|  | /* | 
|  | * File:	mca.c | 
|  | * Purpose:	Generic MCA handling layer | 
|  | * | 
|  | * Copyright (C) 2003 Hewlett-Packard Co | 
|  | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | * | 
|  | * Copyright (C) 2002 Dell Inc. | 
|  | * Copyright (C) Matt Domsch <Matt_Domsch@dell.com> | 
|  | * | 
|  | * Copyright (C) 2002 Intel | 
|  | * Copyright (C) Jenna Hall <jenna.s.hall@intel.com> | 
|  | * | 
|  | * Copyright (C) 2001 Intel | 
|  | * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com> | 
|  | * | 
|  | * Copyright (C) 2000 Intel | 
|  | * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com> | 
|  | * | 
|  | * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc. | 
|  | * Copyright (C) Vijay Chander <vijay@engr.sgi.com> | 
|  | * | 
|  | * Copyright (C) 2006 FUJITSU LIMITED | 
|  | * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> | 
|  | * | 
|  | * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com> | 
|  | *	      Fixed PAL/SAL update issues, began MCA bug fixes, logging issues, | 
|  | *	      added min save state dump, added INIT handler. | 
|  | * | 
|  | * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com> | 
|  | *	      Added setup of CMCI and CPEI IRQs, logging of corrected platform | 
|  | *	      errors, completed code for logging of corrected & uncorrected | 
|  | *	      machine check errors, and updated for conformance with Nov. 2000 | 
|  | *	      revision of the SAL 3.0 spec. | 
|  | * | 
|  | * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com> | 
|  | *	      Aligned MCA stack to 16 bytes, added platform vs. CPU error flag, | 
|  | *	      set SAL default return values, changed error record structure to | 
|  | *	      linked list, added init call to sal_get_state_info_size(). | 
|  | * | 
|  | * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com> | 
|  | *	      GUID cleanups. | 
|  | * | 
|  | * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | *	      Added INIT backtrace support. | 
|  | * | 
|  | * 2003-12-08 Keith Owens <kaos@sgi.com> | 
|  | *	      smp_call_function() must not be called from interrupt context | 
|  | *	      (can deadlock on tasklist_lock). | 
|  | *	      Use keventd to call smp_call_function(). | 
|  | * | 
|  | * 2004-02-01 Keith Owens <kaos@sgi.com> | 
|  | *	      Avoid deadlock when using printk() for MCA and INIT records. | 
|  | *	      Delete all record printing code, moved to salinfo_decode in user | 
|  | *	      space.  Mark variables and functions static where possible. | 
|  | *	      Delete dead variables and functions.  Reorder to remove the need | 
|  | *	      for forward declarations and to consolidate related code. | 
|  | * | 
|  | * 2005-08-12 Keith Owens <kaos@sgi.com> | 
|  | *	      Convert MCA/INIT handlers to use per event stacks and SAL/OS | 
|  | *	      state. | 
|  | * | 
|  | * 2005-10-07 Keith Owens <kaos@sgi.com> | 
|  | *	      Add notify_die() hooks. | 
|  | * | 
|  | * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> | 
|  | *	      Add printing support for MCA/INIT. | 
|  | * | 
|  | * 2007-04-27 Russ Anderson <rja@sgi.com> | 
|  | *	      Support multiple cpus going through OS_MCA in the same event. | 
|  | */ | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/gfp.h> | 
|  |  | 
|  | #include <asm/delay.h> | 
|  | #include <asm/machvec.h> | 
|  | #include <asm/meminit.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/sal.h> | 
|  | #include <asm/mca.h> | 
|  | #include <asm/kexec.h> | 
|  |  | 
|  | #include <asm/irq.h> | 
|  | #include <asm/hw_irq.h> | 
|  | #include <asm/tlb.h> | 
|  |  | 
|  | #include "mca_drv.h" | 
|  | #include "entry.h" | 
|  |  | 
|  | #if defined(IA64_MCA_DEBUG_INFO) | 
|  | # define IA64_MCA_DEBUG(fmt...)	printk(fmt) | 
|  | #else | 
|  | # define IA64_MCA_DEBUG(fmt...) | 
|  | #endif | 
|  |  | 
|  | #define NOTIFY_INIT(event, regs, arg, spin)				\ | 
|  | do {									\ | 
|  | if ((notify_die((event), "INIT", (regs), (arg), 0, 0)		\ | 
|  | == NOTIFY_STOP) && ((spin) == 1))		\ | 
|  | ia64_mca_spin(__func__);				\ | 
|  | } while (0) | 
|  |  | 
|  | #define NOTIFY_MCA(event, regs, arg, spin)				\ | 
|  | do {									\ | 
|  | if ((notify_die((event), "MCA", (regs), (arg), 0, 0)		\ | 
|  | == NOTIFY_STOP) && ((spin) == 1))		\ | 
|  | ia64_mca_spin(__func__);				\ | 
|  | } while (0) | 
|  |  | 
|  | /* Used by mca_asm.S */ | 
|  | DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */ | 
|  | DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */ | 
|  | DEFINE_PER_CPU(u64, ia64_mca_pal_pte);	    /* PTE to map PAL code */ | 
|  | DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */ | 
|  | DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */ | 
|  |  | 
|  | unsigned long __per_cpu_mca[NR_CPUS]; | 
|  |  | 
|  | /* In mca_asm.S */ | 
|  | extern void			ia64_os_init_dispatch_monarch (void); | 
|  | extern void			ia64_os_init_dispatch_slave (void); | 
|  |  | 
|  | static int monarch_cpu = -1; | 
|  |  | 
|  | static ia64_mc_info_t		ia64_mc_info; | 
|  |  | 
|  | #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */ | 
|  | #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */ | 
|  | #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */ | 
|  | #define CPE_HISTORY_LENGTH    5 | 
|  | #define CMC_HISTORY_LENGTH    5 | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | static struct timer_list cpe_poll_timer; | 
|  | #endif | 
|  | static struct timer_list cmc_poll_timer; | 
|  | /* | 
|  | * This variable tells whether we are currently in polling mode. | 
|  | * Start with this in the wrong state so we won't play w/ timers | 
|  | * before the system is ready. | 
|  | */ | 
|  | static int cmc_polling_enabled = 1; | 
|  |  | 
|  | /* | 
|  | * Clearing this variable prevents CPE polling from getting activated | 
|  | * in mca_late_init.  Use it if your system doesn't provide a CPEI, | 
|  | * but encounters problems retrieving CPE logs.  This should only be | 
|  | * necessary for debugging. | 
|  | */ | 
|  | static int cpe_poll_enabled = 1; | 
|  |  | 
|  | extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe); | 
|  |  | 
|  | static int mca_init __initdata; | 
|  |  | 
|  | /* | 
|  | * limited & delayed printing support for MCA/INIT handler | 
|  | */ | 
|  |  | 
|  | #define mprintk(fmt...) ia64_mca_printk(fmt) | 
|  |  | 
|  | #define MLOGBUF_SIZE (512+256*NR_CPUS) | 
|  | #define MLOGBUF_MSGMAX 256 | 
|  | static char mlogbuf[MLOGBUF_SIZE]; | 
|  | static DEFINE_SPINLOCK(mlogbuf_wlock);	/* mca context only */ | 
|  | static DEFINE_SPINLOCK(mlogbuf_rlock);	/* normal context only */ | 
|  | static unsigned long mlogbuf_start; | 
|  | static unsigned long mlogbuf_end; | 
|  | static unsigned int mlogbuf_finished = 0; | 
|  | static unsigned long mlogbuf_timestamp = 0; | 
|  |  | 
|  | static int loglevel_save = -1; | 
|  | #define BREAK_LOGLEVEL(__console_loglevel)		\ | 
|  | oops_in_progress = 1;				\ | 
|  | if (loglevel_save < 0)				\ | 
|  | loglevel_save = __console_loglevel;	\ | 
|  | __console_loglevel = 15; | 
|  |  | 
|  | #define RESTORE_LOGLEVEL(__console_loglevel)		\ | 
|  | if (loglevel_save >= 0) {			\ | 
|  | __console_loglevel = loglevel_save;	\ | 
|  | loglevel_save = -1;			\ | 
|  | }						\ | 
|  | mlogbuf_finished = 0;				\ | 
|  | oops_in_progress = 0; | 
|  |  | 
|  | /* | 
|  | * Push messages into buffer, print them later if not urgent. | 
|  | */ | 
|  | void ia64_mca_printk(const char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  | int printed_len; | 
|  | char temp_buf[MLOGBUF_MSGMAX]; | 
|  | char *p; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args); | 
|  | va_end(args); | 
|  |  | 
|  | /* Copy the output into mlogbuf */ | 
|  | if (oops_in_progress) { | 
|  | /* mlogbuf was abandoned, use printk directly instead. */ | 
|  | printk(temp_buf); | 
|  | } else { | 
|  | spin_lock(&mlogbuf_wlock); | 
|  | for (p = temp_buf; *p; p++) { | 
|  | unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE; | 
|  | if (next != mlogbuf_start) { | 
|  | mlogbuf[mlogbuf_end] = *p; | 
|  | mlogbuf_end = next; | 
|  | } else { | 
|  | /* buffer full */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | mlogbuf[mlogbuf_end] = '\0'; | 
|  | spin_unlock(&mlogbuf_wlock); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(ia64_mca_printk); | 
|  |  | 
|  | /* | 
|  | * Print buffered messages. | 
|  | *  NOTE: call this after returning normal context. (ex. from salinfod) | 
|  | */ | 
|  | void ia64_mlogbuf_dump(void) | 
|  | { | 
|  | char temp_buf[MLOGBUF_MSGMAX]; | 
|  | char *p; | 
|  | unsigned long index; | 
|  | unsigned long flags; | 
|  | unsigned int printed_len; | 
|  |  | 
|  | /* Get output from mlogbuf */ | 
|  | while (mlogbuf_start != mlogbuf_end) { | 
|  | temp_buf[0] = '\0'; | 
|  | p = temp_buf; | 
|  | printed_len = 0; | 
|  |  | 
|  | spin_lock_irqsave(&mlogbuf_rlock, flags); | 
|  |  | 
|  | index = mlogbuf_start; | 
|  | while (index != mlogbuf_end) { | 
|  | *p = mlogbuf[index]; | 
|  | index = (index + 1) % MLOGBUF_SIZE; | 
|  | if (!*p) | 
|  | break; | 
|  | p++; | 
|  | if (++printed_len >= MLOGBUF_MSGMAX - 1) | 
|  | break; | 
|  | } | 
|  | *p = '\0'; | 
|  | if (temp_buf[0]) | 
|  | printk(temp_buf); | 
|  | mlogbuf_start = index; | 
|  |  | 
|  | mlogbuf_timestamp = 0; | 
|  | spin_unlock_irqrestore(&mlogbuf_rlock, flags); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(ia64_mlogbuf_dump); | 
|  |  | 
|  | /* | 
|  | * Call this if system is going to down or if immediate flushing messages to | 
|  | * console is required. (ex. recovery was failed, crash dump is going to be | 
|  | * invoked, long-wait rendezvous etc.) | 
|  | *  NOTE: this should be called from monarch. | 
|  | */ | 
|  | static void ia64_mlogbuf_finish(int wait) | 
|  | { | 
|  | BREAK_LOGLEVEL(console_loglevel); | 
|  |  | 
|  | spin_lock_init(&mlogbuf_rlock); | 
|  | ia64_mlogbuf_dump(); | 
|  | printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, " | 
|  | "MCA/INIT might be dodgy or fail.\n"); | 
|  |  | 
|  | if (!wait) | 
|  | return; | 
|  |  | 
|  | /* wait for console */ | 
|  | printk("Delaying for 5 seconds...\n"); | 
|  | udelay(5*1000000); | 
|  |  | 
|  | mlogbuf_finished = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Print buffered messages from INIT context. | 
|  | */ | 
|  | static void ia64_mlogbuf_dump_from_init(void) | 
|  | { | 
|  | if (mlogbuf_finished) | 
|  | return; | 
|  |  | 
|  | if (mlogbuf_timestamp && | 
|  | time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) { | 
|  | printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT " | 
|  | " and the system seems to be messed up.\n"); | 
|  | ia64_mlogbuf_finish(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!spin_trylock(&mlogbuf_rlock)) { | 
|  | printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. " | 
|  | "Generated messages other than stack dump will be " | 
|  | "buffered to mlogbuf and will be printed later.\n"); | 
|  | printk(KERN_ERR "INIT: If messages would not printed after " | 
|  | "this INIT, wait 30sec and assert INIT again.\n"); | 
|  | if (!mlogbuf_timestamp) | 
|  | mlogbuf_timestamp = jiffies; | 
|  | return; | 
|  | } | 
|  | spin_unlock(&mlogbuf_rlock); | 
|  | ia64_mlogbuf_dump(); | 
|  | } | 
|  |  | 
|  | static void inline | 
|  | ia64_mca_spin(const char *func) | 
|  | { | 
|  | if (monarch_cpu == smp_processor_id()) | 
|  | ia64_mlogbuf_finish(0); | 
|  | mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func); | 
|  | while (1) | 
|  | cpu_relax(); | 
|  | } | 
|  | /* | 
|  | * IA64_MCA log support | 
|  | */ | 
|  | #define IA64_MAX_LOGS		2	/* Double-buffering for nested MCAs */ | 
|  | #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */ | 
|  |  | 
|  | typedef struct ia64_state_log_s | 
|  | { | 
|  | spinlock_t	isl_lock; | 
|  | int		isl_index; | 
|  | unsigned long	isl_count; | 
|  | ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */ | 
|  | } ia64_state_log_t; | 
|  |  | 
|  | static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES]; | 
|  |  | 
|  | #define IA64_LOG_ALLOCATE(it, size) \ | 
|  | {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \ | 
|  | (ia64_err_rec_t *)alloc_bootmem(size); \ | 
|  | ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \ | 
|  | (ia64_err_rec_t *)alloc_bootmem(size);} | 
|  | #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock) | 
|  | #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s) | 
|  | #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s) | 
|  | #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index | 
|  | #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index | 
|  | #define IA64_LOG_INDEX_INC(it) \ | 
|  | {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \ | 
|  | ia64_state_log[it].isl_count++;} | 
|  | #define IA64_LOG_INDEX_DEC(it) \ | 
|  | ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index | 
|  | #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])) | 
|  | #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])) | 
|  | #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count | 
|  |  | 
|  | /* | 
|  | * ia64_log_init | 
|  | *	Reset the OS ia64 log buffer | 
|  | * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) | 
|  | * Outputs	:	None | 
|  | */ | 
|  | static void __init | 
|  | ia64_log_init(int sal_info_type) | 
|  | { | 
|  | u64	max_size = 0; | 
|  |  | 
|  | IA64_LOG_NEXT_INDEX(sal_info_type) = 0; | 
|  | IA64_LOG_LOCK_INIT(sal_info_type); | 
|  |  | 
|  | // SAL will tell us the maximum size of any error record of this type | 
|  | max_size = ia64_sal_get_state_info_size(sal_info_type); | 
|  | if (!max_size) | 
|  | /* alloc_bootmem() doesn't like zero-sized allocations! */ | 
|  | return; | 
|  |  | 
|  | // set up OS data structures to hold error info | 
|  | IA64_LOG_ALLOCATE(sal_info_type, max_size); | 
|  | memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size); | 
|  | memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ia64_log_get | 
|  | * | 
|  | *	Get the current MCA log from SAL and copy it into the OS log buffer. | 
|  | * | 
|  | *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) | 
|  | *              irq_safe    whether you can use printk at this point | 
|  | *  Outputs :   size        (total record length) | 
|  | *              *buffer     (ptr to error record) | 
|  | * | 
|  | */ | 
|  | static u64 | 
|  | ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe) | 
|  | { | 
|  | sal_log_record_header_t     *log_buffer; | 
|  | u64                         total_len = 0; | 
|  | unsigned long               s; | 
|  |  | 
|  | IA64_LOG_LOCK(sal_info_type); | 
|  |  | 
|  | /* Get the process state information */ | 
|  | log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type); | 
|  |  | 
|  | total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer); | 
|  |  | 
|  | if (total_len) { | 
|  | IA64_LOG_INDEX_INC(sal_info_type); | 
|  | IA64_LOG_UNLOCK(sal_info_type); | 
|  | if (irq_safe) { | 
|  | IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n", | 
|  | __func__, sal_info_type, total_len); | 
|  | } | 
|  | *buffer = (u8 *) log_buffer; | 
|  | return total_len; | 
|  | } else { | 
|  | IA64_LOG_UNLOCK(sal_info_type); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  ia64_mca_log_sal_error_record | 
|  | * | 
|  | *  This function retrieves a specified error record type from SAL | 
|  | *  and wakes up any processes waiting for error records. | 
|  | * | 
|  | *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE) | 
|  | *              FIXME: remove MCA and irq_safe. | 
|  | */ | 
|  | static void | 
|  | ia64_mca_log_sal_error_record(int sal_info_type) | 
|  | { | 
|  | u8 *buffer; | 
|  | sal_log_record_header_t *rh; | 
|  | u64 size; | 
|  | int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA; | 
|  | #ifdef IA64_MCA_DEBUG_INFO | 
|  | static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" }; | 
|  | #endif | 
|  |  | 
|  | size = ia64_log_get(sal_info_type, &buffer, irq_safe); | 
|  | if (!size) | 
|  | return; | 
|  |  | 
|  | salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe); | 
|  |  | 
|  | if (irq_safe) | 
|  | IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n", | 
|  | smp_processor_id(), | 
|  | sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN"); | 
|  |  | 
|  | /* Clear logs from corrected errors in case there's no user-level logger */ | 
|  | rh = (sal_log_record_header_t *)buffer; | 
|  | if (rh->severity == sal_log_severity_corrected) | 
|  | ia64_sal_clear_state_info(sal_info_type); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * search_mca_table | 
|  | *  See if the MCA surfaced in an instruction range | 
|  | *  that has been tagged as recoverable. | 
|  | * | 
|  | *  Inputs | 
|  | *	first	First address range to check | 
|  | *	last	Last address range to check | 
|  | *	ip	Instruction pointer, address we are looking for | 
|  | * | 
|  | * Return value: | 
|  | *      1 on Success (in the table)/ 0 on Failure (not in the  table) | 
|  | */ | 
|  | int | 
|  | search_mca_table (const struct mca_table_entry *first, | 
|  | const struct mca_table_entry *last, | 
|  | unsigned long ip) | 
|  | { | 
|  | const struct mca_table_entry *curr; | 
|  | u64 curr_start, curr_end; | 
|  |  | 
|  | curr = first; | 
|  | while (curr <= last) { | 
|  | curr_start = (u64) &curr->start_addr + curr->start_addr; | 
|  | curr_end = (u64) &curr->end_addr + curr->end_addr; | 
|  |  | 
|  | if ((ip >= curr_start) && (ip <= curr_end)) { | 
|  | return 1; | 
|  | } | 
|  | curr++; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Given an address, look for it in the mca tables. */ | 
|  | int mca_recover_range(unsigned long addr) | 
|  | { | 
|  | extern struct mca_table_entry __start___mca_table[]; | 
|  | extern struct mca_table_entry __stop___mca_table[]; | 
|  |  | 
|  | return search_mca_table(__start___mca_table, __stop___mca_table-1, addr); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mca_recover_range); | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  |  | 
|  | int cpe_vector = -1; | 
|  | int ia64_cpe_irq = -1; | 
|  |  | 
|  | static irqreturn_t | 
|  | ia64_mca_cpe_int_handler (int cpe_irq, void *arg) | 
|  | { | 
|  | static unsigned long	cpe_history[CPE_HISTORY_LENGTH]; | 
|  | static int		index; | 
|  | static DEFINE_SPINLOCK(cpe_history_lock); | 
|  |  | 
|  | IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", | 
|  | __func__, cpe_irq, smp_processor_id()); | 
|  |  | 
|  | /* SAL spec states this should run w/ interrupts enabled */ | 
|  | local_irq_enable(); | 
|  |  | 
|  | spin_lock(&cpe_history_lock); | 
|  | if (!cpe_poll_enabled && cpe_vector >= 0) { | 
|  |  | 
|  | int i, count = 1; /* we know 1 happened now */ | 
|  | unsigned long now = jiffies; | 
|  |  | 
|  | for (i = 0; i < CPE_HISTORY_LENGTH; i++) { | 
|  | if (now - cpe_history[i] <= HZ) | 
|  | count++; | 
|  | } | 
|  |  | 
|  | IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH); | 
|  | if (count >= CPE_HISTORY_LENGTH) { | 
|  |  | 
|  | cpe_poll_enabled = 1; | 
|  | spin_unlock(&cpe_history_lock); | 
|  | disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR)); | 
|  |  | 
|  | /* | 
|  | * Corrected errors will still be corrected, but | 
|  | * make sure there's a log somewhere that indicates | 
|  | * something is generating more than we can handle. | 
|  | */ | 
|  | printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n"); | 
|  |  | 
|  | mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL); | 
|  |  | 
|  | /* lock already released, get out now */ | 
|  | goto out; | 
|  | } else { | 
|  | cpe_history[index++] = now; | 
|  | if (index == CPE_HISTORY_LENGTH) | 
|  | index = 0; | 
|  | } | 
|  | } | 
|  | spin_unlock(&cpe_history_lock); | 
|  | out: | 
|  | /* Get the CPE error record and log it */ | 
|  | ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE); | 
|  |  | 
|  | local_irq_disable(); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_ACPI */ | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | /* | 
|  | * ia64_mca_register_cpev | 
|  | * | 
|  | *  Register the corrected platform error vector with SAL. | 
|  | * | 
|  | *  Inputs | 
|  | *      cpev        Corrected Platform Error Vector number | 
|  | * | 
|  | *  Outputs | 
|  | *      None | 
|  | */ | 
|  | void | 
|  | ia64_mca_register_cpev (int cpev) | 
|  | { | 
|  | /* Register the CPE interrupt vector with SAL */ | 
|  | struct ia64_sal_retval isrv; | 
|  |  | 
|  | isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0); | 
|  | if (isrv.status) { | 
|  | printk(KERN_ERR "Failed to register Corrected Platform " | 
|  | "Error interrupt vector with SAL (status %ld)\n", isrv.status); | 
|  | return; | 
|  | } | 
|  |  | 
|  | IA64_MCA_DEBUG("%s: corrected platform error " | 
|  | "vector %#x registered\n", __func__, cpev); | 
|  | } | 
|  | #endif /* CONFIG_ACPI */ | 
|  |  | 
|  | /* | 
|  | * ia64_mca_cmc_vector_setup | 
|  | * | 
|  | *  Setup the corrected machine check vector register in the processor. | 
|  | *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.) | 
|  | *  This function is invoked on a per-processor basis. | 
|  | * | 
|  | * Inputs | 
|  | *      None | 
|  | * | 
|  | * Outputs | 
|  | *	None | 
|  | */ | 
|  | void __cpuinit | 
|  | ia64_mca_cmc_vector_setup (void) | 
|  | { | 
|  | cmcv_reg_t	cmcv; | 
|  |  | 
|  | cmcv.cmcv_regval	= 0; | 
|  | cmcv.cmcv_mask		= 1;        /* Mask/disable interrupt at first */ | 
|  | cmcv.cmcv_vector	= IA64_CMC_VECTOR; | 
|  | ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); | 
|  |  | 
|  | IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n", | 
|  | __func__, smp_processor_id(), IA64_CMC_VECTOR); | 
|  |  | 
|  | IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n", | 
|  | __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ia64_mca_cmc_vector_disable | 
|  | * | 
|  | *  Mask the corrected machine check vector register in the processor. | 
|  | *  This function is invoked on a per-processor basis. | 
|  | * | 
|  | * Inputs | 
|  | *      dummy(unused) | 
|  | * | 
|  | * Outputs | 
|  | *	None | 
|  | */ | 
|  | static void | 
|  | ia64_mca_cmc_vector_disable (void *dummy) | 
|  | { | 
|  | cmcv_reg_t	cmcv; | 
|  |  | 
|  | cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); | 
|  |  | 
|  | cmcv.cmcv_mask = 1; /* Mask/disable interrupt */ | 
|  | ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); | 
|  |  | 
|  | IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n", | 
|  | __func__, smp_processor_id(), cmcv.cmcv_vector); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ia64_mca_cmc_vector_enable | 
|  | * | 
|  | *  Unmask the corrected machine check vector register in the processor. | 
|  | *  This function is invoked on a per-processor basis. | 
|  | * | 
|  | * Inputs | 
|  | *      dummy(unused) | 
|  | * | 
|  | * Outputs | 
|  | *	None | 
|  | */ | 
|  | static void | 
|  | ia64_mca_cmc_vector_enable (void *dummy) | 
|  | { | 
|  | cmcv_reg_t	cmcv; | 
|  |  | 
|  | cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); | 
|  |  | 
|  | cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */ | 
|  | ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); | 
|  |  | 
|  | IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n", | 
|  | __func__, smp_processor_id(), cmcv.cmcv_vector); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ia64_mca_cmc_vector_disable_keventd | 
|  | * | 
|  | * Called via keventd (smp_call_function() is not safe in interrupt context) to | 
|  | * disable the cmc interrupt vector. | 
|  | */ | 
|  | static void | 
|  | ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused) | 
|  | { | 
|  | on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ia64_mca_cmc_vector_enable_keventd | 
|  | * | 
|  | * Called via keventd (smp_call_function() is not safe in interrupt context) to | 
|  | * enable the cmc interrupt vector. | 
|  | */ | 
|  | static void | 
|  | ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused) | 
|  | { | 
|  | on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ia64_mca_wakeup | 
|  | * | 
|  | *	Send an inter-cpu interrupt to wake-up a particular cpu. | 
|  | * | 
|  | *  Inputs  :   cpuid | 
|  | *  Outputs :   None | 
|  | */ | 
|  | static void | 
|  | ia64_mca_wakeup(int cpu) | 
|  | { | 
|  | platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ia64_mca_wakeup_all | 
|  | * | 
|  | *	Wakeup all the slave cpus which have rendez'ed previously. | 
|  | * | 
|  | *  Inputs  :   None | 
|  | *  Outputs :   None | 
|  | */ | 
|  | static void | 
|  | ia64_mca_wakeup_all(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | /* Clear the Rendez checkin flag for all cpus */ | 
|  | for_each_online_cpu(cpu) { | 
|  | if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE) | 
|  | ia64_mca_wakeup(cpu); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ia64_mca_rendez_interrupt_handler | 
|  | * | 
|  | *	This is handler used to put slave processors into spinloop | 
|  | *	while the monarch processor does the mca handling and later | 
|  | *	wake each slave up once the monarch is done.  The state | 
|  | *	IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed | 
|  | *	in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates | 
|  | *	the cpu has come out of OS rendezvous. | 
|  | * | 
|  | *  Inputs  :   None | 
|  | *  Outputs :   None | 
|  | */ | 
|  | static irqreturn_t | 
|  | ia64_mca_rendez_int_handler(int rendez_irq, void *arg) | 
|  | { | 
|  | unsigned long flags; | 
|  | int cpu = smp_processor_id(); | 
|  | struct ia64_mca_notify_die nd = | 
|  | { .sos = NULL, .monarch_cpu = &monarch_cpu }; | 
|  |  | 
|  | /* Mask all interrupts */ | 
|  | local_irq_save(flags); | 
|  |  | 
|  | NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1); | 
|  |  | 
|  | ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE; | 
|  | /* Register with the SAL monarch that the slave has | 
|  | * reached SAL | 
|  | */ | 
|  | ia64_sal_mc_rendez(); | 
|  |  | 
|  | NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1); | 
|  |  | 
|  | /* Wait for the monarch cpu to exit. */ | 
|  | while (monarch_cpu != -1) | 
|  | cpu_relax();	/* spin until monarch leaves */ | 
|  |  | 
|  | NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1); | 
|  |  | 
|  | ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; | 
|  | /* Enable all interrupts */ | 
|  | local_irq_restore(flags); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ia64_mca_wakeup_int_handler | 
|  | * | 
|  | *	The interrupt handler for processing the inter-cpu interrupt to the | 
|  | *	slave cpu which was spinning in the rendez loop. | 
|  | *	Since this spinning is done by turning off the interrupts and | 
|  | *	polling on the wakeup-interrupt bit in the IRR, there is | 
|  | *	nothing useful to be done in the handler. | 
|  | * | 
|  | *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit) | 
|  | *	arg		(Interrupt handler specific argument) | 
|  | *  Outputs :   None | 
|  | * | 
|  | */ | 
|  | static irqreturn_t | 
|  | ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg) | 
|  | { | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Function pointer for extra MCA recovery */ | 
|  | int (*ia64_mca_ucmc_extension) | 
|  | (void*,struct ia64_sal_os_state*) | 
|  | = NULL; | 
|  |  | 
|  | int | 
|  | ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *)) | 
|  | { | 
|  | if (ia64_mca_ucmc_extension) | 
|  | return 1; | 
|  |  | 
|  | ia64_mca_ucmc_extension = fn; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | ia64_unreg_MCA_extension(void) | 
|  | { | 
|  | if (ia64_mca_ucmc_extension) | 
|  | ia64_mca_ucmc_extension = NULL; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(ia64_reg_MCA_extension); | 
|  | EXPORT_SYMBOL(ia64_unreg_MCA_extension); | 
|  |  | 
|  |  | 
|  | static inline void | 
|  | copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat) | 
|  | { | 
|  | u64 fslot, tslot, nat; | 
|  | *tr = *fr; | 
|  | fslot = ((unsigned long)fr >> 3) & 63; | 
|  | tslot = ((unsigned long)tr >> 3) & 63; | 
|  | *tnat &= ~(1UL << tslot); | 
|  | nat = (fnat >> fslot) & 1; | 
|  | *tnat |= (nat << tslot); | 
|  | } | 
|  |  | 
|  | /* Change the comm field on the MCA/INT task to include the pid that | 
|  | * was interrupted, it makes for easier debugging.  If that pid was 0 | 
|  | * (swapper or nested MCA/INIT) then use the start of the previous comm | 
|  | * field suffixed with its cpu. | 
|  | */ | 
|  |  | 
|  | static void | 
|  | ia64_mca_modify_comm(const struct task_struct *previous_current) | 
|  | { | 
|  | char *p, comm[sizeof(current->comm)]; | 
|  | if (previous_current->pid) | 
|  | snprintf(comm, sizeof(comm), "%s %d", | 
|  | current->comm, previous_current->pid); | 
|  | else { | 
|  | int l; | 
|  | if ((p = strchr(previous_current->comm, ' '))) | 
|  | l = p - previous_current->comm; | 
|  | else | 
|  | l = strlen(previous_current->comm); | 
|  | snprintf(comm, sizeof(comm), "%s %*s %d", | 
|  | current->comm, l, previous_current->comm, | 
|  | task_thread_info(previous_current)->cpu); | 
|  | } | 
|  | memcpy(current->comm, comm, sizeof(current->comm)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos, | 
|  | unsigned long *nat) | 
|  | { | 
|  | const pal_min_state_area_t *ms = sos->pal_min_state; | 
|  | const u64 *bank; | 
|  |  | 
|  | /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use | 
|  | * pmsa_{xip,xpsr,xfs} | 
|  | */ | 
|  | if (ia64_psr(regs)->ic) { | 
|  | regs->cr_iip = ms->pmsa_iip; | 
|  | regs->cr_ipsr = ms->pmsa_ipsr; | 
|  | regs->cr_ifs = ms->pmsa_ifs; | 
|  | } else { | 
|  | regs->cr_iip = ms->pmsa_xip; | 
|  | regs->cr_ipsr = ms->pmsa_xpsr; | 
|  | regs->cr_ifs = ms->pmsa_xfs; | 
|  |  | 
|  | sos->iip = ms->pmsa_iip; | 
|  | sos->ipsr = ms->pmsa_ipsr; | 
|  | sos->ifs = ms->pmsa_ifs; | 
|  | } | 
|  | regs->pr = ms->pmsa_pr; | 
|  | regs->b0 = ms->pmsa_br0; | 
|  | regs->ar_rsc = ms->pmsa_rsc; | 
|  | copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, ®s->r1, nat); | 
|  | copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, ®s->r2, nat); | 
|  | copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, ®s->r3, nat); | 
|  | copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, ®s->r8, nat); | 
|  | copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, ®s->r9, nat); | 
|  | copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, ®s->r10, nat); | 
|  | copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, ®s->r11, nat); | 
|  | copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, ®s->r12, nat); | 
|  | copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, ®s->r13, nat); | 
|  | copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, ®s->r14, nat); | 
|  | copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, ®s->r15, nat); | 
|  | if (ia64_psr(regs)->bn) | 
|  | bank = ms->pmsa_bank1_gr; | 
|  | else | 
|  | bank = ms->pmsa_bank0_gr; | 
|  | copy_reg(&bank[16-16], ms->pmsa_nat_bits, ®s->r16, nat); | 
|  | copy_reg(&bank[17-16], ms->pmsa_nat_bits, ®s->r17, nat); | 
|  | copy_reg(&bank[18-16], ms->pmsa_nat_bits, ®s->r18, nat); | 
|  | copy_reg(&bank[19-16], ms->pmsa_nat_bits, ®s->r19, nat); | 
|  | copy_reg(&bank[20-16], ms->pmsa_nat_bits, ®s->r20, nat); | 
|  | copy_reg(&bank[21-16], ms->pmsa_nat_bits, ®s->r21, nat); | 
|  | copy_reg(&bank[22-16], ms->pmsa_nat_bits, ®s->r22, nat); | 
|  | copy_reg(&bank[23-16], ms->pmsa_nat_bits, ®s->r23, nat); | 
|  | copy_reg(&bank[24-16], ms->pmsa_nat_bits, ®s->r24, nat); | 
|  | copy_reg(&bank[25-16], ms->pmsa_nat_bits, ®s->r25, nat); | 
|  | copy_reg(&bank[26-16], ms->pmsa_nat_bits, ®s->r26, nat); | 
|  | copy_reg(&bank[27-16], ms->pmsa_nat_bits, ®s->r27, nat); | 
|  | copy_reg(&bank[28-16], ms->pmsa_nat_bits, ®s->r28, nat); | 
|  | copy_reg(&bank[29-16], ms->pmsa_nat_bits, ®s->r29, nat); | 
|  | copy_reg(&bank[30-16], ms->pmsa_nat_bits, ®s->r30, nat); | 
|  | copy_reg(&bank[31-16], ms->pmsa_nat_bits, ®s->r31, nat); | 
|  | } | 
|  |  | 
|  | /* On entry to this routine, we are running on the per cpu stack, see | 
|  | * mca_asm.h.  The original stack has not been touched by this event.  Some of | 
|  | * the original stack's registers will be in the RBS on this stack.  This stack | 
|  | * also contains a partial pt_regs and switch_stack, the rest of the data is in | 
|  | * PAL minstate. | 
|  | * | 
|  | * The first thing to do is modify the original stack to look like a blocked | 
|  | * task so we can run backtrace on the original task.  Also mark the per cpu | 
|  | * stack as current to ensure that we use the correct task state, it also means | 
|  | * that we can do backtrace on the MCA/INIT handler code itself. | 
|  | */ | 
|  |  | 
|  | static struct task_struct * | 
|  | ia64_mca_modify_original_stack(struct pt_regs *regs, | 
|  | const struct switch_stack *sw, | 
|  | struct ia64_sal_os_state *sos, | 
|  | const char *type) | 
|  | { | 
|  | char *p; | 
|  | ia64_va va; | 
|  | extern char ia64_leave_kernel[];	/* Need asm address, not function descriptor */ | 
|  | const pal_min_state_area_t *ms = sos->pal_min_state; | 
|  | struct task_struct *previous_current; | 
|  | struct pt_regs *old_regs; | 
|  | struct switch_stack *old_sw; | 
|  | unsigned size = sizeof(struct pt_regs) + | 
|  | sizeof(struct switch_stack) + 16; | 
|  | unsigned long *old_bspstore, *old_bsp; | 
|  | unsigned long *new_bspstore, *new_bsp; | 
|  | unsigned long old_unat, old_rnat, new_rnat, nat; | 
|  | u64 slots, loadrs = regs->loadrs; | 
|  | u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1]; | 
|  | u64 ar_bspstore = regs->ar_bspstore; | 
|  | u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16); | 
|  | const char *msg; | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | previous_current = curr_task(cpu); | 
|  | set_curr_task(cpu, current); | 
|  | if ((p = strchr(current->comm, ' '))) | 
|  | *p = '\0'; | 
|  |  | 
|  | /* Best effort attempt to cope with MCA/INIT delivered while in | 
|  | * physical mode. | 
|  | */ | 
|  | regs->cr_ipsr = ms->pmsa_ipsr; | 
|  | if (ia64_psr(regs)->dt == 0) { | 
|  | va.l = r12; | 
|  | if (va.f.reg == 0) { | 
|  | va.f.reg = 7; | 
|  | r12 = va.l; | 
|  | } | 
|  | va.l = r13; | 
|  | if (va.f.reg == 0) { | 
|  | va.f.reg = 7; | 
|  | r13 = va.l; | 
|  | } | 
|  | } | 
|  | if (ia64_psr(regs)->rt == 0) { | 
|  | va.l = ar_bspstore; | 
|  | if (va.f.reg == 0) { | 
|  | va.f.reg = 7; | 
|  | ar_bspstore = va.l; | 
|  | } | 
|  | va.l = ar_bsp; | 
|  | if (va.f.reg == 0) { | 
|  | va.f.reg = 7; | 
|  | ar_bsp = va.l; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers | 
|  | * have been copied to the old stack, the old stack may fail the | 
|  | * validation tests below.  So ia64_old_stack() must restore the dirty | 
|  | * registers from the new stack.  The old and new bspstore probably | 
|  | * have different alignments, so loadrs calculated on the old bsp | 
|  | * cannot be used to restore from the new bsp.  Calculate a suitable | 
|  | * loadrs for the new stack and save it in the new pt_regs, where | 
|  | * ia64_old_stack() can get it. | 
|  | */ | 
|  | old_bspstore = (unsigned long *)ar_bspstore; | 
|  | old_bsp = (unsigned long *)ar_bsp; | 
|  | slots = ia64_rse_num_regs(old_bspstore, old_bsp); | 
|  | new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET); | 
|  | new_bsp = ia64_rse_skip_regs(new_bspstore, slots); | 
|  | regs->loadrs = (new_bsp - new_bspstore) * 8 << 16; | 
|  |  | 
|  | /* Verify the previous stack state before we change it */ | 
|  | if (user_mode(regs)) { | 
|  | msg = "occurred in user space"; | 
|  | /* previous_current is guaranteed to be valid when the task was | 
|  | * in user space, so ... | 
|  | */ | 
|  | ia64_mca_modify_comm(previous_current); | 
|  | goto no_mod; | 
|  | } | 
|  |  | 
|  | if (r13 != sos->prev_IA64_KR_CURRENT) { | 
|  | msg = "inconsistent previous current and r13"; | 
|  | goto no_mod; | 
|  | } | 
|  |  | 
|  | if (!mca_recover_range(ms->pmsa_iip)) { | 
|  | if ((r12 - r13) >= KERNEL_STACK_SIZE) { | 
|  | msg = "inconsistent r12 and r13"; | 
|  | goto no_mod; | 
|  | } | 
|  | if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) { | 
|  | msg = "inconsistent ar.bspstore and r13"; | 
|  | goto no_mod; | 
|  | } | 
|  | va.p = old_bspstore; | 
|  | if (va.f.reg < 5) { | 
|  | msg = "old_bspstore is in the wrong region"; | 
|  | goto no_mod; | 
|  | } | 
|  | if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) { | 
|  | msg = "inconsistent ar.bsp and r13"; | 
|  | goto no_mod; | 
|  | } | 
|  | size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8; | 
|  | if (ar_bspstore + size > r12) { | 
|  | msg = "no room for blocked state"; | 
|  | goto no_mod; | 
|  | } | 
|  | } | 
|  |  | 
|  | ia64_mca_modify_comm(previous_current); | 
|  |  | 
|  | /* Make the original task look blocked.  First stack a struct pt_regs, | 
|  | * describing the state at the time of interrupt.  mca_asm.S built a | 
|  | * partial pt_regs, copy it and fill in the blanks using minstate. | 
|  | */ | 
|  | p = (char *)r12 - sizeof(*regs); | 
|  | old_regs = (struct pt_regs *)p; | 
|  | memcpy(old_regs, regs, sizeof(*regs)); | 
|  | old_regs->loadrs = loadrs; | 
|  | old_unat = old_regs->ar_unat; | 
|  | finish_pt_regs(old_regs, sos, &old_unat); | 
|  |  | 
|  | /* Next stack a struct switch_stack.  mca_asm.S built a partial | 
|  | * switch_stack, copy it and fill in the blanks using pt_regs and | 
|  | * minstate. | 
|  | * | 
|  | * In the synthesized switch_stack, b0 points to ia64_leave_kernel, | 
|  | * ar.pfs is set to 0. | 
|  | * | 
|  | * unwind.c::unw_unwind() does special processing for interrupt frames. | 
|  | * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate | 
|  | * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not | 
|  | * that this is documented, of course.  Set PRED_NON_SYSCALL in the | 
|  | * switch_stack on the original stack so it will unwind correctly when | 
|  | * unwind.c reads pt_regs. | 
|  | * | 
|  | * thread.ksp is updated to point to the synthesized switch_stack. | 
|  | */ | 
|  | p -= sizeof(struct switch_stack); | 
|  | old_sw = (struct switch_stack *)p; | 
|  | memcpy(old_sw, sw, sizeof(*sw)); | 
|  | old_sw->caller_unat = old_unat; | 
|  | old_sw->ar_fpsr = old_regs->ar_fpsr; | 
|  | copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat); | 
|  | copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat); | 
|  | copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat); | 
|  | copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat); | 
|  | old_sw->b0 = (u64)ia64_leave_kernel; | 
|  | old_sw->b1 = ms->pmsa_br1; | 
|  | old_sw->ar_pfs = 0; | 
|  | old_sw->ar_unat = old_unat; | 
|  | old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL); | 
|  | previous_current->thread.ksp = (u64)p - 16; | 
|  |  | 
|  | /* Finally copy the original stack's registers back to its RBS. | 
|  | * Registers from ar.bspstore through ar.bsp at the time of the event | 
|  | * are in the current RBS, copy them back to the original stack.  The | 
|  | * copy must be done register by register because the original bspstore | 
|  | * and the current one have different alignments, so the saved RNAT | 
|  | * data occurs at different places. | 
|  | * | 
|  | * mca_asm does cover, so the old_bsp already includes all registers at | 
|  | * the time of MCA/INIT.  It also does flushrs, so all registers before | 
|  | * this function have been written to backing store on the MCA/INIT | 
|  | * stack. | 
|  | */ | 
|  | new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore)); | 
|  | old_rnat = regs->ar_rnat; | 
|  | while (slots--) { | 
|  | if (ia64_rse_is_rnat_slot(new_bspstore)) { | 
|  | new_rnat = ia64_get_rnat(new_bspstore++); | 
|  | } | 
|  | if (ia64_rse_is_rnat_slot(old_bspstore)) { | 
|  | *old_bspstore++ = old_rnat; | 
|  | old_rnat = 0; | 
|  | } | 
|  | nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL; | 
|  | old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore)); | 
|  | old_rnat |= (nat << ia64_rse_slot_num(old_bspstore)); | 
|  | *old_bspstore++ = *new_bspstore++; | 
|  | } | 
|  | old_sw->ar_bspstore = (unsigned long)old_bspstore; | 
|  | old_sw->ar_rnat = old_rnat; | 
|  |  | 
|  | sos->prev_task = previous_current; | 
|  | return previous_current; | 
|  |  | 
|  | no_mod: | 
|  | mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n", | 
|  | smp_processor_id(), type, msg); | 
|  | old_unat = regs->ar_unat; | 
|  | finish_pt_regs(regs, sos, &old_unat); | 
|  | return previous_current; | 
|  | } | 
|  |  | 
|  | /* The monarch/slave interaction is based on monarch_cpu and requires that all | 
|  | * slaves have entered rendezvous before the monarch leaves.  If any cpu has | 
|  | * not entered rendezvous yet then wait a bit.  The assumption is that any | 
|  | * slave that has not rendezvoused after a reasonable time is never going to do | 
|  | * so.  In this context, slave includes cpus that respond to the MCA rendezvous | 
|  | * interrupt, as well as cpus that receive the INIT slave event. | 
|  | */ | 
|  |  | 
|  | static void | 
|  | ia64_wait_for_slaves(int monarch, const char *type) | 
|  | { | 
|  | int c, i , wait; | 
|  |  | 
|  | /* | 
|  | * wait 5 seconds total for slaves (arbitrary) | 
|  | */ | 
|  | for (i = 0; i < 5000; i++) { | 
|  | wait = 0; | 
|  | for_each_online_cpu(c) { | 
|  | if (c == monarch) | 
|  | continue; | 
|  | if (ia64_mc_info.imi_rendez_checkin[c] | 
|  | == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { | 
|  | udelay(1000);		/* short wait */ | 
|  | wait = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!wait) | 
|  | goto all_in; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Maybe slave(s) dead. Print buffered messages immediately. | 
|  | */ | 
|  | ia64_mlogbuf_finish(0); | 
|  | mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type); | 
|  | for_each_online_cpu(c) { | 
|  | if (c == monarch) | 
|  | continue; | 
|  | if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) | 
|  | mprintk(" %d", c); | 
|  | } | 
|  | mprintk("\n"); | 
|  | return; | 
|  |  | 
|  | all_in: | 
|  | mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /*  mca_insert_tr | 
|  | * | 
|  | *  Switch rid when TR reload and needed! | 
|  | *  iord: 1: itr, 2: itr; | 
|  | * | 
|  | */ | 
|  | static void mca_insert_tr(u64 iord) | 
|  | { | 
|  |  | 
|  | int i; | 
|  | u64 old_rr; | 
|  | struct ia64_tr_entry *p; | 
|  | unsigned long psr; | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | if (!ia64_idtrs[cpu]) | 
|  | return; | 
|  |  | 
|  | psr = ia64_clear_ic(); | 
|  | for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) { | 
|  | p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX; | 
|  | if (p->pte & 0x1) { | 
|  | old_rr = ia64_get_rr(p->ifa); | 
|  | if (old_rr != p->rr) { | 
|  | ia64_set_rr(p->ifa, p->rr); | 
|  | ia64_srlz_d(); | 
|  | } | 
|  | ia64_ptr(iord, p->ifa, p->itir >> 2); | 
|  | ia64_srlz_i(); | 
|  | if (iord & 0x1) { | 
|  | ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2); | 
|  | ia64_srlz_i(); | 
|  | } | 
|  | if (iord & 0x2) { | 
|  | ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2); | 
|  | ia64_srlz_i(); | 
|  | } | 
|  | if (old_rr != p->rr) { | 
|  | ia64_set_rr(p->ifa, old_rr); | 
|  | ia64_srlz_d(); | 
|  | } | 
|  | } | 
|  | } | 
|  | ia64_set_psr(psr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ia64_mca_handler | 
|  | * | 
|  | *	This is uncorrectable machine check handler called from OS_MCA | 
|  | *	dispatch code which is in turn called from SAL_CHECK(). | 
|  | *	This is the place where the core of OS MCA handling is done. | 
|  | *	Right now the logs are extracted and displayed in a well-defined | 
|  | *	format. This handler code is supposed to be run only on the | 
|  | *	monarch processor. Once the monarch is done with MCA handling | 
|  | *	further MCA logging is enabled by clearing logs. | 
|  | *	Monarch also has the duty of sending wakeup-IPIs to pull the | 
|  | *	slave processors out of rendezvous spinloop. | 
|  | * | 
|  | *	If multiple processors call into OS_MCA, the first will become | 
|  | *	the monarch.  Subsequent cpus will be recorded in the mca_cpu | 
|  | *	bitmask.  After the first monarch has processed its MCA, it | 
|  | *	will wake up the next cpu in the mca_cpu bitmask and then go | 
|  | *	into the rendezvous loop.  When all processors have serviced | 
|  | *	their MCA, the last monarch frees up the rest of the processors. | 
|  | */ | 
|  | void | 
|  | ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw, | 
|  | struct ia64_sal_os_state *sos) | 
|  | { | 
|  | int recover, cpu = smp_processor_id(); | 
|  | struct task_struct *previous_current; | 
|  | struct ia64_mca_notify_die nd = | 
|  | { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover }; | 
|  | static atomic_t mca_count; | 
|  | static cpumask_t mca_cpu; | 
|  |  | 
|  | if (atomic_add_return(1, &mca_count) == 1) { | 
|  | monarch_cpu = cpu; | 
|  | sos->monarch = 1; | 
|  | } else { | 
|  | cpu_set(cpu, mca_cpu); | 
|  | sos->monarch = 0; | 
|  | } | 
|  | mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d " | 
|  | "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch); | 
|  |  | 
|  | previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA"); | 
|  |  | 
|  | NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1); | 
|  |  | 
|  | ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA; | 
|  | if (sos->monarch) { | 
|  | ia64_wait_for_slaves(cpu, "MCA"); | 
|  |  | 
|  | /* Wakeup all the processors which are spinning in the | 
|  | * rendezvous loop.  They will leave SAL, then spin in the OS | 
|  | * with interrupts disabled until this monarch cpu leaves the | 
|  | * MCA handler.  That gets control back to the OS so we can | 
|  | * backtrace the other cpus, backtrace when spinning in SAL | 
|  | * does not work. | 
|  | */ | 
|  | ia64_mca_wakeup_all(); | 
|  | } else { | 
|  | while (cpu_isset(cpu, mca_cpu)) | 
|  | cpu_relax();	/* spin until monarch wakes us */ | 
|  | } | 
|  |  | 
|  | NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1); | 
|  |  | 
|  | /* Get the MCA error record and log it */ | 
|  | ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA); | 
|  |  | 
|  | /* MCA error recovery */ | 
|  | recover = (ia64_mca_ucmc_extension | 
|  | && ia64_mca_ucmc_extension( | 
|  | IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA), | 
|  | sos)); | 
|  |  | 
|  | if (recover) { | 
|  | sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA); | 
|  | rh->severity = sal_log_severity_corrected; | 
|  | ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA); | 
|  | sos->os_status = IA64_MCA_CORRECTED; | 
|  | } else { | 
|  | /* Dump buffered message to console */ | 
|  | ia64_mlogbuf_finish(1); | 
|  | } | 
|  |  | 
|  | if (__get_cpu_var(ia64_mca_tr_reload)) { | 
|  | mca_insert_tr(0x1); /*Reload dynamic itrs*/ | 
|  | mca_insert_tr(0x2); /*Reload dynamic itrs*/ | 
|  | } | 
|  |  | 
|  | NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1); | 
|  |  | 
|  | if (atomic_dec_return(&mca_count) > 0) { | 
|  | int i; | 
|  |  | 
|  | /* wake up the next monarch cpu, | 
|  | * and put this cpu in the rendez loop. | 
|  | */ | 
|  | for_each_online_cpu(i) { | 
|  | if (cpu_isset(i, mca_cpu)) { | 
|  | monarch_cpu = i; | 
|  | cpu_clear(i, mca_cpu);	/* wake next cpu */ | 
|  | while (monarch_cpu != -1) | 
|  | cpu_relax();	/* spin until last cpu leaves */ | 
|  | set_curr_task(cpu, previous_current); | 
|  | ia64_mc_info.imi_rendez_checkin[cpu] | 
|  | = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | set_curr_task(cpu, previous_current); | 
|  | ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; | 
|  | monarch_cpu = -1;	/* This frees the slaves and previous monarchs */ | 
|  | } | 
|  |  | 
|  | static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd); | 
|  | static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd); | 
|  |  | 
|  | /* | 
|  | * ia64_mca_cmc_int_handler | 
|  | * | 
|  | *  This is corrected machine check interrupt handler. | 
|  | *	Right now the logs are extracted and displayed in a well-defined | 
|  | *	format. | 
|  | * | 
|  | * Inputs | 
|  | *      interrupt number | 
|  | *      client data arg ptr | 
|  | * | 
|  | * Outputs | 
|  | *	None | 
|  | */ | 
|  | static irqreturn_t | 
|  | ia64_mca_cmc_int_handler(int cmc_irq, void *arg) | 
|  | { | 
|  | static unsigned long	cmc_history[CMC_HISTORY_LENGTH]; | 
|  | static int		index; | 
|  | static DEFINE_SPINLOCK(cmc_history_lock); | 
|  |  | 
|  | IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", | 
|  | __func__, cmc_irq, smp_processor_id()); | 
|  |  | 
|  | /* SAL spec states this should run w/ interrupts enabled */ | 
|  | local_irq_enable(); | 
|  |  | 
|  | spin_lock(&cmc_history_lock); | 
|  | if (!cmc_polling_enabled) { | 
|  | int i, count = 1; /* we know 1 happened now */ | 
|  | unsigned long now = jiffies; | 
|  |  | 
|  | for (i = 0; i < CMC_HISTORY_LENGTH; i++) { | 
|  | if (now - cmc_history[i] <= HZ) | 
|  | count++; | 
|  | } | 
|  |  | 
|  | IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH); | 
|  | if (count >= CMC_HISTORY_LENGTH) { | 
|  |  | 
|  | cmc_polling_enabled = 1; | 
|  | spin_unlock(&cmc_history_lock); | 
|  | /* If we're being hit with CMC interrupts, we won't | 
|  | * ever execute the schedule_work() below.  Need to | 
|  | * disable CMC interrupts on this processor now. | 
|  | */ | 
|  | ia64_mca_cmc_vector_disable(NULL); | 
|  | schedule_work(&cmc_disable_work); | 
|  |  | 
|  | /* | 
|  | * Corrected errors will still be corrected, but | 
|  | * make sure there's a log somewhere that indicates | 
|  | * something is generating more than we can handle. | 
|  | */ | 
|  | printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n"); | 
|  |  | 
|  | mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); | 
|  |  | 
|  | /* lock already released, get out now */ | 
|  | goto out; | 
|  | } else { | 
|  | cmc_history[index++] = now; | 
|  | if (index == CMC_HISTORY_LENGTH) | 
|  | index = 0; | 
|  | } | 
|  | } | 
|  | spin_unlock(&cmc_history_lock); | 
|  | out: | 
|  | /* Get the CMC error record and log it */ | 
|  | ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  ia64_mca_cmc_int_caller | 
|  | * | 
|  | * 	Triggered by sw interrupt from CMC polling routine.  Calls | 
|  | * 	real interrupt handler and either triggers a sw interrupt | 
|  | * 	on the next cpu or does cleanup at the end. | 
|  | * | 
|  | * Inputs | 
|  | *	interrupt number | 
|  | *	client data arg ptr | 
|  | * Outputs | 
|  | * 	handled | 
|  | */ | 
|  | static irqreturn_t | 
|  | ia64_mca_cmc_int_caller(int cmc_irq, void *arg) | 
|  | { | 
|  | static int start_count = -1; | 
|  | unsigned int cpuid; | 
|  |  | 
|  | cpuid = smp_processor_id(); | 
|  |  | 
|  | /* If first cpu, update count */ | 
|  | if (start_count == -1) | 
|  | start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC); | 
|  |  | 
|  | ia64_mca_cmc_int_handler(cmc_irq, arg); | 
|  |  | 
|  | cpuid = cpumask_next(cpuid+1, cpu_online_mask); | 
|  |  | 
|  | if (cpuid < nr_cpu_ids) { | 
|  | platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); | 
|  | } else { | 
|  | /* If no log record, switch out of polling mode */ | 
|  | if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) { | 
|  |  | 
|  | printk(KERN_WARNING "Returning to interrupt driven CMC handler\n"); | 
|  | schedule_work(&cmc_enable_work); | 
|  | cmc_polling_enabled = 0; | 
|  |  | 
|  | } else { | 
|  |  | 
|  | mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); | 
|  | } | 
|  |  | 
|  | start_count = -1; | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  ia64_mca_cmc_poll | 
|  | * | 
|  | *	Poll for Corrected Machine Checks (CMCs) | 
|  | * | 
|  | * Inputs   :   dummy(unused) | 
|  | * Outputs  :   None | 
|  | * | 
|  | */ | 
|  | static void | 
|  | ia64_mca_cmc_poll (unsigned long dummy) | 
|  | { | 
|  | /* Trigger a CMC interrupt cascade  */ | 
|  | platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  ia64_mca_cpe_int_caller | 
|  | * | 
|  | * 	Triggered by sw interrupt from CPE polling routine.  Calls | 
|  | * 	real interrupt handler and either triggers a sw interrupt | 
|  | * 	on the next cpu or does cleanup at the end. | 
|  | * | 
|  | * Inputs | 
|  | *	interrupt number | 
|  | *	client data arg ptr | 
|  | * Outputs | 
|  | * 	handled | 
|  | */ | 
|  | #ifdef CONFIG_ACPI | 
|  |  | 
|  | static irqreturn_t | 
|  | ia64_mca_cpe_int_caller(int cpe_irq, void *arg) | 
|  | { | 
|  | static int start_count = -1; | 
|  | static int poll_time = MIN_CPE_POLL_INTERVAL; | 
|  | unsigned int cpuid; | 
|  |  | 
|  | cpuid = smp_processor_id(); | 
|  |  | 
|  | /* If first cpu, update count */ | 
|  | if (start_count == -1) | 
|  | start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE); | 
|  |  | 
|  | ia64_mca_cpe_int_handler(cpe_irq, arg); | 
|  |  | 
|  | cpuid = cpumask_next(cpuid+1, cpu_online_mask); | 
|  |  | 
|  | if (cpuid < NR_CPUS) { | 
|  | platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); | 
|  | } else { | 
|  | /* | 
|  | * If a log was recorded, increase our polling frequency, | 
|  | * otherwise, backoff or return to interrupt mode. | 
|  | */ | 
|  | if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) { | 
|  | poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2); | 
|  | } else if (cpe_vector < 0) { | 
|  | poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2); | 
|  | } else { | 
|  | poll_time = MIN_CPE_POLL_INTERVAL; | 
|  |  | 
|  | printk(KERN_WARNING "Returning to interrupt driven CPE handler\n"); | 
|  | enable_irq(local_vector_to_irq(IA64_CPE_VECTOR)); | 
|  | cpe_poll_enabled = 0; | 
|  | } | 
|  |  | 
|  | if (cpe_poll_enabled) | 
|  | mod_timer(&cpe_poll_timer, jiffies + poll_time); | 
|  | start_count = -1; | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  ia64_mca_cpe_poll | 
|  | * | 
|  | *	Poll for Corrected Platform Errors (CPEs), trigger interrupt | 
|  | *	on first cpu, from there it will trickle through all the cpus. | 
|  | * | 
|  | * Inputs   :   dummy(unused) | 
|  | * Outputs  :   None | 
|  | * | 
|  | */ | 
|  | static void | 
|  | ia64_mca_cpe_poll (unsigned long dummy) | 
|  | { | 
|  | /* Trigger a CPE interrupt cascade  */ | 
|  | platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_ACPI */ | 
|  |  | 
|  | static int | 
|  | default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data) | 
|  | { | 
|  | int c; | 
|  | struct task_struct *g, *t; | 
|  | if (val != DIE_INIT_MONARCH_PROCESS) | 
|  | return NOTIFY_DONE; | 
|  | #ifdef CONFIG_KEXEC | 
|  | if (atomic_read(&kdump_in_progress)) | 
|  | return NOTIFY_DONE; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * FIXME: mlogbuf will brim over with INIT stack dumps. | 
|  | * To enable show_stack from INIT, we use oops_in_progress which should | 
|  | * be used in real oops. This would cause something wrong after INIT. | 
|  | */ | 
|  | BREAK_LOGLEVEL(console_loglevel); | 
|  | ia64_mlogbuf_dump_from_init(); | 
|  |  | 
|  | printk(KERN_ERR "Processes interrupted by INIT -"); | 
|  | for_each_online_cpu(c) { | 
|  | struct ia64_sal_os_state *s; | 
|  | t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET); | 
|  | s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET); | 
|  | g = s->prev_task; | 
|  | if (g) { | 
|  | if (g->pid) | 
|  | printk(" %d", g->pid); | 
|  | else | 
|  | printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g); | 
|  | } | 
|  | } | 
|  | printk("\n\n"); | 
|  | if (read_trylock(&tasklist_lock)) { | 
|  | do_each_thread (g, t) { | 
|  | printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm); | 
|  | show_stack(t, NULL); | 
|  | } while_each_thread (g, t); | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  | /* FIXME: This will not restore zapped printk locks. */ | 
|  | RESTORE_LOGLEVEL(console_loglevel); | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * C portion of the OS INIT handler | 
|  | * | 
|  | * Called from ia64_os_init_dispatch | 
|  | * | 
|  | * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for | 
|  | * this event.  This code is used for both monarch and slave INIT events, see | 
|  | * sos->monarch. | 
|  | * | 
|  | * All INIT events switch to the INIT stack and change the previous process to | 
|  | * blocked status.  If one of the INIT events is the monarch then we are | 
|  | * probably processing the nmi button/command.  Use the monarch cpu to dump all | 
|  | * the processes.  The slave INIT events all spin until the monarch cpu | 
|  | * returns.  We can also get INIT slave events for MCA, in which case the MCA | 
|  | * process is the monarch. | 
|  | */ | 
|  |  | 
|  | void | 
|  | ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw, | 
|  | struct ia64_sal_os_state *sos) | 
|  | { | 
|  | static atomic_t slaves; | 
|  | static atomic_t monarchs; | 
|  | struct task_struct *previous_current; | 
|  | int cpu = smp_processor_id(); | 
|  | struct ia64_mca_notify_die nd = | 
|  | { .sos = sos, .monarch_cpu = &monarch_cpu }; | 
|  |  | 
|  | NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0); | 
|  |  | 
|  | mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n", | 
|  | sos->proc_state_param, cpu, sos->monarch); | 
|  | salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0); | 
|  |  | 
|  | previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT"); | 
|  | sos->os_status = IA64_INIT_RESUME; | 
|  |  | 
|  | /* FIXME: Workaround for broken proms that drive all INIT events as | 
|  | * slaves.  The last slave that enters is promoted to be a monarch. | 
|  | * Remove this code in September 2006, that gives platforms a year to | 
|  | * fix their proms and get their customers updated. | 
|  | */ | 
|  | if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) { | 
|  | mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n", | 
|  | __func__, cpu); | 
|  | atomic_dec(&slaves); | 
|  | sos->monarch = 1; | 
|  | } | 
|  |  | 
|  | /* FIXME: Workaround for broken proms that drive all INIT events as | 
|  | * monarchs.  Second and subsequent monarchs are demoted to slaves. | 
|  | * Remove this code in September 2006, that gives platforms a year to | 
|  | * fix their proms and get their customers updated. | 
|  | */ | 
|  | if (sos->monarch && atomic_add_return(1, &monarchs) > 1) { | 
|  | mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n", | 
|  | __func__, cpu); | 
|  | atomic_dec(&monarchs); | 
|  | sos->monarch = 0; | 
|  | } | 
|  |  | 
|  | if (!sos->monarch) { | 
|  | ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT; | 
|  |  | 
|  | #ifdef CONFIG_KEXEC | 
|  | while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress)) | 
|  | udelay(1000); | 
|  | #else | 
|  | while (monarch_cpu == -1) | 
|  | cpu_relax();	/* spin until monarch enters */ | 
|  | #endif | 
|  |  | 
|  | NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1); | 
|  | NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1); | 
|  |  | 
|  | #ifdef CONFIG_KEXEC | 
|  | while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress)) | 
|  | udelay(1000); | 
|  | #else | 
|  | while (monarch_cpu != -1) | 
|  | cpu_relax();	/* spin until monarch leaves */ | 
|  | #endif | 
|  |  | 
|  | NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1); | 
|  |  | 
|  | mprintk("Slave on cpu %d returning to normal service.\n", cpu); | 
|  | set_curr_task(cpu, previous_current); | 
|  | ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; | 
|  | atomic_dec(&slaves); | 
|  | return; | 
|  | } | 
|  |  | 
|  | monarch_cpu = cpu; | 
|  | NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1); | 
|  |  | 
|  | /* | 
|  | * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be | 
|  | * generated via the BMC's command-line interface, but since the console is on the | 
|  | * same serial line, the user will need some time to switch out of the BMC before | 
|  | * the dump begins. | 
|  | */ | 
|  | mprintk("Delaying for 5 seconds...\n"); | 
|  | udelay(5*1000000); | 
|  | ia64_wait_for_slaves(cpu, "INIT"); | 
|  | /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through | 
|  | * to default_monarch_init_process() above and just print all the | 
|  | * tasks. | 
|  | */ | 
|  | NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1); | 
|  | NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1); | 
|  |  | 
|  | mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu); | 
|  | atomic_dec(&monarchs); | 
|  | set_curr_task(cpu, previous_current); | 
|  | monarch_cpu = -1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int __init | 
|  | ia64_mca_disable_cpe_polling(char *str) | 
|  | { | 
|  | cpe_poll_enabled = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling); | 
|  |  | 
|  | static struct irqaction cmci_irqaction = { | 
|  | .handler =	ia64_mca_cmc_int_handler, | 
|  | .flags =	IRQF_DISABLED, | 
|  | .name =		"cmc_hndlr" | 
|  | }; | 
|  |  | 
|  | static struct irqaction cmcp_irqaction = { | 
|  | .handler =	ia64_mca_cmc_int_caller, | 
|  | .flags =	IRQF_DISABLED, | 
|  | .name =		"cmc_poll" | 
|  | }; | 
|  |  | 
|  | static struct irqaction mca_rdzv_irqaction = { | 
|  | .handler =	ia64_mca_rendez_int_handler, | 
|  | .flags =	IRQF_DISABLED, | 
|  | .name =		"mca_rdzv" | 
|  | }; | 
|  |  | 
|  | static struct irqaction mca_wkup_irqaction = { | 
|  | .handler =	ia64_mca_wakeup_int_handler, | 
|  | .flags =	IRQF_DISABLED, | 
|  | .name =		"mca_wkup" | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | static struct irqaction mca_cpe_irqaction = { | 
|  | .handler =	ia64_mca_cpe_int_handler, | 
|  | .flags =	IRQF_DISABLED, | 
|  | .name =		"cpe_hndlr" | 
|  | }; | 
|  |  | 
|  | static struct irqaction mca_cpep_irqaction = { | 
|  | .handler =	ia64_mca_cpe_int_caller, | 
|  | .flags =	IRQF_DISABLED, | 
|  | .name =		"cpe_poll" | 
|  | }; | 
|  | #endif /* CONFIG_ACPI */ | 
|  |  | 
|  | /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on | 
|  | * these stacks can never sleep, they cannot return from the kernel to user | 
|  | * space, they do not appear in a normal ps listing.  So there is no need to | 
|  | * format most of the fields. | 
|  | */ | 
|  |  | 
|  | static void __cpuinit | 
|  | format_mca_init_stack(void *mca_data, unsigned long offset, | 
|  | const char *type, int cpu) | 
|  | { | 
|  | struct task_struct *p = (struct task_struct *)((char *)mca_data + offset); | 
|  | struct thread_info *ti; | 
|  | memset(p, 0, KERNEL_STACK_SIZE); | 
|  | ti = task_thread_info(p); | 
|  | ti->flags = _TIF_MCA_INIT; | 
|  | ti->preempt_count = 1; | 
|  | ti->task = p; | 
|  | ti->cpu = cpu; | 
|  | p->stack = ti; | 
|  | p->state = TASK_UNINTERRUPTIBLE; | 
|  | cpu_set(cpu, p->cpus_allowed); | 
|  | INIT_LIST_HEAD(&p->tasks); | 
|  | p->parent = p->real_parent = p->group_leader = p; | 
|  | INIT_LIST_HEAD(&p->children); | 
|  | INIT_LIST_HEAD(&p->sibling); | 
|  | strncpy(p->comm, type, sizeof(p->comm)-1); | 
|  | } | 
|  |  | 
|  | /* Caller prevents this from being called after init */ | 
|  | static void * __init_refok mca_bootmem(void) | 
|  | { | 
|  | return __alloc_bootmem(sizeof(struct ia64_mca_cpu), | 
|  | KERNEL_STACK_SIZE, 0); | 
|  | } | 
|  |  | 
|  | /* Do per-CPU MCA-related initialization.  */ | 
|  | void __cpuinit | 
|  | ia64_mca_cpu_init(void *cpu_data) | 
|  | { | 
|  | void *pal_vaddr; | 
|  | void *data; | 
|  | long sz = sizeof(struct ia64_mca_cpu); | 
|  | int cpu = smp_processor_id(); | 
|  | static int first_time = 1; | 
|  |  | 
|  | /* | 
|  | * Structure will already be allocated if cpu has been online, | 
|  | * then offlined. | 
|  | */ | 
|  | if (__per_cpu_mca[cpu]) { | 
|  | data = __va(__per_cpu_mca[cpu]); | 
|  | } else { | 
|  | if (first_time) { | 
|  | data = mca_bootmem(); | 
|  | first_time = 0; | 
|  | } else | 
|  | data = (void *)__get_free_pages(GFP_KERNEL, | 
|  | get_order(sz)); | 
|  | if (!data) | 
|  | panic("Could not allocate MCA memory for cpu %d\n", | 
|  | cpu); | 
|  | } | 
|  | format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack), | 
|  | "MCA", cpu); | 
|  | format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack), | 
|  | "INIT", cpu); | 
|  | __get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data); | 
|  |  | 
|  | /* | 
|  | * Stash away a copy of the PTE needed to map the per-CPU page. | 
|  | * We may need it during MCA recovery. | 
|  | */ | 
|  | __get_cpu_var(ia64_mca_per_cpu_pte) = | 
|  | pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)); | 
|  |  | 
|  | /* | 
|  | * Also, stash away a copy of the PAL address and the PTE | 
|  | * needed to map it. | 
|  | */ | 
|  | pal_vaddr = efi_get_pal_addr(); | 
|  | if (!pal_vaddr) | 
|  | return; | 
|  | __get_cpu_var(ia64_mca_pal_base) = | 
|  | GRANULEROUNDDOWN((unsigned long) pal_vaddr); | 
|  | __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr), | 
|  | PAGE_KERNEL)); | 
|  | } | 
|  |  | 
|  | static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | if (!cmc_polling_enabled) | 
|  | ia64_mca_cmc_vector_enable(NULL); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static int __cpuinit mca_cpu_callback(struct notifier_block *nfb, | 
|  | unsigned long action, | 
|  | void *hcpu) | 
|  | { | 
|  | int hotcpu = (unsigned long) hcpu; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_ONLINE: | 
|  | case CPU_ONLINE_FROZEN: | 
|  | smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust, | 
|  | NULL, 0); | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block mca_cpu_notifier __cpuinitdata = { | 
|  | .notifier_call = mca_cpu_callback | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * ia64_mca_init | 
|  | * | 
|  | *  Do all the system level mca specific initialization. | 
|  | * | 
|  | *	1. Register spinloop and wakeup request interrupt vectors | 
|  | * | 
|  | *	2. Register OS_MCA handler entry point | 
|  | * | 
|  | *	3. Register OS_INIT handler entry point | 
|  | * | 
|  | *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS. | 
|  | * | 
|  | *  Note that this initialization is done very early before some kernel | 
|  | *  services are available. | 
|  | * | 
|  | *  Inputs  :   None | 
|  | * | 
|  | *  Outputs :   None | 
|  | */ | 
|  | void __init | 
|  | ia64_mca_init(void) | 
|  | { | 
|  | ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch; | 
|  | ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave; | 
|  | ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch; | 
|  | int i; | 
|  | long rc; | 
|  | struct ia64_sal_retval isrv; | 
|  | unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */ | 
|  | static struct notifier_block default_init_monarch_nb = { | 
|  | .notifier_call = default_monarch_init_process, | 
|  | .priority = 0/* we need to notified last */ | 
|  | }; | 
|  |  | 
|  | IA64_MCA_DEBUG("%s: begin\n", __func__); | 
|  |  | 
|  | /* Clear the Rendez checkin flag for all cpus */ | 
|  | for(i = 0 ; i < NR_CPUS; i++) | 
|  | ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; | 
|  |  | 
|  | /* | 
|  | * Register the rendezvous spinloop and wakeup mechanism with SAL | 
|  | */ | 
|  |  | 
|  | /* Register the rendezvous interrupt vector with SAL */ | 
|  | while (1) { | 
|  | isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT, | 
|  | SAL_MC_PARAM_MECHANISM_INT, | 
|  | IA64_MCA_RENDEZ_VECTOR, | 
|  | timeout, | 
|  | SAL_MC_PARAM_RZ_ALWAYS); | 
|  | rc = isrv.status; | 
|  | if (rc == 0) | 
|  | break; | 
|  | if (rc == -2) { | 
|  | printk(KERN_INFO "Increasing MCA rendezvous timeout from " | 
|  | "%ld to %ld milliseconds\n", timeout, isrv.v0); | 
|  | timeout = isrv.v0; | 
|  | NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0); | 
|  | continue; | 
|  | } | 
|  | printk(KERN_ERR "Failed to register rendezvous interrupt " | 
|  | "with SAL (status %ld)\n", rc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Register the wakeup interrupt vector with SAL */ | 
|  | isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP, | 
|  | SAL_MC_PARAM_MECHANISM_INT, | 
|  | IA64_MCA_WAKEUP_VECTOR, | 
|  | 0, 0); | 
|  | rc = isrv.status; | 
|  | if (rc) { | 
|  | printk(KERN_ERR "Failed to register wakeup interrupt with SAL " | 
|  | "(status %ld)\n", rc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__); | 
|  |  | 
|  | ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp); | 
|  | /* | 
|  | * XXX - disable SAL checksum by setting size to 0; should be | 
|  | *	ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch); | 
|  | */ | 
|  | ia64_mc_info.imi_mca_handler_size	= 0; | 
|  |  | 
|  | /* Register the os mca handler with SAL */ | 
|  | if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA, | 
|  | ia64_mc_info.imi_mca_handler, | 
|  | ia64_tpa(mca_hldlr_ptr->gp), | 
|  | ia64_mc_info.imi_mca_handler_size, | 
|  | 0, 0, 0))) | 
|  | { | 
|  | printk(KERN_ERR "Failed to register OS MCA handler with SAL " | 
|  | "(status %ld)\n", rc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__, | 
|  | ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp)); | 
|  |  | 
|  | /* | 
|  | * XXX - disable SAL checksum by setting size to 0, should be | 
|  | * size of the actual init handler in mca_asm.S. | 
|  | */ | 
|  | ia64_mc_info.imi_monarch_init_handler		= ia64_tpa(init_hldlr_ptr_monarch->fp); | 
|  | ia64_mc_info.imi_monarch_init_handler_size	= 0; | 
|  | ia64_mc_info.imi_slave_init_handler		= ia64_tpa(init_hldlr_ptr_slave->fp); | 
|  | ia64_mc_info.imi_slave_init_handler_size	= 0; | 
|  |  | 
|  | IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__, | 
|  | ia64_mc_info.imi_monarch_init_handler); | 
|  |  | 
|  | /* Register the os init handler with SAL */ | 
|  | if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, | 
|  | ia64_mc_info.imi_monarch_init_handler, | 
|  | ia64_tpa(ia64_getreg(_IA64_REG_GP)), | 
|  | ia64_mc_info.imi_monarch_init_handler_size, | 
|  | ia64_mc_info.imi_slave_init_handler, | 
|  | ia64_tpa(ia64_getreg(_IA64_REG_GP)), | 
|  | ia64_mc_info.imi_slave_init_handler_size))) | 
|  | { | 
|  | printk(KERN_ERR "Failed to register m/s INIT handlers with SAL " | 
|  | "(status %ld)\n", rc); | 
|  | return; | 
|  | } | 
|  | if (register_die_notifier(&default_init_monarch_nb)) { | 
|  | printk(KERN_ERR "Failed to register default monarch INIT process\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__); | 
|  |  | 
|  | /* Initialize the areas set aside by the OS to buffer the | 
|  | * platform/processor error states for MCA/INIT/CMC | 
|  | * handling. | 
|  | */ | 
|  | ia64_log_init(SAL_INFO_TYPE_MCA); | 
|  | ia64_log_init(SAL_INFO_TYPE_INIT); | 
|  | ia64_log_init(SAL_INFO_TYPE_CMC); | 
|  | ia64_log_init(SAL_INFO_TYPE_CPE); | 
|  |  | 
|  | mca_init = 1; | 
|  | printk(KERN_INFO "MCA related initialization done\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ia64_mca_late_init | 
|  | * | 
|  | *	Opportunity to setup things that require initialization later | 
|  | *	than ia64_mca_init.  Setup a timer to poll for CPEs if the | 
|  | *	platform doesn't support an interrupt driven mechanism. | 
|  | * | 
|  | *  Inputs  :   None | 
|  | *  Outputs :   Status | 
|  | */ | 
|  | static int __init | 
|  | ia64_mca_late_init(void) | 
|  | { | 
|  | if (!mca_init) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | *  Configure the CMCI/P vector and handler. Interrupts for CMC are | 
|  | *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c). | 
|  | */ | 
|  | register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction); | 
|  | register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction); | 
|  | ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */ | 
|  |  | 
|  | /* Setup the MCA rendezvous interrupt vector */ | 
|  | register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction); | 
|  |  | 
|  | /* Setup the MCA wakeup interrupt vector */ | 
|  | register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction); | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | /* Setup the CPEI/P handler */ | 
|  | register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction); | 
|  | #endif | 
|  |  | 
|  | register_hotcpu_notifier(&mca_cpu_notifier); | 
|  |  | 
|  | /* Setup the CMCI/P vector and handler */ | 
|  | init_timer(&cmc_poll_timer); | 
|  | cmc_poll_timer.function = ia64_mca_cmc_poll; | 
|  |  | 
|  | /* Unmask/enable the vector */ | 
|  | cmc_polling_enabled = 0; | 
|  | schedule_work(&cmc_enable_work); | 
|  |  | 
|  | IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__); | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | /* Setup the CPEI/P vector and handler */ | 
|  | cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI); | 
|  | init_timer(&cpe_poll_timer); | 
|  | cpe_poll_timer.function = ia64_mca_cpe_poll; | 
|  |  | 
|  | { | 
|  | unsigned int irq; | 
|  |  | 
|  | if (cpe_vector >= 0) { | 
|  | /* If platform supports CPEI, enable the irq. */ | 
|  | irq = local_vector_to_irq(cpe_vector); | 
|  | if (irq > 0) { | 
|  | cpe_poll_enabled = 0; | 
|  | irq_set_status_flags(irq, IRQ_PER_CPU); | 
|  | setup_irq(irq, &mca_cpe_irqaction); | 
|  | ia64_cpe_irq = irq; | 
|  | ia64_mca_register_cpev(cpe_vector); | 
|  | IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", | 
|  | __func__); | 
|  | return 0; | 
|  | } | 
|  | printk(KERN_ERR "%s: Failed to find irq for CPE " | 
|  | "interrupt handler, vector %d\n", | 
|  | __func__, cpe_vector); | 
|  | } | 
|  | /* If platform doesn't support CPEI, get the timer going. */ | 
|  | if (cpe_poll_enabled) { | 
|  | ia64_mca_cpe_poll(0UL); | 
|  | IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | device_initcall(ia64_mca_late_init); |