|  | /* | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com> | 
|  | * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org> | 
|  | * swiped from i386, and cloned for MIPS by Geert, polished by Ralf. | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/highmem.h> | 
|  |  | 
|  | #include <asm/cache.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | #include <dma-coherence.h> | 
|  |  | 
|  | static inline struct page *dma_addr_to_page(struct device *dev, | 
|  | dma_addr_t dma_addr) | 
|  | { | 
|  | return pfn_to_page( | 
|  | plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Warning on the terminology - Linux calls an uncached area coherent; | 
|  | * MIPS terminology calls memory areas with hardware maintained coherency | 
|  | * coherent. | 
|  | */ | 
|  |  | 
|  | static inline int cpu_is_noncoherent_r10000(struct device *dev) | 
|  | { | 
|  | return !plat_device_is_coherent(dev) && | 
|  | (current_cpu_type() == CPU_R10000 || | 
|  | current_cpu_type() == CPU_R12000); | 
|  | } | 
|  |  | 
|  | static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp) | 
|  | { | 
|  | gfp_t dma_flag; | 
|  |  | 
|  | /* ignore region specifiers */ | 
|  | gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); | 
|  |  | 
|  | #ifdef CONFIG_ISA | 
|  | if (dev == NULL) | 
|  | dma_flag = __GFP_DMA; | 
|  | else | 
|  | #endif | 
|  | #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA) | 
|  | if (dev->coherent_dma_mask < DMA_BIT_MASK(32)) | 
|  | dma_flag = __GFP_DMA; | 
|  | else if (dev->coherent_dma_mask < DMA_BIT_MASK(64)) | 
|  | dma_flag = __GFP_DMA32; | 
|  | else | 
|  | #endif | 
|  | #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA) | 
|  | if (dev->coherent_dma_mask < DMA_BIT_MASK(64)) | 
|  | dma_flag = __GFP_DMA32; | 
|  | else | 
|  | #endif | 
|  | #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32) | 
|  | if (dev->coherent_dma_mask < DMA_BIT_MASK(64)) | 
|  | dma_flag = __GFP_DMA; | 
|  | else | 
|  | #endif | 
|  | dma_flag = 0; | 
|  |  | 
|  | /* Don't invoke OOM killer */ | 
|  | gfp |= __GFP_NORETRY; | 
|  |  | 
|  | return gfp | dma_flag; | 
|  | } | 
|  |  | 
|  | void *dma_alloc_noncoherent(struct device *dev, size_t size, | 
|  | dma_addr_t * dma_handle, gfp_t gfp) | 
|  | { | 
|  | void *ret; | 
|  |  | 
|  | gfp = massage_gfp_flags(dev, gfp); | 
|  |  | 
|  | ret = (void *) __get_free_pages(gfp, get_order(size)); | 
|  |  | 
|  | if (ret != NULL) { | 
|  | memset(ret, 0, size); | 
|  | *dma_handle = plat_map_dma_mem(dev, ret, size); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(dma_alloc_noncoherent); | 
|  |  | 
|  | static void *mips_dma_alloc_coherent(struct device *dev, size_t size, | 
|  | dma_addr_t * dma_handle, gfp_t gfp) | 
|  | { | 
|  | void *ret; | 
|  |  | 
|  | if (dma_alloc_from_coherent(dev, size, dma_handle, &ret)) | 
|  | return ret; | 
|  |  | 
|  | gfp = massage_gfp_flags(dev, gfp); | 
|  |  | 
|  | ret = (void *) __get_free_pages(gfp, get_order(size)); | 
|  |  | 
|  | if (ret) { | 
|  | memset(ret, 0, size); | 
|  | *dma_handle = plat_map_dma_mem(dev, ret, size); | 
|  |  | 
|  | if (!plat_device_is_coherent(dev)) { | 
|  | dma_cache_wback_inv((unsigned long) ret, size); | 
|  | ret = UNCAC_ADDR(ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr, | 
|  | dma_addr_t dma_handle) | 
|  | { | 
|  | plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL); | 
|  | free_pages((unsigned long) vaddr, get_order(size)); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_free_noncoherent); | 
|  |  | 
|  | static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr, | 
|  | dma_addr_t dma_handle) | 
|  | { | 
|  | unsigned long addr = (unsigned long) vaddr; | 
|  | int order = get_order(size); | 
|  |  | 
|  | if (dma_release_from_coherent(dev, order, vaddr)) | 
|  | return; | 
|  |  | 
|  | plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL); | 
|  |  | 
|  | if (!plat_device_is_coherent(dev)) | 
|  | addr = CAC_ADDR(addr); | 
|  |  | 
|  | free_pages(addr, get_order(size)); | 
|  | } | 
|  |  | 
|  | static inline void __dma_sync_virtual(void *addr, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | switch (direction) { | 
|  | case DMA_TO_DEVICE: | 
|  | dma_cache_wback((unsigned long)addr, size); | 
|  | break; | 
|  |  | 
|  | case DMA_FROM_DEVICE: | 
|  | dma_cache_inv((unsigned long)addr, size); | 
|  | break; | 
|  |  | 
|  | case DMA_BIDIRECTIONAL: | 
|  | dma_cache_wback_inv((unsigned long)addr, size); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A single sg entry may refer to multiple physically contiguous | 
|  | * pages. But we still need to process highmem pages individually. | 
|  | * If highmem is not configured then the bulk of this loop gets | 
|  | * optimized out. | 
|  | */ | 
|  | static inline void __dma_sync(struct page *page, | 
|  | unsigned long offset, size_t size, enum dma_data_direction direction) | 
|  | { | 
|  | size_t left = size; | 
|  |  | 
|  | do { | 
|  | size_t len = left; | 
|  |  | 
|  | if (PageHighMem(page)) { | 
|  | void *addr; | 
|  |  | 
|  | if (offset + len > PAGE_SIZE) { | 
|  | if (offset >= PAGE_SIZE) { | 
|  | page += offset >> PAGE_SHIFT; | 
|  | offset &= ~PAGE_MASK; | 
|  | } | 
|  | len = PAGE_SIZE - offset; | 
|  | } | 
|  |  | 
|  | addr = kmap_atomic(page); | 
|  | __dma_sync_virtual(addr + offset, len, direction); | 
|  | kunmap_atomic(addr); | 
|  | } else | 
|  | __dma_sync_virtual(page_address(page) + offset, | 
|  | size, direction); | 
|  | offset = 0; | 
|  | page++; | 
|  | left -= len; | 
|  | } while (left); | 
|  | } | 
|  |  | 
|  | static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr, | 
|  | size_t size, enum dma_data_direction direction, struct dma_attrs *attrs) | 
|  | { | 
|  | if (cpu_is_noncoherent_r10000(dev)) | 
|  | __dma_sync(dma_addr_to_page(dev, dma_addr), | 
|  | dma_addr & ~PAGE_MASK, size, direction); | 
|  |  | 
|  | plat_unmap_dma_mem(dev, dma_addr, size, direction); | 
|  | } | 
|  |  | 
|  | static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction direction, struct dma_attrs *attrs) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nents; i++, sg++) { | 
|  | if (!plat_device_is_coherent(dev)) | 
|  | __dma_sync(sg_page(sg), sg->offset, sg->length, | 
|  | direction); | 
|  | sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) + | 
|  | sg->offset; | 
|  | } | 
|  |  | 
|  | return nents; | 
|  | } | 
|  |  | 
|  | static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page, | 
|  | unsigned long offset, size_t size, enum dma_data_direction direction, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | if (!plat_device_is_coherent(dev)) | 
|  | __dma_sync(page, offset, size, direction); | 
|  |  | 
|  | return plat_map_dma_mem_page(dev, page) + offset; | 
|  | } | 
|  |  | 
|  | static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg, | 
|  | int nhwentries, enum dma_data_direction direction, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nhwentries; i++, sg++) { | 
|  | if (!plat_device_is_coherent(dev) && | 
|  | direction != DMA_TO_DEVICE) | 
|  | __dma_sync(sg_page(sg), sg->offset, sg->length, | 
|  | direction); | 
|  | plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mips_dma_sync_single_for_cpu(struct device *dev, | 
|  | dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) | 
|  | { | 
|  | if (cpu_is_noncoherent_r10000(dev)) | 
|  | __dma_sync(dma_addr_to_page(dev, dma_handle), | 
|  | dma_handle & ~PAGE_MASK, size, direction); | 
|  | } | 
|  |  | 
|  | static void mips_dma_sync_single_for_device(struct device *dev, | 
|  | dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) | 
|  | { | 
|  | plat_extra_sync_for_device(dev); | 
|  | if (!plat_device_is_coherent(dev)) | 
|  | __dma_sync(dma_addr_to_page(dev, dma_handle), | 
|  | dma_handle & ~PAGE_MASK, size, direction); | 
|  | } | 
|  |  | 
|  | static void mips_dma_sync_sg_for_cpu(struct device *dev, | 
|  | struct scatterlist *sg, int nelems, enum dma_data_direction direction) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Make sure that gcc doesn't leave the empty loop body.  */ | 
|  | for (i = 0; i < nelems; i++, sg++) { | 
|  | if (cpu_is_noncoherent_r10000(dev)) | 
|  | __dma_sync(sg_page(sg), sg->offset, sg->length, | 
|  | direction); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mips_dma_sync_sg_for_device(struct device *dev, | 
|  | struct scatterlist *sg, int nelems, enum dma_data_direction direction) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Make sure that gcc doesn't leave the empty loop body.  */ | 
|  | for (i = 0; i < nelems; i++, sg++) { | 
|  | if (!plat_device_is_coherent(dev)) | 
|  | __dma_sync(sg_page(sg), sg->offset, sg->length, | 
|  | direction); | 
|  | } | 
|  | } | 
|  |  | 
|  | int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) | 
|  | { | 
|  | return plat_dma_mapping_error(dev, dma_addr); | 
|  | } | 
|  |  | 
|  | int mips_dma_supported(struct device *dev, u64 mask) | 
|  | { | 
|  | return plat_dma_supported(dev, mask); | 
|  | } | 
|  |  | 
|  | void dma_cache_sync(struct device *dev, void *vaddr, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(direction == DMA_NONE); | 
|  |  | 
|  | plat_extra_sync_for_device(dev); | 
|  | if (!plat_device_is_coherent(dev)) | 
|  | __dma_sync_virtual(vaddr, size, direction); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dma_cache_sync); | 
|  |  | 
|  | static struct dma_map_ops mips_default_dma_map_ops = { | 
|  | .alloc_coherent = mips_dma_alloc_coherent, | 
|  | .free_coherent = mips_dma_free_coherent, | 
|  | .map_page = mips_dma_map_page, | 
|  | .unmap_page = mips_dma_unmap_page, | 
|  | .map_sg = mips_dma_map_sg, | 
|  | .unmap_sg = mips_dma_unmap_sg, | 
|  | .sync_single_for_cpu = mips_dma_sync_single_for_cpu, | 
|  | .sync_single_for_device = mips_dma_sync_single_for_device, | 
|  | .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu, | 
|  | .sync_sg_for_device = mips_dma_sync_sg_for_device, | 
|  | .mapping_error = mips_dma_mapping_error, | 
|  | .dma_supported = mips_dma_supported | 
|  | }; | 
|  |  | 
|  | struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops; | 
|  | EXPORT_SYMBOL(mips_dma_map_ops); | 
|  |  | 
|  | #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16) | 
|  |  | 
|  | static int __init mips_dma_init(void) | 
|  | { | 
|  | dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | fs_initcall(mips_dma_init); |