
 | 	/* | 
 | 	 * Free the reserved super bytes from this block group before | 
 | 	 * remove it. | 
 | 	 */ | 
 | 	free_excluded_extents(root, block_group); | 
 |  | 
 | 	memcpy(&key, &block_group->key, sizeof(key)); | 
 | 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | | 
 | 				  BTRFS_BLOCK_GROUP_RAID1 | | 
 | 				  BTRFS_BLOCK_GROUP_RAID10)) | 
 | 		factor = 2; | 
 | 	else | 
 | 		factor = 1; | 
 |  | 
 | 	/* make sure this block group isn't part of an allocation cluster */ | 
 | 	cluster = &root->fs_info->data_alloc_cluster; | 
 | 	spin_lock(&cluster->refill_lock); | 
 | 	btrfs_return_cluster_to_free_space(block_group, cluster); | 
 | 	spin_unlock(&cluster->refill_lock); | 
 |  | 
 | 	/* | 
 | 	 * make sure this block group isn't part of a metadata | 
 | 	 * allocation cluster | 
 | 	 */ | 
 | 	cluster = &root->fs_info->meta_alloc_cluster; | 
 | 	spin_lock(&cluster->refill_lock); | 
 | 	btrfs_return_cluster_to_free_space(block_group, cluster); | 
 | 	spin_unlock(&cluster->refill_lock); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	inode = lookup_free_space_inode(tree_root, block_group, path); | 
 | 	if (!IS_ERR(inode)) { | 
 | 		ret = btrfs_orphan_add(trans, inode); | 
 | 		BUG_ON(ret); | 
 | 		clear_nlink(inode); | 
 | 		/* One for the block groups ref */ | 
 | 		spin_lock(&block_group->lock); | 
 | 		if (block_group->iref) { | 
 | 			block_group->iref = 0; | 
 | 			block_group->inode = NULL; | 
 | 			spin_unlock(&block_group->lock); | 
 | 			iput(inode); | 
 | 		} else { | 
 | 			spin_unlock(&block_group->lock); | 
 | 		} | 
 | 		/* One for our lookup ref */ | 
 | 		btrfs_add_delayed_iput(inode); | 
 | 	} | 
 |  | 
 | 	key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
 | 	key.offset = block_group->key.objectid; | 
 | 	key.type = 0; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret > 0) | 
 | 		btrfs_release_path(path); | 
 | 	if (ret == 0) { | 
 | 		ret = btrfs_del_item(trans, tree_root, path); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		btrfs_release_path(path); | 
 | 	} | 
 |  | 
 | 	spin_lock(&root->fs_info->block_group_cache_lock); | 
 | 	rb_erase(&block_group->cache_node, | 
 | 		 &root->fs_info->block_group_cache_tree); | 
 | 	spin_unlock(&root->fs_info->block_group_cache_lock); | 
 |  | 
 | 	down_write(&block_group->space_info->groups_sem); | 
 | 	/* | 
 | 	 * we must use list_del_init so people can check to see if they | 
 | 	 * are still on the list after taking the semaphore | 
 | 	 */ | 
 | 	list_del_init(&block_group->list); | 
 | 	up_write(&block_group->space_info->groups_sem); | 
 |  | 
 | 	if (block_group->cached == BTRFS_CACHE_STARTED) | 
 | 		wait_block_group_cache_done(block_group); | 
 |  | 
 | 	btrfs_remove_free_space_cache(block_group); | 
 |  | 
 | 	spin_lock(&block_group->space_info->lock); | 
 | 	block_group->space_info->total_bytes -= block_group->key.offset; | 
 | 	block_group->space_info->bytes_readonly -= block_group->key.offset; | 
 | 	block_group->space_info->disk_total -= block_group->key.offset * factor; | 
 | 	spin_unlock(&block_group->space_info->lock); | 
 |  | 
 | 	memcpy(&key, &block_group->key, sizeof(key)); | 
 |  | 
 | 	btrfs_clear_space_info_full(root->fs_info); | 
 |  | 
 | 	btrfs_put_block_group(block_group); | 
 | 	btrfs_put_block_group(block_group); | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 	if (ret > 0) | 
 | 		ret = -EIO; | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = btrfs_del_item(trans, root, path); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_init_space_info(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_space_info *space_info; | 
 | 	struct btrfs_super_block *disk_super; | 
 | 	u64 features; | 
 | 	u64 flags; | 
 | 	int mixed = 0; | 
 | 	int ret; | 
 |  | 
 | 	disk_super = fs_info->super_copy; | 
 | 	if (!btrfs_super_root(disk_super)) | 
 | 		return 1; | 
 |  | 
 | 	features = btrfs_super_incompat_flags(disk_super); | 
 | 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) | 
 | 		mixed = 1; | 
 |  | 
 | 	flags = BTRFS_BLOCK_GROUP_SYSTEM; | 
 | 	ret = update_space_info(fs_info, flags, 0, 0, &space_info); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (mixed) { | 
 | 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; | 
 | 		ret = update_space_info(fs_info, flags, 0, 0, &space_info); | 
 | 	} else { | 
 | 		flags = BTRFS_BLOCK_GROUP_METADATA; | 
 | 		ret = update_space_info(fs_info, flags, 0, 0, &space_info); | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		flags = BTRFS_BLOCK_GROUP_DATA; | 
 | 		ret = update_space_info(fs_info, flags, 0, 0, &space_info); | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) | 
 | { | 
 | 	return unpin_extent_range(root, start, end); | 
 | } | 
 |  | 
 | int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, | 
 | 			       u64 num_bytes, u64 *actual_bytes) | 
 | { | 
 | 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); | 
 | } | 
 |  | 
 | int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_block_group_cache *cache = NULL; | 
 | 	u64 group_trimmed; | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	u64 trimmed = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	cache = btrfs_lookup_block_group(fs_info, range->start); | 
 |  | 
 | 	while (cache) { | 
 | 		if (cache->key.objectid >= (range->start + range->len)) { | 
 | 			btrfs_put_block_group(cache); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		start = max(range->start, cache->key.objectid); | 
 | 		end = min(range->start + range->len, | 
 | 				cache->key.objectid + cache->key.offset); | 
 |  | 
 | 		if (end - start >= range->minlen) { | 
 | 			if (!block_group_cache_done(cache)) { | 
 | 				ret = cache_block_group(cache, NULL, root, 0); | 
 | 				if (!ret) | 
 | 					wait_block_group_cache_done(cache); | 
 | 			} | 
 | 			ret = btrfs_trim_block_group(cache, | 
 | 						     &group_trimmed, | 
 | 						     start, | 
 | 						     end, | 
 | 						     range->minlen); | 
 |  | 
 | 			trimmed += group_trimmed; | 
 | 			if (ret) { | 
 | 				btrfs_put_block_group(cache); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		cache = next_block_group(fs_info->tree_root, cache); | 
 | 	} | 
 |  | 
 | 	range->len = trimmed; | 
 | 	return ret; | 
 | } |