|  | /* Performance event support for sparc64. | 
|  | * | 
|  | * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net> | 
|  | * | 
|  | * This code is based almost entirely upon the x86 perf event | 
|  | * code, which is: | 
|  | * | 
|  | *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | 
|  | *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | 
|  | *  Copyright (C) 2009 Jaswinder Singh Rajput | 
|  | *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter | 
|  | *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/ftrace.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/mutex.h> | 
|  |  | 
|  | #include <asm/stacktrace.h> | 
|  | #include <asm/cpudata.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <asm/nmi.h> | 
|  | #include <asm/pcr.h> | 
|  |  | 
|  | #include "kernel.h" | 
|  | #include "kstack.h" | 
|  |  | 
|  | /* Sparc64 chips have two performance counters, 32-bits each, with | 
|  | * overflow interrupts generated on transition from 0xffffffff to 0. | 
|  | * The counters are accessed in one go using a 64-bit register. | 
|  | * | 
|  | * Both counters are controlled using a single control register.  The | 
|  | * only way to stop all sampling is to clear all of the context (user, | 
|  | * supervisor, hypervisor) sampling enable bits.  But these bits apply | 
|  | * to both counters, thus the two counters can't be enabled/disabled | 
|  | * individually. | 
|  | * | 
|  | * The control register has two event fields, one for each of the two | 
|  | * counters.  It's thus nearly impossible to have one counter going | 
|  | * while keeping the other one stopped.  Therefore it is possible to | 
|  | * get overflow interrupts for counters not currently "in use" and | 
|  | * that condition must be checked in the overflow interrupt handler. | 
|  | * | 
|  | * So we use a hack, in that we program inactive counters with the | 
|  | * "sw_count0" and "sw_count1" events.  These count how many times | 
|  | * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an | 
|  | * unusual way to encode a NOP and therefore will not trigger in | 
|  | * normal code. | 
|  | */ | 
|  |  | 
|  | #define MAX_HWEVENTS			2 | 
|  | #define MAX_PERIOD			((1UL << 32) - 1) | 
|  |  | 
|  | #define PIC_UPPER_INDEX			0 | 
|  | #define PIC_LOWER_INDEX			1 | 
|  | #define PIC_NO_INDEX			-1 | 
|  |  | 
|  | struct cpu_hw_events { | 
|  | /* Number of events currently scheduled onto this cpu. | 
|  | * This tells how many entries in the arrays below | 
|  | * are valid. | 
|  | */ | 
|  | int			n_events; | 
|  |  | 
|  | /* Number of new events added since the last hw_perf_disable(). | 
|  | * This works because the perf event layer always adds new | 
|  | * events inside of a perf_{disable,enable}() sequence. | 
|  | */ | 
|  | int			n_added; | 
|  |  | 
|  | /* Array of events current scheduled on this cpu.  */ | 
|  | struct perf_event	*event[MAX_HWEVENTS]; | 
|  |  | 
|  | /* Array of encoded longs, specifying the %pcr register | 
|  | * encoding and the mask of PIC counters this even can | 
|  | * be scheduled on.  See perf_event_encode() et al. | 
|  | */ | 
|  | unsigned long		events[MAX_HWEVENTS]; | 
|  |  | 
|  | /* The current counter index assigned to an event.  When the | 
|  | * event hasn't been programmed into the cpu yet, this will | 
|  | * hold PIC_NO_INDEX.  The event->hw.idx value tells us where | 
|  | * we ought to schedule the event. | 
|  | */ | 
|  | int			current_idx[MAX_HWEVENTS]; | 
|  |  | 
|  | /* Software copy of %pcr register on this cpu.  */ | 
|  | u64			pcr; | 
|  |  | 
|  | /* Enabled/disable state.  */ | 
|  | int			enabled; | 
|  |  | 
|  | unsigned int		group_flag; | 
|  | }; | 
|  | DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, }; | 
|  |  | 
|  | /* An event map describes the characteristics of a performance | 
|  | * counter event.  In particular it gives the encoding as well as | 
|  | * a mask telling which counters the event can be measured on. | 
|  | */ | 
|  | struct perf_event_map { | 
|  | u16	encoding; | 
|  | u8	pic_mask; | 
|  | #define PIC_NONE	0x00 | 
|  | #define PIC_UPPER	0x01 | 
|  | #define PIC_LOWER	0x02 | 
|  | }; | 
|  |  | 
|  | /* Encode a perf_event_map entry into a long.  */ | 
|  | static unsigned long perf_event_encode(const struct perf_event_map *pmap) | 
|  | { | 
|  | return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask; | 
|  | } | 
|  |  | 
|  | static u8 perf_event_get_msk(unsigned long val) | 
|  | { | 
|  | return val & 0xff; | 
|  | } | 
|  |  | 
|  | static u64 perf_event_get_enc(unsigned long val) | 
|  | { | 
|  | return val >> 16; | 
|  | } | 
|  |  | 
|  | #define C(x) PERF_COUNT_HW_CACHE_##x | 
|  |  | 
|  | #define CACHE_OP_UNSUPPORTED	0xfffe | 
|  | #define CACHE_OP_NONSENSE	0xffff | 
|  |  | 
|  | typedef struct perf_event_map cache_map_t | 
|  | [PERF_COUNT_HW_CACHE_MAX] | 
|  | [PERF_COUNT_HW_CACHE_OP_MAX] | 
|  | [PERF_COUNT_HW_CACHE_RESULT_MAX]; | 
|  |  | 
|  | struct sparc_pmu { | 
|  | const struct perf_event_map	*(*event_map)(int); | 
|  | const cache_map_t		*cache_map; | 
|  | int				max_events; | 
|  | int				upper_shift; | 
|  | int				lower_shift; | 
|  | int				event_mask; | 
|  | int				hv_bit; | 
|  | int				irq_bit; | 
|  | int				upper_nop; | 
|  | int				lower_nop; | 
|  | }; | 
|  |  | 
|  | static const struct perf_event_map ultra3_perfmon_event_map[] = { | 
|  | [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER }, | 
|  | [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER }, | 
|  | [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER }, | 
|  | [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER }, | 
|  | }; | 
|  |  | 
|  | static const struct perf_event_map *ultra3_event_map(int event_id) | 
|  | { | 
|  | return &ultra3_perfmon_event_map[event_id]; | 
|  | } | 
|  |  | 
|  | static const cache_map_t ultra3_cache_map = { | 
|  | [C(L1D)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, }, | 
|  | [C(RESULT_MISS)] = { 0x09, PIC_UPPER, }, | 
|  | }, | 
|  | [C(OP_WRITE)] = { | 
|  | [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER }, | 
|  | [C(RESULT_MISS)] = { 0x0a, PIC_UPPER }, | 
|  | }, | 
|  | [C(OP_PREFETCH)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(L1I)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, }, | 
|  | [C(RESULT_MISS)] = { 0x09, PIC_UPPER, }, | 
|  | }, | 
|  | [ C(OP_WRITE) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE }, | 
|  | }, | 
|  | [ C(OP_PREFETCH) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(LL)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, }, | 
|  | [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, }, | 
|  | }, | 
|  | [C(OP_WRITE)] = { | 
|  | [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER }, | 
|  | [C(RESULT_MISS)] = { 0x0c, PIC_UPPER }, | 
|  | }, | 
|  | [C(OP_PREFETCH)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(DTLB)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { 0x12, PIC_UPPER, }, | 
|  | }, | 
|  | [ C(OP_WRITE) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_PREFETCH) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(ITLB)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { 0x11, PIC_UPPER, }, | 
|  | }, | 
|  | [ C(OP_WRITE) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_PREFETCH) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(BPU)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_WRITE) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_PREFETCH) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(NODE)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_WRITE) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_PREFETCH) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct sparc_pmu ultra3_pmu = { | 
|  | .event_map	= ultra3_event_map, | 
|  | .cache_map	= &ultra3_cache_map, | 
|  | .max_events	= ARRAY_SIZE(ultra3_perfmon_event_map), | 
|  | .upper_shift	= 11, | 
|  | .lower_shift	= 4, | 
|  | .event_mask	= 0x3f, | 
|  | .upper_nop	= 0x1c, | 
|  | .lower_nop	= 0x14, | 
|  | }; | 
|  |  | 
|  | /* Niagara1 is very limited.  The upper PIC is hard-locked to count | 
|  | * only instructions, so it is free running which creates all kinds of | 
|  | * problems.  Some hardware designs make one wonder if the creator | 
|  | * even looked at how this stuff gets used by software. | 
|  | */ | 
|  | static const struct perf_event_map niagara1_perfmon_event_map[] = { | 
|  | [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER }, | 
|  | [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER }, | 
|  | [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE }, | 
|  | [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER }, | 
|  | }; | 
|  |  | 
|  | static const struct perf_event_map *niagara1_event_map(int event_id) | 
|  | { | 
|  | return &niagara1_perfmon_event_map[event_id]; | 
|  | } | 
|  |  | 
|  | static const cache_map_t niagara1_cache_map = { | 
|  | [C(L1D)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { 0x03, PIC_LOWER, }, | 
|  | }, | 
|  | [C(OP_WRITE)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { 0x03, PIC_LOWER, }, | 
|  | }, | 
|  | [C(OP_PREFETCH)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(L1I)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER }, | 
|  | [C(RESULT_MISS)] = { 0x02, PIC_LOWER, }, | 
|  | }, | 
|  | [ C(OP_WRITE) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE }, | 
|  | }, | 
|  | [ C(OP_PREFETCH) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(LL)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { 0x07, PIC_LOWER, }, | 
|  | }, | 
|  | [C(OP_WRITE)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { 0x07, PIC_LOWER, }, | 
|  | }, | 
|  | [C(OP_PREFETCH)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(DTLB)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { 0x05, PIC_LOWER, }, | 
|  | }, | 
|  | [ C(OP_WRITE) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_PREFETCH) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(ITLB)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { 0x04, PIC_LOWER, }, | 
|  | }, | 
|  | [ C(OP_WRITE) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_PREFETCH) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(BPU)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_WRITE) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_PREFETCH) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(NODE)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_WRITE) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_PREFETCH) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct sparc_pmu niagara1_pmu = { | 
|  | .event_map	= niagara1_event_map, | 
|  | .cache_map	= &niagara1_cache_map, | 
|  | .max_events	= ARRAY_SIZE(niagara1_perfmon_event_map), | 
|  | .upper_shift	= 0, | 
|  | .lower_shift	= 4, | 
|  | .event_mask	= 0x7, | 
|  | .upper_nop	= 0x0, | 
|  | .lower_nop	= 0x0, | 
|  | }; | 
|  |  | 
|  | static const struct perf_event_map niagara2_perfmon_event_map[] = { | 
|  | [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER }, | 
|  | [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER }, | 
|  | [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER }, | 
|  | [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER }, | 
|  | [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER }, | 
|  | [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER }, | 
|  | }; | 
|  |  | 
|  | static const struct perf_event_map *niagara2_event_map(int event_id) | 
|  | { | 
|  | return &niagara2_perfmon_event_map[event_id]; | 
|  | } | 
|  |  | 
|  | static const cache_map_t niagara2_cache_map = { | 
|  | [C(L1D)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, }, | 
|  | [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, }, | 
|  | }, | 
|  | [C(OP_WRITE)] = { | 
|  | [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, }, | 
|  | [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, }, | 
|  | }, | 
|  | [C(OP_PREFETCH)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(L1I)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, }, | 
|  | [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, }, | 
|  | }, | 
|  | [ C(OP_WRITE) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE }, | 
|  | }, | 
|  | [ C(OP_PREFETCH) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(LL)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, }, | 
|  | [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, }, | 
|  | }, | 
|  | [C(OP_WRITE)] = { | 
|  | [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, }, | 
|  | [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, }, | 
|  | }, | 
|  | [C(OP_PREFETCH)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(DTLB)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, }, | 
|  | }, | 
|  | [ C(OP_WRITE) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_PREFETCH) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(ITLB)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, }, | 
|  | }, | 
|  | [ C(OP_WRITE) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_PREFETCH) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(BPU)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_WRITE) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_PREFETCH) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | [C(NODE)] = { | 
|  | [C(OP_READ)] = { | 
|  | [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, | 
|  | [C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_WRITE) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | [ C(OP_PREFETCH) ] = { | 
|  | [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, | 
|  | [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED }, | 
|  | }, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct sparc_pmu niagara2_pmu = { | 
|  | .event_map	= niagara2_event_map, | 
|  | .cache_map	= &niagara2_cache_map, | 
|  | .max_events	= ARRAY_SIZE(niagara2_perfmon_event_map), | 
|  | .upper_shift	= 19, | 
|  | .lower_shift	= 6, | 
|  | .event_mask	= 0xfff, | 
|  | .hv_bit		= 0x8, | 
|  | .irq_bit	= 0x30, | 
|  | .upper_nop	= 0x220, | 
|  | .lower_nop	= 0x220, | 
|  | }; | 
|  |  | 
|  | static const struct sparc_pmu *sparc_pmu __read_mostly; | 
|  |  | 
|  | static u64 event_encoding(u64 event_id, int idx) | 
|  | { | 
|  | if (idx == PIC_UPPER_INDEX) | 
|  | event_id <<= sparc_pmu->upper_shift; | 
|  | else | 
|  | event_id <<= sparc_pmu->lower_shift; | 
|  | return event_id; | 
|  | } | 
|  |  | 
|  | static u64 mask_for_index(int idx) | 
|  | { | 
|  | return event_encoding(sparc_pmu->event_mask, idx); | 
|  | } | 
|  |  | 
|  | static u64 nop_for_index(int idx) | 
|  | { | 
|  | return event_encoding(idx == PIC_UPPER_INDEX ? | 
|  | sparc_pmu->upper_nop : | 
|  | sparc_pmu->lower_nop, idx); | 
|  | } | 
|  |  | 
|  | static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx) | 
|  | { | 
|  | u64 val, mask = mask_for_index(idx); | 
|  |  | 
|  | val = cpuc->pcr; | 
|  | val &= ~mask; | 
|  | val |= hwc->config; | 
|  | cpuc->pcr = val; | 
|  |  | 
|  | pcr_ops->write(cpuc->pcr); | 
|  | } | 
|  |  | 
|  | static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx) | 
|  | { | 
|  | u64 mask = mask_for_index(idx); | 
|  | u64 nop = nop_for_index(idx); | 
|  | u64 val; | 
|  |  | 
|  | val = cpuc->pcr; | 
|  | val &= ~mask; | 
|  | val |= nop; | 
|  | cpuc->pcr = val; | 
|  |  | 
|  | pcr_ops->write(cpuc->pcr); | 
|  | } | 
|  |  | 
|  | static u32 read_pmc(int idx) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | read_pic(val); | 
|  | if (idx == PIC_UPPER_INDEX) | 
|  | val >>= 32; | 
|  |  | 
|  | return val & 0xffffffff; | 
|  | } | 
|  |  | 
|  | static void write_pmc(int idx, u64 val) | 
|  | { | 
|  | u64 shift, mask, pic; | 
|  |  | 
|  | shift = 0; | 
|  | if (idx == PIC_UPPER_INDEX) | 
|  | shift = 32; | 
|  |  | 
|  | mask = ((u64) 0xffffffff) << shift; | 
|  | val <<= shift; | 
|  |  | 
|  | read_pic(pic); | 
|  | pic &= ~mask; | 
|  | pic |= val; | 
|  | write_pic(pic); | 
|  | } | 
|  |  | 
|  | static u64 sparc_perf_event_update(struct perf_event *event, | 
|  | struct hw_perf_event *hwc, int idx) | 
|  | { | 
|  | int shift = 64 - 32; | 
|  | u64 prev_raw_count, new_raw_count; | 
|  | s64 delta; | 
|  |  | 
|  | again: | 
|  | prev_raw_count = local64_read(&hwc->prev_count); | 
|  | new_raw_count = read_pmc(idx); | 
|  |  | 
|  | if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, | 
|  | new_raw_count) != prev_raw_count) | 
|  | goto again; | 
|  |  | 
|  | delta = (new_raw_count << shift) - (prev_raw_count << shift); | 
|  | delta >>= shift; | 
|  |  | 
|  | local64_add(delta, &event->count); | 
|  | local64_sub(delta, &hwc->period_left); | 
|  |  | 
|  | return new_raw_count; | 
|  | } | 
|  |  | 
|  | static int sparc_perf_event_set_period(struct perf_event *event, | 
|  | struct hw_perf_event *hwc, int idx) | 
|  | { | 
|  | s64 left = local64_read(&hwc->period_left); | 
|  | s64 period = hwc->sample_period; | 
|  | int ret = 0; | 
|  |  | 
|  | if (unlikely(left <= -period)) { | 
|  | left = period; | 
|  | local64_set(&hwc->period_left, left); | 
|  | hwc->last_period = period; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | if (unlikely(left <= 0)) { | 
|  | left += period; | 
|  | local64_set(&hwc->period_left, left); | 
|  | hwc->last_period = period; | 
|  | ret = 1; | 
|  | } | 
|  | if (left > MAX_PERIOD) | 
|  | left = MAX_PERIOD; | 
|  |  | 
|  | local64_set(&hwc->prev_count, (u64)-left); | 
|  |  | 
|  | write_pmc(idx, (u64)(-left) & 0xffffffff); | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* If performance event entries have been added, move existing | 
|  | * events around (if necessary) and then assign new entries to | 
|  | * counters. | 
|  | */ | 
|  | static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!cpuc->n_added) | 
|  | goto out; | 
|  |  | 
|  | /* Read in the counters which are moving.  */ | 
|  | for (i = 0; i < cpuc->n_events; i++) { | 
|  | struct perf_event *cp = cpuc->event[i]; | 
|  |  | 
|  | if (cpuc->current_idx[i] != PIC_NO_INDEX && | 
|  | cpuc->current_idx[i] != cp->hw.idx) { | 
|  | sparc_perf_event_update(cp, &cp->hw, | 
|  | cpuc->current_idx[i]); | 
|  | cpuc->current_idx[i] = PIC_NO_INDEX; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Assign to counters all unassigned events.  */ | 
|  | for (i = 0; i < cpuc->n_events; i++) { | 
|  | struct perf_event *cp = cpuc->event[i]; | 
|  | struct hw_perf_event *hwc = &cp->hw; | 
|  | int idx = hwc->idx; | 
|  | u64 enc; | 
|  |  | 
|  | if (cpuc->current_idx[i] != PIC_NO_INDEX) | 
|  | continue; | 
|  |  | 
|  | sparc_perf_event_set_period(cp, hwc, idx); | 
|  | cpuc->current_idx[i] = idx; | 
|  |  | 
|  | enc = perf_event_get_enc(cpuc->events[i]); | 
|  | pcr &= ~mask_for_index(idx); | 
|  | if (hwc->state & PERF_HES_STOPPED) | 
|  | pcr |= nop_for_index(idx); | 
|  | else | 
|  | pcr |= event_encoding(enc, idx); | 
|  | } | 
|  | out: | 
|  | return pcr; | 
|  | } | 
|  |  | 
|  | static void sparc_pmu_enable(struct pmu *pmu) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | u64 pcr; | 
|  |  | 
|  | if (cpuc->enabled) | 
|  | return; | 
|  |  | 
|  | cpuc->enabled = 1; | 
|  | barrier(); | 
|  |  | 
|  | pcr = cpuc->pcr; | 
|  | if (!cpuc->n_events) { | 
|  | pcr = 0; | 
|  | } else { | 
|  | pcr = maybe_change_configuration(cpuc, pcr); | 
|  |  | 
|  | /* We require that all of the events have the same | 
|  | * configuration, so just fetch the settings from the | 
|  | * first entry. | 
|  | */ | 
|  | cpuc->pcr = pcr | cpuc->event[0]->hw.config_base; | 
|  | } | 
|  |  | 
|  | pcr_ops->write(cpuc->pcr); | 
|  | } | 
|  |  | 
|  | static void sparc_pmu_disable(struct pmu *pmu) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | u64 val; | 
|  |  | 
|  | if (!cpuc->enabled) | 
|  | return; | 
|  |  | 
|  | cpuc->enabled = 0; | 
|  | cpuc->n_added = 0; | 
|  |  | 
|  | val = cpuc->pcr; | 
|  | val &= ~(PCR_UTRACE | PCR_STRACE | | 
|  | sparc_pmu->hv_bit | sparc_pmu->irq_bit); | 
|  | cpuc->pcr = val; | 
|  |  | 
|  | pcr_ops->write(cpuc->pcr); | 
|  | } | 
|  |  | 
|  | static int active_event_index(struct cpu_hw_events *cpuc, | 
|  | struct perf_event *event) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cpuc->n_events; i++) { | 
|  | if (cpuc->event[i] == event) | 
|  | break; | 
|  | } | 
|  | BUG_ON(i == cpuc->n_events); | 
|  | return cpuc->current_idx[i]; | 
|  | } | 
|  |  | 
|  | static void sparc_pmu_start(struct perf_event *event, int flags) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | int idx = active_event_index(cpuc, event); | 
|  |  | 
|  | if (flags & PERF_EF_RELOAD) { | 
|  | WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); | 
|  | sparc_perf_event_set_period(event, &event->hw, idx); | 
|  | } | 
|  |  | 
|  | event->hw.state = 0; | 
|  |  | 
|  | sparc_pmu_enable_event(cpuc, &event->hw, idx); | 
|  | } | 
|  |  | 
|  | static void sparc_pmu_stop(struct perf_event *event, int flags) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | int idx = active_event_index(cpuc, event); | 
|  |  | 
|  | if (!(event->hw.state & PERF_HES_STOPPED)) { | 
|  | sparc_pmu_disable_event(cpuc, &event->hw, idx); | 
|  | event->hw.state |= PERF_HES_STOPPED; | 
|  | } | 
|  |  | 
|  | if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) { | 
|  | sparc_perf_event_update(event, &event->hw, idx); | 
|  | event->hw.state |= PERF_HES_UPTODATE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sparc_pmu_del(struct perf_event *event, int _flags) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | perf_pmu_disable(event->pmu); | 
|  |  | 
|  | for (i = 0; i < cpuc->n_events; i++) { | 
|  | if (event == cpuc->event[i]) { | 
|  | /* Absorb the final count and turn off the | 
|  | * event. | 
|  | */ | 
|  | sparc_pmu_stop(event, PERF_EF_UPDATE); | 
|  |  | 
|  | /* Shift remaining entries down into | 
|  | * the existing slot. | 
|  | */ | 
|  | while (++i < cpuc->n_events) { | 
|  | cpuc->event[i - 1] = cpuc->event[i]; | 
|  | cpuc->events[i - 1] = cpuc->events[i]; | 
|  | cpuc->current_idx[i - 1] = | 
|  | cpuc->current_idx[i]; | 
|  | } | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  |  | 
|  | cpuc->n_events--; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | perf_pmu_enable(event->pmu); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static void sparc_pmu_read(struct perf_event *event) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | int idx = active_event_index(cpuc, event); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  |  | 
|  | sparc_perf_event_update(event, hwc, idx); | 
|  | } | 
|  |  | 
|  | static atomic_t active_events = ATOMIC_INIT(0); | 
|  | static DEFINE_MUTEX(pmc_grab_mutex); | 
|  |  | 
|  | static void perf_stop_nmi_watchdog(void *unused) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  |  | 
|  | stop_nmi_watchdog(NULL); | 
|  | cpuc->pcr = pcr_ops->read(); | 
|  | } | 
|  |  | 
|  | void perf_event_grab_pmc(void) | 
|  | { | 
|  | if (atomic_inc_not_zero(&active_events)) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&pmc_grab_mutex); | 
|  | if (atomic_read(&active_events) == 0) { | 
|  | if (atomic_read(&nmi_active) > 0) { | 
|  | on_each_cpu(perf_stop_nmi_watchdog, NULL, 1); | 
|  | BUG_ON(atomic_read(&nmi_active) != 0); | 
|  | } | 
|  | atomic_inc(&active_events); | 
|  | } | 
|  | mutex_unlock(&pmc_grab_mutex); | 
|  | } | 
|  |  | 
|  | void perf_event_release_pmc(void) | 
|  | { | 
|  | if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) { | 
|  | if (atomic_read(&nmi_active) == 0) | 
|  | on_each_cpu(start_nmi_watchdog, NULL, 1); | 
|  | mutex_unlock(&pmc_grab_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct perf_event_map *sparc_map_cache_event(u64 config) | 
|  | { | 
|  | unsigned int cache_type, cache_op, cache_result; | 
|  | const struct perf_event_map *pmap; | 
|  |  | 
|  | if (!sparc_pmu->cache_map) | 
|  | return ERR_PTR(-ENOENT); | 
|  |  | 
|  | cache_type = (config >>  0) & 0xff; | 
|  | if (cache_type >= PERF_COUNT_HW_CACHE_MAX) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | cache_op = (config >>  8) & 0xff; | 
|  | if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | cache_result = (config >> 16) & 0xff; | 
|  | if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]); | 
|  |  | 
|  | if (pmap->encoding == CACHE_OP_UNSUPPORTED) | 
|  | return ERR_PTR(-ENOENT); | 
|  |  | 
|  | if (pmap->encoding == CACHE_OP_NONSENSE) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | return pmap; | 
|  | } | 
|  |  | 
|  | static void hw_perf_event_destroy(struct perf_event *event) | 
|  | { | 
|  | perf_event_release_pmc(); | 
|  | } | 
|  |  | 
|  | /* Make sure all events can be scheduled into the hardware at | 
|  | * the same time.  This is simplified by the fact that we only | 
|  | * need to support 2 simultaneous HW events. | 
|  | * | 
|  | * As a side effect, the evts[]->hw.idx values will be assigned | 
|  | * on success.  These are pending indexes.  When the events are | 
|  | * actually programmed into the chip, these values will propagate | 
|  | * to the per-cpu cpuc->current_idx[] slots, see the code in | 
|  | * maybe_change_configuration() for details. | 
|  | */ | 
|  | static int sparc_check_constraints(struct perf_event **evts, | 
|  | unsigned long *events, int n_ev) | 
|  | { | 
|  | u8 msk0 = 0, msk1 = 0; | 
|  | int idx0 = 0; | 
|  |  | 
|  | /* This case is possible when we are invoked from | 
|  | * hw_perf_group_sched_in(). | 
|  | */ | 
|  | if (!n_ev) | 
|  | return 0; | 
|  |  | 
|  | if (n_ev > MAX_HWEVENTS) | 
|  | return -1; | 
|  |  | 
|  | msk0 = perf_event_get_msk(events[0]); | 
|  | if (n_ev == 1) { | 
|  | if (msk0 & PIC_LOWER) | 
|  | idx0 = 1; | 
|  | goto success; | 
|  | } | 
|  | BUG_ON(n_ev != 2); | 
|  | msk1 = perf_event_get_msk(events[1]); | 
|  |  | 
|  | /* If both events can go on any counter, OK.  */ | 
|  | if (msk0 == (PIC_UPPER | PIC_LOWER) && | 
|  | msk1 == (PIC_UPPER | PIC_LOWER)) | 
|  | goto success; | 
|  |  | 
|  | /* If one event is limited to a specific counter, | 
|  | * and the other can go on both, OK. | 
|  | */ | 
|  | if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) && | 
|  | msk1 == (PIC_UPPER | PIC_LOWER)) { | 
|  | if (msk0 & PIC_LOWER) | 
|  | idx0 = 1; | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) && | 
|  | msk0 == (PIC_UPPER | PIC_LOWER)) { | 
|  | if (msk1 & PIC_UPPER) | 
|  | idx0 = 1; | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | /* If the events are fixed to different counters, OK.  */ | 
|  | if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) || | 
|  | (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) { | 
|  | if (msk0 & PIC_LOWER) | 
|  | idx0 = 1; | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | /* Otherwise, there is a conflict.  */ | 
|  | return -1; | 
|  |  | 
|  | success: | 
|  | evts[0]->hw.idx = idx0; | 
|  | if (n_ev == 2) | 
|  | evts[1]->hw.idx = idx0 ^ 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_excludes(struct perf_event **evts, int n_prev, int n_new) | 
|  | { | 
|  | int eu = 0, ek = 0, eh = 0; | 
|  | struct perf_event *event; | 
|  | int i, n, first; | 
|  |  | 
|  | n = n_prev + n_new; | 
|  | if (n <= 1) | 
|  | return 0; | 
|  |  | 
|  | first = 1; | 
|  | for (i = 0; i < n; i++) { | 
|  | event = evts[i]; | 
|  | if (first) { | 
|  | eu = event->attr.exclude_user; | 
|  | ek = event->attr.exclude_kernel; | 
|  | eh = event->attr.exclude_hv; | 
|  | first = 0; | 
|  | } else if (event->attr.exclude_user != eu || | 
|  | event->attr.exclude_kernel != ek || | 
|  | event->attr.exclude_hv != eh) { | 
|  | return -EAGAIN; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int collect_events(struct perf_event *group, int max_count, | 
|  | struct perf_event *evts[], unsigned long *events, | 
|  | int *current_idx) | 
|  | { | 
|  | struct perf_event *event; | 
|  | int n = 0; | 
|  |  | 
|  | if (!is_software_event(group)) { | 
|  | if (n >= max_count) | 
|  | return -1; | 
|  | evts[n] = group; | 
|  | events[n] = group->hw.event_base; | 
|  | current_idx[n++] = PIC_NO_INDEX; | 
|  | } | 
|  | list_for_each_entry(event, &group->sibling_list, group_entry) { | 
|  | if (!is_software_event(event) && | 
|  | event->state != PERF_EVENT_STATE_OFF) { | 
|  | if (n >= max_count) | 
|  | return -1; | 
|  | evts[n] = event; | 
|  | events[n] = event->hw.event_base; | 
|  | current_idx[n++] = PIC_NO_INDEX; | 
|  | } | 
|  | } | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static int sparc_pmu_add(struct perf_event *event, int ef_flags) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | int n0, ret = -EAGAIN; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | perf_pmu_disable(event->pmu); | 
|  |  | 
|  | n0 = cpuc->n_events; | 
|  | if (n0 >= MAX_HWEVENTS) | 
|  | goto out; | 
|  |  | 
|  | cpuc->event[n0] = event; | 
|  | cpuc->events[n0] = event->hw.event_base; | 
|  | cpuc->current_idx[n0] = PIC_NO_INDEX; | 
|  |  | 
|  | event->hw.state = PERF_HES_UPTODATE; | 
|  | if (!(ef_flags & PERF_EF_START)) | 
|  | event->hw.state |= PERF_HES_STOPPED; | 
|  |  | 
|  | /* | 
|  | * If group events scheduling transaction was started, | 
|  | * skip the schedulability test here, it will be performed | 
|  | * at commit time(->commit_txn) as a whole | 
|  | */ | 
|  | if (cpuc->group_flag & PERF_EVENT_TXN) | 
|  | goto nocheck; | 
|  |  | 
|  | if (check_excludes(cpuc->event, n0, 1)) | 
|  | goto out; | 
|  | if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1)) | 
|  | goto out; | 
|  |  | 
|  | nocheck: | 
|  | cpuc->n_events++; | 
|  | cpuc->n_added++; | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | perf_pmu_enable(event->pmu); | 
|  | local_irq_restore(flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sparc_pmu_event_init(struct perf_event *event) | 
|  | { | 
|  | struct perf_event_attr *attr = &event->attr; | 
|  | struct perf_event *evts[MAX_HWEVENTS]; | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | unsigned long events[MAX_HWEVENTS]; | 
|  | int current_idx_dmy[MAX_HWEVENTS]; | 
|  | const struct perf_event_map *pmap; | 
|  | int n; | 
|  |  | 
|  | if (atomic_read(&nmi_active) < 0) | 
|  | return -ENODEV; | 
|  |  | 
|  | switch (attr->type) { | 
|  | case PERF_TYPE_HARDWARE: | 
|  | if (attr->config >= sparc_pmu->max_events) | 
|  | return -EINVAL; | 
|  | pmap = sparc_pmu->event_map(attr->config); | 
|  | break; | 
|  |  | 
|  | case PERF_TYPE_HW_CACHE: | 
|  | pmap = sparc_map_cache_event(attr->config); | 
|  | if (IS_ERR(pmap)) | 
|  | return PTR_ERR(pmap); | 
|  | break; | 
|  |  | 
|  | case PERF_TYPE_RAW: | 
|  | pmap = NULL; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -ENOENT; | 
|  |  | 
|  | } | 
|  |  | 
|  | if (pmap) { | 
|  | hwc->event_base = perf_event_encode(pmap); | 
|  | } else { | 
|  | /* | 
|  | * User gives us "(encoding << 16) | pic_mask" for | 
|  | * PERF_TYPE_RAW events. | 
|  | */ | 
|  | hwc->event_base = attr->config; | 
|  | } | 
|  |  | 
|  | /* We save the enable bits in the config_base.  */ | 
|  | hwc->config_base = sparc_pmu->irq_bit; | 
|  | if (!attr->exclude_user) | 
|  | hwc->config_base |= PCR_UTRACE; | 
|  | if (!attr->exclude_kernel) | 
|  | hwc->config_base |= PCR_STRACE; | 
|  | if (!attr->exclude_hv) | 
|  | hwc->config_base |= sparc_pmu->hv_bit; | 
|  |  | 
|  | n = 0; | 
|  | if (event->group_leader != event) { | 
|  | n = collect_events(event->group_leader, | 
|  | MAX_HWEVENTS - 1, | 
|  | evts, events, current_idx_dmy); | 
|  | if (n < 0) | 
|  | return -EINVAL; | 
|  | } | 
|  | events[n] = hwc->event_base; | 
|  | evts[n] = event; | 
|  |  | 
|  | if (check_excludes(evts, n, 1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (sparc_check_constraints(evts, events, n + 1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | hwc->idx = PIC_NO_INDEX; | 
|  |  | 
|  | /* Try to do all error checking before this point, as unwinding | 
|  | * state after grabbing the PMC is difficult. | 
|  | */ | 
|  | perf_event_grab_pmc(); | 
|  | event->destroy = hw_perf_event_destroy; | 
|  |  | 
|  | if (!hwc->sample_period) { | 
|  | hwc->sample_period = MAX_PERIOD; | 
|  | hwc->last_period = hwc->sample_period; | 
|  | local64_set(&hwc->period_left, hwc->sample_period); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start group events scheduling transaction | 
|  | * Set the flag to make pmu::enable() not perform the | 
|  | * schedulability test, it will be performed at commit time | 
|  | */ | 
|  | static void sparc_pmu_start_txn(struct pmu *pmu) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); | 
|  |  | 
|  | perf_pmu_disable(pmu); | 
|  | cpuhw->group_flag |= PERF_EVENT_TXN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stop group events scheduling transaction | 
|  | * Clear the flag and pmu::enable() will perform the | 
|  | * schedulability test. | 
|  | */ | 
|  | static void sparc_pmu_cancel_txn(struct pmu *pmu) | 
|  | { | 
|  | struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events); | 
|  |  | 
|  | cpuhw->group_flag &= ~PERF_EVENT_TXN; | 
|  | perf_pmu_enable(pmu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Commit group events scheduling transaction | 
|  | * Perform the group schedulability test as a whole | 
|  | * Return 0 if success | 
|  | */ | 
|  | static int sparc_pmu_commit_txn(struct pmu *pmu) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | int n; | 
|  |  | 
|  | if (!sparc_pmu) | 
|  | return -EINVAL; | 
|  |  | 
|  | cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | n = cpuc->n_events; | 
|  | if (check_excludes(cpuc->event, 0, n)) | 
|  | return -EINVAL; | 
|  | if (sparc_check_constraints(cpuc->event, cpuc->events, n)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | cpuc->group_flag &= ~PERF_EVENT_TXN; | 
|  | perf_pmu_enable(pmu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct pmu pmu = { | 
|  | .pmu_enable	= sparc_pmu_enable, | 
|  | .pmu_disable	= sparc_pmu_disable, | 
|  | .event_init	= sparc_pmu_event_init, | 
|  | .add		= sparc_pmu_add, | 
|  | .del		= sparc_pmu_del, | 
|  | .start		= sparc_pmu_start, | 
|  | .stop		= sparc_pmu_stop, | 
|  | .read		= sparc_pmu_read, | 
|  | .start_txn	= sparc_pmu_start_txn, | 
|  | .cancel_txn	= sparc_pmu_cancel_txn, | 
|  | .commit_txn	= sparc_pmu_commit_txn, | 
|  | }; | 
|  |  | 
|  | void perf_event_print_debug(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | u64 pcr, pic; | 
|  | int cpu; | 
|  |  | 
|  | if (!sparc_pmu) | 
|  | return; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  |  | 
|  | pcr = pcr_ops->read(); | 
|  | read_pic(pic); | 
|  |  | 
|  | pr_info("\n"); | 
|  | pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n", | 
|  | cpu, pcr, pic); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static int __kprobes perf_event_nmi_handler(struct notifier_block *self, | 
|  | unsigned long cmd, void *__args) | 
|  | { | 
|  | struct die_args *args = __args; | 
|  | struct perf_sample_data data; | 
|  | struct cpu_hw_events *cpuc; | 
|  | struct pt_regs *regs; | 
|  | int i; | 
|  |  | 
|  | if (!atomic_read(&active_events)) | 
|  | return NOTIFY_DONE; | 
|  |  | 
|  | switch (cmd) { | 
|  | case DIE_NMI: | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | regs = args->regs; | 
|  |  | 
|  | perf_sample_data_init(&data, 0); | 
|  |  | 
|  | cpuc = &__get_cpu_var(cpu_hw_events); | 
|  |  | 
|  | /* If the PMU has the TOE IRQ enable bits, we need to do a | 
|  | * dummy write to the %pcr to clear the overflow bits and thus | 
|  | * the interrupt. | 
|  | * | 
|  | * Do this before we peek at the counters to determine | 
|  | * overflow so we don't lose any events. | 
|  | */ | 
|  | if (sparc_pmu->irq_bit) | 
|  | pcr_ops->write(cpuc->pcr); | 
|  |  | 
|  | for (i = 0; i < cpuc->n_events; i++) { | 
|  | struct perf_event *event = cpuc->event[i]; | 
|  | int idx = cpuc->current_idx[i]; | 
|  | struct hw_perf_event *hwc; | 
|  | u64 val; | 
|  |  | 
|  | hwc = &event->hw; | 
|  | val = sparc_perf_event_update(event, hwc, idx); | 
|  | if (val & (1ULL << 31)) | 
|  | continue; | 
|  |  | 
|  | data.period = event->hw.last_period; | 
|  | if (!sparc_perf_event_set_period(event, hwc, idx)) | 
|  | continue; | 
|  |  | 
|  | if (perf_event_overflow(event, &data, regs)) | 
|  | sparc_pmu_stop(event, 0); | 
|  | } | 
|  |  | 
|  | return NOTIFY_STOP; | 
|  | } | 
|  |  | 
|  | static __read_mostly struct notifier_block perf_event_nmi_notifier = { | 
|  | .notifier_call		= perf_event_nmi_handler, | 
|  | }; | 
|  |  | 
|  | static bool __init supported_pmu(void) | 
|  | { | 
|  | if (!strcmp(sparc_pmu_type, "ultra3") || | 
|  | !strcmp(sparc_pmu_type, "ultra3+") || | 
|  | !strcmp(sparc_pmu_type, "ultra3i") || | 
|  | !strcmp(sparc_pmu_type, "ultra4+")) { | 
|  | sparc_pmu = &ultra3_pmu; | 
|  | return true; | 
|  | } | 
|  | if (!strcmp(sparc_pmu_type, "niagara")) { | 
|  | sparc_pmu = &niagara1_pmu; | 
|  | return true; | 
|  | } | 
|  | if (!strcmp(sparc_pmu_type, "niagara2") || | 
|  | !strcmp(sparc_pmu_type, "niagara3")) { | 
|  | sparc_pmu = &niagara2_pmu; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int __init init_hw_perf_events(void) | 
|  | { | 
|  | pr_info("Performance events: "); | 
|  |  | 
|  | if (!supported_pmu()) { | 
|  | pr_cont("No support for PMU type '%s'\n", sparc_pmu_type); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type); | 
|  |  | 
|  | perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); | 
|  | register_die_notifier(&perf_event_nmi_notifier); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_initcall(init_hw_perf_events); | 
|  |  | 
|  | void perf_callchain_kernel(struct perf_callchain_entry *entry, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | unsigned long ksp, fp; | 
|  | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | 
|  | int graph = 0; | 
|  | #endif | 
|  |  | 
|  | stack_trace_flush(); | 
|  |  | 
|  | perf_callchain_store(entry, regs->tpc); | 
|  |  | 
|  | ksp = regs->u_regs[UREG_I6]; | 
|  | fp = ksp + STACK_BIAS; | 
|  | do { | 
|  | struct sparc_stackf *sf; | 
|  | struct pt_regs *regs; | 
|  | unsigned long pc; | 
|  |  | 
|  | if (!kstack_valid(current_thread_info(), fp)) | 
|  | break; | 
|  |  | 
|  | sf = (struct sparc_stackf *) fp; | 
|  | regs = (struct pt_regs *) (sf + 1); | 
|  |  | 
|  | if (kstack_is_trap_frame(current_thread_info(), regs)) { | 
|  | if (user_mode(regs)) | 
|  | break; | 
|  | pc = regs->tpc; | 
|  | fp = regs->u_regs[UREG_I6] + STACK_BIAS; | 
|  | } else { | 
|  | pc = sf->callers_pc; | 
|  | fp = (unsigned long)sf->fp + STACK_BIAS; | 
|  | } | 
|  | perf_callchain_store(entry, pc); | 
|  | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | 
|  | if ((pc + 8UL) == (unsigned long) &return_to_handler) { | 
|  | int index = current->curr_ret_stack; | 
|  | if (current->ret_stack && index >= graph) { | 
|  | pc = current->ret_stack[index - graph].ret; | 
|  | perf_callchain_store(entry, pc); | 
|  | graph++; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } while (entry->nr < PERF_MAX_STACK_DEPTH); | 
|  | } | 
|  |  | 
|  | static void perf_callchain_user_64(struct perf_callchain_entry *entry, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | unsigned long ufp; | 
|  |  | 
|  | perf_callchain_store(entry, regs->tpc); | 
|  |  | 
|  | ufp = regs->u_regs[UREG_I6] + STACK_BIAS; | 
|  | do { | 
|  | struct sparc_stackf *usf, sf; | 
|  | unsigned long pc; | 
|  |  | 
|  | usf = (struct sparc_stackf *) ufp; | 
|  | if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) | 
|  | break; | 
|  |  | 
|  | pc = sf.callers_pc; | 
|  | ufp = (unsigned long)sf.fp + STACK_BIAS; | 
|  | perf_callchain_store(entry, pc); | 
|  | } while (entry->nr < PERF_MAX_STACK_DEPTH); | 
|  | } | 
|  |  | 
|  | static void perf_callchain_user_32(struct perf_callchain_entry *entry, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | unsigned long ufp; | 
|  |  | 
|  | perf_callchain_store(entry, regs->tpc); | 
|  |  | 
|  | ufp = regs->u_regs[UREG_I6] & 0xffffffffUL; | 
|  | do { | 
|  | struct sparc_stackf32 *usf, sf; | 
|  | unsigned long pc; | 
|  |  | 
|  | usf = (struct sparc_stackf32 *) ufp; | 
|  | if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) | 
|  | break; | 
|  |  | 
|  | pc = sf.callers_pc; | 
|  | ufp = (unsigned long)sf.fp; | 
|  | perf_callchain_store(entry, pc); | 
|  | } while (entry->nr < PERF_MAX_STACK_DEPTH); | 
|  | } | 
|  |  | 
|  | void | 
|  | perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs) | 
|  | { | 
|  | flushw_user(); | 
|  | if (test_thread_flag(TIF_32BIT)) | 
|  | perf_callchain_user_32(entry, regs); | 
|  | else | 
|  | perf_callchain_user_64(entry, regs); | 
|  | } |