|  | /* | 
|  | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_types.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_inum.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_dir2.h" | 
|  | #include "xfs_dmapi.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_alloc_btree.h" | 
|  | #include "xfs_ialloc_btree.h" | 
|  | #include "xfs_dir2_sf.h" | 
|  | #include "xfs_attr_sf.h" | 
|  | #include "xfs_dinode.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_ialloc.h" | 
|  | #include "xfs_alloc.h" | 
|  | #include "xfs_rtalloc.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_rw.h" | 
|  | #include "xfs_quota.h" | 
|  | #include "xfs_fsops.h" | 
|  |  | 
|  | STATIC void	xfs_mount_log_sbunit(xfs_mount_t *, __int64_t); | 
|  | STATIC int	xfs_uuid_mount(xfs_mount_t *); | 
|  | STATIC void	xfs_uuid_unmount(xfs_mount_t *mp); | 
|  | STATIC void	xfs_unmountfs_wait(xfs_mount_t *); | 
|  |  | 
|  |  | 
|  | #ifdef HAVE_PERCPU_SB | 
|  | STATIC void	xfs_icsb_destroy_counters(xfs_mount_t *); | 
|  | STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, | 
|  | int, int); | 
|  | STATIC void	xfs_icsb_sync_counters(xfs_mount_t *); | 
|  | STATIC int	xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t, | 
|  | int64_t, int); | 
|  | STATIC int	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define xfs_icsb_destroy_counters(mp)			do { } while (0) | 
|  | #define xfs_icsb_balance_counter(mp, a, b, c)		do { } while (0) | 
|  | #define xfs_icsb_sync_counters(mp)			do { } while (0) | 
|  | #define xfs_icsb_modify_counters(mp, a, b, c)		do { } while (0) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static const struct { | 
|  | short offset; | 
|  | short type;	/* 0 = integer | 
|  | * 1 = binary / string (no translation) | 
|  | */ | 
|  | } xfs_sb_info[] = { | 
|  | { offsetof(xfs_sb_t, sb_magicnum),   0 }, | 
|  | { offsetof(xfs_sb_t, sb_blocksize),  0 }, | 
|  | { offsetof(xfs_sb_t, sb_dblocks),    0 }, | 
|  | { offsetof(xfs_sb_t, sb_rblocks),    0 }, | 
|  | { offsetof(xfs_sb_t, sb_rextents),   0 }, | 
|  | { offsetof(xfs_sb_t, sb_uuid),       1 }, | 
|  | { offsetof(xfs_sb_t, sb_logstart),   0 }, | 
|  | { offsetof(xfs_sb_t, sb_rootino),    0 }, | 
|  | { offsetof(xfs_sb_t, sb_rbmino),     0 }, | 
|  | { offsetof(xfs_sb_t, sb_rsumino),    0 }, | 
|  | { offsetof(xfs_sb_t, sb_rextsize),   0 }, | 
|  | { offsetof(xfs_sb_t, sb_agblocks),   0 }, | 
|  | { offsetof(xfs_sb_t, sb_agcount),    0 }, | 
|  | { offsetof(xfs_sb_t, sb_rbmblocks),  0 }, | 
|  | { offsetof(xfs_sb_t, sb_logblocks),  0 }, | 
|  | { offsetof(xfs_sb_t, sb_versionnum), 0 }, | 
|  | { offsetof(xfs_sb_t, sb_sectsize),   0 }, | 
|  | { offsetof(xfs_sb_t, sb_inodesize),  0 }, | 
|  | { offsetof(xfs_sb_t, sb_inopblock),  0 }, | 
|  | { offsetof(xfs_sb_t, sb_fname[0]),   1 }, | 
|  | { offsetof(xfs_sb_t, sb_blocklog),   0 }, | 
|  | { offsetof(xfs_sb_t, sb_sectlog),    0 }, | 
|  | { offsetof(xfs_sb_t, sb_inodelog),   0 }, | 
|  | { offsetof(xfs_sb_t, sb_inopblog),   0 }, | 
|  | { offsetof(xfs_sb_t, sb_agblklog),   0 }, | 
|  | { offsetof(xfs_sb_t, sb_rextslog),   0 }, | 
|  | { offsetof(xfs_sb_t, sb_inprogress), 0 }, | 
|  | { offsetof(xfs_sb_t, sb_imax_pct),   0 }, | 
|  | { offsetof(xfs_sb_t, sb_icount),     0 }, | 
|  | { offsetof(xfs_sb_t, sb_ifree),      0 }, | 
|  | { offsetof(xfs_sb_t, sb_fdblocks),   0 }, | 
|  | { offsetof(xfs_sb_t, sb_frextents),  0 }, | 
|  | { offsetof(xfs_sb_t, sb_uquotino),   0 }, | 
|  | { offsetof(xfs_sb_t, sb_gquotino),   0 }, | 
|  | { offsetof(xfs_sb_t, sb_qflags),     0 }, | 
|  | { offsetof(xfs_sb_t, sb_flags),      0 }, | 
|  | { offsetof(xfs_sb_t, sb_shared_vn),  0 }, | 
|  | { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, | 
|  | { offsetof(xfs_sb_t, sb_unit),	 0 }, | 
|  | { offsetof(xfs_sb_t, sb_width),	 0 }, | 
|  | { offsetof(xfs_sb_t, sb_dirblklog),	 0 }, | 
|  | { offsetof(xfs_sb_t, sb_logsectlog), 0 }, | 
|  | { offsetof(xfs_sb_t, sb_logsectsize),0 }, | 
|  | { offsetof(xfs_sb_t, sb_logsunit),	 0 }, | 
|  | { offsetof(xfs_sb_t, sb_features2),	 0 }, | 
|  | { sizeof(xfs_sb_t),			 0 } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Return a pointer to an initialized xfs_mount structure. | 
|  | */ | 
|  | xfs_mount_t * | 
|  | xfs_mount_init(void) | 
|  | { | 
|  | xfs_mount_t *mp; | 
|  |  | 
|  | mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP); | 
|  |  | 
|  | if (xfs_icsb_init_counters(mp)) { | 
|  | mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB; | 
|  | } | 
|  |  | 
|  | AIL_LOCKINIT(&mp->m_ail_lock, "xfs_ail"); | 
|  | spinlock_init(&mp->m_sb_lock, "xfs_sb"); | 
|  | mutex_init(&mp->m_ilock); | 
|  | initnsema(&mp->m_growlock, 1, "xfs_grow"); | 
|  | /* | 
|  | * Initialize the AIL. | 
|  | */ | 
|  | xfs_trans_ail_init(mp); | 
|  |  | 
|  | atomic_set(&mp->m_active_trans, 0); | 
|  |  | 
|  | return mp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free up the resources associated with a mount structure.  Assume that | 
|  | * the structure was initially zeroed, so we can tell which fields got | 
|  | * initialized. | 
|  | */ | 
|  | void | 
|  | xfs_mount_free( | 
|  | xfs_mount_t	*mp, | 
|  | int		remove_bhv) | 
|  | { | 
|  | if (mp->m_ihash) | 
|  | xfs_ihash_free(mp); | 
|  | if (mp->m_chash) | 
|  | xfs_chash_free(mp); | 
|  |  | 
|  | if (mp->m_perag) { | 
|  | int	agno; | 
|  |  | 
|  | for (agno = 0; agno < mp->m_maxagi; agno++) | 
|  | if (mp->m_perag[agno].pagb_list) | 
|  | kmem_free(mp->m_perag[agno].pagb_list, | 
|  | sizeof(xfs_perag_busy_t) * | 
|  | XFS_PAGB_NUM_SLOTS); | 
|  | kmem_free(mp->m_perag, | 
|  | sizeof(xfs_perag_t) * mp->m_sb.sb_agcount); | 
|  | } | 
|  |  | 
|  | AIL_LOCK_DESTROY(&mp->m_ail_lock); | 
|  | spinlock_destroy(&mp->m_sb_lock); | 
|  | mutex_destroy(&mp->m_ilock); | 
|  | freesema(&mp->m_growlock); | 
|  | if (mp->m_quotainfo) | 
|  | XFS_QM_DONE(mp); | 
|  |  | 
|  | if (mp->m_fsname != NULL) | 
|  | kmem_free(mp->m_fsname, mp->m_fsname_len); | 
|  | if (mp->m_rtname != NULL) | 
|  | kmem_free(mp->m_rtname, strlen(mp->m_rtname) + 1); | 
|  | if (mp->m_logname != NULL) | 
|  | kmem_free(mp->m_logname, strlen(mp->m_logname) + 1); | 
|  |  | 
|  | if (remove_bhv) { | 
|  | struct bhv_vfs	*vfsp = XFS_MTOVFS(mp); | 
|  |  | 
|  | bhv_remove_all_vfsops(vfsp, 0); | 
|  | VFS_REMOVEBHV(vfsp, &mp->m_bhv); | 
|  | } | 
|  |  | 
|  | xfs_icsb_destroy_counters(mp); | 
|  | kmem_free(mp, sizeof(xfs_mount_t)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check size of device based on the (data/realtime) block count. | 
|  | * Note: this check is used by the growfs code as well as mount. | 
|  | */ | 
|  | int | 
|  | xfs_sb_validate_fsb_count( | 
|  | xfs_sb_t	*sbp, | 
|  | __uint64_t	nblocks) | 
|  | { | 
|  | ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); | 
|  | ASSERT(sbp->sb_blocklog >= BBSHIFT); | 
|  |  | 
|  | #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */ | 
|  | if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) | 
|  | return E2BIG; | 
|  | #else                  /* Limited by UINT_MAX of sectors */ | 
|  | if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) | 
|  | return E2BIG; | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the validity of the SB found. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_mount_validate_sb( | 
|  | xfs_mount_t	*mp, | 
|  | xfs_sb_t	*sbp, | 
|  | int		flags) | 
|  | { | 
|  | /* | 
|  | * If the log device and data device have the | 
|  | * same device number, the log is internal. | 
|  | * Consequently, the sb_logstart should be non-zero.  If | 
|  | * we have a zero sb_logstart in this case, we may be trying to mount | 
|  | * a volume filesystem in a non-volume manner. | 
|  | */ | 
|  | if (sbp->sb_magicnum != XFS_SB_MAGIC) { | 
|  | xfs_fs_mount_cmn_err(flags, "bad magic number"); | 
|  | return XFS_ERROR(EWRONGFS); | 
|  | } | 
|  |  | 
|  | if (!XFS_SB_GOOD_VERSION(sbp)) { | 
|  | xfs_fs_mount_cmn_err(flags, "bad version"); | 
|  | return XFS_ERROR(EWRONGFS); | 
|  | } | 
|  |  | 
|  | if (unlikely( | 
|  | sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { | 
|  | xfs_fs_mount_cmn_err(flags, | 
|  | "filesystem is marked as having an external log; " | 
|  | "specify logdev on the\nmount command line."); | 
|  | return XFS_ERROR(EINVAL); | 
|  | } | 
|  |  | 
|  | if (unlikely( | 
|  | sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { | 
|  | xfs_fs_mount_cmn_err(flags, | 
|  | "filesystem is marked as having an internal log; " | 
|  | "do not specify logdev on\nthe mount command line."); | 
|  | return XFS_ERROR(EINVAL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * More sanity checking. These were stolen directly from | 
|  | * xfs_repair. | 
|  | */ | 
|  | if (unlikely( | 
|  | sbp->sb_agcount <= 0					|| | 
|  | sbp->sb_sectsize < XFS_MIN_SECTORSIZE			|| | 
|  | sbp->sb_sectsize > XFS_MAX_SECTORSIZE			|| | 
|  | sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			|| | 
|  | sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			|| | 
|  | sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			|| | 
|  | sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			|| | 
|  | sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			|| | 
|  | sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			|| | 
|  | sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			|| | 
|  | sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			|| | 
|  | sbp->sb_inodelog < XFS_DINODE_MIN_LOG			|| | 
|  | sbp->sb_inodelog > XFS_DINODE_MAX_LOG			|| | 
|  | (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	|| | 
|  | (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	|| | 
|  | (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	|| | 
|  | (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) { | 
|  | xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed"); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sanity check AG count, size fields against data size field | 
|  | */ | 
|  | if (unlikely( | 
|  | sbp->sb_dblocks == 0 || | 
|  | sbp->sb_dblocks > | 
|  | (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks || | 
|  | sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) * | 
|  | sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) { | 
|  | xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed"); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  |  | 
|  | if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || | 
|  | xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { | 
|  | xfs_fs_mount_cmn_err(flags, | 
|  | "file system too large to be mounted on this system."); | 
|  | return XFS_ERROR(E2BIG); | 
|  | } | 
|  |  | 
|  | if (unlikely(sbp->sb_inprogress)) { | 
|  | xfs_fs_mount_cmn_err(flags, "file system busy"); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Version 1 directory format has never worked on Linux. | 
|  | */ | 
|  | if (unlikely(!XFS_SB_VERSION_HASDIRV2(sbp))) { | 
|  | xfs_fs_mount_cmn_err(flags, | 
|  | "file system using version 1 directory format"); | 
|  | return XFS_ERROR(ENOSYS); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Until this is fixed only page-sized or smaller data blocks work. | 
|  | */ | 
|  | if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { | 
|  | xfs_fs_mount_cmn_err(flags, | 
|  | "file system with blocksize %d bytes", | 
|  | sbp->sb_blocksize); | 
|  | xfs_fs_mount_cmn_err(flags, | 
|  | "only pagesize (%ld) or less will currently work.", | 
|  | PAGE_SIZE); | 
|  | return XFS_ERROR(ENOSYS); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xfs_agnumber_t | 
|  | xfs_initialize_perag( | 
|  | bhv_vfs_t	*vfs, | 
|  | xfs_mount_t	*mp, | 
|  | xfs_agnumber_t	agcount) | 
|  | { | 
|  | xfs_agnumber_t	index, max_metadata; | 
|  | xfs_perag_t	*pag; | 
|  | xfs_agino_t	agino; | 
|  | xfs_ino_t	ino; | 
|  | xfs_sb_t	*sbp = &mp->m_sb; | 
|  | xfs_ino_t	max_inum = XFS_MAXINUMBER_32; | 
|  |  | 
|  | /* Check to see if the filesystem can overflow 32 bit inodes */ | 
|  | agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); | 
|  | ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); | 
|  |  | 
|  | /* Clear the mount flag if no inode can overflow 32 bits | 
|  | * on this filesystem, or if specifically requested.. | 
|  | */ | 
|  | if ((vfs->vfs_flag & VFS_32BITINODES) && ino > max_inum) { | 
|  | mp->m_flags |= XFS_MOUNT_32BITINODES; | 
|  | } else { | 
|  | mp->m_flags &= ~XFS_MOUNT_32BITINODES; | 
|  | } | 
|  |  | 
|  | /* If we can overflow then setup the ag headers accordingly */ | 
|  | if (mp->m_flags & XFS_MOUNT_32BITINODES) { | 
|  | /* Calculate how much should be reserved for inodes to | 
|  | * meet the max inode percentage. | 
|  | */ | 
|  | if (mp->m_maxicount) { | 
|  | __uint64_t	icount; | 
|  |  | 
|  | icount = sbp->sb_dblocks * sbp->sb_imax_pct; | 
|  | do_div(icount, 100); | 
|  | icount += sbp->sb_agblocks - 1; | 
|  | do_div(icount, sbp->sb_agblocks); | 
|  | max_metadata = icount; | 
|  | } else { | 
|  | max_metadata = agcount; | 
|  | } | 
|  | for (index = 0; index < agcount; index++) { | 
|  | ino = XFS_AGINO_TO_INO(mp, index, agino); | 
|  | if (ino > max_inum) { | 
|  | index++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* This ag is preferred for inodes */ | 
|  | pag = &mp->m_perag[index]; | 
|  | pag->pagi_inodeok = 1; | 
|  | if (index < max_metadata) | 
|  | pag->pagf_metadata = 1; | 
|  | } | 
|  | } else { | 
|  | /* Setup default behavior for smaller filesystems */ | 
|  | for (index = 0; index < agcount; index++) { | 
|  | pag = &mp->m_perag[index]; | 
|  | pag->pagi_inodeok = 1; | 
|  | } | 
|  | } | 
|  | return index; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_xlatesb | 
|  | * | 
|  | *     data       - on disk version of sb | 
|  | *     sb         - a superblock | 
|  | *     dir        - conversion direction: <0 - convert sb to buf | 
|  | *                                        >0 - convert buf to sb | 
|  | *     fields     - which fields to copy (bitmask) | 
|  | */ | 
|  | void | 
|  | xfs_xlatesb( | 
|  | void		*data, | 
|  | xfs_sb_t	*sb, | 
|  | int		dir, | 
|  | __int64_t	fields) | 
|  | { | 
|  | xfs_caddr_t	buf_ptr; | 
|  | xfs_caddr_t	mem_ptr; | 
|  | xfs_sb_field_t	f; | 
|  | int		first; | 
|  | int		size; | 
|  |  | 
|  | ASSERT(dir); | 
|  | ASSERT(fields); | 
|  |  | 
|  | if (!fields) | 
|  | return; | 
|  |  | 
|  | buf_ptr = (xfs_caddr_t)data; | 
|  | mem_ptr = (xfs_caddr_t)sb; | 
|  |  | 
|  | while (fields) { | 
|  | f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); | 
|  | first = xfs_sb_info[f].offset; | 
|  | size = xfs_sb_info[f + 1].offset - first; | 
|  |  | 
|  | ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); | 
|  |  | 
|  | if (size == 1 || xfs_sb_info[f].type == 1) { | 
|  | if (dir > 0) { | 
|  | memcpy(mem_ptr + first, buf_ptr + first, size); | 
|  | } else { | 
|  | memcpy(buf_ptr + first, mem_ptr + first, size); | 
|  | } | 
|  | } else { | 
|  | switch (size) { | 
|  | case 2: | 
|  | INT_XLATE(*(__uint16_t*)(buf_ptr+first), | 
|  | *(__uint16_t*)(mem_ptr+first), | 
|  | dir, ARCH_CONVERT); | 
|  | break; | 
|  | case 4: | 
|  | INT_XLATE(*(__uint32_t*)(buf_ptr+first), | 
|  | *(__uint32_t*)(mem_ptr+first), | 
|  | dir, ARCH_CONVERT); | 
|  | break; | 
|  | case 8: | 
|  | INT_XLATE(*(__uint64_t*)(buf_ptr+first), | 
|  | *(__uint64_t*)(mem_ptr+first), dir, ARCH_CONVERT); | 
|  | break; | 
|  | default: | 
|  | ASSERT(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | fields &= ~(1LL << f); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_readsb | 
|  | * | 
|  | * Does the initial read of the superblock. | 
|  | */ | 
|  | int | 
|  | xfs_readsb(xfs_mount_t *mp, int flags) | 
|  | { | 
|  | unsigned int	sector_size; | 
|  | unsigned int	extra_flags; | 
|  | xfs_buf_t	*bp; | 
|  | xfs_sb_t	*sbp; | 
|  | int		error; | 
|  |  | 
|  | ASSERT(mp->m_sb_bp == NULL); | 
|  | ASSERT(mp->m_ddev_targp != NULL); | 
|  |  | 
|  | /* | 
|  | * Allocate a (locked) buffer to hold the superblock. | 
|  | * This will be kept around at all times to optimize | 
|  | * access to the superblock. | 
|  | */ | 
|  | sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); | 
|  | extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED; | 
|  |  | 
|  | bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, | 
|  | BTOBB(sector_size), extra_flags); | 
|  | if (!bp || XFS_BUF_ISERROR(bp)) { | 
|  | xfs_fs_mount_cmn_err(flags, "SB read failed"); | 
|  | error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  | ASSERT(XFS_BUF_ISBUSY(bp)); | 
|  | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | 
|  |  | 
|  | /* | 
|  | * Initialize the mount structure from the superblock. | 
|  | * But first do some basic consistency checking. | 
|  | */ | 
|  | sbp = XFS_BUF_TO_SBP(bp); | 
|  | xfs_xlatesb(XFS_BUF_PTR(bp), &(mp->m_sb), 1, XFS_SB_ALL_BITS); | 
|  |  | 
|  | error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); | 
|  | if (error) { | 
|  | xfs_fs_mount_cmn_err(flags, "SB validate failed"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We must be able to do sector-sized and sector-aligned IO. | 
|  | */ | 
|  | if (sector_size > mp->m_sb.sb_sectsize) { | 
|  | xfs_fs_mount_cmn_err(flags, | 
|  | "device supports only %u byte sectors (not %u)", | 
|  | sector_size, mp->m_sb.sb_sectsize); | 
|  | error = ENOSYS; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If device sector size is smaller than the superblock size, | 
|  | * re-read the superblock so the buffer is correctly sized. | 
|  | */ | 
|  | if (sector_size < mp->m_sb.sb_sectsize) { | 
|  | XFS_BUF_UNMANAGE(bp); | 
|  | xfs_buf_relse(bp); | 
|  | sector_size = mp->m_sb.sb_sectsize; | 
|  | bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, | 
|  | BTOBB(sector_size), extra_flags); | 
|  | if (!bp || XFS_BUF_ISERROR(bp)) { | 
|  | xfs_fs_mount_cmn_err(flags, "SB re-read failed"); | 
|  | error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  | ASSERT(XFS_BUF_ISBUSY(bp)); | 
|  | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | 
|  | } | 
|  |  | 
|  | /* Initialize per-cpu counters */ | 
|  | xfs_icsb_reinit_counters(mp); | 
|  |  | 
|  | mp->m_sb_bp = bp; | 
|  | xfs_buf_relse(bp); | 
|  | ASSERT(XFS_BUF_VALUSEMA(bp) > 0); | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | if (bp) { | 
|  | XFS_BUF_UNMANAGE(bp); | 
|  | xfs_buf_relse(bp); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * xfs_mount_common | 
|  | * | 
|  | * Mount initialization code establishing various mount | 
|  | * fields from the superblock associated with the given | 
|  | * mount structure | 
|  | */ | 
|  | STATIC void | 
|  | xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) | 
|  | { | 
|  | int	i; | 
|  |  | 
|  | mp->m_agfrotor = mp->m_agirotor = 0; | 
|  | spinlock_init(&mp->m_agirotor_lock, "m_agirotor_lock"); | 
|  | mp->m_maxagi = mp->m_sb.sb_agcount; | 
|  | mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; | 
|  | mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; | 
|  | mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; | 
|  | mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; | 
|  | mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; | 
|  | mp->m_litino = sbp->sb_inodesize - | 
|  | ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t)); | 
|  | mp->m_blockmask = sbp->sb_blocksize - 1; | 
|  | mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; | 
|  | mp->m_blockwmask = mp->m_blockwsize - 1; | 
|  | INIT_LIST_HEAD(&mp->m_del_inodes); | 
|  |  | 
|  | /* | 
|  | * Setup for attributes, in case they get created. | 
|  | * This value is for inodes getting attributes for the first time, | 
|  | * the per-inode value is for old attribute values. | 
|  | */ | 
|  | ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048); | 
|  | switch (sbp->sb_inodesize) { | 
|  | case 256: | 
|  | mp->m_attroffset = XFS_LITINO(mp) - | 
|  | XFS_BMDR_SPACE_CALC(MINABTPTRS); | 
|  | break; | 
|  | case 512: | 
|  | case 1024: | 
|  | case 2048: | 
|  | mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS); | 
|  | break; | 
|  | default: | 
|  | ASSERT(0); | 
|  | } | 
|  | ASSERT(mp->m_attroffset < XFS_LITINO(mp)); | 
|  |  | 
|  | for (i = 0; i < 2; i++) { | 
|  | mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, | 
|  | xfs_alloc, i == 0); | 
|  | mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, | 
|  | xfs_alloc, i == 0); | 
|  | } | 
|  | for (i = 0; i < 2; i++) { | 
|  | mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, | 
|  | xfs_bmbt, i == 0); | 
|  | mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, | 
|  | xfs_bmbt, i == 0); | 
|  | } | 
|  | for (i = 0; i < 2; i++) { | 
|  | mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, | 
|  | xfs_inobt, i == 0); | 
|  | mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, | 
|  | xfs_inobt, i == 0); | 
|  | } | 
|  |  | 
|  | mp->m_bsize = XFS_FSB_TO_BB(mp, 1); | 
|  | mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, | 
|  | sbp->sb_inopblock); | 
|  | mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_initialize_perag_data | 
|  | * | 
|  | * Read in each per-ag structure so we can count up the number of | 
|  | * allocated inodes, free inodes and used filesystem blocks as this | 
|  | * information is no longer persistent in the superblock. Once we have | 
|  | * this information, write it into the in-core superblock structure. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) | 
|  | { | 
|  | xfs_agnumber_t	index; | 
|  | xfs_perag_t	*pag; | 
|  | xfs_sb_t	*sbp = &mp->m_sb; | 
|  | uint64_t	ifree = 0; | 
|  | uint64_t	ialloc = 0; | 
|  | uint64_t	bfree = 0; | 
|  | uint64_t	bfreelst = 0; | 
|  | uint64_t	btree = 0; | 
|  | int		error; | 
|  | int		s; | 
|  |  | 
|  | for (index = 0; index < agcount; index++) { | 
|  | /* | 
|  | * read the agf, then the agi. This gets us | 
|  | * all the inforamtion we need and populates the | 
|  | * per-ag structures for us. | 
|  | */ | 
|  | error = xfs_alloc_pagf_init(mp, NULL, index, 0); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = xfs_ialloc_pagi_init(mp, NULL, index); | 
|  | if (error) | 
|  | return error; | 
|  | pag = &mp->m_perag[index]; | 
|  | ifree += pag->pagi_freecount; | 
|  | ialloc += pag->pagi_count; | 
|  | bfree += pag->pagf_freeblks; | 
|  | bfreelst += pag->pagf_flcount; | 
|  | btree += pag->pagf_btreeblks; | 
|  | } | 
|  | /* | 
|  | * Overwrite incore superblock counters with just-read data | 
|  | */ | 
|  | s = XFS_SB_LOCK(mp); | 
|  | sbp->sb_ifree = ifree; | 
|  | sbp->sb_icount = ialloc; | 
|  | sbp->sb_fdblocks = bfree + bfreelst + btree; | 
|  | XFS_SB_UNLOCK(mp, s); | 
|  |  | 
|  | /* Fixup the per-cpu counters as well. */ | 
|  | xfs_icsb_reinit_counters(mp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_mountfs | 
|  | * | 
|  | * This function does the following on an initial mount of a file system: | 
|  | *	- reads the superblock from disk and init the mount struct | 
|  | *	- if we're a 32-bit kernel, do a size check on the superblock | 
|  | *		so we don't mount terabyte filesystems | 
|  | *	- init mount struct realtime fields | 
|  | *	- allocate inode hash table for fs | 
|  | *	- init directory manager | 
|  | *	- perform recovery and init the log manager | 
|  | */ | 
|  | int | 
|  | xfs_mountfs( | 
|  | bhv_vfs_t	*vfsp, | 
|  | xfs_mount_t	*mp, | 
|  | int		mfsi_flags) | 
|  | { | 
|  | xfs_buf_t	*bp; | 
|  | xfs_sb_t	*sbp = &(mp->m_sb); | 
|  | xfs_inode_t	*rip; | 
|  | bhv_vnode_t	*rvp = NULL; | 
|  | int		readio_log, writeio_log; | 
|  | xfs_daddr_t	d; | 
|  | __uint64_t	resblks; | 
|  | __int64_t	update_flags; | 
|  | uint		quotamount, quotaflags; | 
|  | int		agno; | 
|  | int		uuid_mounted = 0; | 
|  | int		error = 0; | 
|  |  | 
|  | if (mp->m_sb_bp == NULL) { | 
|  | if ((error = xfs_readsb(mp, mfsi_flags))) { | 
|  | return error; | 
|  | } | 
|  | } | 
|  | xfs_mount_common(mp, sbp); | 
|  |  | 
|  | /* | 
|  | * Check if sb_agblocks is aligned at stripe boundary | 
|  | * If sb_agblocks is NOT aligned turn off m_dalign since | 
|  | * allocator alignment is within an ag, therefore ag has | 
|  | * to be aligned at stripe boundary. | 
|  | */ | 
|  | update_flags = 0LL; | 
|  | if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) { | 
|  | /* | 
|  | * If stripe unit and stripe width are not multiples | 
|  | * of the fs blocksize turn off alignment. | 
|  | */ | 
|  | if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || | 
|  | (BBTOB(mp->m_swidth) & mp->m_blockmask)) { | 
|  | if (mp->m_flags & XFS_MOUNT_RETERR) { | 
|  | cmn_err(CE_WARN, | 
|  | "XFS: alignment check 1 failed"); | 
|  | error = XFS_ERROR(EINVAL); | 
|  | goto error1; | 
|  | } | 
|  | mp->m_dalign = mp->m_swidth = 0; | 
|  | } else { | 
|  | /* | 
|  | * Convert the stripe unit and width to FSBs. | 
|  | */ | 
|  | mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); | 
|  | if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { | 
|  | if (mp->m_flags & XFS_MOUNT_RETERR) { | 
|  | error = XFS_ERROR(EINVAL); | 
|  | goto error1; | 
|  | } | 
|  | xfs_fs_cmn_err(CE_WARN, mp, | 
|  | "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)", | 
|  | mp->m_dalign, mp->m_swidth, | 
|  | sbp->sb_agblocks); | 
|  |  | 
|  | mp->m_dalign = 0; | 
|  | mp->m_swidth = 0; | 
|  | } else if (mp->m_dalign) { | 
|  | mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); | 
|  | } else { | 
|  | if (mp->m_flags & XFS_MOUNT_RETERR) { | 
|  | xfs_fs_cmn_err(CE_WARN, mp, | 
|  | "stripe alignment turned off: sunit(%d) less than bsize(%d)", | 
|  | mp->m_dalign, | 
|  | mp->m_blockmask +1); | 
|  | error = XFS_ERROR(EINVAL); | 
|  | goto error1; | 
|  | } | 
|  | mp->m_swidth = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update superblock with new values | 
|  | * and log changes | 
|  | */ | 
|  | if (XFS_SB_VERSION_HASDALIGN(sbp)) { | 
|  | if (sbp->sb_unit != mp->m_dalign) { | 
|  | sbp->sb_unit = mp->m_dalign; | 
|  | update_flags |= XFS_SB_UNIT; | 
|  | } | 
|  | if (sbp->sb_width != mp->m_swidth) { | 
|  | sbp->sb_width = mp->m_swidth; | 
|  | update_flags |= XFS_SB_WIDTH; | 
|  | } | 
|  | } | 
|  | } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && | 
|  | XFS_SB_VERSION_HASDALIGN(&mp->m_sb)) { | 
|  | mp->m_dalign = sbp->sb_unit; | 
|  | mp->m_swidth = sbp->sb_width; | 
|  | } | 
|  |  | 
|  | xfs_alloc_compute_maxlevels(mp); | 
|  | xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); | 
|  | xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); | 
|  | xfs_ialloc_compute_maxlevels(mp); | 
|  |  | 
|  | if (sbp->sb_imax_pct) { | 
|  | __uint64_t	icount; | 
|  |  | 
|  | /* Make sure the maximum inode count is a multiple of the | 
|  | * units we allocate inodes in. | 
|  | */ | 
|  |  | 
|  | icount = sbp->sb_dblocks * sbp->sb_imax_pct; | 
|  | do_div(icount, 100); | 
|  | do_div(icount, mp->m_ialloc_blks); | 
|  | mp->m_maxicount = (icount * mp->m_ialloc_blks)  << | 
|  | sbp->sb_inopblog; | 
|  | } else | 
|  | mp->m_maxicount = 0; | 
|  |  | 
|  | mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); | 
|  |  | 
|  | /* | 
|  | * XFS uses the uuid from the superblock as the unique | 
|  | * identifier for fsid.  We can not use the uuid from the volume | 
|  | * since a single partition filesystem is identical to a single | 
|  | * partition volume/filesystem. | 
|  | */ | 
|  | if ((mfsi_flags & XFS_MFSI_SECOND) == 0 && | 
|  | (mp->m_flags & XFS_MOUNT_NOUUID) == 0) { | 
|  | __uint64_t	ret64; | 
|  | if (xfs_uuid_mount(mp)) { | 
|  | error = XFS_ERROR(EINVAL); | 
|  | goto error1; | 
|  | } | 
|  | uuid_mounted=1; | 
|  | ret64 = uuid_hash64(&sbp->sb_uuid); | 
|  | memcpy(&vfsp->vfs_fsid, &ret64, sizeof(ret64)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the default minimum read and write sizes unless | 
|  | * already specified in a mount option. | 
|  | * We use smaller I/O sizes when the file system | 
|  | * is being used for NFS service (wsync mount option). | 
|  | */ | 
|  | if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { | 
|  | if (mp->m_flags & XFS_MOUNT_WSYNC) { | 
|  | readio_log = XFS_WSYNC_READIO_LOG; | 
|  | writeio_log = XFS_WSYNC_WRITEIO_LOG; | 
|  | } else { | 
|  | readio_log = XFS_READIO_LOG_LARGE; | 
|  | writeio_log = XFS_WRITEIO_LOG_LARGE; | 
|  | } | 
|  | } else { | 
|  | readio_log = mp->m_readio_log; | 
|  | writeio_log = mp->m_writeio_log; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the number of readahead buffers to use based on | 
|  | * physical memory size. | 
|  | */ | 
|  | if (xfs_physmem <= 4096)		/* <= 16MB */ | 
|  | mp->m_nreadaheads = XFS_RW_NREADAHEAD_16MB; | 
|  | else if (xfs_physmem <= 8192)	/* <= 32MB */ | 
|  | mp->m_nreadaheads = XFS_RW_NREADAHEAD_32MB; | 
|  | else | 
|  | mp->m_nreadaheads = XFS_RW_NREADAHEAD_K32; | 
|  | if (sbp->sb_blocklog > readio_log) { | 
|  | mp->m_readio_log = sbp->sb_blocklog; | 
|  | } else { | 
|  | mp->m_readio_log = readio_log; | 
|  | } | 
|  | mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); | 
|  | if (sbp->sb_blocklog > writeio_log) { | 
|  | mp->m_writeio_log = sbp->sb_blocklog; | 
|  | } else { | 
|  | mp->m_writeio_log = writeio_log; | 
|  | } | 
|  | mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); | 
|  |  | 
|  | /* | 
|  | * Set the inode cluster size based on the physical memory | 
|  | * size.  This may still be overridden by the file system | 
|  | * block size if it is larger than the chosen cluster size. | 
|  | */ | 
|  | if (xfs_physmem <= btoc(32 * 1024 * 1024)) { /* <= 32 MB */ | 
|  | mp->m_inode_cluster_size = XFS_INODE_SMALL_CLUSTER_SIZE; | 
|  | } else { | 
|  | mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; | 
|  | } | 
|  | /* | 
|  | * Set whether we're using inode alignment. | 
|  | */ | 
|  | if (XFS_SB_VERSION_HASALIGN(&mp->m_sb) && | 
|  | mp->m_sb.sb_inoalignmt >= | 
|  | XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) | 
|  | mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; | 
|  | else | 
|  | mp->m_inoalign_mask = 0; | 
|  | /* | 
|  | * If we are using stripe alignment, check whether | 
|  | * the stripe unit is a multiple of the inode alignment | 
|  | */ | 
|  | if (mp->m_dalign && mp->m_inoalign_mask && | 
|  | !(mp->m_dalign & mp->m_inoalign_mask)) | 
|  | mp->m_sinoalign = mp->m_dalign; | 
|  | else | 
|  | mp->m_sinoalign = 0; | 
|  | /* | 
|  | * Check that the data (and log if separate) are an ok size. | 
|  | */ | 
|  | d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); | 
|  | if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { | 
|  | cmn_err(CE_WARN, "XFS: size check 1 failed"); | 
|  | error = XFS_ERROR(E2BIG); | 
|  | goto error1; | 
|  | } | 
|  | error = xfs_read_buf(mp, mp->m_ddev_targp, | 
|  | d - XFS_FSS_TO_BB(mp, 1), | 
|  | XFS_FSS_TO_BB(mp, 1), 0, &bp); | 
|  | if (!error) { | 
|  | xfs_buf_relse(bp); | 
|  | } else { | 
|  | cmn_err(CE_WARN, "XFS: size check 2 failed"); | 
|  | if (error == ENOSPC) { | 
|  | error = XFS_ERROR(E2BIG); | 
|  | } | 
|  | goto error1; | 
|  | } | 
|  |  | 
|  | if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) && | 
|  | mp->m_logdev_targp != mp->m_ddev_targp) { | 
|  | d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); | 
|  | if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { | 
|  | cmn_err(CE_WARN, "XFS: size check 3 failed"); | 
|  | error = XFS_ERROR(E2BIG); | 
|  | goto error1; | 
|  | } | 
|  | error = xfs_read_buf(mp, mp->m_logdev_targp, | 
|  | d - XFS_FSB_TO_BB(mp, 1), | 
|  | XFS_FSB_TO_BB(mp, 1), 0, &bp); | 
|  | if (!error) { | 
|  | xfs_buf_relse(bp); | 
|  | } else { | 
|  | cmn_err(CE_WARN, "XFS: size check 3 failed"); | 
|  | if (error == ENOSPC) { | 
|  | error = XFS_ERROR(E2BIG); | 
|  | } | 
|  | goto error1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize realtime fields in the mount structure | 
|  | */ | 
|  | if ((error = xfs_rtmount_init(mp))) { | 
|  | cmn_err(CE_WARN, "XFS: RT mount failed"); | 
|  | goto error1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For client case we are done now | 
|  | */ | 
|  | if (mfsi_flags & XFS_MFSI_CLIENT) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Copies the low order bits of the timestamp and the randomly | 
|  | *  set "sequence" number out of a UUID. | 
|  | */ | 
|  | uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); | 
|  |  | 
|  | /* | 
|  | *  The vfs structure needs to have a file system independent | 
|  | *  way of checking for the invariant file system ID.  Since it | 
|  | *  can't look at mount structures it has a pointer to the data | 
|  | *  in the mount structure. | 
|  | * | 
|  | *  File systems that don't support user level file handles (i.e. | 
|  | *  all of them except for XFS) will leave vfs_altfsid as NULL. | 
|  | */ | 
|  | vfsp->vfs_altfsid = (xfs_fsid_t *)mp->m_fixedfsid; | 
|  | mp->m_dmevmask = 0;	/* not persistent; set after each mount */ | 
|  |  | 
|  | xfs_dir_mount(mp); | 
|  |  | 
|  | /* | 
|  | * Initialize the attribute manager's entries. | 
|  | */ | 
|  | mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; | 
|  |  | 
|  | /* | 
|  | * Initialize the precomputed transaction reservations values. | 
|  | */ | 
|  | xfs_trans_init(mp); | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize the inode hash table for this | 
|  | * file system. | 
|  | */ | 
|  | xfs_ihash_init(mp); | 
|  | xfs_chash_init(mp); | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize the per-ag data. | 
|  | */ | 
|  | init_rwsem(&mp->m_peraglock); | 
|  | mp->m_perag = | 
|  | kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP); | 
|  |  | 
|  | mp->m_maxagi = xfs_initialize_perag(vfsp, mp, sbp->sb_agcount); | 
|  |  | 
|  | /* | 
|  | * log's mount-time initialization. Perform 1st part recovery if needed | 
|  | */ | 
|  | if (likely(sbp->sb_logblocks > 0)) {	/* check for volume case */ | 
|  | error = xfs_log_mount(mp, mp->m_logdev_targp, | 
|  | XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), | 
|  | XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); | 
|  | if (error) { | 
|  | cmn_err(CE_WARN, "XFS: log mount failed"); | 
|  | goto error2; | 
|  | } | 
|  | } else {	/* No log has been defined */ | 
|  | cmn_err(CE_WARN, "XFS: no log defined"); | 
|  | XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp); | 
|  | error = XFS_ERROR(EFSCORRUPTED); | 
|  | goto error2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now the log is mounted, we know if it was an unclean shutdown or | 
|  | * not. If it was, with the first phase of recovery has completed, we | 
|  | * have consistent AG blocks on disk. We have not recovered EFIs yet, | 
|  | * but they are recovered transactionally in the second recovery phase | 
|  | * later. | 
|  | * | 
|  | * Hence we can safely re-initialise incore superblock counters from | 
|  | * the per-ag data. These may not be correct if the filesystem was not | 
|  | * cleanly unmounted, so we need to wait for recovery to finish before | 
|  | * doing this. | 
|  | * | 
|  | * If the filesystem was cleanly unmounted, then we can trust the | 
|  | * values in the superblock to be correct and we don't need to do | 
|  | * anything here. | 
|  | * | 
|  | * If we are currently making the filesystem, the initialisation will | 
|  | * fail as the perag data is in an undefined state. | 
|  | */ | 
|  |  | 
|  | if (xfs_sb_version_haslazysbcount(&mp->m_sb) && | 
|  | !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && | 
|  | !mp->m_sb.sb_inprogress) { | 
|  | error = xfs_initialize_perag_data(mp, sbp->sb_agcount); | 
|  | if (error) { | 
|  | goto error2; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Get and sanity-check the root inode. | 
|  | * Save the pointer to it in the mount structure. | 
|  | */ | 
|  | error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0); | 
|  | if (error) { | 
|  | cmn_err(CE_WARN, "XFS: failed to read root inode"); | 
|  | goto error3; | 
|  | } | 
|  |  | 
|  | ASSERT(rip != NULL); | 
|  | rvp = XFS_ITOV(rip); | 
|  |  | 
|  | if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) { | 
|  | cmn_err(CE_WARN, "XFS: corrupted root inode"); | 
|  | cmn_err(CE_WARN, "Device %s - root %llu is not a directory", | 
|  | XFS_BUFTARG_NAME(mp->m_ddev_targp), | 
|  | (unsigned long long)rip->i_ino); | 
|  | xfs_iunlock(rip, XFS_ILOCK_EXCL); | 
|  | XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, | 
|  | mp); | 
|  | error = XFS_ERROR(EFSCORRUPTED); | 
|  | goto error4; | 
|  | } | 
|  | mp->m_rootip = rip;	/* save it */ | 
|  |  | 
|  | xfs_iunlock(rip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | /* | 
|  | * Initialize realtime inode pointers in the mount structure | 
|  | */ | 
|  | if ((error = xfs_rtmount_inodes(mp))) { | 
|  | /* | 
|  | * Free up the root inode. | 
|  | */ | 
|  | cmn_err(CE_WARN, "XFS: failed to read RT inodes"); | 
|  | goto error4; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If fs is not mounted readonly, then update the superblock | 
|  | * unit and width changes. | 
|  | */ | 
|  | if (update_flags && !(vfsp->vfs_flag & VFS_RDONLY)) | 
|  | xfs_mount_log_sbunit(mp, update_flags); | 
|  |  | 
|  | /* | 
|  | * Initialise the XFS quota management subsystem for this mount | 
|  | */ | 
|  | if ((error = XFS_QM_INIT(mp, "amount, "aflags))) | 
|  | goto error4; | 
|  |  | 
|  | /* | 
|  | * Finish recovering the file system.  This part needed to be | 
|  | * delayed until after the root and real-time bitmap inodes | 
|  | * were consistently read in. | 
|  | */ | 
|  | error = xfs_log_mount_finish(mp, mfsi_flags); | 
|  | if (error) { | 
|  | cmn_err(CE_WARN, "XFS: log mount finish failed"); | 
|  | goto error4; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Complete the quota initialisation, post-log-replay component. | 
|  | */ | 
|  | if ((error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags))) | 
|  | goto error4; | 
|  |  | 
|  | /* | 
|  | * Now we are mounted, reserve a small amount of unused space for | 
|  | * privileged transactions. This is needed so that transaction | 
|  | * space required for critical operations can dip into this pool | 
|  | * when at ENOSPC. This is needed for operations like create with | 
|  | * attr, unwritten extent conversion at ENOSPC, etc. Data allocations | 
|  | * are not allowed to use this reserved space. | 
|  | * | 
|  | * We default to 5% or 1024 fsbs of space reserved, whichever is smaller. | 
|  | * This may drive us straight to ENOSPC on mount, but that implies | 
|  | * we were already there on the last unmount. | 
|  | */ | 
|  | resblks = mp->m_sb.sb_dblocks; | 
|  | do_div(resblks, 20); | 
|  | resblks = min_t(__uint64_t, resblks, 1024); | 
|  | xfs_reserve_blocks(mp, &resblks, NULL); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error4: | 
|  | /* | 
|  | * Free up the root inode. | 
|  | */ | 
|  | VN_RELE(rvp); | 
|  | error3: | 
|  | xfs_log_unmount_dealloc(mp); | 
|  | error2: | 
|  | xfs_ihash_free(mp); | 
|  | xfs_chash_free(mp); | 
|  | for (agno = 0; agno < sbp->sb_agcount; agno++) | 
|  | if (mp->m_perag[agno].pagb_list) | 
|  | kmem_free(mp->m_perag[agno].pagb_list, | 
|  | sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS); | 
|  | kmem_free(mp->m_perag, sbp->sb_agcount * sizeof(xfs_perag_t)); | 
|  | mp->m_perag = NULL; | 
|  | /* FALLTHROUGH */ | 
|  | error1: | 
|  | if (uuid_mounted) | 
|  | xfs_uuid_unmount(mp); | 
|  | xfs_freesb(mp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_unmountfs | 
|  | * | 
|  | * This flushes out the inodes,dquots and the superblock, unmounts the | 
|  | * log and makes sure that incore structures are freed. | 
|  | */ | 
|  | int | 
|  | xfs_unmountfs(xfs_mount_t *mp, struct cred *cr) | 
|  | { | 
|  | struct bhv_vfs	*vfsp = XFS_MTOVFS(mp); | 
|  | #if defined(DEBUG) || defined(INDUCE_IO_ERROR) | 
|  | int64_t		fsid; | 
|  | #endif | 
|  | __uint64_t	resblks; | 
|  |  | 
|  | /* | 
|  | * We can potentially deadlock here if we have an inode cluster | 
|  | * that has been freed has it's buffer still pinned in memory because | 
|  | * the transaction is still sitting in a iclog. The stale inodes | 
|  | * on that buffer will have their flush locks held until the | 
|  | * transaction hits the disk and the callbacks run. the inode | 
|  | * flush takes the flush lock unconditionally and with nothing to | 
|  | * push out the iclog we will never get that unlocked. hence we | 
|  | * need to force the log first. | 
|  | */ | 
|  | xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); | 
|  | xfs_iflush_all(mp); | 
|  |  | 
|  | XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING); | 
|  |  | 
|  | /* | 
|  | * Flush out the log synchronously so that we know for sure | 
|  | * that nothing is pinned.  This is important because bflush() | 
|  | * will skip pinned buffers. | 
|  | */ | 
|  | xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); | 
|  |  | 
|  | xfs_binval(mp->m_ddev_targp); | 
|  | if (mp->m_rtdev_targp) { | 
|  | xfs_binval(mp->m_rtdev_targp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unreserve any blocks we have so that when we unmount we don't account | 
|  | * the reserved free space as used. This is really only necessary for | 
|  | * lazy superblock counting because it trusts the incore superblock | 
|  | * counters to be aboslutely correct on clean unmount. | 
|  | * | 
|  | * We don't bother correcting this elsewhere for lazy superblock | 
|  | * counting because on mount of an unclean filesystem we reconstruct the | 
|  | * correct counter value and this is irrelevant. | 
|  | * | 
|  | * For non-lazy counter filesystems, this doesn't matter at all because | 
|  | * we only every apply deltas to the superblock and hence the incore | 
|  | * value does not matter.... | 
|  | */ | 
|  | resblks = 0; | 
|  | xfs_reserve_blocks(mp, &resblks, NULL); | 
|  |  | 
|  | xfs_log_sbcount(mp, 1); | 
|  | xfs_unmountfs_writesb(mp); | 
|  | xfs_unmountfs_wait(mp); 		/* wait for async bufs */ | 
|  | xfs_log_unmount(mp);			/* Done! No more fs ops. */ | 
|  |  | 
|  | xfs_freesb(mp); | 
|  |  | 
|  | /* | 
|  | * All inodes from this mount point should be freed. | 
|  | */ | 
|  | ASSERT(mp->m_inodes == NULL); | 
|  |  | 
|  | xfs_unmountfs_close(mp, cr); | 
|  | if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0) | 
|  | xfs_uuid_unmount(mp); | 
|  |  | 
|  | #if defined(DEBUG) || defined(INDUCE_IO_ERROR) | 
|  | /* | 
|  | * clear all error tags on this filesystem | 
|  | */ | 
|  | memcpy(&fsid, &vfsp->vfs_fsid, sizeof(int64_t)); | 
|  | xfs_errortag_clearall_umount(fsid, mp->m_fsname, 0); | 
|  | #endif | 
|  | XFS_IODONE(vfsp); | 
|  | xfs_mount_free(mp, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr) | 
|  | { | 
|  | if (mp->m_logdev_targp != mp->m_ddev_targp) | 
|  | xfs_free_buftarg(mp->m_logdev_targp, 1); | 
|  | if (mp->m_rtdev_targp) | 
|  | xfs_free_buftarg(mp->m_rtdev_targp, 1); | 
|  | xfs_free_buftarg(mp->m_ddev_targp, 0); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_unmountfs_wait(xfs_mount_t *mp) | 
|  | { | 
|  | if (mp->m_logdev_targp != mp->m_ddev_targp) | 
|  | xfs_wait_buftarg(mp->m_logdev_targp); | 
|  | if (mp->m_rtdev_targp) | 
|  | xfs_wait_buftarg(mp->m_rtdev_targp); | 
|  | xfs_wait_buftarg(mp->m_ddev_targp); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_fs_writable(xfs_mount_t *mp) | 
|  | { | 
|  | bhv_vfs_t	*vfsp = XFS_MTOVFS(mp); | 
|  |  | 
|  | return !(vfs_test_for_freeze(vfsp) || XFS_FORCED_SHUTDOWN(mp) || | 
|  | (vfsp->vfs_flag & VFS_RDONLY)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_log_sbcount | 
|  | * | 
|  | * Called either periodically to keep the on disk superblock values | 
|  | * roughly up to date or from unmount to make sure the values are | 
|  | * correct on a clean unmount. | 
|  | * | 
|  | * Note this code can be called during the process of freezing, so | 
|  | * we may need to use the transaction allocator which does not not | 
|  | * block when the transaction subsystem is in its frozen state. | 
|  | */ | 
|  | int | 
|  | xfs_log_sbcount( | 
|  | xfs_mount_t	*mp, | 
|  | uint		sync) | 
|  | { | 
|  | xfs_trans_t	*tp; | 
|  | int		error; | 
|  |  | 
|  | if (!xfs_fs_writable(mp)) | 
|  | return 0; | 
|  |  | 
|  | xfs_icsb_sync_counters(mp); | 
|  |  | 
|  | /* | 
|  | * we don't need to do this if we are updating the superblock | 
|  | * counters on every modification. | 
|  | */ | 
|  | if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) | 
|  | return 0; | 
|  |  | 
|  | tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT); | 
|  | error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, | 
|  | XFS_DEFAULT_LOG_COUNT); | 
|  | if (error) { | 
|  | xfs_trans_cancel(tp, 0); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); | 
|  | if (sync) | 
|  | xfs_trans_set_sync(tp); | 
|  | xfs_trans_commit(tp, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_unmountfs_writesb(xfs_mount_t *mp) | 
|  | { | 
|  | xfs_buf_t	*sbp; | 
|  | xfs_sb_t	*sb; | 
|  | int		error = 0; | 
|  |  | 
|  | /* | 
|  | * skip superblock write if fs is read-only, or | 
|  | * if we are doing a forced umount. | 
|  | */ | 
|  | if (!(XFS_MTOVFS(mp)->vfs_flag & VFS_RDONLY || | 
|  | XFS_FORCED_SHUTDOWN(mp))) { | 
|  |  | 
|  | sbp = xfs_getsb(mp, 0); | 
|  | sb = XFS_BUF_TO_SBP(sbp); | 
|  |  | 
|  | /* | 
|  | * mark shared-readonly if desired | 
|  | */ | 
|  | if (mp->m_mk_sharedro) { | 
|  | if (!(sb->sb_flags & XFS_SBF_READONLY)) | 
|  | sb->sb_flags |= XFS_SBF_READONLY; | 
|  | if (!XFS_SB_VERSION_HASSHARED(sb)) | 
|  | XFS_SB_VERSION_ADDSHARED(sb); | 
|  | xfs_fs_cmn_err(CE_NOTE, mp, | 
|  | "Unmounting, marking shared read-only"); | 
|  | } | 
|  |  | 
|  | XFS_BUF_UNDONE(sbp); | 
|  | XFS_BUF_UNREAD(sbp); | 
|  | XFS_BUF_UNDELAYWRITE(sbp); | 
|  | XFS_BUF_WRITE(sbp); | 
|  | XFS_BUF_UNASYNC(sbp); | 
|  | ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp); | 
|  | xfsbdstrat(mp, sbp); | 
|  | /* Nevermind errors we might get here. */ | 
|  | error = xfs_iowait(sbp); | 
|  | if (error) | 
|  | xfs_ioerror_alert("xfs_unmountfs_writesb", | 
|  | mp, sbp, XFS_BUF_ADDR(sbp)); | 
|  | if (error && mp->m_mk_sharedro) | 
|  | xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting.  Filesystem may not be marked shared readonly"); | 
|  | xfs_buf_relse(sbp); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_mod_sb() can be used to copy arbitrary changes to the | 
|  | * in-core superblock into the superblock buffer to be logged. | 
|  | * It does not provide the higher level of locking that is | 
|  | * needed to protect the in-core superblock from concurrent | 
|  | * access. | 
|  | */ | 
|  | void | 
|  | xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) | 
|  | { | 
|  | xfs_buf_t	*bp; | 
|  | int		first; | 
|  | int		last; | 
|  | xfs_mount_t	*mp; | 
|  | xfs_sb_t	*sbp; | 
|  | xfs_sb_field_t	f; | 
|  |  | 
|  | ASSERT(fields); | 
|  | if (!fields) | 
|  | return; | 
|  | mp = tp->t_mountp; | 
|  | bp = xfs_trans_getsb(tp, mp, 0); | 
|  | sbp = XFS_BUF_TO_SBP(bp); | 
|  | first = sizeof(xfs_sb_t); | 
|  | last = 0; | 
|  |  | 
|  | /* translate/copy */ | 
|  |  | 
|  | xfs_xlatesb(XFS_BUF_PTR(bp), &(mp->m_sb), -1, fields); | 
|  |  | 
|  | /* find modified range */ | 
|  |  | 
|  | f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); | 
|  | ASSERT((1LL << f) & XFS_SB_MOD_BITS); | 
|  | first = xfs_sb_info[f].offset; | 
|  |  | 
|  | f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); | 
|  | ASSERT((1LL << f) & XFS_SB_MOD_BITS); | 
|  | last = xfs_sb_info[f + 1].offset - 1; | 
|  |  | 
|  | xfs_trans_log_buf(tp, bp, first, last); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply | 
|  | * a delta to a specified field in the in-core superblock.  Simply | 
|  | * switch on the field indicated and apply the delta to that field. | 
|  | * Fields are not allowed to dip below zero, so if the delta would | 
|  | * do this do not apply it and return EINVAL. | 
|  | * | 
|  | * The SB_LOCK must be held when this routine is called. | 
|  | */ | 
|  | int | 
|  | xfs_mod_incore_sb_unlocked( | 
|  | xfs_mount_t	*mp, | 
|  | xfs_sb_field_t	field, | 
|  | int64_t		delta, | 
|  | int		rsvd) | 
|  | { | 
|  | int		scounter;	/* short counter for 32 bit fields */ | 
|  | long long	lcounter;	/* long counter for 64 bit fields */ | 
|  | long long	res_used, rem; | 
|  |  | 
|  | /* | 
|  | * With the in-core superblock spin lock held, switch | 
|  | * on the indicated field.  Apply the delta to the | 
|  | * proper field.  If the fields value would dip below | 
|  | * 0, then do not apply the delta and return EINVAL. | 
|  | */ | 
|  | switch (field) { | 
|  | case XFS_SBS_ICOUNT: | 
|  | lcounter = (long long)mp->m_sb.sb_icount; | 
|  | lcounter += delta; | 
|  | if (lcounter < 0) { | 
|  | ASSERT(0); | 
|  | return XFS_ERROR(EINVAL); | 
|  | } | 
|  | mp->m_sb.sb_icount = lcounter; | 
|  | return 0; | 
|  | case XFS_SBS_IFREE: | 
|  | lcounter = (long long)mp->m_sb.sb_ifree; | 
|  | lcounter += delta; | 
|  | if (lcounter < 0) { | 
|  | ASSERT(0); | 
|  | return XFS_ERROR(EINVAL); | 
|  | } | 
|  | mp->m_sb.sb_ifree = lcounter; | 
|  | return 0; | 
|  | case XFS_SBS_FDBLOCKS: | 
|  | lcounter = (long long) | 
|  | mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); | 
|  | res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); | 
|  |  | 
|  | if (delta > 0) {		/* Putting blocks back */ | 
|  | if (res_used > delta) { | 
|  | mp->m_resblks_avail += delta; | 
|  | } else { | 
|  | rem = delta - res_used; | 
|  | mp->m_resblks_avail = mp->m_resblks; | 
|  | lcounter += rem; | 
|  | } | 
|  | } else {				/* Taking blocks away */ | 
|  |  | 
|  | lcounter += delta; | 
|  |  | 
|  | /* | 
|  | * If were out of blocks, use any available reserved blocks if | 
|  | * were allowed to. | 
|  | */ | 
|  |  | 
|  | if (lcounter < 0) { | 
|  | if (rsvd) { | 
|  | lcounter = (long long)mp->m_resblks_avail + delta; | 
|  | if (lcounter < 0) { | 
|  | return XFS_ERROR(ENOSPC); | 
|  | } | 
|  | mp->m_resblks_avail = lcounter; | 
|  | return 0; | 
|  | } else {	/* not reserved */ | 
|  | return XFS_ERROR(ENOSPC); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); | 
|  | return 0; | 
|  | case XFS_SBS_FREXTENTS: | 
|  | lcounter = (long long)mp->m_sb.sb_frextents; | 
|  | lcounter += delta; | 
|  | if (lcounter < 0) { | 
|  | return XFS_ERROR(ENOSPC); | 
|  | } | 
|  | mp->m_sb.sb_frextents = lcounter; | 
|  | return 0; | 
|  | case XFS_SBS_DBLOCKS: | 
|  | lcounter = (long long)mp->m_sb.sb_dblocks; | 
|  | lcounter += delta; | 
|  | if (lcounter < 0) { | 
|  | ASSERT(0); | 
|  | return XFS_ERROR(EINVAL); | 
|  | } | 
|  | mp->m_sb.sb_dblocks = lcounter; | 
|  | return 0; | 
|  | case XFS_SBS_AGCOUNT: | 
|  | scounter = mp->m_sb.sb_agcount; | 
|  | scounter += delta; | 
|  | if (scounter < 0) { | 
|  | ASSERT(0); | 
|  | return XFS_ERROR(EINVAL); | 
|  | } | 
|  | mp->m_sb.sb_agcount = scounter; | 
|  | return 0; | 
|  | case XFS_SBS_IMAX_PCT: | 
|  | scounter = mp->m_sb.sb_imax_pct; | 
|  | scounter += delta; | 
|  | if (scounter < 0) { | 
|  | ASSERT(0); | 
|  | return XFS_ERROR(EINVAL); | 
|  | } | 
|  | mp->m_sb.sb_imax_pct = scounter; | 
|  | return 0; | 
|  | case XFS_SBS_REXTSIZE: | 
|  | scounter = mp->m_sb.sb_rextsize; | 
|  | scounter += delta; | 
|  | if (scounter < 0) { | 
|  | ASSERT(0); | 
|  | return XFS_ERROR(EINVAL); | 
|  | } | 
|  | mp->m_sb.sb_rextsize = scounter; | 
|  | return 0; | 
|  | case XFS_SBS_RBMBLOCKS: | 
|  | scounter = mp->m_sb.sb_rbmblocks; | 
|  | scounter += delta; | 
|  | if (scounter < 0) { | 
|  | ASSERT(0); | 
|  | return XFS_ERROR(EINVAL); | 
|  | } | 
|  | mp->m_sb.sb_rbmblocks = scounter; | 
|  | return 0; | 
|  | case XFS_SBS_RBLOCKS: | 
|  | lcounter = (long long)mp->m_sb.sb_rblocks; | 
|  | lcounter += delta; | 
|  | if (lcounter < 0) { | 
|  | ASSERT(0); | 
|  | return XFS_ERROR(EINVAL); | 
|  | } | 
|  | mp->m_sb.sb_rblocks = lcounter; | 
|  | return 0; | 
|  | case XFS_SBS_REXTENTS: | 
|  | lcounter = (long long)mp->m_sb.sb_rextents; | 
|  | lcounter += delta; | 
|  | if (lcounter < 0) { | 
|  | ASSERT(0); | 
|  | return XFS_ERROR(EINVAL); | 
|  | } | 
|  | mp->m_sb.sb_rextents = lcounter; | 
|  | return 0; | 
|  | case XFS_SBS_REXTSLOG: | 
|  | scounter = mp->m_sb.sb_rextslog; | 
|  | scounter += delta; | 
|  | if (scounter < 0) { | 
|  | ASSERT(0); | 
|  | return XFS_ERROR(EINVAL); | 
|  | } | 
|  | mp->m_sb.sb_rextslog = scounter; | 
|  | return 0; | 
|  | default: | 
|  | ASSERT(0); | 
|  | return XFS_ERROR(EINVAL); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_mod_incore_sb() is used to change a field in the in-core | 
|  | * superblock structure by the specified delta.  This modification | 
|  | * is protected by the SB_LOCK.  Just use the xfs_mod_incore_sb_unlocked() | 
|  | * routine to do the work. | 
|  | */ | 
|  | int | 
|  | xfs_mod_incore_sb( | 
|  | xfs_mount_t	*mp, | 
|  | xfs_sb_field_t	field, | 
|  | int64_t		delta, | 
|  | int		rsvd) | 
|  | { | 
|  | unsigned long	s; | 
|  | int	status; | 
|  |  | 
|  | /* check for per-cpu counters */ | 
|  | switch (field) { | 
|  | #ifdef HAVE_PERCPU_SB | 
|  | case XFS_SBS_ICOUNT: | 
|  | case XFS_SBS_IFREE: | 
|  | case XFS_SBS_FDBLOCKS: | 
|  | if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { | 
|  | status = xfs_icsb_modify_counters(mp, field, | 
|  | delta, rsvd); | 
|  | break; | 
|  | } | 
|  | /* FALLTHROUGH */ | 
|  | #endif | 
|  | default: | 
|  | s = XFS_SB_LOCK(mp); | 
|  | status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); | 
|  | XFS_SB_UNLOCK(mp, s); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_mod_incore_sb_batch() is used to change more than one field | 
|  | * in the in-core superblock structure at a time.  This modification | 
|  | * is protected by a lock internal to this module.  The fields and | 
|  | * changes to those fields are specified in the array of xfs_mod_sb | 
|  | * structures passed in. | 
|  | * | 
|  | * Either all of the specified deltas will be applied or none of | 
|  | * them will.  If any modified field dips below 0, then all modifications | 
|  | * will be backed out and EINVAL will be returned. | 
|  | */ | 
|  | int | 
|  | xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd) | 
|  | { | 
|  | unsigned long	s; | 
|  | int		status=0; | 
|  | xfs_mod_sb_t	*msbp; | 
|  |  | 
|  | /* | 
|  | * Loop through the array of mod structures and apply each | 
|  | * individually.  If any fail, then back out all those | 
|  | * which have already been applied.  Do all of this within | 
|  | * the scope of the SB_LOCK so that all of the changes will | 
|  | * be atomic. | 
|  | */ | 
|  | s = XFS_SB_LOCK(mp); | 
|  | msbp = &msb[0]; | 
|  | for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) { | 
|  | /* | 
|  | * Apply the delta at index n.  If it fails, break | 
|  | * from the loop so we'll fall into the undo loop | 
|  | * below. | 
|  | */ | 
|  | switch (msbp->msb_field) { | 
|  | #ifdef HAVE_PERCPU_SB | 
|  | case XFS_SBS_ICOUNT: | 
|  | case XFS_SBS_IFREE: | 
|  | case XFS_SBS_FDBLOCKS: | 
|  | if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { | 
|  | XFS_SB_UNLOCK(mp, s); | 
|  | status = xfs_icsb_modify_counters(mp, | 
|  | msbp->msb_field, | 
|  | msbp->msb_delta, rsvd); | 
|  | s = XFS_SB_LOCK(mp); | 
|  | break; | 
|  | } | 
|  | /* FALLTHROUGH */ | 
|  | #endif | 
|  | default: | 
|  | status = xfs_mod_incore_sb_unlocked(mp, | 
|  | msbp->msb_field, | 
|  | msbp->msb_delta, rsvd); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (status != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we didn't complete the loop above, then back out | 
|  | * any changes made to the superblock.  If you add code | 
|  | * between the loop above and here, make sure that you | 
|  | * preserve the value of status. Loop back until | 
|  | * we step below the beginning of the array.  Make sure | 
|  | * we don't touch anything back there. | 
|  | */ | 
|  | if (status != 0) { | 
|  | msbp--; | 
|  | while (msbp >= msb) { | 
|  | switch (msbp->msb_field) { | 
|  | #ifdef HAVE_PERCPU_SB | 
|  | case XFS_SBS_ICOUNT: | 
|  | case XFS_SBS_IFREE: | 
|  | case XFS_SBS_FDBLOCKS: | 
|  | if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { | 
|  | XFS_SB_UNLOCK(mp, s); | 
|  | status = xfs_icsb_modify_counters(mp, | 
|  | msbp->msb_field, | 
|  | -(msbp->msb_delta), | 
|  | rsvd); | 
|  | s = XFS_SB_LOCK(mp); | 
|  | break; | 
|  | } | 
|  | /* FALLTHROUGH */ | 
|  | #endif | 
|  | default: | 
|  | status = xfs_mod_incore_sb_unlocked(mp, | 
|  | msbp->msb_field, | 
|  | -(msbp->msb_delta), | 
|  | rsvd); | 
|  | break; | 
|  | } | 
|  | ASSERT(status == 0); | 
|  | msbp--; | 
|  | } | 
|  | } | 
|  | XFS_SB_UNLOCK(mp, s); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_getsb() is called to obtain the buffer for the superblock. | 
|  | * The buffer is returned locked and read in from disk. | 
|  | * The buffer should be released with a call to xfs_brelse(). | 
|  | * | 
|  | * If the flags parameter is BUF_TRYLOCK, then we'll only return | 
|  | * the superblock buffer if it can be locked without sleeping. | 
|  | * If it can't then we'll return NULL. | 
|  | */ | 
|  | xfs_buf_t * | 
|  | xfs_getsb( | 
|  | xfs_mount_t	*mp, | 
|  | int		flags) | 
|  | { | 
|  | xfs_buf_t	*bp; | 
|  |  | 
|  | ASSERT(mp->m_sb_bp != NULL); | 
|  | bp = mp->m_sb_bp; | 
|  | if (flags & XFS_BUF_TRYLOCK) { | 
|  | if (!XFS_BUF_CPSEMA(bp)) { | 
|  | return NULL; | 
|  | } | 
|  | } else { | 
|  | XFS_BUF_PSEMA(bp, PRIBIO); | 
|  | } | 
|  | XFS_BUF_HOLD(bp); | 
|  | ASSERT(XFS_BUF_ISDONE(bp)); | 
|  | return bp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used to free the superblock along various error paths. | 
|  | */ | 
|  | void | 
|  | xfs_freesb( | 
|  | xfs_mount_t	*mp) | 
|  | { | 
|  | xfs_buf_t	*bp; | 
|  |  | 
|  | /* | 
|  | * Use xfs_getsb() so that the buffer will be locked | 
|  | * when we call xfs_buf_relse(). | 
|  | */ | 
|  | bp = xfs_getsb(mp, 0); | 
|  | XFS_BUF_UNMANAGE(bp); | 
|  | xfs_buf_relse(bp); | 
|  | mp->m_sb_bp = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See if the UUID is unique among mounted XFS filesystems. | 
|  | * Mount fails if UUID is nil or a FS with the same UUID is already mounted. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_uuid_mount( | 
|  | xfs_mount_t	*mp) | 
|  | { | 
|  | if (uuid_is_nil(&mp->m_sb.sb_uuid)) { | 
|  | cmn_err(CE_WARN, | 
|  | "XFS: Filesystem %s has nil UUID - can't mount", | 
|  | mp->m_fsname); | 
|  | return -1; | 
|  | } | 
|  | if (!uuid_table_insert(&mp->m_sb.sb_uuid)) { | 
|  | cmn_err(CE_WARN, | 
|  | "XFS: Filesystem %s has duplicate UUID - can't mount", | 
|  | mp->m_fsname); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove filesystem from the UUID table. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_uuid_unmount( | 
|  | xfs_mount_t	*mp) | 
|  | { | 
|  | uuid_table_remove(&mp->m_sb.sb_uuid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used to log changes to the superblock unit and width fields which could | 
|  | * be altered by the mount options. Only the first superblock is updated. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_mount_log_sbunit( | 
|  | xfs_mount_t	*mp, | 
|  | __int64_t	fields) | 
|  | { | 
|  | xfs_trans_t	*tp; | 
|  |  | 
|  | ASSERT(fields & (XFS_SB_UNIT|XFS_SB_WIDTH|XFS_SB_UUID)); | 
|  |  | 
|  | tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); | 
|  | if (xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, | 
|  | XFS_DEFAULT_LOG_COUNT)) { | 
|  | xfs_trans_cancel(tp, 0); | 
|  | return; | 
|  | } | 
|  | xfs_mod_sb(tp, fields); | 
|  | xfs_trans_commit(tp, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef HAVE_PERCPU_SB | 
|  | /* | 
|  | * Per-cpu incore superblock counters | 
|  | * | 
|  | * Simple concept, difficult implementation | 
|  | * | 
|  | * Basically, replace the incore superblock counters with a distributed per cpu | 
|  | * counter for contended fields (e.g.  free block count). | 
|  | * | 
|  | * Difficulties arise in that the incore sb is used for ENOSPC checking, and | 
|  | * hence needs to be accurately read when we are running low on space. Hence | 
|  | * there is a method to enable and disable the per-cpu counters based on how | 
|  | * much "stuff" is available in them. | 
|  | * | 
|  | * Basically, a counter is enabled if there is enough free resource to justify | 
|  | * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local | 
|  | * ENOSPC), then we disable the counters to synchronise all callers and | 
|  | * re-distribute the available resources. | 
|  | * | 
|  | * If, once we redistributed the available resources, we still get a failure, | 
|  | * we disable the per-cpu counter and go through the slow path. | 
|  | * | 
|  | * The slow path is the current xfs_mod_incore_sb() function.  This means that | 
|  | * when we disable a per-cpu counter, we need to drain it's resources back to | 
|  | * the global superblock. We do this after disabling the counter to prevent | 
|  | * more threads from queueing up on the counter. | 
|  | * | 
|  | * Essentially, this means that we still need a lock in the fast path to enable | 
|  | * synchronisation between the global counters and the per-cpu counters. This | 
|  | * is not a problem because the lock will be local to a CPU almost all the time | 
|  | * and have little contention except when we get to ENOSPC conditions. | 
|  | * | 
|  | * Basically, this lock becomes a barrier that enables us to lock out the fast | 
|  | * path while we do things like enabling and disabling counters and | 
|  | * synchronising the counters. | 
|  | * | 
|  | * Locking rules: | 
|  | * | 
|  | * 	1. XFS_SB_LOCK() before picking up per-cpu locks | 
|  | * 	2. per-cpu locks always picked up via for_each_online_cpu() order | 
|  | * 	3. accurate counter sync requires XFS_SB_LOCK + per cpu locks | 
|  | * 	4. modifying per-cpu counters requires holding per-cpu lock | 
|  | * 	5. modifying global counters requires holding XFS_SB_LOCK | 
|  | *	6. enabling or disabling a counter requires holding the XFS_SB_LOCK | 
|  | *	   and _none_ of the per-cpu locks. | 
|  | * | 
|  | * Disabled counters are only ever re-enabled by a balance operation | 
|  | * that results in more free resources per CPU than a given threshold. | 
|  | * To ensure counters don't remain disabled, they are rebalanced when | 
|  | * the global resource goes above a higher threshold (i.e. some hysteresis | 
|  | * is present to prevent thrashing). | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | /* | 
|  | * hot-plug CPU notifier support. | 
|  | * | 
|  | * We need a notifier per filesystem as we need to be able to identify | 
|  | * the filesystem to balance the counters out. This is achieved by | 
|  | * having a notifier block embedded in the xfs_mount_t and doing pointer | 
|  | * magic to get the mount pointer from the notifier block address. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_icsb_cpu_notify( | 
|  | struct notifier_block *nfb, | 
|  | unsigned long action, | 
|  | void *hcpu) | 
|  | { | 
|  | xfs_icsb_cnts_t *cntp; | 
|  | xfs_mount_t	*mp; | 
|  | int		s; | 
|  |  | 
|  | mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); | 
|  | cntp = (xfs_icsb_cnts_t *) | 
|  | per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | case CPU_UP_PREPARE_FROZEN: | 
|  | /* Easy Case - initialize the area and locks, and | 
|  | * then rebalance when online does everything else for us. */ | 
|  | memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); | 
|  | break; | 
|  | case CPU_ONLINE: | 
|  | case CPU_ONLINE_FROZEN: | 
|  | xfs_icsb_lock(mp); | 
|  | xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0); | 
|  | xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0); | 
|  | xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0); | 
|  | xfs_icsb_unlock(mp); | 
|  | break; | 
|  | case CPU_DEAD: | 
|  | case CPU_DEAD_FROZEN: | 
|  | /* Disable all the counters, then fold the dead cpu's | 
|  | * count into the total on the global superblock and | 
|  | * re-enable the counters. */ | 
|  | xfs_icsb_lock(mp); | 
|  | s = XFS_SB_LOCK(mp); | 
|  | xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); | 
|  | xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); | 
|  | xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); | 
|  |  | 
|  | mp->m_sb.sb_icount += cntp->icsb_icount; | 
|  | mp->m_sb.sb_ifree += cntp->icsb_ifree; | 
|  | mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; | 
|  |  | 
|  | memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); | 
|  |  | 
|  | xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, | 
|  | XFS_ICSB_SB_LOCKED, 0); | 
|  | xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, | 
|  | XFS_ICSB_SB_LOCKED, 0); | 
|  | xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, | 
|  | XFS_ICSB_SB_LOCKED, 0); | 
|  | XFS_SB_UNLOCK(mp, s); | 
|  | xfs_icsb_unlock(mp); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | int | 
|  | xfs_icsb_init_counters( | 
|  | xfs_mount_t	*mp) | 
|  | { | 
|  | xfs_icsb_cnts_t *cntp; | 
|  | int		i; | 
|  |  | 
|  | mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); | 
|  | if (mp->m_sb_cnts == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; | 
|  | mp->m_icsb_notifier.priority = 0; | 
|  | register_hotcpu_notifier(&mp->m_icsb_notifier); | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); | 
|  | memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); | 
|  | } | 
|  |  | 
|  | mutex_init(&mp->m_icsb_mutex); | 
|  |  | 
|  | /* | 
|  | * start with all counters disabled so that the | 
|  | * initial balance kicks us off correctly | 
|  | */ | 
|  | mp->m_icsb_counters = -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_icsb_reinit_counters( | 
|  | xfs_mount_t	*mp) | 
|  | { | 
|  | xfs_icsb_lock(mp); | 
|  | /* | 
|  | * start with all counters disabled so that the | 
|  | * initial balance kicks us off correctly | 
|  | */ | 
|  | mp->m_icsb_counters = -1; | 
|  | xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0); | 
|  | xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0); | 
|  | xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0); | 
|  | xfs_icsb_unlock(mp); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_icsb_destroy_counters( | 
|  | xfs_mount_t	*mp) | 
|  | { | 
|  | if (mp->m_sb_cnts) { | 
|  | unregister_hotcpu_notifier(&mp->m_icsb_notifier); | 
|  | free_percpu(mp->m_sb_cnts); | 
|  | } | 
|  | mutex_destroy(&mp->m_icsb_mutex); | 
|  | } | 
|  |  | 
|  | STATIC_INLINE void | 
|  | xfs_icsb_lock_cntr( | 
|  | xfs_icsb_cnts_t	*icsbp) | 
|  | { | 
|  | while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { | 
|  | ndelay(1000); | 
|  | } | 
|  | } | 
|  |  | 
|  | STATIC_INLINE void | 
|  | xfs_icsb_unlock_cntr( | 
|  | xfs_icsb_cnts_t	*icsbp) | 
|  | { | 
|  | clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); | 
|  | } | 
|  |  | 
|  |  | 
|  | STATIC_INLINE void | 
|  | xfs_icsb_lock_all_counters( | 
|  | xfs_mount_t	*mp) | 
|  | { | 
|  | xfs_icsb_cnts_t *cntp; | 
|  | int		i; | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); | 
|  | xfs_icsb_lock_cntr(cntp); | 
|  | } | 
|  | } | 
|  |  | 
|  | STATIC_INLINE void | 
|  | xfs_icsb_unlock_all_counters( | 
|  | xfs_mount_t	*mp) | 
|  | { | 
|  | xfs_icsb_cnts_t *cntp; | 
|  | int		i; | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); | 
|  | xfs_icsb_unlock_cntr(cntp); | 
|  | } | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_icsb_count( | 
|  | xfs_mount_t	*mp, | 
|  | xfs_icsb_cnts_t	*cnt, | 
|  | int		flags) | 
|  | { | 
|  | xfs_icsb_cnts_t *cntp; | 
|  | int		i; | 
|  |  | 
|  | memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); | 
|  |  | 
|  | if (!(flags & XFS_ICSB_LAZY_COUNT)) | 
|  | xfs_icsb_lock_all_counters(mp); | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); | 
|  | cnt->icsb_icount += cntp->icsb_icount; | 
|  | cnt->icsb_ifree += cntp->icsb_ifree; | 
|  | cnt->icsb_fdblocks += cntp->icsb_fdblocks; | 
|  | } | 
|  |  | 
|  | if (!(flags & XFS_ICSB_LAZY_COUNT)) | 
|  | xfs_icsb_unlock_all_counters(mp); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_icsb_counter_disabled( | 
|  | xfs_mount_t	*mp, | 
|  | xfs_sb_field_t	field) | 
|  | { | 
|  | ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); | 
|  | return test_bit(field, &mp->m_icsb_counters); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_icsb_disable_counter( | 
|  | xfs_mount_t	*mp, | 
|  | xfs_sb_field_t	field) | 
|  | { | 
|  | xfs_icsb_cnts_t	cnt; | 
|  |  | 
|  | ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); | 
|  |  | 
|  | /* | 
|  | * If we are already disabled, then there is nothing to do | 
|  | * here. We check before locking all the counters to avoid | 
|  | * the expensive lock operation when being called in the | 
|  | * slow path and the counter is already disabled. This is | 
|  | * safe because the only time we set or clear this state is under | 
|  | * the m_icsb_mutex. | 
|  | */ | 
|  | if (xfs_icsb_counter_disabled(mp, field)) | 
|  | return 0; | 
|  |  | 
|  | xfs_icsb_lock_all_counters(mp); | 
|  | if (!test_and_set_bit(field, &mp->m_icsb_counters)) { | 
|  | /* drain back to superblock */ | 
|  |  | 
|  | xfs_icsb_count(mp, &cnt, XFS_ICSB_SB_LOCKED|XFS_ICSB_LAZY_COUNT); | 
|  | switch(field) { | 
|  | case XFS_SBS_ICOUNT: | 
|  | mp->m_sb.sb_icount = cnt.icsb_icount; | 
|  | break; | 
|  | case XFS_SBS_IFREE: | 
|  | mp->m_sb.sb_ifree = cnt.icsb_ifree; | 
|  | break; | 
|  | case XFS_SBS_FDBLOCKS: | 
|  | mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | xfs_icsb_unlock_all_counters(mp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_icsb_enable_counter( | 
|  | xfs_mount_t	*mp, | 
|  | xfs_sb_field_t	field, | 
|  | uint64_t	count, | 
|  | uint64_t	resid) | 
|  | { | 
|  | xfs_icsb_cnts_t	*cntp; | 
|  | int		i; | 
|  |  | 
|  | ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); | 
|  |  | 
|  | xfs_icsb_lock_all_counters(mp); | 
|  | for_each_online_cpu(i) { | 
|  | cntp = per_cpu_ptr(mp->m_sb_cnts, i); | 
|  | switch (field) { | 
|  | case XFS_SBS_ICOUNT: | 
|  | cntp->icsb_icount = count + resid; | 
|  | break; | 
|  | case XFS_SBS_IFREE: | 
|  | cntp->icsb_ifree = count + resid; | 
|  | break; | 
|  | case XFS_SBS_FDBLOCKS: | 
|  | cntp->icsb_fdblocks = count + resid; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  | resid = 0; | 
|  | } | 
|  | clear_bit(field, &mp->m_icsb_counters); | 
|  | xfs_icsb_unlock_all_counters(mp); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_icsb_sync_counters_flags( | 
|  | xfs_mount_t	*mp, | 
|  | int		flags) | 
|  | { | 
|  | xfs_icsb_cnts_t	cnt; | 
|  | int		s; | 
|  |  | 
|  | /* Pass 1: lock all counters */ | 
|  | if ((flags & XFS_ICSB_SB_LOCKED) == 0) | 
|  | s = XFS_SB_LOCK(mp); | 
|  |  | 
|  | xfs_icsb_count(mp, &cnt, flags); | 
|  |  | 
|  | /* Step 3: update mp->m_sb fields */ | 
|  | if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) | 
|  | mp->m_sb.sb_icount = cnt.icsb_icount; | 
|  | if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) | 
|  | mp->m_sb.sb_ifree = cnt.icsb_ifree; | 
|  | if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) | 
|  | mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; | 
|  |  | 
|  | if ((flags & XFS_ICSB_SB_LOCKED) == 0) | 
|  | XFS_SB_UNLOCK(mp, s); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Accurate update of per-cpu counters to incore superblock | 
|  | */ | 
|  | STATIC void | 
|  | xfs_icsb_sync_counters( | 
|  | xfs_mount_t	*mp) | 
|  | { | 
|  | xfs_icsb_sync_counters_flags(mp, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Balance and enable/disable counters as necessary. | 
|  | * | 
|  | * Thresholds for re-enabling counters are somewhat magic.  inode counts are | 
|  | * chosen to be the same number as single on disk allocation chunk per CPU, and | 
|  | * free blocks is something far enough zero that we aren't going thrash when we | 
|  | * get near ENOSPC. We also need to supply a minimum we require per cpu to | 
|  | * prevent looping endlessly when xfs_alloc_space asks for more than will | 
|  | * be distributed to a single CPU but each CPU has enough blocks to be | 
|  | * reenabled. | 
|  | * | 
|  | * Note that we can be called when counters are already disabled. | 
|  | * xfs_icsb_disable_counter() optimises the counter locking in this case to | 
|  | * prevent locking every per-cpu counter needlessly. | 
|  | */ | 
|  |  | 
|  | #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64 | 
|  | #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ | 
|  | (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) | 
|  | STATIC void | 
|  | xfs_icsb_balance_counter( | 
|  | xfs_mount_t	*mp, | 
|  | xfs_sb_field_t  field, | 
|  | int		flags, | 
|  | int		min_per_cpu) | 
|  | { | 
|  | uint64_t	count, resid; | 
|  | int		weight = num_online_cpus(); | 
|  | int		s; | 
|  | uint64_t	min = (uint64_t)min_per_cpu; | 
|  |  | 
|  | if (!(flags & XFS_ICSB_SB_LOCKED)) | 
|  | s = XFS_SB_LOCK(mp); | 
|  |  | 
|  | /* disable counter and sync counter */ | 
|  | xfs_icsb_disable_counter(mp, field); | 
|  |  | 
|  | /* update counters  - first CPU gets residual*/ | 
|  | switch (field) { | 
|  | case XFS_SBS_ICOUNT: | 
|  | count = mp->m_sb.sb_icount; | 
|  | resid = do_div(count, weight); | 
|  | if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) | 
|  | goto out; | 
|  | break; | 
|  | case XFS_SBS_IFREE: | 
|  | count = mp->m_sb.sb_ifree; | 
|  | resid = do_div(count, weight); | 
|  | if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) | 
|  | goto out; | 
|  | break; | 
|  | case XFS_SBS_FDBLOCKS: | 
|  | count = mp->m_sb.sb_fdblocks; | 
|  | resid = do_div(count, weight); | 
|  | if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) | 
|  | goto out; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | count = resid = 0;	/* quiet, gcc */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | xfs_icsb_enable_counter(mp, field, count, resid); | 
|  | out: | 
|  | if (!(flags & XFS_ICSB_SB_LOCKED)) | 
|  | XFS_SB_UNLOCK(mp, s); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_icsb_modify_counters( | 
|  | xfs_mount_t	*mp, | 
|  | xfs_sb_field_t	field, | 
|  | int64_t		delta, | 
|  | int		rsvd) | 
|  | { | 
|  | xfs_icsb_cnts_t	*icsbp; | 
|  | long long	lcounter;	/* long counter for 64 bit fields */ | 
|  | int		cpu, ret = 0, s; | 
|  |  | 
|  | might_sleep(); | 
|  | again: | 
|  | cpu = get_cpu(); | 
|  | icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu); | 
|  |  | 
|  | /* | 
|  | * if the counter is disabled, go to slow path | 
|  | */ | 
|  | if (unlikely(xfs_icsb_counter_disabled(mp, field))) | 
|  | goto slow_path; | 
|  | xfs_icsb_lock_cntr(icsbp); | 
|  | if (unlikely(xfs_icsb_counter_disabled(mp, field))) { | 
|  | xfs_icsb_unlock_cntr(icsbp); | 
|  | goto slow_path; | 
|  | } | 
|  |  | 
|  | switch (field) { | 
|  | case XFS_SBS_ICOUNT: | 
|  | lcounter = icsbp->icsb_icount; | 
|  | lcounter += delta; | 
|  | if (unlikely(lcounter < 0)) | 
|  | goto balance_counter; | 
|  | icsbp->icsb_icount = lcounter; | 
|  | break; | 
|  |  | 
|  | case XFS_SBS_IFREE: | 
|  | lcounter = icsbp->icsb_ifree; | 
|  | lcounter += delta; | 
|  | if (unlikely(lcounter < 0)) | 
|  | goto balance_counter; | 
|  | icsbp->icsb_ifree = lcounter; | 
|  | break; | 
|  |  | 
|  | case XFS_SBS_FDBLOCKS: | 
|  | BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); | 
|  |  | 
|  | lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); | 
|  | lcounter += delta; | 
|  | if (unlikely(lcounter < 0)) | 
|  | goto balance_counter; | 
|  | icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  | xfs_icsb_unlock_cntr(icsbp); | 
|  | put_cpu(); | 
|  | return 0; | 
|  |  | 
|  | slow_path: | 
|  | put_cpu(); | 
|  |  | 
|  | /* | 
|  | * serialise with a mutex so we don't burn lots of cpu on | 
|  | * the superblock lock. We still need to hold the superblock | 
|  | * lock, however, when we modify the global structures. | 
|  | */ | 
|  | xfs_icsb_lock(mp); | 
|  |  | 
|  | /* | 
|  | * Now running atomically. | 
|  | * | 
|  | * If the counter is enabled, someone has beaten us to rebalancing. | 
|  | * Drop the lock and try again in the fast path.... | 
|  | */ | 
|  | if (!(xfs_icsb_counter_disabled(mp, field))) { | 
|  | xfs_icsb_unlock(mp); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The counter is currently disabled. Because we are | 
|  | * running atomically here, we know a rebalance cannot | 
|  | * be in progress. Hence we can go straight to operating | 
|  | * on the global superblock. We do not call xfs_mod_incore_sb() | 
|  | * here even though we need to get the SB_LOCK. Doing so | 
|  | * will cause us to re-enter this function and deadlock. | 
|  | * Hence we get the SB_LOCK ourselves and then call | 
|  | * xfs_mod_incore_sb_unlocked() as the unlocked path operates | 
|  | * directly on the global counters. | 
|  | */ | 
|  | s = XFS_SB_LOCK(mp); | 
|  | ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); | 
|  | XFS_SB_UNLOCK(mp, s); | 
|  |  | 
|  | /* | 
|  | * Now that we've modified the global superblock, we | 
|  | * may be able to re-enable the distributed counters | 
|  | * (e.g. lots of space just got freed). After that | 
|  | * we are done. | 
|  | */ | 
|  | if (ret != ENOSPC) | 
|  | xfs_icsb_balance_counter(mp, field, 0, 0); | 
|  | xfs_icsb_unlock(mp); | 
|  | return ret; | 
|  |  | 
|  | balance_counter: | 
|  | xfs_icsb_unlock_cntr(icsbp); | 
|  | put_cpu(); | 
|  |  | 
|  | /* | 
|  | * We may have multiple threads here if multiple per-cpu | 
|  | * counters run dry at the same time. This will mean we can | 
|  | * do more balances than strictly necessary but it is not | 
|  | * the common slowpath case. | 
|  | */ | 
|  | xfs_icsb_lock(mp); | 
|  |  | 
|  | /* | 
|  | * running atomically. | 
|  | * | 
|  | * This will leave the counter in the correct state for future | 
|  | * accesses. After the rebalance, we simply try again and our retry | 
|  | * will either succeed through the fast path or slow path without | 
|  | * another balance operation being required. | 
|  | */ | 
|  | xfs_icsb_balance_counter(mp, field, 0, delta); | 
|  | xfs_icsb_unlock(mp); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | #endif |