|  | /* | 
|  | * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved. | 
|  | * | 
|  | * Author: Yu Liu, yu.liu@freescale.com | 
|  | * | 
|  | * Description: | 
|  | * This file is based on arch/powerpc/kvm/44x_tlb.c, | 
|  | * by Hollis Blanchard <hollisb@us.ibm.com>. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License, version 2, as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/kvm.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <asm/kvm_ppc.h> | 
|  | #include <asm/kvm_e500.h> | 
|  |  | 
|  | #include "../mm/mmu_decl.h" | 
|  | #include "e500_tlb.h" | 
|  | #include "trace.h" | 
|  | #include "timing.h" | 
|  |  | 
|  | #define to_htlb1_esel(esel) (tlb1_entry_num - (esel) - 1) | 
|  |  | 
|  | struct id { | 
|  | unsigned long val; | 
|  | struct id **pentry; | 
|  | }; | 
|  |  | 
|  | #define NUM_TIDS 256 | 
|  |  | 
|  | /* | 
|  | * This table provide mappings from: | 
|  | * (guestAS,guestTID,guestPR) --> ID of physical cpu | 
|  | * guestAS	[0..1] | 
|  | * guestTID	[0..255] | 
|  | * guestPR	[0..1] | 
|  | * ID		[1..255] | 
|  | * Each vcpu keeps one vcpu_id_table. | 
|  | */ | 
|  | struct vcpu_id_table { | 
|  | struct id id[2][NUM_TIDS][2]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This table provide reversed mappings of vcpu_id_table: | 
|  | * ID --> address of vcpu_id_table item. | 
|  | * Each physical core has one pcpu_id_table. | 
|  | */ | 
|  | struct pcpu_id_table { | 
|  | struct id *entry[NUM_TIDS]; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids); | 
|  |  | 
|  | /* This variable keeps last used shadow ID on local core. | 
|  | * The valid range of shadow ID is [1..255] */ | 
|  | static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid); | 
|  |  | 
|  | static unsigned int tlb1_entry_num; | 
|  |  | 
|  | /* | 
|  | * Allocate a free shadow id and setup a valid sid mapping in given entry. | 
|  | * A mapping is only valid when vcpu_id_table and pcpu_id_table are match. | 
|  | * | 
|  | * The caller must have preemption disabled, and keep it that way until | 
|  | * it has finished with the returned shadow id (either written into the | 
|  | * TLB or arch.shadow_pid, or discarded). | 
|  | */ | 
|  | static inline int local_sid_setup_one(struct id *entry) | 
|  | { | 
|  | unsigned long sid; | 
|  | int ret = -1; | 
|  |  | 
|  | sid = ++(__get_cpu_var(pcpu_last_used_sid)); | 
|  | if (sid < NUM_TIDS) { | 
|  | __get_cpu_var(pcpu_sids).entry[sid] = entry; | 
|  | entry->val = sid; | 
|  | entry->pentry = &__get_cpu_var(pcpu_sids).entry[sid]; | 
|  | ret = sid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If sid == NUM_TIDS, we've run out of sids.  We return -1, and | 
|  | * the caller will invalidate everything and start over. | 
|  | * | 
|  | * sid > NUM_TIDS indicates a race, which we disable preemption to | 
|  | * avoid. | 
|  | */ | 
|  | WARN_ON(sid > NUM_TIDS); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if given entry contain a valid shadow id mapping. | 
|  | * An ID mapping is considered valid only if | 
|  | * both vcpu and pcpu know this mapping. | 
|  | * | 
|  | * The caller must have preemption disabled, and keep it that way until | 
|  | * it has finished with the returned shadow id (either written into the | 
|  | * TLB or arch.shadow_pid, or discarded). | 
|  | */ | 
|  | static inline int local_sid_lookup(struct id *entry) | 
|  | { | 
|  | if (entry && entry->val != 0 && | 
|  | __get_cpu_var(pcpu_sids).entry[entry->val] == entry && | 
|  | entry->pentry == &__get_cpu_var(pcpu_sids).entry[entry->val]) | 
|  | return entry->val; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Invalidate all id mappings on local core */ | 
|  | static inline void local_sid_destroy_all(void) | 
|  | { | 
|  | preempt_disable(); | 
|  | __get_cpu_var(pcpu_last_used_sid) = 0; | 
|  | memset(&__get_cpu_var(pcpu_sids), 0, sizeof(__get_cpu_var(pcpu_sids))); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500) | 
|  | { | 
|  | vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL); | 
|  | return vcpu_e500->idt; | 
|  | } | 
|  |  | 
|  | static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500) | 
|  | { | 
|  | kfree(vcpu_e500->idt); | 
|  | } | 
|  |  | 
|  | /* Invalidate all mappings on vcpu */ | 
|  | static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500) | 
|  | { | 
|  | memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table)); | 
|  |  | 
|  | /* Update shadow pid when mappings are changed */ | 
|  | kvmppc_e500_recalc_shadow_pid(vcpu_e500); | 
|  | } | 
|  |  | 
|  | /* Invalidate one ID mapping on vcpu */ | 
|  | static inline void kvmppc_e500_id_table_reset_one( | 
|  | struct kvmppc_vcpu_e500 *vcpu_e500, | 
|  | int as, int pid, int pr) | 
|  | { | 
|  | struct vcpu_id_table *idt = vcpu_e500->idt; | 
|  |  | 
|  | BUG_ON(as >= 2); | 
|  | BUG_ON(pid >= NUM_TIDS); | 
|  | BUG_ON(pr >= 2); | 
|  |  | 
|  | idt->id[as][pid][pr].val = 0; | 
|  | idt->id[as][pid][pr].pentry = NULL; | 
|  |  | 
|  | /* Update shadow pid when mappings are changed */ | 
|  | kvmppc_e500_recalc_shadow_pid(vcpu_e500); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map guest (vcpu,AS,ID,PR) to physical core shadow id. | 
|  | * This function first lookup if a valid mapping exists, | 
|  | * if not, then creates a new one. | 
|  | * | 
|  | * The caller must have preemption disabled, and keep it that way until | 
|  | * it has finished with the returned shadow id (either written into the | 
|  | * TLB or arch.shadow_pid, or discarded). | 
|  | */ | 
|  | static unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500, | 
|  | unsigned int as, unsigned int gid, | 
|  | unsigned int pr, int avoid_recursion) | 
|  | { | 
|  | struct vcpu_id_table *idt = vcpu_e500->idt; | 
|  | int sid; | 
|  |  | 
|  | BUG_ON(as >= 2); | 
|  | BUG_ON(gid >= NUM_TIDS); | 
|  | BUG_ON(pr >= 2); | 
|  |  | 
|  | sid = local_sid_lookup(&idt->id[as][gid][pr]); | 
|  |  | 
|  | while (sid <= 0) { | 
|  | /* No mapping yet */ | 
|  | sid = local_sid_setup_one(&idt->id[as][gid][pr]); | 
|  | if (sid <= 0) { | 
|  | _tlbil_all(); | 
|  | local_sid_destroy_all(); | 
|  | } | 
|  |  | 
|  | /* Update shadow pid when mappings are changed */ | 
|  | if (!avoid_recursion) | 
|  | kvmppc_e500_recalc_shadow_pid(vcpu_e500); | 
|  | } | 
|  |  | 
|  | return sid; | 
|  | } | 
|  |  | 
|  | /* Map guest pid to shadow. | 
|  | * We use PID to keep shadow of current guest non-zero PID, | 
|  | * and use PID1 to keep shadow of guest zero PID. | 
|  | * So that guest tlbe with TID=0 can be accessed at any time */ | 
|  | void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500) | 
|  | { | 
|  | preempt_disable(); | 
|  | vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500, | 
|  | get_cur_as(&vcpu_e500->vcpu), | 
|  | get_cur_pid(&vcpu_e500->vcpu), | 
|  | get_cur_pr(&vcpu_e500->vcpu), 1); | 
|  | vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500, | 
|  | get_cur_as(&vcpu_e500->vcpu), 0, | 
|  | get_cur_pr(&vcpu_e500->vcpu), 1); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | void kvmppc_dump_tlbs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 
|  | struct tlbe *tlbe; | 
|  | int i, tlbsel; | 
|  |  | 
|  | printk("| %8s | %8s | %8s | %8s | %8s |\n", | 
|  | "nr", "mas1", "mas2", "mas3", "mas7"); | 
|  |  | 
|  | for (tlbsel = 0; tlbsel < 2; tlbsel++) { | 
|  | printk("Guest TLB%d:\n", tlbsel); | 
|  | for (i = 0; i < vcpu_e500->gtlb_size[tlbsel]; i++) { | 
|  | tlbe = &vcpu_e500->gtlb_arch[tlbsel][i]; | 
|  | if (tlbe->mas1 & MAS1_VALID) | 
|  | printk(" G[%d][%3d] |  %08X | %08X | %08X | %08X |\n", | 
|  | tlbsel, i, tlbe->mas1, tlbe->mas2, | 
|  | tlbe->mas3, tlbe->mas7); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline unsigned int tlb0_get_next_victim( | 
|  | struct kvmppc_vcpu_e500 *vcpu_e500) | 
|  | { | 
|  | unsigned int victim; | 
|  |  | 
|  | victim = vcpu_e500->gtlb_nv[0]++; | 
|  | if (unlikely(vcpu_e500->gtlb_nv[0] >= KVM_E500_TLB0_WAY_NUM)) | 
|  | vcpu_e500->gtlb_nv[0] = 0; | 
|  |  | 
|  | return victim; | 
|  | } | 
|  |  | 
|  | static inline unsigned int tlb1_max_shadow_size(void) | 
|  | { | 
|  | /* reserve one entry for magic page */ | 
|  | return tlb1_entry_num - tlbcam_index - 1; | 
|  | } | 
|  |  | 
|  | static inline int tlbe_is_writable(struct tlbe *tlbe) | 
|  | { | 
|  | return tlbe->mas3 & (MAS3_SW|MAS3_UW); | 
|  | } | 
|  |  | 
|  | static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode) | 
|  | { | 
|  | /* Mask off reserved bits. */ | 
|  | mas3 &= MAS3_ATTRIB_MASK; | 
|  |  | 
|  | if (!usermode) { | 
|  | /* Guest is in supervisor mode, | 
|  | * so we need to translate guest | 
|  | * supervisor permissions into user permissions. */ | 
|  | mas3 &= ~E500_TLB_USER_PERM_MASK; | 
|  | mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1; | 
|  | } | 
|  |  | 
|  | return mas3 | E500_TLB_SUPER_PERM_MASK; | 
|  | } | 
|  |  | 
|  | static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M; | 
|  | #else | 
|  | return mas2 & MAS2_ATTRIB_MASK; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * writing shadow tlb entry to host TLB | 
|  | */ | 
|  | static inline void __write_host_tlbe(struct tlbe *stlbe, uint32_t mas0) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | mtspr(SPRN_MAS0, mas0); | 
|  | mtspr(SPRN_MAS1, stlbe->mas1); | 
|  | mtspr(SPRN_MAS2, stlbe->mas2); | 
|  | mtspr(SPRN_MAS3, stlbe->mas3); | 
|  | mtspr(SPRN_MAS7, stlbe->mas7); | 
|  | asm volatile("isync; tlbwe" : : : "memory"); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500, | 
|  | int tlbsel, int esel, struct tlbe *stlbe) | 
|  | { | 
|  | if (tlbsel == 0) { | 
|  | __write_host_tlbe(stlbe, | 
|  | MAS0_TLBSEL(0) | | 
|  | MAS0_ESEL(esel & (KVM_E500_TLB0_WAY_NUM - 1))); | 
|  | } else { | 
|  | __write_host_tlbe(stlbe, | 
|  | MAS0_TLBSEL(1) | | 
|  | MAS0_ESEL(to_htlb1_esel(esel))); | 
|  | } | 
|  | trace_kvm_stlb_write(index_of(tlbsel, esel), stlbe->mas1, stlbe->mas2, | 
|  | stlbe->mas3, stlbe->mas7); | 
|  | } | 
|  |  | 
|  | void kvmppc_map_magic(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 
|  | struct tlbe magic; | 
|  | ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK; | 
|  | unsigned int stid; | 
|  | pfn_t pfn; | 
|  |  | 
|  | pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT; | 
|  | get_page(pfn_to_page(pfn)); | 
|  |  | 
|  | preempt_disable(); | 
|  | stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0); | 
|  |  | 
|  | magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) | | 
|  | MAS1_TSIZE(BOOK3E_PAGESZ_4K); | 
|  | magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M; | 
|  | magic.mas3 = (pfn << PAGE_SHIFT) | | 
|  | MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR; | 
|  | magic.mas7 = pfn >> (32 - PAGE_SHIFT); | 
|  |  | 
|  | __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index)); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | void kvmppc_e500_tlb_load(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 
|  |  | 
|  | /* Shadow PID may be expired on local core */ | 
|  | kvmppc_e500_recalc_shadow_pid(vcpu_e500); | 
|  | } | 
|  |  | 
|  | void kvmppc_e500_tlb_put(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void kvmppc_e500_stlbe_invalidate(struct kvmppc_vcpu_e500 *vcpu_e500, | 
|  | int tlbsel, int esel) | 
|  | { | 
|  | struct tlbe *gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel]; | 
|  | struct vcpu_id_table *idt = vcpu_e500->idt; | 
|  | unsigned int pr, tid, ts, pid; | 
|  | u32 val, eaddr; | 
|  | unsigned long flags; | 
|  |  | 
|  | ts = get_tlb_ts(gtlbe); | 
|  | tid = get_tlb_tid(gtlbe); | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | /* One guest ID may be mapped to two shadow IDs */ | 
|  | for (pr = 0; pr < 2; pr++) { | 
|  | /* | 
|  | * The shadow PID can have a valid mapping on at most one | 
|  | * host CPU.  In the common case, it will be valid on this | 
|  | * CPU, in which case (for TLB0) we do a local invalidation | 
|  | * of the specific address. | 
|  | * | 
|  | * If the shadow PID is not valid on the current host CPU, or | 
|  | * if we're invalidating a TLB1 entry, we invalidate the | 
|  | * entire shadow PID. | 
|  | */ | 
|  | if (tlbsel == 1 || | 
|  | (pid = local_sid_lookup(&idt->id[ts][tid][pr])) <= 0) { | 
|  | kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The guest is invalidating a TLB0 entry which is in a PID | 
|  | * that has a valid shadow mapping on this host CPU.  We | 
|  | * search host TLB0 to invalidate it's shadow TLB entry, | 
|  | * similar to __tlbil_va except that we need to look in AS1. | 
|  | */ | 
|  | val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS; | 
|  | eaddr = get_tlb_eaddr(gtlbe); | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | mtspr(SPRN_MAS6, val); | 
|  | asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr)); | 
|  | val = mfspr(SPRN_MAS1); | 
|  | if (val & MAS1_VALID) { | 
|  | mtspr(SPRN_MAS1, val & ~MAS1_VALID); | 
|  | asm volatile("tlbwe"); | 
|  | } | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /* Search the guest TLB for a matching entry. */ | 
|  | static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500, | 
|  | gva_t eaddr, int tlbsel, unsigned int pid, int as) | 
|  | { | 
|  | int size = vcpu_e500->gtlb_size[tlbsel]; | 
|  | int set_base; | 
|  | int i; | 
|  |  | 
|  | if (tlbsel == 0) { | 
|  | int mask = size / KVM_E500_TLB0_WAY_NUM - 1; | 
|  | set_base = (eaddr >> PAGE_SHIFT) & mask; | 
|  | set_base *= KVM_E500_TLB0_WAY_NUM; | 
|  | size = KVM_E500_TLB0_WAY_NUM; | 
|  | } else { | 
|  | set_base = 0; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < size; i++) { | 
|  | struct tlbe *tlbe = &vcpu_e500->gtlb_arch[tlbsel][set_base + i]; | 
|  | unsigned int tid; | 
|  |  | 
|  | if (eaddr < get_tlb_eaddr(tlbe)) | 
|  | continue; | 
|  |  | 
|  | if (eaddr > get_tlb_end(tlbe)) | 
|  | continue; | 
|  |  | 
|  | tid = get_tlb_tid(tlbe); | 
|  | if (tid && (tid != pid)) | 
|  | continue; | 
|  |  | 
|  | if (!get_tlb_v(tlbe)) | 
|  | continue; | 
|  |  | 
|  | if (get_tlb_ts(tlbe) != as && as != -1) | 
|  | continue; | 
|  |  | 
|  | return set_base + i; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static inline void kvmppc_e500_priv_setup(struct tlbe_priv *priv, | 
|  | struct tlbe *gtlbe, | 
|  | pfn_t pfn) | 
|  | { | 
|  | priv->pfn = pfn; | 
|  | priv->flags = E500_TLB_VALID; | 
|  |  | 
|  | if (tlbe_is_writable(gtlbe)) | 
|  | priv->flags |= E500_TLB_DIRTY; | 
|  | } | 
|  |  | 
|  | static inline void kvmppc_e500_priv_release(struct tlbe_priv *priv) | 
|  | { | 
|  | if (priv->flags & E500_TLB_VALID) { | 
|  | if (priv->flags & E500_TLB_DIRTY) | 
|  | kvm_release_pfn_dirty(priv->pfn); | 
|  | else | 
|  | kvm_release_pfn_clean(priv->pfn); | 
|  |  | 
|  | priv->flags = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu, | 
|  | unsigned int eaddr, int as) | 
|  | { | 
|  | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 
|  | unsigned int victim, pidsel, tsized; | 
|  | int tlbsel; | 
|  |  | 
|  | /* since we only have two TLBs, only lower bit is used. */ | 
|  | tlbsel = (vcpu_e500->mas4 >> 28) & 0x1; | 
|  | victim = (tlbsel == 0) ? tlb0_get_next_victim(vcpu_e500) : 0; | 
|  | pidsel = (vcpu_e500->mas4 >> 16) & 0xf; | 
|  | tsized = (vcpu_e500->mas4 >> 7) & 0x1f; | 
|  |  | 
|  | vcpu_e500->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim) | 
|  | | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]); | 
|  | vcpu_e500->mas1 = MAS1_VALID | (as ? MAS1_TS : 0) | 
|  | | MAS1_TID(vcpu_e500->pid[pidsel]) | 
|  | | MAS1_TSIZE(tsized); | 
|  | vcpu_e500->mas2 = (eaddr & MAS2_EPN) | 
|  | | (vcpu_e500->mas4 & MAS2_ATTRIB_MASK); | 
|  | vcpu_e500->mas3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3; | 
|  | vcpu_e500->mas6 = (vcpu_e500->mas6 & MAS6_SPID1) | 
|  | | (get_cur_pid(vcpu) << 16) | 
|  | | (as ? MAS6_SAS : 0); | 
|  | vcpu_e500->mas7 = 0; | 
|  | } | 
|  |  | 
|  | static inline void kvmppc_e500_setup_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500, | 
|  | struct tlbe *gtlbe, int tsize, | 
|  | struct tlbe_priv *priv, | 
|  | u64 gvaddr, struct tlbe *stlbe) | 
|  | { | 
|  | pfn_t pfn = priv->pfn; | 
|  | unsigned int stid; | 
|  |  | 
|  | stid = kvmppc_e500_get_sid(vcpu_e500, get_tlb_ts(gtlbe), | 
|  | get_tlb_tid(gtlbe), | 
|  | get_cur_pr(&vcpu_e500->vcpu), 0); | 
|  |  | 
|  | /* Force TS=1 IPROT=0 for all guest mappings. */ | 
|  | stlbe->mas1 = MAS1_TSIZE(tsize) | 
|  | | MAS1_TID(stid) | MAS1_TS | MAS1_VALID; | 
|  | stlbe->mas2 = (gvaddr & MAS2_EPN) | 
|  | | e500_shadow_mas2_attrib(gtlbe->mas2, | 
|  | vcpu_e500->vcpu.arch.shared->msr & MSR_PR); | 
|  | stlbe->mas3 = ((pfn << PAGE_SHIFT) & MAS3_RPN) | 
|  | | e500_shadow_mas3_attrib(gtlbe->mas3, | 
|  | vcpu_e500->vcpu.arch.shared->msr & MSR_PR); | 
|  | stlbe->mas7 = (pfn >> (32 - PAGE_SHIFT)) & MAS7_RPN; | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500, | 
|  | u64 gvaddr, gfn_t gfn, struct tlbe *gtlbe, int tlbsel, int esel, | 
|  | struct tlbe *stlbe) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  | unsigned long pfn, hva; | 
|  | int pfnmap = 0; | 
|  | int tsize = BOOK3E_PAGESZ_4K; | 
|  | struct tlbe_priv *priv; | 
|  |  | 
|  | /* | 
|  | * Translate guest physical to true physical, acquiring | 
|  | * a page reference if it is normal, non-reserved memory. | 
|  | * | 
|  | * gfn_to_memslot() must succeed because otherwise we wouldn't | 
|  | * have gotten this far.  Eventually we should just pass the slot | 
|  | * pointer through from the first lookup. | 
|  | */ | 
|  | slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn); | 
|  | hva = gfn_to_hva_memslot(slot, gfn); | 
|  |  | 
|  | if (tlbsel == 1) { | 
|  | struct vm_area_struct *vma; | 
|  | down_read(¤t->mm->mmap_sem); | 
|  |  | 
|  | vma = find_vma(current->mm, hva); | 
|  | if (vma && hva >= vma->vm_start && | 
|  | (vma->vm_flags & VM_PFNMAP)) { | 
|  | /* | 
|  | * This VMA is a physically contiguous region (e.g. | 
|  | * /dev/mem) that bypasses normal Linux page | 
|  | * management.  Find the overlap between the | 
|  | * vma and the memslot. | 
|  | */ | 
|  |  | 
|  | unsigned long start, end; | 
|  | unsigned long slot_start, slot_end; | 
|  |  | 
|  | pfnmap = 1; | 
|  |  | 
|  | start = vma->vm_pgoff; | 
|  | end = start + | 
|  | ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT); | 
|  |  | 
|  | pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT); | 
|  |  | 
|  | slot_start = pfn - (gfn - slot->base_gfn); | 
|  | slot_end = slot_start + slot->npages; | 
|  |  | 
|  | if (start < slot_start) | 
|  | start = slot_start; | 
|  | if (end > slot_end) | 
|  | end = slot_end; | 
|  |  | 
|  | tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> | 
|  | MAS1_TSIZE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * e500 doesn't implement the lowest tsize bit, | 
|  | * or 1K pages. | 
|  | */ | 
|  | tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); | 
|  |  | 
|  | /* | 
|  | * Now find the largest tsize (up to what the guest | 
|  | * requested) that will cover gfn, stay within the | 
|  | * range, and for which gfn and pfn are mutually | 
|  | * aligned. | 
|  | */ | 
|  |  | 
|  | for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) { | 
|  | unsigned long gfn_start, gfn_end, tsize_pages; | 
|  | tsize_pages = 1 << (tsize - 2); | 
|  |  | 
|  | gfn_start = gfn & ~(tsize_pages - 1); | 
|  | gfn_end = gfn_start + tsize_pages; | 
|  |  | 
|  | if (gfn_start + pfn - gfn < start) | 
|  | continue; | 
|  | if (gfn_end + pfn - gfn > end) | 
|  | continue; | 
|  | if ((gfn & (tsize_pages - 1)) != | 
|  | (pfn & (tsize_pages - 1))) | 
|  | continue; | 
|  |  | 
|  | gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); | 
|  | pfn &= ~(tsize_pages - 1); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | up_read(¤t->mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | if (likely(!pfnmap)) { | 
|  | pfn = gfn_to_pfn_memslot(vcpu_e500->vcpu.kvm, slot, gfn); | 
|  | if (is_error_pfn(pfn)) { | 
|  | printk(KERN_ERR "Couldn't get real page for gfn %lx!\n", | 
|  | (long)gfn); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Drop old priv and setup new one. */ | 
|  | priv = &vcpu_e500->gtlb_priv[tlbsel][esel]; | 
|  | kvmppc_e500_priv_release(priv); | 
|  | kvmppc_e500_priv_setup(priv, gtlbe, pfn); | 
|  |  | 
|  | kvmppc_e500_setup_stlbe(vcpu_e500, gtlbe, tsize, priv, gvaddr, stlbe); | 
|  | } | 
|  |  | 
|  | /* XXX only map the one-one case, for now use TLB0 */ | 
|  | static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, | 
|  | int esel, struct tlbe *stlbe) | 
|  | { | 
|  | struct tlbe *gtlbe; | 
|  |  | 
|  | gtlbe = &vcpu_e500->gtlb_arch[0][esel]; | 
|  |  | 
|  | kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe), | 
|  | get_tlb_raddr(gtlbe) >> PAGE_SHIFT, | 
|  | gtlbe, 0, esel, stlbe); | 
|  |  | 
|  | return esel; | 
|  | } | 
|  |  | 
|  | /* Caller must ensure that the specified guest TLB entry is safe to insert into | 
|  | * the shadow TLB. */ | 
|  | /* XXX for both one-one and one-to-many , for now use TLB1 */ | 
|  | static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500, | 
|  | u64 gvaddr, gfn_t gfn, struct tlbe *gtlbe, struct tlbe *stlbe) | 
|  | { | 
|  | unsigned int victim; | 
|  |  | 
|  | victim = vcpu_e500->gtlb_nv[1]++; | 
|  |  | 
|  | if (unlikely(vcpu_e500->gtlb_nv[1] >= tlb1_max_shadow_size())) | 
|  | vcpu_e500->gtlb_nv[1] = 0; | 
|  |  | 
|  | kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, victim, stlbe); | 
|  |  | 
|  | return victim; | 
|  | } | 
|  |  | 
|  | void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr) | 
|  | { | 
|  | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 
|  |  | 
|  | /* Recalc shadow pid since MSR changes */ | 
|  | kvmppc_e500_recalc_shadow_pid(vcpu_e500); | 
|  | } | 
|  |  | 
|  | static inline int kvmppc_e500_gtlbe_invalidate( | 
|  | struct kvmppc_vcpu_e500 *vcpu_e500, | 
|  | int tlbsel, int esel) | 
|  | { | 
|  | struct tlbe *gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel]; | 
|  |  | 
|  | if (unlikely(get_tlb_iprot(gtlbe))) | 
|  | return -1; | 
|  |  | 
|  | gtlbe->mas1 = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value) | 
|  | { | 
|  | int esel; | 
|  |  | 
|  | if (value & MMUCSR0_TLB0FI) | 
|  | for (esel = 0; esel < vcpu_e500->gtlb_size[0]; esel++) | 
|  | kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel); | 
|  | if (value & MMUCSR0_TLB1FI) | 
|  | for (esel = 0; esel < vcpu_e500->gtlb_size[1]; esel++) | 
|  | kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel); | 
|  |  | 
|  | /* Invalidate all vcpu id mappings */ | 
|  | kvmppc_e500_id_table_reset_all(vcpu_e500); | 
|  |  | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb) | 
|  | { | 
|  | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 
|  | unsigned int ia; | 
|  | int esel, tlbsel; | 
|  | gva_t ea; | 
|  |  | 
|  | ea = ((ra) ? kvmppc_get_gpr(vcpu, ra) : 0) + kvmppc_get_gpr(vcpu, rb); | 
|  |  | 
|  | ia = (ea >> 2) & 0x1; | 
|  |  | 
|  | /* since we only have two TLBs, only lower bit is used. */ | 
|  | tlbsel = (ea >> 3) & 0x1; | 
|  |  | 
|  | if (ia) { | 
|  | /* invalidate all entries */ | 
|  | for (esel = 0; esel < vcpu_e500->gtlb_size[tlbsel]; esel++) | 
|  | kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel); | 
|  | } else { | 
|  | ea &= 0xfffff000; | 
|  | esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, | 
|  | get_cur_pid(vcpu), -1); | 
|  | if (esel >= 0) | 
|  | kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel); | 
|  | } | 
|  |  | 
|  | /* Invalidate all vcpu id mappings */ | 
|  | kvmppc_e500_id_table_reset_all(vcpu_e500); | 
|  |  | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 
|  | int tlbsel, esel; | 
|  | struct tlbe *gtlbe; | 
|  |  | 
|  | tlbsel = get_tlb_tlbsel(vcpu_e500); | 
|  | esel = get_tlb_esel(vcpu_e500, tlbsel); | 
|  |  | 
|  | gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel]; | 
|  | vcpu_e500->mas0 &= ~MAS0_NV(~0); | 
|  | vcpu_e500->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]); | 
|  | vcpu_e500->mas1 = gtlbe->mas1; | 
|  | vcpu_e500->mas2 = gtlbe->mas2; | 
|  | vcpu_e500->mas3 = gtlbe->mas3; | 
|  | vcpu_e500->mas7 = gtlbe->mas7; | 
|  |  | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb) | 
|  | { | 
|  | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 
|  | int as = !!get_cur_sas(vcpu_e500); | 
|  | unsigned int pid = get_cur_spid(vcpu_e500); | 
|  | int esel, tlbsel; | 
|  | struct tlbe *gtlbe = NULL; | 
|  | gva_t ea; | 
|  |  | 
|  | ea = kvmppc_get_gpr(vcpu, rb); | 
|  |  | 
|  | for (tlbsel = 0; tlbsel < 2; tlbsel++) { | 
|  | esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as); | 
|  | if (esel >= 0) { | 
|  | gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel]; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (gtlbe) { | 
|  | vcpu_e500->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel) | 
|  | | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]); | 
|  | vcpu_e500->mas1 = gtlbe->mas1; | 
|  | vcpu_e500->mas2 = gtlbe->mas2; | 
|  | vcpu_e500->mas3 = gtlbe->mas3; | 
|  | vcpu_e500->mas7 = gtlbe->mas7; | 
|  | } else { | 
|  | int victim; | 
|  |  | 
|  | /* since we only have two TLBs, only lower bit is used. */ | 
|  | tlbsel = vcpu_e500->mas4 >> 28 & 0x1; | 
|  | victim = (tlbsel == 0) ? tlb0_get_next_victim(vcpu_e500) : 0; | 
|  |  | 
|  | vcpu_e500->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim) | 
|  | | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]); | 
|  | vcpu_e500->mas1 = (vcpu_e500->mas6 & MAS6_SPID0) | 
|  | | (vcpu_e500->mas6 & (MAS6_SAS ? MAS1_TS : 0)) | 
|  | | (vcpu_e500->mas4 & MAS4_TSIZED(~0)); | 
|  | vcpu_e500->mas2 &= MAS2_EPN; | 
|  | vcpu_e500->mas2 |= vcpu_e500->mas4 & MAS2_ATTRIB_MASK; | 
|  | vcpu_e500->mas3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3; | 
|  | vcpu_e500->mas7 = 0; | 
|  | } | 
|  |  | 
|  | kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS); | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 
|  | struct tlbe *gtlbe; | 
|  | int tlbsel, esel; | 
|  |  | 
|  | tlbsel = get_tlb_tlbsel(vcpu_e500); | 
|  | esel = get_tlb_esel(vcpu_e500, tlbsel); | 
|  |  | 
|  | gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel]; | 
|  |  | 
|  | if (get_tlb_v(gtlbe)) | 
|  | kvmppc_e500_stlbe_invalidate(vcpu_e500, tlbsel, esel); | 
|  |  | 
|  | gtlbe->mas1 = vcpu_e500->mas1; | 
|  | gtlbe->mas2 = vcpu_e500->mas2; | 
|  | gtlbe->mas3 = vcpu_e500->mas3; | 
|  | gtlbe->mas7 = vcpu_e500->mas7; | 
|  |  | 
|  | trace_kvm_gtlb_write(vcpu_e500->mas0, gtlbe->mas1, gtlbe->mas2, | 
|  | gtlbe->mas3, gtlbe->mas7); | 
|  |  | 
|  | /* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */ | 
|  | if (tlbe_is_host_safe(vcpu, gtlbe)) { | 
|  | struct tlbe stlbe; | 
|  | int stlbsel, sesel; | 
|  | u64 eaddr; | 
|  | u64 raddr; | 
|  |  | 
|  | preempt_disable(); | 
|  | switch (tlbsel) { | 
|  | case 0: | 
|  | /* TLB0 */ | 
|  | gtlbe->mas1 &= ~MAS1_TSIZE(~0); | 
|  | gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K); | 
|  |  | 
|  | stlbsel = 0; | 
|  | sesel = kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case 1: | 
|  | /* TLB1 */ | 
|  | eaddr = get_tlb_eaddr(gtlbe); | 
|  | raddr = get_tlb_raddr(gtlbe); | 
|  |  | 
|  | /* Create a 4KB mapping on the host. | 
|  | * If the guest wanted a large page, | 
|  | * only the first 4KB is mapped here and the rest | 
|  | * are mapped on the fly. */ | 
|  | stlbsel = 1; | 
|  | sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, | 
|  | raddr >> PAGE_SHIFT, gtlbe, &stlbe); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | write_host_tlbe(vcpu_e500, stlbsel, sesel, &stlbe); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS); | 
|  | return EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) | 
|  | { | 
|  | unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS); | 
|  |  | 
|  | return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as); | 
|  | } | 
|  |  | 
|  | int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) | 
|  | { | 
|  | unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS); | 
|  |  | 
|  | return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as); | 
|  | } | 
|  |  | 
|  | void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS); | 
|  |  | 
|  | kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as); | 
|  | } | 
|  |  | 
|  | void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS); | 
|  |  | 
|  | kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as); | 
|  | } | 
|  |  | 
|  | gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index, | 
|  | gva_t eaddr) | 
|  | { | 
|  | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 
|  | struct tlbe *gtlbe = | 
|  | &vcpu_e500->gtlb_arch[tlbsel_of(index)][esel_of(index)]; | 
|  | u64 pgmask = get_tlb_bytes(gtlbe) - 1; | 
|  |  | 
|  | return get_tlb_raddr(gtlbe) | (eaddr & pgmask); | 
|  | } | 
|  |  | 
|  | void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr, | 
|  | unsigned int index) | 
|  | { | 
|  | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 
|  | struct tlbe_priv *priv; | 
|  | struct tlbe *gtlbe, stlbe; | 
|  | int tlbsel = tlbsel_of(index); | 
|  | int esel = esel_of(index); | 
|  | int stlbsel, sesel; | 
|  |  | 
|  | gtlbe = &vcpu_e500->gtlb_arch[tlbsel][esel]; | 
|  |  | 
|  | preempt_disable(); | 
|  | switch (tlbsel) { | 
|  | case 0: | 
|  | stlbsel = 0; | 
|  | sesel = esel; | 
|  | priv = &vcpu_e500->gtlb_priv[stlbsel][sesel]; | 
|  |  | 
|  | kvmppc_e500_setup_stlbe(vcpu_e500, gtlbe, BOOK3E_PAGESZ_4K, | 
|  | priv, eaddr, &stlbe); | 
|  | break; | 
|  |  | 
|  | case 1: { | 
|  | gfn_t gfn = gpaddr >> PAGE_SHIFT; | 
|  |  | 
|  | stlbsel = 1; | 
|  | sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, | 
|  | gtlbe, &stlbe); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | write_host_tlbe(vcpu_e500, stlbsel, sesel, &stlbe); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu, | 
|  | gva_t eaddr, unsigned int pid, int as) | 
|  | { | 
|  | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 
|  | int esel, tlbsel; | 
|  |  | 
|  | for (tlbsel = 0; tlbsel < 2; tlbsel++) { | 
|  | esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as); | 
|  | if (esel >= 0) | 
|  | return index_of(tlbsel, esel); | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid) | 
|  | { | 
|  | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); | 
|  |  | 
|  | if (vcpu->arch.pid != pid) { | 
|  | vcpu_e500->pid[0] = vcpu->arch.pid = pid; | 
|  | kvmppc_e500_recalc_shadow_pid(vcpu_e500); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500) | 
|  | { | 
|  | struct tlbe *tlbe; | 
|  |  | 
|  | /* Insert large initial mapping for guest. */ | 
|  | tlbe = &vcpu_e500->gtlb_arch[1][0]; | 
|  | tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M); | 
|  | tlbe->mas2 = 0; | 
|  | tlbe->mas3 = E500_TLB_SUPER_PERM_MASK; | 
|  | tlbe->mas7 = 0; | 
|  |  | 
|  | /* 4K map for serial output. Used by kernel wrapper. */ | 
|  | tlbe = &vcpu_e500->gtlb_arch[1][1]; | 
|  | tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K); | 
|  | tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G; | 
|  | tlbe->mas3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK; | 
|  | tlbe->mas7 = 0; | 
|  | } | 
|  |  | 
|  | int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500) | 
|  | { | 
|  | tlb1_entry_num = mfspr(SPRN_TLB1CFG) & 0xFFF; | 
|  |  | 
|  | vcpu_e500->gtlb_size[0] = KVM_E500_TLB0_SIZE; | 
|  | vcpu_e500->gtlb_arch[0] = | 
|  | kzalloc(sizeof(struct tlbe) * KVM_E500_TLB0_SIZE, GFP_KERNEL); | 
|  | if (vcpu_e500->gtlb_arch[0] == NULL) | 
|  | goto err_out; | 
|  |  | 
|  | vcpu_e500->gtlb_size[1] = KVM_E500_TLB1_SIZE; | 
|  | vcpu_e500->gtlb_arch[1] = | 
|  | kzalloc(sizeof(struct tlbe) * KVM_E500_TLB1_SIZE, GFP_KERNEL); | 
|  | if (vcpu_e500->gtlb_arch[1] == NULL) | 
|  | goto err_out_guest0; | 
|  |  | 
|  | vcpu_e500->gtlb_priv[0] = (struct tlbe_priv *) | 
|  | kzalloc(sizeof(struct tlbe_priv) * KVM_E500_TLB0_SIZE, GFP_KERNEL); | 
|  | if (vcpu_e500->gtlb_priv[0] == NULL) | 
|  | goto err_out_guest1; | 
|  | vcpu_e500->gtlb_priv[1] = (struct tlbe_priv *) | 
|  | kzalloc(sizeof(struct tlbe_priv) * KVM_E500_TLB1_SIZE, GFP_KERNEL); | 
|  |  | 
|  | if (vcpu_e500->gtlb_priv[1] == NULL) | 
|  | goto err_out_priv0; | 
|  |  | 
|  | if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL) | 
|  | goto err_out_priv1; | 
|  |  | 
|  | /* Init TLB configuration register */ | 
|  | vcpu_e500->tlb0cfg = mfspr(SPRN_TLB0CFG) & ~0xfffUL; | 
|  | vcpu_e500->tlb0cfg |= vcpu_e500->gtlb_size[0]; | 
|  | vcpu_e500->tlb1cfg = mfspr(SPRN_TLB1CFG) & ~0xfffUL; | 
|  | vcpu_e500->tlb1cfg |= vcpu_e500->gtlb_size[1]; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_out_priv1: | 
|  | kfree(vcpu_e500->gtlb_priv[1]); | 
|  | err_out_priv0: | 
|  | kfree(vcpu_e500->gtlb_priv[0]); | 
|  | err_out_guest1: | 
|  | kfree(vcpu_e500->gtlb_arch[1]); | 
|  | err_out_guest0: | 
|  | kfree(vcpu_e500->gtlb_arch[0]); | 
|  | err_out: | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500) | 
|  | { | 
|  | int stlbsel, i; | 
|  |  | 
|  | /* release all privs */ | 
|  | for (stlbsel = 0; stlbsel < 2; stlbsel++) | 
|  | for (i = 0; i < vcpu_e500->gtlb_size[stlbsel]; i++) { | 
|  | struct tlbe_priv *priv = | 
|  | &vcpu_e500->gtlb_priv[stlbsel][i]; | 
|  | kvmppc_e500_priv_release(priv); | 
|  | } | 
|  |  | 
|  | kvmppc_e500_id_table_free(vcpu_e500); | 
|  | kfree(vcpu_e500->gtlb_arch[1]); | 
|  | kfree(vcpu_e500->gtlb_arch[0]); | 
|  | } |