|  | /* | 
|  | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_types.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_inum.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_dir2.h" | 
|  | #include "xfs_dmapi.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_alloc_btree.h" | 
|  | #include "xfs_ialloc_btree.h" | 
|  | #include "xfs_dir2_sf.h" | 
|  | #include "xfs_attr_sf.h" | 
|  | #include "xfs_dinode.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_ialloc.h" | 
|  | #include "xfs_quota.h" | 
|  | #include "xfs_utils.h" | 
|  |  | 
|  | /* | 
|  | * Initialize the inode hash table for the newly mounted file system. | 
|  | * Choose an initial table size based on user specified value, else | 
|  | * use a simple algorithm using the maximum number of inodes as an | 
|  | * indicator for table size, and clamp it between one and some large | 
|  | * number of pages. | 
|  | */ | 
|  | void | 
|  | xfs_ihash_init(xfs_mount_t *mp) | 
|  | { | 
|  | __uint64_t	icount; | 
|  | uint		i; | 
|  |  | 
|  | if (!mp->m_ihsize) { | 
|  | icount = mp->m_maxicount ? mp->m_maxicount : | 
|  | (mp->m_sb.sb_dblocks << mp->m_sb.sb_inopblog); | 
|  | mp->m_ihsize = 1 << max_t(uint, 8, | 
|  | (xfs_highbit64(icount) + 1) / 2); | 
|  | mp->m_ihsize = min_t(uint, mp->m_ihsize, | 
|  | (64 * NBPP) / sizeof(xfs_ihash_t)); | 
|  | } | 
|  |  | 
|  | mp->m_ihash = kmem_zalloc_greedy(&mp->m_ihsize, | 
|  | NBPC * sizeof(xfs_ihash_t), | 
|  | mp->m_ihsize * sizeof(xfs_ihash_t), | 
|  | KM_SLEEP | KM_MAYFAIL | KM_LARGE); | 
|  | mp->m_ihsize /= sizeof(xfs_ihash_t); | 
|  | for (i = 0; i < mp->m_ihsize; i++) | 
|  | rwlock_init(&(mp->m_ihash[i].ih_lock)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free up structures allocated by xfs_ihash_init, at unmount time. | 
|  | */ | 
|  | void | 
|  | xfs_ihash_free(xfs_mount_t *mp) | 
|  | { | 
|  | kmem_free(mp->m_ihash, mp->m_ihsize * sizeof(xfs_ihash_t)); | 
|  | mp->m_ihash = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the inode cluster hash table for the newly mounted file system. | 
|  | * Its size is derived from the ihash table size. | 
|  | */ | 
|  | void | 
|  | xfs_chash_init(xfs_mount_t *mp) | 
|  | { | 
|  | uint	i; | 
|  |  | 
|  | mp->m_chsize = max_t(uint, 1, mp->m_ihsize / | 
|  | (XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)); | 
|  | mp->m_chsize = min_t(uint, mp->m_chsize, mp->m_ihsize); | 
|  | mp->m_chash = (xfs_chash_t *)kmem_zalloc(mp->m_chsize | 
|  | * sizeof(xfs_chash_t), | 
|  | KM_SLEEP | KM_LARGE); | 
|  | for (i = 0; i < mp->m_chsize; i++) { | 
|  | spinlock_init(&mp->m_chash[i].ch_lock,"xfshash"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free up structures allocated by xfs_chash_init, at unmount time. | 
|  | */ | 
|  | void | 
|  | xfs_chash_free(xfs_mount_t *mp) | 
|  | { | 
|  | int	i; | 
|  |  | 
|  | for (i = 0; i < mp->m_chsize; i++) { | 
|  | spinlock_destroy(&mp->m_chash[i].ch_lock); | 
|  | } | 
|  |  | 
|  | kmem_free(mp->m_chash, mp->m_chsize*sizeof(xfs_chash_t)); | 
|  | mp->m_chash = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to move an inode to the front of its hash list if possible | 
|  | * (and if its not there already).  Called right after obtaining | 
|  | * the list version number and then dropping the read_lock on the | 
|  | * hash list in question (which is done right after looking up the | 
|  | * inode in question...). | 
|  | */ | 
|  | STATIC void | 
|  | xfs_ihash_promote( | 
|  | xfs_ihash_t	*ih, | 
|  | xfs_inode_t	*ip, | 
|  | ulong		version) | 
|  | { | 
|  | xfs_inode_t	*iq; | 
|  |  | 
|  | if ((ip->i_prevp != &ih->ih_next) && write_trylock(&ih->ih_lock)) { | 
|  | if (likely(version == ih->ih_version)) { | 
|  | /* remove from list */ | 
|  | if ((iq = ip->i_next)) { | 
|  | iq->i_prevp = ip->i_prevp; | 
|  | } | 
|  | *ip->i_prevp = iq; | 
|  |  | 
|  | /* insert at list head */ | 
|  | iq = ih->ih_next; | 
|  | iq->i_prevp = &ip->i_next; | 
|  | ip->i_next = iq; | 
|  | ip->i_prevp = &ih->ih_next; | 
|  | ih->ih_next = ip; | 
|  | } | 
|  | write_unlock(&ih->ih_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look up an inode by number in the given file system. | 
|  | * The inode is looked up in the hash table for the file system | 
|  | * represented by the mount point parameter mp.  Each bucket of | 
|  | * the hash table is guarded by an individual semaphore. | 
|  | * | 
|  | * If the inode is found in the hash table, its corresponding vnode | 
|  | * is obtained with a call to vn_get().  This call takes care of | 
|  | * coordination with the reclamation of the inode and vnode.  Note | 
|  | * that the vmap structure is filled in while holding the hash lock. | 
|  | * This gives us the state of the inode/vnode when we found it and | 
|  | * is used for coordination in vn_get(). | 
|  | * | 
|  | * If it is not in core, read it in from the file system's device and | 
|  | * add the inode into the hash table. | 
|  | * | 
|  | * The inode is locked according to the value of the lock_flags parameter. | 
|  | * This flag parameter indicates how and if the inode's IO lock and inode lock | 
|  | * should be taken. | 
|  | * | 
|  | * mp -- the mount point structure for the current file system.  It points | 
|  | *       to the inode hash table. | 
|  | * tp -- a pointer to the current transaction if there is one.  This is | 
|  | *       simply passed through to the xfs_iread() call. | 
|  | * ino -- the number of the inode desired.  This is the unique identifier | 
|  | *        within the file system for the inode being requested. | 
|  | * lock_flags -- flags indicating how to lock the inode.  See the comment | 
|  | *		 for xfs_ilock() for a list of valid values. | 
|  | * bno -- the block number starting the buffer containing the inode, | 
|  | *	  if known (as by bulkstat), else 0. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_iget_core( | 
|  | bhv_vnode_t	*vp, | 
|  | xfs_mount_t	*mp, | 
|  | xfs_trans_t	*tp, | 
|  | xfs_ino_t	ino, | 
|  | uint		flags, | 
|  | uint		lock_flags, | 
|  | xfs_inode_t	**ipp, | 
|  | xfs_daddr_t	bno) | 
|  | { | 
|  | xfs_ihash_t	*ih; | 
|  | xfs_inode_t	*ip; | 
|  | xfs_inode_t	*iq; | 
|  | bhv_vnode_t	*inode_vp; | 
|  | ulong		version; | 
|  | int		error; | 
|  | /* REFERENCED */ | 
|  | xfs_chash_t	*ch; | 
|  | xfs_chashlist_t	*chl, *chlnew; | 
|  | SPLDECL(s); | 
|  |  | 
|  |  | 
|  | ih = XFS_IHASH(mp, ino); | 
|  |  | 
|  | again: | 
|  | read_lock(&ih->ih_lock); | 
|  |  | 
|  | for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { | 
|  | if (ip->i_ino == ino) { | 
|  | /* | 
|  | * If INEW is set this inode is being set up | 
|  | * we need to pause and try again. | 
|  | */ | 
|  | if (xfs_iflags_test(ip, XFS_INEW)) { | 
|  | read_unlock(&ih->ih_lock); | 
|  | delay(1); | 
|  | XFS_STATS_INC(xs_ig_frecycle); | 
|  |  | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | inode_vp = XFS_ITOV_NULL(ip); | 
|  | if (inode_vp == NULL) { | 
|  | /* | 
|  | * If IRECLAIM is set this inode is | 
|  | * on its way out of the system, | 
|  | * we need to pause and try again. | 
|  | */ | 
|  | if (xfs_iflags_test(ip, XFS_IRECLAIM)) { | 
|  | read_unlock(&ih->ih_lock); | 
|  | delay(1); | 
|  | XFS_STATS_INC(xs_ig_frecycle); | 
|  |  | 
|  | goto again; | 
|  | } | 
|  | ASSERT(xfs_iflags_test(ip, XFS_IRECLAIMABLE)); | 
|  |  | 
|  | /* | 
|  | * If lookup is racing with unlink, then we | 
|  | * should return an error immediately so we | 
|  | * don't remove it from the reclaim list and | 
|  | * potentially leak the inode. | 
|  | */ | 
|  | if ((ip->i_d.di_mode == 0) && | 
|  | !(flags & XFS_IGET_CREATE)) { | 
|  | read_unlock(&ih->ih_lock); | 
|  | return ENOENT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There may be transactions sitting in the | 
|  | * incore log buffers or being flushed to disk | 
|  | * at this time.  We can't clear the | 
|  | * XFS_IRECLAIMABLE flag until these | 
|  | * transactions have hit the disk, otherwise we | 
|  | * will void the guarantee the flag provides | 
|  | * xfs_iunpin() | 
|  | */ | 
|  | if (xfs_ipincount(ip)) { | 
|  | read_unlock(&ih->ih_lock); | 
|  | xfs_log_force(mp, 0, | 
|  | XFS_LOG_FORCE|XFS_LOG_SYNC); | 
|  | XFS_STATS_INC(xs_ig_frecycle); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | vn_trace_exit(vp, "xfs_iget.alloc", | 
|  | (inst_t *)__return_address); | 
|  |  | 
|  | XFS_STATS_INC(xs_ig_found); | 
|  |  | 
|  | xfs_iflags_clear(ip, XFS_IRECLAIMABLE); | 
|  | version = ih->ih_version; | 
|  | read_unlock(&ih->ih_lock); | 
|  | xfs_ihash_promote(ih, ip, version); | 
|  |  | 
|  | XFS_MOUNT_ILOCK(mp); | 
|  | list_del_init(&ip->i_reclaim); | 
|  | XFS_MOUNT_IUNLOCK(mp); | 
|  |  | 
|  | goto finish_inode; | 
|  |  | 
|  | } else if (vp != inode_vp) { | 
|  | struct inode *inode = vn_to_inode(inode_vp); | 
|  |  | 
|  | /* The inode is being torn down, pause and | 
|  | * try again. | 
|  | */ | 
|  | if (inode->i_state & (I_FREEING | I_CLEAR)) { | 
|  | read_unlock(&ih->ih_lock); | 
|  | delay(1); | 
|  | XFS_STATS_INC(xs_ig_frecycle); | 
|  |  | 
|  | goto again; | 
|  | } | 
|  | /* Chances are the other vnode (the one in the inode) is being torn | 
|  | * down right now, and we landed on top of it. Question is, what do | 
|  | * we do? Unhook the old inode and hook up the new one? | 
|  | */ | 
|  | cmn_err(CE_PANIC, | 
|  | "xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p", | 
|  | inode_vp, vp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inode cache hit: if ip is not at the front of | 
|  | * its hash chain, move it there now. | 
|  | * Do this with the lock held for update, but | 
|  | * do statistics after releasing the lock. | 
|  | */ | 
|  | version = ih->ih_version; | 
|  | read_unlock(&ih->ih_lock); | 
|  | xfs_ihash_promote(ih, ip, version); | 
|  | XFS_STATS_INC(xs_ig_found); | 
|  |  | 
|  | finish_inode: | 
|  | if (ip->i_d.di_mode == 0) { | 
|  | if (!(flags & XFS_IGET_CREATE)) | 
|  | return ENOENT; | 
|  | xfs_iocore_inode_reinit(ip); | 
|  | } | 
|  |  | 
|  | if (lock_flags != 0) | 
|  | xfs_ilock(ip, lock_flags); | 
|  |  | 
|  | xfs_iflags_clear(ip, XFS_ISTALE); | 
|  | vn_trace_exit(vp, "xfs_iget.found", | 
|  | (inst_t *)__return_address); | 
|  | goto return_ip; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inode cache miss: save the hash chain version stamp and unlock | 
|  | * the chain, so we don't deadlock in vn_alloc. | 
|  | */ | 
|  | XFS_STATS_INC(xs_ig_missed); | 
|  |  | 
|  | version = ih->ih_version; | 
|  |  | 
|  | read_unlock(&ih->ih_lock); | 
|  |  | 
|  | /* | 
|  | * Read the disk inode attributes into a new inode structure and get | 
|  | * a new vnode for it. This should also initialize i_ino and i_mount. | 
|  | */ | 
|  | error = xfs_iread(mp, tp, ino, &ip, bno, | 
|  | (flags & XFS_IGET_BULKSTAT) ? XFS_IMAP_BULKSTAT : 0); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | vn_trace_exit(vp, "xfs_iget.alloc", (inst_t *)__return_address); | 
|  |  | 
|  | xfs_inode_lock_init(ip, vp); | 
|  | xfs_iocore_inode_init(ip); | 
|  |  | 
|  | if (lock_flags) | 
|  | xfs_ilock(ip, lock_flags); | 
|  |  | 
|  | if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) { | 
|  | xfs_idestroy(ip); | 
|  | return ENOENT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put ip on its hash chain, unless someone else hashed a duplicate | 
|  | * after we released the hash lock. | 
|  | */ | 
|  | write_lock(&ih->ih_lock); | 
|  |  | 
|  | if (ih->ih_version != version) { | 
|  | for (iq = ih->ih_next; iq != NULL; iq = iq->i_next) { | 
|  | if (iq->i_ino == ino) { | 
|  | write_unlock(&ih->ih_lock); | 
|  | xfs_idestroy(ip); | 
|  |  | 
|  | XFS_STATS_INC(xs_ig_dup); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These values _must_ be set before releasing ihlock! | 
|  | */ | 
|  | ip->i_hash = ih; | 
|  | if ((iq = ih->ih_next)) { | 
|  | iq->i_prevp = &ip->i_next; | 
|  | } | 
|  | ip->i_next = iq; | 
|  | ip->i_prevp = &ih->ih_next; | 
|  | ih->ih_next = ip; | 
|  | ip->i_udquot = ip->i_gdquot = NULL; | 
|  | ih->ih_version++; | 
|  | xfs_iflags_set(ip, XFS_INEW); | 
|  | write_unlock(&ih->ih_lock); | 
|  |  | 
|  | /* | 
|  | * put ip on its cluster's hash chain | 
|  | */ | 
|  | ASSERT(ip->i_chash == NULL && ip->i_cprev == NULL && | 
|  | ip->i_cnext == NULL); | 
|  |  | 
|  | chlnew = NULL; | 
|  | ch = XFS_CHASH(mp, ip->i_blkno); | 
|  | chlredo: | 
|  | s = mutex_spinlock(&ch->ch_lock); | 
|  | for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) { | 
|  | if (chl->chl_blkno == ip->i_blkno) { | 
|  |  | 
|  | /* insert this inode into the doubly-linked list | 
|  | * where chl points */ | 
|  | if ((iq = chl->chl_ip)) { | 
|  | ip->i_cprev = iq->i_cprev; | 
|  | iq->i_cprev->i_cnext = ip; | 
|  | iq->i_cprev = ip; | 
|  | ip->i_cnext = iq; | 
|  | } else { | 
|  | ip->i_cnext = ip; | 
|  | ip->i_cprev = ip; | 
|  | } | 
|  | chl->chl_ip = ip; | 
|  | ip->i_chash = chl; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* no hash list found for this block; add a new hash list */ | 
|  | if (chl == NULL)  { | 
|  | if (chlnew == NULL) { | 
|  | mutex_spinunlock(&ch->ch_lock, s); | 
|  | ASSERT(xfs_chashlist_zone != NULL); | 
|  | chlnew = (xfs_chashlist_t *) | 
|  | kmem_zone_alloc(xfs_chashlist_zone, | 
|  | KM_SLEEP); | 
|  | ASSERT(chlnew != NULL); | 
|  | goto chlredo; | 
|  | } else { | 
|  | ip->i_cnext = ip; | 
|  | ip->i_cprev = ip; | 
|  | ip->i_chash = chlnew; | 
|  | chlnew->chl_ip = ip; | 
|  | chlnew->chl_blkno = ip->i_blkno; | 
|  | if (ch->ch_list) | 
|  | ch->ch_list->chl_prev = chlnew; | 
|  | chlnew->chl_next = ch->ch_list; | 
|  | chlnew->chl_prev = NULL; | 
|  | ch->ch_list = chlnew; | 
|  | chlnew = NULL; | 
|  | } | 
|  | } else { | 
|  | if (chlnew != NULL) { | 
|  | kmem_zone_free(xfs_chashlist_zone, chlnew); | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_spinunlock(&ch->ch_lock, s); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Link ip to its mount and thread it on the mount's inode list. | 
|  | */ | 
|  | XFS_MOUNT_ILOCK(mp); | 
|  | if ((iq = mp->m_inodes)) { | 
|  | ASSERT(iq->i_mprev->i_mnext == iq); | 
|  | ip->i_mprev = iq->i_mprev; | 
|  | iq->i_mprev->i_mnext = ip; | 
|  | iq->i_mprev = ip; | 
|  | ip->i_mnext = iq; | 
|  | } else { | 
|  | ip->i_mnext = ip; | 
|  | ip->i_mprev = ip; | 
|  | } | 
|  | mp->m_inodes = ip; | 
|  |  | 
|  | XFS_MOUNT_IUNLOCK(mp); | 
|  |  | 
|  | return_ip: | 
|  | ASSERT(ip->i_df.if_ext_max == | 
|  | XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t)); | 
|  |  | 
|  | ASSERT(((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) != 0) == | 
|  | ((ip->i_iocore.io_flags & XFS_IOCORE_RT) != 0)); | 
|  |  | 
|  | *ipp = ip; | 
|  |  | 
|  | /* | 
|  | * If we have a real type for an on-disk inode, we can set ops(&unlock) | 
|  | * now.	 If it's a new inode being created, xfs_ialloc will handle it. | 
|  | */ | 
|  | bhv_vfs_init_vnode(XFS_MTOVFS(mp), vp, XFS_ITOBHV(ip), 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The 'normal' internal xfs_iget, if needed it will | 
|  | * 'allocate', or 'get', the vnode. | 
|  | */ | 
|  | int | 
|  | xfs_iget( | 
|  | xfs_mount_t	*mp, | 
|  | xfs_trans_t	*tp, | 
|  | xfs_ino_t	ino, | 
|  | uint		flags, | 
|  | uint		lock_flags, | 
|  | xfs_inode_t	**ipp, | 
|  | xfs_daddr_t	bno) | 
|  | { | 
|  | struct inode	*inode; | 
|  | bhv_vnode_t	*vp = NULL; | 
|  | int		error; | 
|  |  | 
|  | XFS_STATS_INC(xs_ig_attempts); | 
|  |  | 
|  | retry: | 
|  | if ((inode = iget_locked(XFS_MTOVFS(mp)->vfs_super, ino))) { | 
|  | xfs_inode_t	*ip; | 
|  |  | 
|  | vp = vn_from_inode(inode); | 
|  | if (inode->i_state & I_NEW) { | 
|  | vn_initialize(inode); | 
|  | error = xfs_iget_core(vp, mp, tp, ino, flags, | 
|  | lock_flags, ipp, bno); | 
|  | if (error) { | 
|  | vn_mark_bad(vp); | 
|  | if (inode->i_state & I_NEW) | 
|  | unlock_new_inode(inode); | 
|  | iput(inode); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * If the inode is not fully constructed due to | 
|  | * filehandle mismatches wait for the inode to go | 
|  | * away and try again. | 
|  | * | 
|  | * iget_locked will call __wait_on_freeing_inode | 
|  | * to wait for the inode to go away. | 
|  | */ | 
|  | if (is_bad_inode(inode) || | 
|  | ((ip = xfs_vtoi(vp)) == NULL)) { | 
|  | iput(inode); | 
|  | delay(1); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (lock_flags != 0) | 
|  | xfs_ilock(ip, lock_flags); | 
|  | XFS_STATS_INC(xs_ig_found); | 
|  | *ipp = ip; | 
|  | error = 0; | 
|  | } | 
|  | } else | 
|  | error = ENOMEM;	/* If we got no inode we are out of memory */ | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do the setup for the various locks within the incore inode. | 
|  | */ | 
|  | void | 
|  | xfs_inode_lock_init( | 
|  | xfs_inode_t	*ip, | 
|  | bhv_vnode_t	*vp) | 
|  | { | 
|  | mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, | 
|  | "xfsino", (long)vp->v_number); | 
|  | mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", vp->v_number); | 
|  | init_waitqueue_head(&ip->i_ipin_wait); | 
|  | atomic_set(&ip->i_pincount, 0); | 
|  | initnsema(&ip->i_flock, 1, "xfsfino"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look for the inode corresponding to the given ino in the hash table. | 
|  | * If it is there and its i_transp pointer matches tp, return it. | 
|  | * Otherwise, return NULL. | 
|  | */ | 
|  | xfs_inode_t * | 
|  | xfs_inode_incore(xfs_mount_t	*mp, | 
|  | xfs_ino_t	ino, | 
|  | xfs_trans_t	*tp) | 
|  | { | 
|  | xfs_ihash_t	*ih; | 
|  | xfs_inode_t	*ip; | 
|  | ulong		version; | 
|  |  | 
|  | ih = XFS_IHASH(mp, ino); | 
|  | read_lock(&ih->ih_lock); | 
|  | for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { | 
|  | if (ip->i_ino == ino) { | 
|  | /* | 
|  | * If we find it and tp matches, return it. | 
|  | * Also move it to the front of the hash list | 
|  | * if we find it and it is not already there. | 
|  | * Otherwise break from the loop and return | 
|  | * NULL. | 
|  | */ | 
|  | if (ip->i_transp == tp) { | 
|  | version = ih->ih_version; | 
|  | read_unlock(&ih->ih_lock); | 
|  | xfs_ihash_promote(ih, ip, version); | 
|  | return (ip); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | read_unlock(&ih->ih_lock); | 
|  | return (NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decrement reference count of an inode structure and unlock it. | 
|  | * | 
|  | * ip -- the inode being released | 
|  | * lock_flags -- this parameter indicates the inode's locks to be | 
|  | *       to be released.  See the comment on xfs_iunlock() for a list | 
|  | *	 of valid values. | 
|  | */ | 
|  | void | 
|  | xfs_iput(xfs_inode_t	*ip, | 
|  | uint		lock_flags) | 
|  | { | 
|  | bhv_vnode_t	*vp = XFS_ITOV(ip); | 
|  |  | 
|  | vn_trace_entry(vp, "xfs_iput", (inst_t *)__return_address); | 
|  | xfs_iunlock(ip, lock_flags); | 
|  | VN_RELE(vp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Special iput for brand-new inodes that are still locked | 
|  | */ | 
|  | void | 
|  | xfs_iput_new(xfs_inode_t	*ip, | 
|  | uint		lock_flags) | 
|  | { | 
|  | bhv_vnode_t	*vp = XFS_ITOV(ip); | 
|  | struct inode	*inode = vn_to_inode(vp); | 
|  |  | 
|  | vn_trace_entry(vp, "xfs_iput_new", (inst_t *)__return_address); | 
|  |  | 
|  | if ((ip->i_d.di_mode == 0)) { | 
|  | ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE)); | 
|  | vn_mark_bad(vp); | 
|  | } | 
|  | if (inode->i_state & I_NEW) | 
|  | unlock_new_inode(inode); | 
|  | if (lock_flags) | 
|  | xfs_iunlock(ip, lock_flags); | 
|  | VN_RELE(vp); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This routine embodies the part of the reclaim code that pulls | 
|  | * the inode from the inode hash table and the mount structure's | 
|  | * inode list. | 
|  | * This should only be called from xfs_reclaim(). | 
|  | */ | 
|  | void | 
|  | xfs_ireclaim(xfs_inode_t *ip) | 
|  | { | 
|  | bhv_vnode_t	*vp; | 
|  |  | 
|  | /* | 
|  | * Remove from old hash list and mount list. | 
|  | */ | 
|  | XFS_STATS_INC(xs_ig_reclaims); | 
|  |  | 
|  | xfs_iextract(ip); | 
|  |  | 
|  | /* | 
|  | * Here we do a spurious inode lock in order to coordinate with | 
|  | * xfs_sync().  This is because xfs_sync() references the inodes | 
|  | * in the mount list without taking references on the corresponding | 
|  | * vnodes.  We make that OK here by ensuring that we wait until | 
|  | * the inode is unlocked in xfs_sync() before we go ahead and | 
|  | * free it.  We get both the regular lock and the io lock because | 
|  | * the xfs_sync() code may need to drop the regular one but will | 
|  | * still hold the io lock. | 
|  | */ | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | 
|  |  | 
|  | /* | 
|  | * Release dquots (and their references) if any. An inode may escape | 
|  | * xfs_inactive and get here via vn_alloc->vn_reclaim path. | 
|  | */ | 
|  | XFS_QM_DQDETACH(ip->i_mount, ip); | 
|  |  | 
|  | /* | 
|  | * Pull our behavior descriptor from the vnode chain. | 
|  | */ | 
|  | vp = XFS_ITOV_NULL(ip); | 
|  | if (vp) { | 
|  | vn_bhv_remove(VN_BHV_HEAD(vp), XFS_ITOBHV(ip)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free all memory associated with the inode. | 
|  | */ | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | 
|  | xfs_idestroy(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine removes an about-to-be-destroyed inode from | 
|  | * all of the lists in which it is located with the exception | 
|  | * of the behavior chain. | 
|  | */ | 
|  | void | 
|  | xfs_iextract( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | xfs_ihash_t	*ih; | 
|  | xfs_inode_t	*iq; | 
|  | xfs_mount_t	*mp; | 
|  | xfs_chash_t	*ch; | 
|  | xfs_chashlist_t *chl, *chm; | 
|  | SPLDECL(s); | 
|  |  | 
|  | ih = ip->i_hash; | 
|  | write_lock(&ih->ih_lock); | 
|  | if ((iq = ip->i_next)) { | 
|  | iq->i_prevp = ip->i_prevp; | 
|  | } | 
|  | *ip->i_prevp = iq; | 
|  | ih->ih_version++; | 
|  | write_unlock(&ih->ih_lock); | 
|  |  | 
|  | /* | 
|  | * Remove from cluster hash list | 
|  | *   1) delete the chashlist if this is the last inode on the chashlist | 
|  | *   2) unchain from list of inodes | 
|  | *   3) point chashlist->chl_ip to 'chl_next' if to this inode. | 
|  | */ | 
|  | mp = ip->i_mount; | 
|  | ch = XFS_CHASH(mp, ip->i_blkno); | 
|  | s = mutex_spinlock(&ch->ch_lock); | 
|  |  | 
|  | if (ip->i_cnext == ip) { | 
|  | /* Last inode on chashlist */ | 
|  | ASSERT(ip->i_cnext == ip && ip->i_cprev == ip); | 
|  | ASSERT(ip->i_chash != NULL); | 
|  | chm=NULL; | 
|  | chl = ip->i_chash; | 
|  | if (chl->chl_prev) | 
|  | chl->chl_prev->chl_next = chl->chl_next; | 
|  | else | 
|  | ch->ch_list = chl->chl_next; | 
|  | if (chl->chl_next) | 
|  | chl->chl_next->chl_prev = chl->chl_prev; | 
|  | kmem_zone_free(xfs_chashlist_zone, chl); | 
|  | } else { | 
|  | /* delete one inode from a non-empty list */ | 
|  | iq = ip->i_cnext; | 
|  | iq->i_cprev = ip->i_cprev; | 
|  | ip->i_cprev->i_cnext = iq; | 
|  | if (ip->i_chash->chl_ip == ip) { | 
|  | ip->i_chash->chl_ip = iq; | 
|  | } | 
|  | ip->i_chash = __return_address; | 
|  | ip->i_cprev = __return_address; | 
|  | ip->i_cnext = __return_address; | 
|  | } | 
|  | mutex_spinunlock(&ch->ch_lock, s); | 
|  |  | 
|  | /* | 
|  | * Remove from mount's inode list. | 
|  | */ | 
|  | XFS_MOUNT_ILOCK(mp); | 
|  | ASSERT((ip->i_mnext != NULL) && (ip->i_mprev != NULL)); | 
|  | iq = ip->i_mnext; | 
|  | iq->i_mprev = ip->i_mprev; | 
|  | ip->i_mprev->i_mnext = iq; | 
|  |  | 
|  | /* | 
|  | * Fix up the head pointer if it points to the inode being deleted. | 
|  | */ | 
|  | if (mp->m_inodes == ip) { | 
|  | if (ip == iq) { | 
|  | mp->m_inodes = NULL; | 
|  | } else { | 
|  | mp->m_inodes = iq; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Deal with the deleted inodes list */ | 
|  | list_del_init(&ip->i_reclaim); | 
|  |  | 
|  | mp->m_ireclaims++; | 
|  | XFS_MOUNT_IUNLOCK(mp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a wrapper routine around the xfs_ilock() routine | 
|  | * used to centralize some grungy code.  It is used in places | 
|  | * that wish to lock the inode solely for reading the extents. | 
|  | * The reason these places can't just call xfs_ilock(SHARED) | 
|  | * is that the inode lock also guards to bringing in of the | 
|  | * extents from disk for a file in b-tree format.  If the inode | 
|  | * is in b-tree format, then we need to lock the inode exclusively | 
|  | * until the extents are read in.  Locking it exclusively all | 
|  | * the time would limit our parallelism unnecessarily, though. | 
|  | * What we do instead is check to see if the extents have been | 
|  | * read in yet, and only lock the inode exclusively if they | 
|  | * have not. | 
|  | * | 
|  | * The function returns a value which should be given to the | 
|  | * corresponding xfs_iunlock_map_shared().  This value is | 
|  | * the mode in which the lock was actually taken. | 
|  | */ | 
|  | uint | 
|  | xfs_ilock_map_shared( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | uint	lock_mode; | 
|  |  | 
|  | if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) && | 
|  | ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) { | 
|  | lock_mode = XFS_ILOCK_EXCL; | 
|  | } else { | 
|  | lock_mode = XFS_ILOCK_SHARED; | 
|  | } | 
|  |  | 
|  | xfs_ilock(ip, lock_mode); | 
|  |  | 
|  | return lock_mode; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is simply the unlock routine to go with xfs_ilock_map_shared(). | 
|  | * All it does is call xfs_iunlock() with the given lock_mode. | 
|  | */ | 
|  | void | 
|  | xfs_iunlock_map_shared( | 
|  | xfs_inode_t	*ip, | 
|  | unsigned int	lock_mode) | 
|  | { | 
|  | xfs_iunlock(ip, lock_mode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The xfs inode contains 2 locks: a multi-reader lock called the | 
|  | * i_iolock and a multi-reader lock called the i_lock.  This routine | 
|  | * allows either or both of the locks to be obtained. | 
|  | * | 
|  | * The 2 locks should always be ordered so that the IO lock is | 
|  | * obtained first in order to prevent deadlock. | 
|  | * | 
|  | * ip -- the inode being locked | 
|  | * lock_flags -- this parameter indicates the inode's locks | 
|  | *       to be locked.  It can be: | 
|  | *		XFS_IOLOCK_SHARED, | 
|  | *		XFS_IOLOCK_EXCL, | 
|  | *		XFS_ILOCK_SHARED, | 
|  | *		XFS_ILOCK_EXCL, | 
|  | *		XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED, | 
|  | *		XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL, | 
|  | *		XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED, | 
|  | *		XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL | 
|  | */ | 
|  | void | 
|  | xfs_ilock(xfs_inode_t	*ip, | 
|  | uint		lock_flags) | 
|  | { | 
|  | /* | 
|  | * You can't set both SHARED and EXCL for the same lock, | 
|  | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, | 
|  | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. | 
|  | */ | 
|  | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | 
|  | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | 
|  | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != | 
|  | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | 
|  | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); | 
|  |  | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) { | 
|  | mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); | 
|  | } else if (lock_flags & XFS_IOLOCK_SHARED) { | 
|  | mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); | 
|  | } | 
|  | if (lock_flags & XFS_ILOCK_EXCL) { | 
|  | mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); | 
|  | } else if (lock_flags & XFS_ILOCK_SHARED) { | 
|  | mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); | 
|  | } | 
|  | xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is just like xfs_ilock(), except that the caller | 
|  | * is guaranteed not to sleep.  It returns 1 if it gets | 
|  | * the requested locks and 0 otherwise.  If the IO lock is | 
|  | * obtained but the inode lock cannot be, then the IO lock | 
|  | * is dropped before returning. | 
|  | * | 
|  | * ip -- the inode being locked | 
|  | * lock_flags -- this parameter indicates the inode's locks to be | 
|  | *       to be locked.  See the comment for xfs_ilock() for a list | 
|  | *	 of valid values. | 
|  | * | 
|  | */ | 
|  | int | 
|  | xfs_ilock_nowait(xfs_inode_t	*ip, | 
|  | uint		lock_flags) | 
|  | { | 
|  | int	iolocked; | 
|  | int	ilocked; | 
|  |  | 
|  | /* | 
|  | * You can't set both SHARED and EXCL for the same lock, | 
|  | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, | 
|  | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. | 
|  | */ | 
|  | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | 
|  | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | 
|  | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != | 
|  | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | 
|  | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); | 
|  |  | 
|  | iolocked = 0; | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) { | 
|  | iolocked = mrtryupdate(&ip->i_iolock); | 
|  | if (!iolocked) { | 
|  | return 0; | 
|  | } | 
|  | } else if (lock_flags & XFS_IOLOCK_SHARED) { | 
|  | iolocked = mrtryaccess(&ip->i_iolock); | 
|  | if (!iolocked) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | if (lock_flags & XFS_ILOCK_EXCL) { | 
|  | ilocked = mrtryupdate(&ip->i_lock); | 
|  | if (!ilocked) { | 
|  | if (iolocked) { | 
|  | mrunlock(&ip->i_iolock); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | } else if (lock_flags & XFS_ILOCK_SHARED) { | 
|  | ilocked = mrtryaccess(&ip->i_lock); | 
|  | if (!ilocked) { | 
|  | if (iolocked) { | 
|  | mrunlock(&ip->i_iolock); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_iunlock() is used to drop the inode locks acquired with | 
|  | * xfs_ilock() and xfs_ilock_nowait().  The caller must pass | 
|  | * in the flags given to xfs_ilock() or xfs_ilock_nowait() so | 
|  | * that we know which locks to drop. | 
|  | * | 
|  | * ip -- the inode being unlocked | 
|  | * lock_flags -- this parameter indicates the inode's locks to be | 
|  | *       to be unlocked.  See the comment for xfs_ilock() for a list | 
|  | *	 of valid values for this parameter. | 
|  | * | 
|  | */ | 
|  | void | 
|  | xfs_iunlock(xfs_inode_t	*ip, | 
|  | uint	lock_flags) | 
|  | { | 
|  | /* | 
|  | * You can't set both SHARED and EXCL for the same lock, | 
|  | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, | 
|  | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. | 
|  | */ | 
|  | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | 
|  | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | 
|  | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != | 
|  | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | 
|  | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY | | 
|  | XFS_LOCK_DEP_MASK)) == 0); | 
|  | ASSERT(lock_flags != 0); | 
|  |  | 
|  | if (lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) { | 
|  | ASSERT(!(lock_flags & XFS_IOLOCK_SHARED) || | 
|  | (ismrlocked(&ip->i_iolock, MR_ACCESS))); | 
|  | ASSERT(!(lock_flags & XFS_IOLOCK_EXCL) || | 
|  | (ismrlocked(&ip->i_iolock, MR_UPDATE))); | 
|  | mrunlock(&ip->i_iolock); | 
|  | } | 
|  |  | 
|  | if (lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) { | 
|  | ASSERT(!(lock_flags & XFS_ILOCK_SHARED) || | 
|  | (ismrlocked(&ip->i_lock, MR_ACCESS))); | 
|  | ASSERT(!(lock_flags & XFS_ILOCK_EXCL) || | 
|  | (ismrlocked(&ip->i_lock, MR_UPDATE))); | 
|  | mrunlock(&ip->i_lock); | 
|  |  | 
|  | /* | 
|  | * Let the AIL know that this item has been unlocked in case | 
|  | * it is in the AIL and anyone is waiting on it.  Don't do | 
|  | * this if the caller has asked us not to. | 
|  | */ | 
|  | if (!(lock_flags & XFS_IUNLOCK_NONOTIFY) && | 
|  | ip->i_itemp != NULL) { | 
|  | xfs_trans_unlocked_item(ip->i_mount, | 
|  | (xfs_log_item_t*)(ip->i_itemp)); | 
|  | } | 
|  | } | 
|  | xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * give up write locks.  the i/o lock cannot be held nested | 
|  | * if it is being demoted. | 
|  | */ | 
|  | void | 
|  | xfs_ilock_demote(xfs_inode_t	*ip, | 
|  | uint		lock_flags) | 
|  | { | 
|  | ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)); | 
|  | ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); | 
|  |  | 
|  | if (lock_flags & XFS_ILOCK_EXCL) { | 
|  | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); | 
|  | mrdemote(&ip->i_lock); | 
|  | } | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) { | 
|  | ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE)); | 
|  | mrdemote(&ip->i_iolock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following three routines simply manage the i_flock | 
|  | * semaphore embedded in the inode.  This semaphore synchronizes | 
|  | * processes attempting to flush the in-core inode back to disk. | 
|  | */ | 
|  | void | 
|  | xfs_iflock(xfs_inode_t *ip) | 
|  | { | 
|  | psema(&(ip->i_flock), PINOD|PLTWAIT); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_iflock_nowait(xfs_inode_t *ip) | 
|  | { | 
|  | return (cpsema(&(ip->i_flock))); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_ifunlock(xfs_inode_t *ip) | 
|  | { | 
|  | ASSERT(issemalocked(&(ip->i_flock))); | 
|  | vsema(&(ip->i_flock)); | 
|  | } |