|  | /* | 
|  | * Performance event support - powerpc architecture code | 
|  | * | 
|  | * Copyright 2008-2009 Paul Mackerras, IBM Corporation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the License, or (at your option) any later version. | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <asm/reg.h> | 
|  | #include <asm/pmc.h> | 
|  | #include <asm/machdep.h> | 
|  | #include <asm/firmware.h> | 
|  | #include <asm/ptrace.h> | 
|  |  | 
|  | struct cpu_hw_events { | 
|  | int n_events; | 
|  | int n_percpu; | 
|  | int disabled; | 
|  | int n_added; | 
|  | int n_limited; | 
|  | u8  pmcs_enabled; | 
|  | struct perf_event *event[MAX_HWEVENTS]; | 
|  | u64 events[MAX_HWEVENTS]; | 
|  | unsigned int flags[MAX_HWEVENTS]; | 
|  | unsigned long mmcr[3]; | 
|  | struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; | 
|  | u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS]; | 
|  | u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; | 
|  | unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; | 
|  | unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; | 
|  |  | 
|  | unsigned int group_flag; | 
|  | int n_txn_start; | 
|  | }; | 
|  | DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); | 
|  |  | 
|  | struct power_pmu *ppmu; | 
|  |  | 
|  | /* | 
|  | * Normally, to ignore kernel events we set the FCS (freeze counters | 
|  | * in supervisor mode) bit in MMCR0, but if the kernel runs with the | 
|  | * hypervisor bit set in the MSR, or if we are running on a processor | 
|  | * where the hypervisor bit is forced to 1 (as on Apple G5 processors), | 
|  | * then we need to use the FCHV bit to ignore kernel events. | 
|  | */ | 
|  | static unsigned int freeze_events_kernel = MMCR0_FCS; | 
|  |  | 
|  | /* | 
|  | * 32-bit doesn't have MMCRA but does have an MMCR2, | 
|  | * and a few other names are different. | 
|  | */ | 
|  | #ifdef CONFIG_PPC32 | 
|  |  | 
|  | #define MMCR0_FCHV		0 | 
|  | #define MMCR0_PMCjCE		MMCR0_PMCnCE | 
|  |  | 
|  | #define SPRN_MMCRA		SPRN_MMCR2 | 
|  | #define MMCRA_SAMPLE_ENABLE	0 | 
|  |  | 
|  | static inline unsigned long perf_ip_adjust(struct pt_regs *regs) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { } | 
|  | static inline u32 perf_get_misc_flags(struct pt_regs *regs) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static inline void perf_read_regs(struct pt_regs *regs) { } | 
|  | static inline int perf_intr_is_nmi(struct pt_regs *regs) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PPC32 */ | 
|  |  | 
|  | /* | 
|  | * Things that are specific to 64-bit implementations. | 
|  | */ | 
|  | #ifdef CONFIG_PPC64 | 
|  |  | 
|  | static inline unsigned long perf_ip_adjust(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long mmcra = regs->dsisr; | 
|  |  | 
|  | if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) { | 
|  | unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; | 
|  | if (slot > 1) | 
|  | return 4 * (slot - 1); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The user wants a data address recorded. | 
|  | * If we're not doing instruction sampling, give them the SDAR | 
|  | * (sampled data address).  If we are doing instruction sampling, then | 
|  | * only give them the SDAR if it corresponds to the instruction | 
|  | * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC | 
|  | * bit in MMCRA. | 
|  | */ | 
|  | static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) | 
|  | { | 
|  | unsigned long mmcra = regs->dsisr; | 
|  | unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ? | 
|  | POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC; | 
|  |  | 
|  | if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync)) | 
|  | *addrp = mfspr(SPRN_SDAR); | 
|  | } | 
|  |  | 
|  | static inline u32 perf_get_misc_flags(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long mmcra = regs->dsisr; | 
|  | unsigned long sihv = MMCRA_SIHV; | 
|  | unsigned long sipr = MMCRA_SIPR; | 
|  |  | 
|  | if (TRAP(regs) != 0xf00) | 
|  | return 0;	/* not a PMU interrupt */ | 
|  |  | 
|  | if (ppmu->flags & PPMU_ALT_SIPR) { | 
|  | sihv = POWER6_MMCRA_SIHV; | 
|  | sipr = POWER6_MMCRA_SIPR; | 
|  | } | 
|  |  | 
|  | /* PR has priority over HV, so order below is important */ | 
|  | if (mmcra & sipr) | 
|  | return PERF_RECORD_MISC_USER; | 
|  | if ((mmcra & sihv) && (freeze_events_kernel != MMCR0_FCHV)) | 
|  | return PERF_RECORD_MISC_HYPERVISOR; | 
|  | return PERF_RECORD_MISC_KERNEL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Overload regs->dsisr to store MMCRA so we only need to read it once | 
|  | * on each interrupt. | 
|  | */ | 
|  | static inline void perf_read_regs(struct pt_regs *regs) | 
|  | { | 
|  | regs->dsisr = mfspr(SPRN_MMCRA); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If interrupts were soft-disabled when a PMU interrupt occurs, treat | 
|  | * it as an NMI. | 
|  | */ | 
|  | static inline int perf_intr_is_nmi(struct pt_regs *regs) | 
|  | { | 
|  | return !regs->softe; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PPC64 */ | 
|  |  | 
|  | static void perf_event_interrupt(struct pt_regs *regs); | 
|  |  | 
|  | void perf_event_print_debug(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read one performance monitor counter (PMC). | 
|  | */ | 
|  | static unsigned long read_pmc(int idx) | 
|  | { | 
|  | unsigned long val; | 
|  |  | 
|  | switch (idx) { | 
|  | case 1: | 
|  | val = mfspr(SPRN_PMC1); | 
|  | break; | 
|  | case 2: | 
|  | val = mfspr(SPRN_PMC2); | 
|  | break; | 
|  | case 3: | 
|  | val = mfspr(SPRN_PMC3); | 
|  | break; | 
|  | case 4: | 
|  | val = mfspr(SPRN_PMC4); | 
|  | break; | 
|  | case 5: | 
|  | val = mfspr(SPRN_PMC5); | 
|  | break; | 
|  | case 6: | 
|  | val = mfspr(SPRN_PMC6); | 
|  | break; | 
|  | #ifdef CONFIG_PPC64 | 
|  | case 7: | 
|  | val = mfspr(SPRN_PMC7); | 
|  | break; | 
|  | case 8: | 
|  | val = mfspr(SPRN_PMC8); | 
|  | break; | 
|  | #endif /* CONFIG_PPC64 */ | 
|  | default: | 
|  | printk(KERN_ERR "oops trying to read PMC%d\n", idx); | 
|  | val = 0; | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write one PMC. | 
|  | */ | 
|  | static void write_pmc(int idx, unsigned long val) | 
|  | { | 
|  | switch (idx) { | 
|  | case 1: | 
|  | mtspr(SPRN_PMC1, val); | 
|  | break; | 
|  | case 2: | 
|  | mtspr(SPRN_PMC2, val); | 
|  | break; | 
|  | case 3: | 
|  | mtspr(SPRN_PMC3, val); | 
|  | break; | 
|  | case 4: | 
|  | mtspr(SPRN_PMC4, val); | 
|  | break; | 
|  | case 5: | 
|  | mtspr(SPRN_PMC5, val); | 
|  | break; | 
|  | case 6: | 
|  | mtspr(SPRN_PMC6, val); | 
|  | break; | 
|  | #ifdef CONFIG_PPC64 | 
|  | case 7: | 
|  | mtspr(SPRN_PMC7, val); | 
|  | break; | 
|  | case 8: | 
|  | mtspr(SPRN_PMC8, val); | 
|  | break; | 
|  | #endif /* CONFIG_PPC64 */ | 
|  | default: | 
|  | printk(KERN_ERR "oops trying to write PMC%d\n", idx); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if a set of events can all go on the PMU at once. | 
|  | * If they can't, this will look at alternative codes for the events | 
|  | * and see if any combination of alternative codes is feasible. | 
|  | * The feasible set is returned in event_id[]. | 
|  | */ | 
|  | static int power_check_constraints(struct cpu_hw_events *cpuhw, | 
|  | u64 event_id[], unsigned int cflags[], | 
|  | int n_ev) | 
|  | { | 
|  | unsigned long mask, value, nv; | 
|  | unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; | 
|  | int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; | 
|  | int i, j; | 
|  | unsigned long addf = ppmu->add_fields; | 
|  | unsigned long tadd = ppmu->test_adder; | 
|  |  | 
|  | if (n_ev > ppmu->n_counter) | 
|  | return -1; | 
|  |  | 
|  | /* First see if the events will go on as-is */ | 
|  | for (i = 0; i < n_ev; ++i) { | 
|  | if ((cflags[i] & PPMU_LIMITED_PMC_REQD) | 
|  | && !ppmu->limited_pmc_event(event_id[i])) { | 
|  | ppmu->get_alternatives(event_id[i], cflags[i], | 
|  | cpuhw->alternatives[i]); | 
|  | event_id[i] = cpuhw->alternatives[i][0]; | 
|  | } | 
|  | if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], | 
|  | &cpuhw->avalues[i][0])) | 
|  | return -1; | 
|  | } | 
|  | value = mask = 0; | 
|  | for (i = 0; i < n_ev; ++i) { | 
|  | nv = (value | cpuhw->avalues[i][0]) + | 
|  | (value & cpuhw->avalues[i][0] & addf); | 
|  | if ((((nv + tadd) ^ value) & mask) != 0 || | 
|  | (((nv + tadd) ^ cpuhw->avalues[i][0]) & | 
|  | cpuhw->amasks[i][0]) != 0) | 
|  | break; | 
|  | value = nv; | 
|  | mask |= cpuhw->amasks[i][0]; | 
|  | } | 
|  | if (i == n_ev) | 
|  | return 0;	/* all OK */ | 
|  |  | 
|  | /* doesn't work, gather alternatives... */ | 
|  | if (!ppmu->get_alternatives) | 
|  | return -1; | 
|  | for (i = 0; i < n_ev; ++i) { | 
|  | choice[i] = 0; | 
|  | n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], | 
|  | cpuhw->alternatives[i]); | 
|  | for (j = 1; j < n_alt[i]; ++j) | 
|  | ppmu->get_constraint(cpuhw->alternatives[i][j], | 
|  | &cpuhw->amasks[i][j], | 
|  | &cpuhw->avalues[i][j]); | 
|  | } | 
|  |  | 
|  | /* enumerate all possibilities and see if any will work */ | 
|  | i = 0; | 
|  | j = -1; | 
|  | value = mask = nv = 0; | 
|  | while (i < n_ev) { | 
|  | if (j >= 0) { | 
|  | /* we're backtracking, restore context */ | 
|  | value = svalues[i]; | 
|  | mask = smasks[i]; | 
|  | j = choice[i]; | 
|  | } | 
|  | /* | 
|  | * See if any alternative k for event_id i, | 
|  | * where k > j, will satisfy the constraints. | 
|  | */ | 
|  | while (++j < n_alt[i]) { | 
|  | nv = (value | cpuhw->avalues[i][j]) + | 
|  | (value & cpuhw->avalues[i][j] & addf); | 
|  | if ((((nv + tadd) ^ value) & mask) == 0 && | 
|  | (((nv + tadd) ^ cpuhw->avalues[i][j]) | 
|  | & cpuhw->amasks[i][j]) == 0) | 
|  | break; | 
|  | } | 
|  | if (j >= n_alt[i]) { | 
|  | /* | 
|  | * No feasible alternative, backtrack | 
|  | * to event_id i-1 and continue enumerating its | 
|  | * alternatives from where we got up to. | 
|  | */ | 
|  | if (--i < 0) | 
|  | return -1; | 
|  | } else { | 
|  | /* | 
|  | * Found a feasible alternative for event_id i, | 
|  | * remember where we got up to with this event_id, | 
|  | * go on to the next event_id, and start with | 
|  | * the first alternative for it. | 
|  | */ | 
|  | choice[i] = j; | 
|  | svalues[i] = value; | 
|  | smasks[i] = mask; | 
|  | value = nv; | 
|  | mask |= cpuhw->amasks[i][j]; | 
|  | ++i; | 
|  | j = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* OK, we have a feasible combination, tell the caller the solution */ | 
|  | for (i = 0; i < n_ev; ++i) | 
|  | event_id[i] = cpuhw->alternatives[i][choice[i]]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if newly-added events have consistent settings for | 
|  | * exclude_{user,kernel,hv} with each other and any previously | 
|  | * added events. | 
|  | */ | 
|  | static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], | 
|  | int n_prev, int n_new) | 
|  | { | 
|  | int eu = 0, ek = 0, eh = 0; | 
|  | int i, n, first; | 
|  | struct perf_event *event; | 
|  |  | 
|  | n = n_prev + n_new; | 
|  | if (n <= 1) | 
|  | return 0; | 
|  |  | 
|  | first = 1; | 
|  | for (i = 0; i < n; ++i) { | 
|  | if (cflags[i] & PPMU_LIMITED_PMC_OK) { | 
|  | cflags[i] &= ~PPMU_LIMITED_PMC_REQD; | 
|  | continue; | 
|  | } | 
|  | event = ctrs[i]; | 
|  | if (first) { | 
|  | eu = event->attr.exclude_user; | 
|  | ek = event->attr.exclude_kernel; | 
|  | eh = event->attr.exclude_hv; | 
|  | first = 0; | 
|  | } else if (event->attr.exclude_user != eu || | 
|  | event->attr.exclude_kernel != ek || | 
|  | event->attr.exclude_hv != eh) { | 
|  | return -EAGAIN; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (eu || ek || eh) | 
|  | for (i = 0; i < n; ++i) | 
|  | if (cflags[i] & PPMU_LIMITED_PMC_OK) | 
|  | cflags[i] |= PPMU_LIMITED_PMC_REQD; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 check_and_compute_delta(u64 prev, u64 val) | 
|  | { | 
|  | u64 delta = (val - prev) & 0xfffffffful; | 
|  |  | 
|  | /* | 
|  | * POWER7 can roll back counter values, if the new value is smaller | 
|  | * than the previous value it will cause the delta and the counter to | 
|  | * have bogus values unless we rolled a counter over.  If a coutner is | 
|  | * rolled back, it will be smaller, but within 256, which is the maximum | 
|  | * number of events to rollback at once.  If we dectect a rollback | 
|  | * return 0.  This can lead to a small lack of precision in the | 
|  | * counters. | 
|  | */ | 
|  | if (prev > val && (prev - val) < 256) | 
|  | delta = 0; | 
|  |  | 
|  | return delta; | 
|  | } | 
|  |  | 
|  | static void power_pmu_read(struct perf_event *event) | 
|  | { | 
|  | s64 val, delta, prev; | 
|  |  | 
|  | if (event->hw.state & PERF_HES_STOPPED) | 
|  | return; | 
|  |  | 
|  | if (!event->hw.idx) | 
|  | return; | 
|  | /* | 
|  | * Performance monitor interrupts come even when interrupts | 
|  | * are soft-disabled, as long as interrupts are hard-enabled. | 
|  | * Therefore we treat them like NMIs. | 
|  | */ | 
|  | do { | 
|  | prev = local64_read(&event->hw.prev_count); | 
|  | barrier(); | 
|  | val = read_pmc(event->hw.idx); | 
|  | delta = check_and_compute_delta(prev, val); | 
|  | if (!delta) | 
|  | return; | 
|  | } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); | 
|  |  | 
|  | local64_add(delta, &event->count); | 
|  | local64_sub(delta, &event->hw.period_left); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On some machines, PMC5 and PMC6 can't be written, don't respect | 
|  | * the freeze conditions, and don't generate interrupts.  This tells | 
|  | * us if `event' is using such a PMC. | 
|  | */ | 
|  | static int is_limited_pmc(int pmcnum) | 
|  | { | 
|  | return (ppmu->flags & PPMU_LIMITED_PMC5_6) | 
|  | && (pmcnum == 5 || pmcnum == 6); | 
|  | } | 
|  |  | 
|  | static void freeze_limited_counters(struct cpu_hw_events *cpuhw, | 
|  | unsigned long pmc5, unsigned long pmc6) | 
|  | { | 
|  | struct perf_event *event; | 
|  | u64 val, prev, delta; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cpuhw->n_limited; ++i) { | 
|  | event = cpuhw->limited_counter[i]; | 
|  | if (!event->hw.idx) | 
|  | continue; | 
|  | val = (event->hw.idx == 5) ? pmc5 : pmc6; | 
|  | prev = local64_read(&event->hw.prev_count); | 
|  | event->hw.idx = 0; | 
|  | delta = check_and_compute_delta(prev, val); | 
|  | if (delta) | 
|  | local64_add(delta, &event->count); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void thaw_limited_counters(struct cpu_hw_events *cpuhw, | 
|  | unsigned long pmc5, unsigned long pmc6) | 
|  | { | 
|  | struct perf_event *event; | 
|  | u64 val, prev; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cpuhw->n_limited; ++i) { | 
|  | event = cpuhw->limited_counter[i]; | 
|  | event->hw.idx = cpuhw->limited_hwidx[i]; | 
|  | val = (event->hw.idx == 5) ? pmc5 : pmc6; | 
|  | prev = local64_read(&event->hw.prev_count); | 
|  | if (check_and_compute_delta(prev, val)) | 
|  | local64_set(&event->hw.prev_count, val); | 
|  | perf_event_update_userpage(event); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since limited events don't respect the freeze conditions, we | 
|  | * have to read them immediately after freezing or unfreezing the | 
|  | * other events.  We try to keep the values from the limited | 
|  | * events as consistent as possible by keeping the delay (in | 
|  | * cycles and instructions) between freezing/unfreezing and reading | 
|  | * the limited events as small and consistent as possible. | 
|  | * Therefore, if any limited events are in use, we read them | 
|  | * both, and always in the same order, to minimize variability, | 
|  | * and do it inside the same asm that writes MMCR0. | 
|  | */ | 
|  | static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) | 
|  | { | 
|  | unsigned long pmc5, pmc6; | 
|  |  | 
|  | if (!cpuhw->n_limited) { | 
|  | mtspr(SPRN_MMCR0, mmcr0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write MMCR0, then read PMC5 and PMC6 immediately. | 
|  | * To ensure we don't get a performance monitor interrupt | 
|  | * between writing MMCR0 and freezing/thawing the limited | 
|  | * events, we first write MMCR0 with the event overflow | 
|  | * interrupt enable bits turned off. | 
|  | */ | 
|  | asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" | 
|  | : "=&r" (pmc5), "=&r" (pmc6) | 
|  | : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), | 
|  | "i" (SPRN_MMCR0), | 
|  | "i" (SPRN_PMC5), "i" (SPRN_PMC6)); | 
|  |  | 
|  | if (mmcr0 & MMCR0_FC) | 
|  | freeze_limited_counters(cpuhw, pmc5, pmc6); | 
|  | else | 
|  | thaw_limited_counters(cpuhw, pmc5, pmc6); | 
|  |  | 
|  | /* | 
|  | * Write the full MMCR0 including the event overflow interrupt | 
|  | * enable bits, if necessary. | 
|  | */ | 
|  | if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) | 
|  | mtspr(SPRN_MMCR0, mmcr0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable all events to prevent PMU interrupts and to allow | 
|  | * events to be added or removed. | 
|  | */ | 
|  | static void power_pmu_disable(struct pmu *pmu) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!ppmu) | 
|  | return; | 
|  | local_irq_save(flags); | 
|  | cpuhw = &__get_cpu_var(cpu_hw_events); | 
|  |  | 
|  | if (!cpuhw->disabled) { | 
|  | cpuhw->disabled = 1; | 
|  | cpuhw->n_added = 0; | 
|  |  | 
|  | /* | 
|  | * Check if we ever enabled the PMU on this cpu. | 
|  | */ | 
|  | if (!cpuhw->pmcs_enabled) { | 
|  | ppc_enable_pmcs(); | 
|  | cpuhw->pmcs_enabled = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable instruction sampling if it was enabled | 
|  | */ | 
|  | if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { | 
|  | mtspr(SPRN_MMCRA, | 
|  | cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); | 
|  | mb(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the 'freeze counters' bit. | 
|  | * The barrier is to make sure the mtspr has been | 
|  | * executed and the PMU has frozen the events | 
|  | * before we return. | 
|  | */ | 
|  | write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC); | 
|  | mb(); | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Re-enable all events if disable == 0. | 
|  | * If we were previously disabled and events were added, then | 
|  | * put the new config on the PMU. | 
|  | */ | 
|  | static void power_pmu_enable(struct pmu *pmu) | 
|  | { | 
|  | struct perf_event *event; | 
|  | struct cpu_hw_events *cpuhw; | 
|  | unsigned long flags; | 
|  | long i; | 
|  | unsigned long val; | 
|  | s64 left; | 
|  | unsigned int hwc_index[MAX_HWEVENTS]; | 
|  | int n_lim; | 
|  | int idx; | 
|  |  | 
|  | if (!ppmu) | 
|  | return; | 
|  | local_irq_save(flags); | 
|  | cpuhw = &__get_cpu_var(cpu_hw_events); | 
|  | if (!cpuhw->disabled) { | 
|  | local_irq_restore(flags); | 
|  | return; | 
|  | } | 
|  | cpuhw->disabled = 0; | 
|  |  | 
|  | /* | 
|  | * If we didn't change anything, or only removed events, | 
|  | * no need to recalculate MMCR* settings and reset the PMCs. | 
|  | * Just reenable the PMU with the current MMCR* settings | 
|  | * (possibly updated for removal of events). | 
|  | */ | 
|  | if (!cpuhw->n_added) { | 
|  | mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); | 
|  | mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); | 
|  | if (cpuhw->n_events == 0) | 
|  | ppc_set_pmu_inuse(0); | 
|  | goto out_enable; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute MMCR* values for the new set of events | 
|  | */ | 
|  | if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, | 
|  | cpuhw->mmcr)) { | 
|  | /* shouldn't ever get here */ | 
|  | printk(KERN_ERR "oops compute_mmcr failed\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add in MMCR0 freeze bits corresponding to the | 
|  | * attr.exclude_* bits for the first event. | 
|  | * We have already checked that all events have the | 
|  | * same values for these bits as the first event. | 
|  | */ | 
|  | event = cpuhw->event[0]; | 
|  | if (event->attr.exclude_user) | 
|  | cpuhw->mmcr[0] |= MMCR0_FCP; | 
|  | if (event->attr.exclude_kernel) | 
|  | cpuhw->mmcr[0] |= freeze_events_kernel; | 
|  | if (event->attr.exclude_hv) | 
|  | cpuhw->mmcr[0] |= MMCR0_FCHV; | 
|  |  | 
|  | /* | 
|  | * Write the new configuration to MMCR* with the freeze | 
|  | * bit set and set the hardware events to their initial values. | 
|  | * Then unfreeze the events. | 
|  | */ | 
|  | ppc_set_pmu_inuse(1); | 
|  | mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); | 
|  | mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); | 
|  | mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) | 
|  | | MMCR0_FC); | 
|  |  | 
|  | /* | 
|  | * Read off any pre-existing events that need to move | 
|  | * to another PMC. | 
|  | */ | 
|  | for (i = 0; i < cpuhw->n_events; ++i) { | 
|  | event = cpuhw->event[i]; | 
|  | if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { | 
|  | power_pmu_read(event); | 
|  | write_pmc(event->hw.idx, 0); | 
|  | event->hw.idx = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the PMCs for all the new and moved events. | 
|  | */ | 
|  | cpuhw->n_limited = n_lim = 0; | 
|  | for (i = 0; i < cpuhw->n_events; ++i) { | 
|  | event = cpuhw->event[i]; | 
|  | if (event->hw.idx) | 
|  | continue; | 
|  | idx = hwc_index[i] + 1; | 
|  | if (is_limited_pmc(idx)) { | 
|  | cpuhw->limited_counter[n_lim] = event; | 
|  | cpuhw->limited_hwidx[n_lim] = idx; | 
|  | ++n_lim; | 
|  | continue; | 
|  | } | 
|  | val = 0; | 
|  | if (event->hw.sample_period) { | 
|  | left = local64_read(&event->hw.period_left); | 
|  | if (left < 0x80000000L) | 
|  | val = 0x80000000L - left; | 
|  | } | 
|  | local64_set(&event->hw.prev_count, val); | 
|  | event->hw.idx = idx; | 
|  | if (event->hw.state & PERF_HES_STOPPED) | 
|  | val = 0; | 
|  | write_pmc(idx, val); | 
|  | perf_event_update_userpage(event); | 
|  | } | 
|  | cpuhw->n_limited = n_lim; | 
|  | cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; | 
|  |  | 
|  | out_enable: | 
|  | mb(); | 
|  | write_mmcr0(cpuhw, cpuhw->mmcr[0]); | 
|  |  | 
|  | /* | 
|  | * Enable instruction sampling if necessary | 
|  | */ | 
|  | if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { | 
|  | mb(); | 
|  | mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); | 
|  | } | 
|  |  | 
|  | out: | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static int collect_events(struct perf_event *group, int max_count, | 
|  | struct perf_event *ctrs[], u64 *events, | 
|  | unsigned int *flags) | 
|  | { | 
|  | int n = 0; | 
|  | struct perf_event *event; | 
|  |  | 
|  | if (!is_software_event(group)) { | 
|  | if (n >= max_count) | 
|  | return -1; | 
|  | ctrs[n] = group; | 
|  | flags[n] = group->hw.event_base; | 
|  | events[n++] = group->hw.config; | 
|  | } | 
|  | list_for_each_entry(event, &group->sibling_list, group_entry) { | 
|  | if (!is_software_event(event) && | 
|  | event->state != PERF_EVENT_STATE_OFF) { | 
|  | if (n >= max_count) | 
|  | return -1; | 
|  | ctrs[n] = event; | 
|  | flags[n] = event->hw.event_base; | 
|  | events[n++] = event->hw.config; | 
|  | } | 
|  | } | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a event to the PMU. | 
|  | * If all events are not already frozen, then we disable and | 
|  | * re-enable the PMU in order to get hw_perf_enable to do the | 
|  | * actual work of reconfiguring the PMU. | 
|  | */ | 
|  | static int power_pmu_add(struct perf_event *event, int ef_flags) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw; | 
|  | unsigned long flags; | 
|  | int n0; | 
|  | int ret = -EAGAIN; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | perf_pmu_disable(event->pmu); | 
|  |  | 
|  | /* | 
|  | * Add the event to the list (if there is room) | 
|  | * and check whether the total set is still feasible. | 
|  | */ | 
|  | cpuhw = &__get_cpu_var(cpu_hw_events); | 
|  | n0 = cpuhw->n_events; | 
|  | if (n0 >= ppmu->n_counter) | 
|  | goto out; | 
|  | cpuhw->event[n0] = event; | 
|  | cpuhw->events[n0] = event->hw.config; | 
|  | cpuhw->flags[n0] = event->hw.event_base; | 
|  |  | 
|  | if (!(ef_flags & PERF_EF_START)) | 
|  | event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; | 
|  |  | 
|  | /* | 
|  | * If group events scheduling transaction was started, | 
|  | * skip the schedulability test here, it will be performed | 
|  | * at commit time(->commit_txn) as a whole | 
|  | */ | 
|  | if (cpuhw->group_flag & PERF_EVENT_TXN) | 
|  | goto nocheck; | 
|  |  | 
|  | if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) | 
|  | goto out; | 
|  | if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) | 
|  | goto out; | 
|  | event->hw.config = cpuhw->events[n0]; | 
|  |  | 
|  | nocheck: | 
|  | ++cpuhw->n_events; | 
|  | ++cpuhw->n_added; | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | perf_pmu_enable(event->pmu); | 
|  | local_irq_restore(flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove a event from the PMU. | 
|  | */ | 
|  | static void power_pmu_del(struct perf_event *event, int ef_flags) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw; | 
|  | long i; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | perf_pmu_disable(event->pmu); | 
|  |  | 
|  | power_pmu_read(event); | 
|  |  | 
|  | cpuhw = &__get_cpu_var(cpu_hw_events); | 
|  | for (i = 0; i < cpuhw->n_events; ++i) { | 
|  | if (event == cpuhw->event[i]) { | 
|  | while (++i < cpuhw->n_events) { | 
|  | cpuhw->event[i-1] = cpuhw->event[i]; | 
|  | cpuhw->events[i-1] = cpuhw->events[i]; | 
|  | cpuhw->flags[i-1] = cpuhw->flags[i]; | 
|  | } | 
|  | --cpuhw->n_events; | 
|  | ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); | 
|  | if (event->hw.idx) { | 
|  | write_pmc(event->hw.idx, 0); | 
|  | event->hw.idx = 0; | 
|  | } | 
|  | perf_event_update_userpage(event); | 
|  | break; | 
|  | } | 
|  | } | 
|  | for (i = 0; i < cpuhw->n_limited; ++i) | 
|  | if (event == cpuhw->limited_counter[i]) | 
|  | break; | 
|  | if (i < cpuhw->n_limited) { | 
|  | while (++i < cpuhw->n_limited) { | 
|  | cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; | 
|  | cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; | 
|  | } | 
|  | --cpuhw->n_limited; | 
|  | } | 
|  | if (cpuhw->n_events == 0) { | 
|  | /* disable exceptions if no events are running */ | 
|  | cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); | 
|  | } | 
|  |  | 
|  | perf_pmu_enable(event->pmu); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * POWER-PMU does not support disabling individual counters, hence | 
|  | * program their cycle counter to their max value and ignore the interrupts. | 
|  | */ | 
|  |  | 
|  | static void power_pmu_start(struct perf_event *event, int ef_flags) | 
|  | { | 
|  | unsigned long flags; | 
|  | s64 left; | 
|  |  | 
|  | if (!event->hw.idx || !event->hw.sample_period) | 
|  | return; | 
|  |  | 
|  | if (!(event->hw.state & PERF_HES_STOPPED)) | 
|  | return; | 
|  |  | 
|  | if (ef_flags & PERF_EF_RELOAD) | 
|  | WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); | 
|  |  | 
|  | local_irq_save(flags); | 
|  | perf_pmu_disable(event->pmu); | 
|  |  | 
|  | event->hw.state = 0; | 
|  | left = local64_read(&event->hw.period_left); | 
|  | write_pmc(event->hw.idx, left); | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  | perf_pmu_enable(event->pmu); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static void power_pmu_stop(struct perf_event *event, int ef_flags) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!event->hw.idx || !event->hw.sample_period) | 
|  | return; | 
|  |  | 
|  | if (event->hw.state & PERF_HES_STOPPED) | 
|  | return; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | perf_pmu_disable(event->pmu); | 
|  |  | 
|  | power_pmu_read(event); | 
|  | event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; | 
|  | write_pmc(event->hw.idx, 0); | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  | perf_pmu_enable(event->pmu); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start group events scheduling transaction | 
|  | * Set the flag to make pmu::enable() not perform the | 
|  | * schedulability test, it will be performed at commit time | 
|  | */ | 
|  | void power_pmu_start_txn(struct pmu *pmu) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); | 
|  |  | 
|  | perf_pmu_disable(pmu); | 
|  | cpuhw->group_flag |= PERF_EVENT_TXN; | 
|  | cpuhw->n_txn_start = cpuhw->n_events; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stop group events scheduling transaction | 
|  | * Clear the flag and pmu::enable() will perform the | 
|  | * schedulability test. | 
|  | */ | 
|  | void power_pmu_cancel_txn(struct pmu *pmu) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); | 
|  |  | 
|  | cpuhw->group_flag &= ~PERF_EVENT_TXN; | 
|  | perf_pmu_enable(pmu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Commit group events scheduling transaction | 
|  | * Perform the group schedulability test as a whole | 
|  | * Return 0 if success | 
|  | */ | 
|  | int power_pmu_commit_txn(struct pmu *pmu) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw; | 
|  | long i, n; | 
|  |  | 
|  | if (!ppmu) | 
|  | return -EAGAIN; | 
|  | cpuhw = &__get_cpu_var(cpu_hw_events); | 
|  | n = cpuhw->n_events; | 
|  | if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) | 
|  | return -EAGAIN; | 
|  | i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); | 
|  | if (i < 0) | 
|  | return -EAGAIN; | 
|  |  | 
|  | for (i = cpuhw->n_txn_start; i < n; ++i) | 
|  | cpuhw->event[i]->hw.config = cpuhw->events[i]; | 
|  |  | 
|  | cpuhw->group_flag &= ~PERF_EVENT_TXN; | 
|  | perf_pmu_enable(pmu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return 1 if we might be able to put event on a limited PMC, | 
|  | * or 0 if not. | 
|  | * A event can only go on a limited PMC if it counts something | 
|  | * that a limited PMC can count, doesn't require interrupts, and | 
|  | * doesn't exclude any processor mode. | 
|  | */ | 
|  | static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, | 
|  | unsigned int flags) | 
|  | { | 
|  | int n; | 
|  | u64 alt[MAX_EVENT_ALTERNATIVES]; | 
|  |  | 
|  | if (event->attr.exclude_user | 
|  | || event->attr.exclude_kernel | 
|  | || event->attr.exclude_hv | 
|  | || event->attr.sample_period) | 
|  | return 0; | 
|  |  | 
|  | if (ppmu->limited_pmc_event(ev)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * The requested event_id isn't on a limited PMC already; | 
|  | * see if any alternative code goes on a limited PMC. | 
|  | */ | 
|  | if (!ppmu->get_alternatives) | 
|  | return 0; | 
|  |  | 
|  | flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; | 
|  | n = ppmu->get_alternatives(ev, flags, alt); | 
|  |  | 
|  | return n > 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find an alternative event_id that goes on a normal PMC, if possible, | 
|  | * and return the event_id code, or 0 if there is no such alternative. | 
|  | * (Note: event_id code 0 is "don't count" on all machines.) | 
|  | */ | 
|  | static u64 normal_pmc_alternative(u64 ev, unsigned long flags) | 
|  | { | 
|  | u64 alt[MAX_EVENT_ALTERNATIVES]; | 
|  | int n; | 
|  |  | 
|  | flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); | 
|  | n = ppmu->get_alternatives(ev, flags, alt); | 
|  | if (!n) | 
|  | return 0; | 
|  | return alt[0]; | 
|  | } | 
|  |  | 
|  | /* Number of perf_events counting hardware events */ | 
|  | static atomic_t num_events; | 
|  | /* Used to avoid races in calling reserve/release_pmc_hardware */ | 
|  | static DEFINE_MUTEX(pmc_reserve_mutex); | 
|  |  | 
|  | /* | 
|  | * Release the PMU if this is the last perf_event. | 
|  | */ | 
|  | static void hw_perf_event_destroy(struct perf_event *event) | 
|  | { | 
|  | if (!atomic_add_unless(&num_events, -1, 1)) { | 
|  | mutex_lock(&pmc_reserve_mutex); | 
|  | if (atomic_dec_return(&num_events) == 0) | 
|  | release_pmc_hardware(); | 
|  | mutex_unlock(&pmc_reserve_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Translate a generic cache event_id config to a raw event_id code. | 
|  | */ | 
|  | static int hw_perf_cache_event(u64 config, u64 *eventp) | 
|  | { | 
|  | unsigned long type, op, result; | 
|  | int ev; | 
|  |  | 
|  | if (!ppmu->cache_events) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* unpack config */ | 
|  | type = config & 0xff; | 
|  | op = (config >> 8) & 0xff; | 
|  | result = (config >> 16) & 0xff; | 
|  |  | 
|  | if (type >= PERF_COUNT_HW_CACHE_MAX || | 
|  | op >= PERF_COUNT_HW_CACHE_OP_MAX || | 
|  | result >= PERF_COUNT_HW_CACHE_RESULT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | ev = (*ppmu->cache_events)[type][op][result]; | 
|  | if (ev == 0) | 
|  | return -EOPNOTSUPP; | 
|  | if (ev == -1) | 
|  | return -EINVAL; | 
|  | *eventp = ev; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int power_pmu_event_init(struct perf_event *event) | 
|  | { | 
|  | u64 ev; | 
|  | unsigned long flags; | 
|  | struct perf_event *ctrs[MAX_HWEVENTS]; | 
|  | u64 events[MAX_HWEVENTS]; | 
|  | unsigned int cflags[MAX_HWEVENTS]; | 
|  | int n; | 
|  | int err; | 
|  | struct cpu_hw_events *cpuhw; | 
|  |  | 
|  | if (!ppmu) | 
|  | return -ENOENT; | 
|  |  | 
|  | switch (event->attr.type) { | 
|  | case PERF_TYPE_HARDWARE: | 
|  | ev = event->attr.config; | 
|  | if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) | 
|  | return -EOPNOTSUPP; | 
|  | ev = ppmu->generic_events[ev]; | 
|  | break; | 
|  | case PERF_TYPE_HW_CACHE: | 
|  | err = hw_perf_cache_event(event->attr.config, &ev); | 
|  | if (err) | 
|  | return err; | 
|  | break; | 
|  | case PERF_TYPE_RAW: | 
|  | ev = event->attr.config; | 
|  | break; | 
|  | default: | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | event->hw.config_base = ev; | 
|  | event->hw.idx = 0; | 
|  |  | 
|  | /* | 
|  | * If we are not running on a hypervisor, force the | 
|  | * exclude_hv bit to 0 so that we don't care what | 
|  | * the user set it to. | 
|  | */ | 
|  | if (!firmware_has_feature(FW_FEATURE_LPAR)) | 
|  | event->attr.exclude_hv = 0; | 
|  |  | 
|  | /* | 
|  | * If this is a per-task event, then we can use | 
|  | * PM_RUN_* events interchangeably with their non RUN_* | 
|  | * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. | 
|  | * XXX we should check if the task is an idle task. | 
|  | */ | 
|  | flags = 0; | 
|  | if (event->attach_state & PERF_ATTACH_TASK) | 
|  | flags |= PPMU_ONLY_COUNT_RUN; | 
|  |  | 
|  | /* | 
|  | * If this machine has limited events, check whether this | 
|  | * event_id could go on a limited event. | 
|  | */ | 
|  | if (ppmu->flags & PPMU_LIMITED_PMC5_6) { | 
|  | if (can_go_on_limited_pmc(event, ev, flags)) { | 
|  | flags |= PPMU_LIMITED_PMC_OK; | 
|  | } else if (ppmu->limited_pmc_event(ev)) { | 
|  | /* | 
|  | * The requested event_id is on a limited PMC, | 
|  | * but we can't use a limited PMC; see if any | 
|  | * alternative goes on a normal PMC. | 
|  | */ | 
|  | ev = normal_pmc_alternative(ev, flags); | 
|  | if (!ev) | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this is in a group, check if it can go on with all the | 
|  | * other hardware events in the group.  We assume the event | 
|  | * hasn't been linked into its leader's sibling list at this point. | 
|  | */ | 
|  | n = 0; | 
|  | if (event->group_leader != event) { | 
|  | n = collect_events(event->group_leader, ppmu->n_counter - 1, | 
|  | ctrs, events, cflags); | 
|  | if (n < 0) | 
|  | return -EINVAL; | 
|  | } | 
|  | events[n] = ev; | 
|  | ctrs[n] = event; | 
|  | cflags[n] = flags; | 
|  | if (check_excludes(ctrs, cflags, n, 1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | cpuhw = &get_cpu_var(cpu_hw_events); | 
|  | err = power_check_constraints(cpuhw, events, cflags, n + 1); | 
|  | put_cpu_var(cpu_hw_events); | 
|  | if (err) | 
|  | return -EINVAL; | 
|  |  | 
|  | event->hw.config = events[n]; | 
|  | event->hw.event_base = cflags[n]; | 
|  | event->hw.last_period = event->hw.sample_period; | 
|  | local64_set(&event->hw.period_left, event->hw.last_period); | 
|  |  | 
|  | /* | 
|  | * See if we need to reserve the PMU. | 
|  | * If no events are currently in use, then we have to take a | 
|  | * mutex to ensure that we don't race with another task doing | 
|  | * reserve_pmc_hardware or release_pmc_hardware. | 
|  | */ | 
|  | err = 0; | 
|  | if (!atomic_inc_not_zero(&num_events)) { | 
|  | mutex_lock(&pmc_reserve_mutex); | 
|  | if (atomic_read(&num_events) == 0 && | 
|  | reserve_pmc_hardware(perf_event_interrupt)) | 
|  | err = -EBUSY; | 
|  | else | 
|  | atomic_inc(&num_events); | 
|  | mutex_unlock(&pmc_reserve_mutex); | 
|  | } | 
|  | event->destroy = hw_perf_event_destroy; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | struct pmu power_pmu = { | 
|  | .pmu_enable	= power_pmu_enable, | 
|  | .pmu_disable	= power_pmu_disable, | 
|  | .event_init	= power_pmu_event_init, | 
|  | .add		= power_pmu_add, | 
|  | .del		= power_pmu_del, | 
|  | .start		= power_pmu_start, | 
|  | .stop		= power_pmu_stop, | 
|  | .read		= power_pmu_read, | 
|  | .start_txn	= power_pmu_start_txn, | 
|  | .cancel_txn	= power_pmu_cancel_txn, | 
|  | .commit_txn	= power_pmu_commit_txn, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * A counter has overflowed; update its count and record | 
|  | * things if requested.  Note that interrupts are hard-disabled | 
|  | * here so there is no possibility of being interrupted. | 
|  | */ | 
|  | static void record_and_restart(struct perf_event *event, unsigned long val, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | u64 period = event->hw.sample_period; | 
|  | s64 prev, delta, left; | 
|  | int record = 0; | 
|  |  | 
|  | if (event->hw.state & PERF_HES_STOPPED) { | 
|  | write_pmc(event->hw.idx, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* we don't have to worry about interrupts here */ | 
|  | prev = local64_read(&event->hw.prev_count); | 
|  | delta = check_and_compute_delta(prev, val); | 
|  | local64_add(delta, &event->count); | 
|  |  | 
|  | /* | 
|  | * See if the total period for this event has expired, | 
|  | * and update for the next period. | 
|  | */ | 
|  | val = 0; | 
|  | left = local64_read(&event->hw.period_left) - delta; | 
|  | if (period) { | 
|  | if (left <= 0) { | 
|  | left += period; | 
|  | if (left <= 0) | 
|  | left = period; | 
|  | record = 1; | 
|  | event->hw.last_period = event->hw.sample_period; | 
|  | } | 
|  | if (left < 0x80000000LL) | 
|  | val = 0x80000000LL - left; | 
|  | } | 
|  |  | 
|  | write_pmc(event->hw.idx, val); | 
|  | local64_set(&event->hw.prev_count, val); | 
|  | local64_set(&event->hw.period_left, left); | 
|  | perf_event_update_userpage(event); | 
|  |  | 
|  | /* | 
|  | * Finally record data if requested. | 
|  | */ | 
|  | if (record) { | 
|  | struct perf_sample_data data; | 
|  |  | 
|  | perf_sample_data_init(&data, ~0ULL); | 
|  | data.period = event->hw.last_period; | 
|  |  | 
|  | if (event->attr.sample_type & PERF_SAMPLE_ADDR) | 
|  | perf_get_data_addr(regs, &data.addr); | 
|  |  | 
|  | if (perf_event_overflow(event, &data, regs)) | 
|  | power_pmu_stop(event, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from generic code to get the misc flags (i.e. processor mode) | 
|  | * for an event_id. | 
|  | */ | 
|  | unsigned long perf_misc_flags(struct pt_regs *regs) | 
|  | { | 
|  | u32 flags = perf_get_misc_flags(regs); | 
|  |  | 
|  | if (flags) | 
|  | return flags; | 
|  | return user_mode(regs) ? PERF_RECORD_MISC_USER : | 
|  | PERF_RECORD_MISC_KERNEL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from generic code to get the instruction pointer | 
|  | * for an event_id. | 
|  | */ | 
|  | unsigned long perf_instruction_pointer(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long ip; | 
|  |  | 
|  | if (TRAP(regs) != 0xf00) | 
|  | return regs->nip;	/* not a PMU interrupt */ | 
|  |  | 
|  | ip = mfspr(SPRN_SIAR) + perf_ip_adjust(regs); | 
|  | return ip; | 
|  | } | 
|  |  | 
|  | static bool pmc_overflow(unsigned long val) | 
|  | { | 
|  | if ((int)val < 0) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Events on POWER7 can roll back if a speculative event doesn't | 
|  | * eventually complete. Unfortunately in some rare cases they will | 
|  | * raise a performance monitor exception. We need to catch this to | 
|  | * ensure we reset the PMC. In all cases the PMC will be 256 or less | 
|  | * cycles from overflow. | 
|  | * | 
|  | * We only do this if the first pass fails to find any overflowing | 
|  | * PMCs because a user might set a period of less than 256 and we | 
|  | * don't want to mistakenly reset them. | 
|  | */ | 
|  | if (__is_processor(PV_POWER7) && ((0x80000000 - val) <= 256)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Performance monitor interrupt stuff | 
|  | */ | 
|  | static void perf_event_interrupt(struct pt_regs *regs) | 
|  | { | 
|  | int i; | 
|  | struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); | 
|  | struct perf_event *event; | 
|  | unsigned long val; | 
|  | int found = 0; | 
|  | int nmi; | 
|  |  | 
|  | if (cpuhw->n_limited) | 
|  | freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), | 
|  | mfspr(SPRN_PMC6)); | 
|  |  | 
|  | perf_read_regs(regs); | 
|  |  | 
|  | nmi = perf_intr_is_nmi(regs); | 
|  | if (nmi) | 
|  | nmi_enter(); | 
|  | else | 
|  | irq_enter(); | 
|  |  | 
|  | for (i = 0; i < cpuhw->n_events; ++i) { | 
|  | event = cpuhw->event[i]; | 
|  | if (!event->hw.idx || is_limited_pmc(event->hw.idx)) | 
|  | continue; | 
|  | val = read_pmc(event->hw.idx); | 
|  | if ((int)val < 0) { | 
|  | /* event has overflowed */ | 
|  | found = 1; | 
|  | record_and_restart(event, val, regs); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In case we didn't find and reset the event that caused | 
|  | * the interrupt, scan all events and reset any that are | 
|  | * negative, to avoid getting continual interrupts. | 
|  | * Any that we processed in the previous loop will not be negative. | 
|  | */ | 
|  | if (!found) { | 
|  | for (i = 0; i < ppmu->n_counter; ++i) { | 
|  | if (is_limited_pmc(i + 1)) | 
|  | continue; | 
|  | val = read_pmc(i + 1); | 
|  | if (pmc_overflow(val)) | 
|  | write_pmc(i + 1, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset MMCR0 to its normal value.  This will set PMXE and | 
|  | * clear FC (freeze counters) and PMAO (perf mon alert occurred) | 
|  | * and thus allow interrupts to occur again. | 
|  | * XXX might want to use MSR.PM to keep the events frozen until | 
|  | * we get back out of this interrupt. | 
|  | */ | 
|  | write_mmcr0(cpuhw, cpuhw->mmcr[0]); | 
|  |  | 
|  | if (nmi) | 
|  | nmi_exit(); | 
|  | else | 
|  | irq_exit(); | 
|  | } | 
|  |  | 
|  | static void power_pmu_setup(int cpu) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); | 
|  |  | 
|  | if (!ppmu) | 
|  | return; | 
|  | memset(cpuhw, 0, sizeof(*cpuhw)); | 
|  | cpuhw->mmcr[0] = MMCR0_FC; | 
|  | } | 
|  |  | 
|  | static int __cpuinit | 
|  | power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) | 
|  | { | 
|  | unsigned int cpu = (long)hcpu; | 
|  |  | 
|  | switch (action & ~CPU_TASKS_FROZEN) { | 
|  | case CPU_UP_PREPARE: | 
|  | power_pmu_setup(cpu); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | int __cpuinit register_power_pmu(struct power_pmu *pmu) | 
|  | { | 
|  | if (ppmu) | 
|  | return -EBUSY;		/* something's already registered */ | 
|  |  | 
|  | ppmu = pmu; | 
|  | pr_info("%s performance monitor hardware support registered\n", | 
|  | pmu->name); | 
|  |  | 
|  | #ifdef MSR_HV | 
|  | /* | 
|  | * Use FCHV to ignore kernel events if MSR.HV is set. | 
|  | */ | 
|  | if (mfmsr() & MSR_HV) | 
|  | freeze_events_kernel = MMCR0_FCHV; | 
|  | #endif /* CONFIG_PPC64 */ | 
|  |  | 
|  | perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); | 
|  | perf_cpu_notifier(power_pmu_notifier); | 
|  |  | 
|  | return 0; | 
|  | } |