|  | /**************************************************************************** | 
|  | * Driver for Solarflare Solarstorm network controllers and boards | 
|  | * Copyright 2005-2006 Fen Systems Ltd. | 
|  | * Copyright 2006-2009 Solarflare Communications Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published | 
|  | * by the Free Software Foundation, incorporated herein by reference. | 
|  | */ | 
|  |  | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/i2c.h> | 
|  | #include <linux/mii.h> | 
|  | #include <linux/slab.h> | 
|  | #include "net_driver.h" | 
|  | #include "bitfield.h" | 
|  | #include "efx.h" | 
|  | #include "mac.h" | 
|  | #include "spi.h" | 
|  | #include "nic.h" | 
|  | #include "regs.h" | 
|  | #include "io.h" | 
|  | #include "mdio_10g.h" | 
|  | #include "phy.h" | 
|  | #include "workarounds.h" | 
|  |  | 
|  | /* Hardware control for SFC4000 (aka Falcon). */ | 
|  |  | 
|  | static const unsigned int | 
|  | /* "Large" EEPROM device: Atmel AT25640 or similar | 
|  | * 8 KB, 16-bit address, 32 B write block */ | 
|  | large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN) | 
|  | | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN) | 
|  | | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)), | 
|  | /* Default flash device: Atmel AT25F1024 | 
|  | * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */ | 
|  | default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN) | 
|  | | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN) | 
|  | | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN) | 
|  | | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN) | 
|  | | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)); | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * I2C bus - this is a bit-bashing interface using GPIO pins | 
|  | * Note that it uses the output enables to tristate the outputs | 
|  | * SDA is the data pin and SCL is the clock | 
|  | * | 
|  | ************************************************************************** | 
|  | */ | 
|  | static void falcon_setsda(void *data, int state) | 
|  | { | 
|  | struct efx_nic *efx = (struct efx_nic *)data; | 
|  | efx_oword_t reg; | 
|  |  | 
|  | efx_reado(efx, ®, FR_AB_GPIO_CTL); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state); | 
|  | efx_writeo(efx, ®, FR_AB_GPIO_CTL); | 
|  | } | 
|  |  | 
|  | static void falcon_setscl(void *data, int state) | 
|  | { | 
|  | struct efx_nic *efx = (struct efx_nic *)data; | 
|  | efx_oword_t reg; | 
|  |  | 
|  | efx_reado(efx, ®, FR_AB_GPIO_CTL); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state); | 
|  | efx_writeo(efx, ®, FR_AB_GPIO_CTL); | 
|  | } | 
|  |  | 
|  | static int falcon_getsda(void *data) | 
|  | { | 
|  | struct efx_nic *efx = (struct efx_nic *)data; | 
|  | efx_oword_t reg; | 
|  |  | 
|  | efx_reado(efx, ®, FR_AB_GPIO_CTL); | 
|  | return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN); | 
|  | } | 
|  |  | 
|  | static int falcon_getscl(void *data) | 
|  | { | 
|  | struct efx_nic *efx = (struct efx_nic *)data; | 
|  | efx_oword_t reg; | 
|  |  | 
|  | efx_reado(efx, ®, FR_AB_GPIO_CTL); | 
|  | return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN); | 
|  | } | 
|  |  | 
|  | static struct i2c_algo_bit_data falcon_i2c_bit_operations = { | 
|  | .setsda		= falcon_setsda, | 
|  | .setscl		= falcon_setscl, | 
|  | .getsda		= falcon_getsda, | 
|  | .getscl		= falcon_getscl, | 
|  | .udelay		= 5, | 
|  | /* Wait up to 50 ms for slave to let us pull SCL high */ | 
|  | .timeout	= DIV_ROUND_UP(HZ, 20), | 
|  | }; | 
|  |  | 
|  | static void falcon_push_irq_moderation(struct efx_channel *channel) | 
|  | { | 
|  | efx_dword_t timer_cmd; | 
|  | struct efx_nic *efx = channel->efx; | 
|  |  | 
|  | /* Set timer register */ | 
|  | if (channel->irq_moderation) { | 
|  | EFX_POPULATE_DWORD_2(timer_cmd, | 
|  | FRF_AB_TC_TIMER_MODE, | 
|  | FFE_BB_TIMER_MODE_INT_HLDOFF, | 
|  | FRF_AB_TC_TIMER_VAL, | 
|  | channel->irq_moderation - 1); | 
|  | } else { | 
|  | EFX_POPULATE_DWORD_2(timer_cmd, | 
|  | FRF_AB_TC_TIMER_MODE, | 
|  | FFE_BB_TIMER_MODE_DIS, | 
|  | FRF_AB_TC_TIMER_VAL, 0); | 
|  | } | 
|  | BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0); | 
|  | efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0, | 
|  | channel->channel); | 
|  | } | 
|  |  | 
|  | static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx); | 
|  |  | 
|  | static void falcon_prepare_flush(struct efx_nic *efx) | 
|  | { | 
|  | falcon_deconfigure_mac_wrapper(efx); | 
|  |  | 
|  | /* Wait for the tx and rx fifo's to get to the next packet boundary | 
|  | * (~1ms without back-pressure), then to drain the remainder of the | 
|  | * fifo's at data path speeds (negligible), with a healthy margin. */ | 
|  | msleep(10); | 
|  | } | 
|  |  | 
|  | /* Acknowledge a legacy interrupt from Falcon | 
|  | * | 
|  | * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG. | 
|  | * | 
|  | * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the | 
|  | * BIU. Interrupt acknowledge is read sensitive so must write instead | 
|  | * (then read to ensure the BIU collector is flushed) | 
|  | * | 
|  | * NB most hardware supports MSI interrupts | 
|  | */ | 
|  | inline void falcon_irq_ack_a1(struct efx_nic *efx) | 
|  | { | 
|  | efx_dword_t reg; | 
|  |  | 
|  | EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e); | 
|  | efx_writed(efx, ®, FR_AA_INT_ACK_KER); | 
|  | efx_readd(efx, ®, FR_AA_WORK_AROUND_BROKEN_PCI_READS); | 
|  | } | 
|  |  | 
|  |  | 
|  | irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id) | 
|  | { | 
|  | struct efx_nic *efx = dev_id; | 
|  | efx_oword_t *int_ker = efx->irq_status.addr; | 
|  | struct efx_channel *channel; | 
|  | int syserr; | 
|  | int queues; | 
|  |  | 
|  | /* Check to see if this is our interrupt.  If it isn't, we | 
|  | * exit without having touched the hardware. | 
|  | */ | 
|  | if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) { | 
|  | EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq, | 
|  | raw_smp_processor_id()); | 
|  | return IRQ_NONE; | 
|  | } | 
|  | efx->last_irq_cpu = raw_smp_processor_id(); | 
|  | EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", | 
|  | irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); | 
|  |  | 
|  | /* Determine interrupting queues, clear interrupt status | 
|  | * register and acknowledge the device interrupt. | 
|  | */ | 
|  | BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS); | 
|  | queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q); | 
|  |  | 
|  | /* Check to see if we have a serious error condition */ | 
|  | if (queues & (1U << efx->fatal_irq_level)) { | 
|  | syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); | 
|  | if (unlikely(syserr)) | 
|  | return efx_nic_fatal_interrupt(efx); | 
|  | } | 
|  |  | 
|  | EFX_ZERO_OWORD(*int_ker); | 
|  | wmb(); /* Ensure the vector is cleared before interrupt ack */ | 
|  | falcon_irq_ack_a1(efx); | 
|  |  | 
|  | /* Schedule processing of any interrupting queues */ | 
|  | channel = &efx->channel[0]; | 
|  | while (queues) { | 
|  | if (queues & 0x01) | 
|  | efx_schedule_channel(channel); | 
|  | channel++; | 
|  | queues >>= 1; | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  | /************************************************************************** | 
|  | * | 
|  | * EEPROM/flash | 
|  | * | 
|  | ************************************************************************** | 
|  | */ | 
|  |  | 
|  | #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t) | 
|  |  | 
|  | static int falcon_spi_poll(struct efx_nic *efx) | 
|  | { | 
|  | efx_oword_t reg; | 
|  | efx_reado(efx, ®, FR_AB_EE_SPI_HCMD); | 
|  | return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0; | 
|  | } | 
|  |  | 
|  | /* Wait for SPI command completion */ | 
|  | static int falcon_spi_wait(struct efx_nic *efx) | 
|  | { | 
|  | /* Most commands will finish quickly, so we start polling at | 
|  | * very short intervals.  Sometimes the command may have to | 
|  | * wait for VPD or expansion ROM access outside of our | 
|  | * control, so we allow up to 100 ms. */ | 
|  | unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 10; i++) { | 
|  | if (!falcon_spi_poll(efx)) | 
|  | return 0; | 
|  | udelay(10); | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | if (!falcon_spi_poll(efx)) | 
|  | return 0; | 
|  | if (time_after_eq(jiffies, timeout)) { | 
|  | EFX_ERR(efx, "timed out waiting for SPI\n"); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  | schedule_timeout_uninterruptible(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi, | 
|  | unsigned int command, int address, | 
|  | const void *in, void *out, size_t len) | 
|  | { | 
|  | bool addressed = (address >= 0); | 
|  | bool reading = (out != NULL); | 
|  | efx_oword_t reg; | 
|  | int rc; | 
|  |  | 
|  | /* Input validation */ | 
|  | if (len > FALCON_SPI_MAX_LEN) | 
|  | return -EINVAL; | 
|  | BUG_ON(!mutex_is_locked(&efx->spi_lock)); | 
|  |  | 
|  | /* Check that previous command is not still running */ | 
|  | rc = falcon_spi_poll(efx); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* Program address register, if we have an address */ | 
|  | if (addressed) { | 
|  | EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address); | 
|  | efx_writeo(efx, ®, FR_AB_EE_SPI_HADR); | 
|  | } | 
|  |  | 
|  | /* Program data register, if we have data */ | 
|  | if (in != NULL) { | 
|  | memcpy(®, in, len); | 
|  | efx_writeo(efx, ®, FR_AB_EE_SPI_HDATA); | 
|  | } | 
|  |  | 
|  | /* Issue read/write command */ | 
|  | EFX_POPULATE_OWORD_7(reg, | 
|  | FRF_AB_EE_SPI_HCMD_CMD_EN, 1, | 
|  | FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id, | 
|  | FRF_AB_EE_SPI_HCMD_DABCNT, len, | 
|  | FRF_AB_EE_SPI_HCMD_READ, reading, | 
|  | FRF_AB_EE_SPI_HCMD_DUBCNT, 0, | 
|  | FRF_AB_EE_SPI_HCMD_ADBCNT, | 
|  | (addressed ? spi->addr_len : 0), | 
|  | FRF_AB_EE_SPI_HCMD_ENC, command); | 
|  | efx_writeo(efx, ®, FR_AB_EE_SPI_HCMD); | 
|  |  | 
|  | /* Wait for read/write to complete */ | 
|  | rc = falcon_spi_wait(efx); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* Read data */ | 
|  | if (out != NULL) { | 
|  | efx_reado(efx, ®, FR_AB_EE_SPI_HDATA); | 
|  | memcpy(out, ®, len); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static size_t | 
|  | falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start) | 
|  | { | 
|  | return min(FALCON_SPI_MAX_LEN, | 
|  | (spi->block_size - (start & (spi->block_size - 1)))); | 
|  | } | 
|  |  | 
|  | static inline u8 | 
|  | efx_spi_munge_command(const struct efx_spi_device *spi, | 
|  | const u8 command, const unsigned int address) | 
|  | { | 
|  | return command | (((address >> 8) & spi->munge_address) << 3); | 
|  | } | 
|  |  | 
|  | /* Wait up to 10 ms for buffered write completion */ | 
|  | int | 
|  | falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi) | 
|  | { | 
|  | unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100); | 
|  | u8 status; | 
|  | int rc; | 
|  |  | 
|  | for (;;) { | 
|  | rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL, | 
|  | &status, sizeof(status)); | 
|  | if (rc) | 
|  | return rc; | 
|  | if (!(status & SPI_STATUS_NRDY)) | 
|  | return 0; | 
|  | if (time_after_eq(jiffies, timeout)) { | 
|  | EFX_ERR(efx, "SPI write timeout on device %d" | 
|  | " last status=0x%02x\n", | 
|  | spi->device_id, status); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  | schedule_timeout_uninterruptible(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi, | 
|  | loff_t start, size_t len, size_t *retlen, u8 *buffer) | 
|  | { | 
|  | size_t block_len, pos = 0; | 
|  | unsigned int command; | 
|  | int rc = 0; | 
|  |  | 
|  | while (pos < len) { | 
|  | block_len = min(len - pos, FALCON_SPI_MAX_LEN); | 
|  |  | 
|  | command = efx_spi_munge_command(spi, SPI_READ, start + pos); | 
|  | rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL, | 
|  | buffer + pos, block_len); | 
|  | if (rc) | 
|  | break; | 
|  | pos += block_len; | 
|  |  | 
|  | /* Avoid locking up the system */ | 
|  | cond_resched(); | 
|  | if (signal_pending(current)) { | 
|  | rc = -EINTR; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (retlen) | 
|  | *retlen = pos; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int | 
|  | falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi, | 
|  | loff_t start, size_t len, size_t *retlen, const u8 *buffer) | 
|  | { | 
|  | u8 verify_buffer[FALCON_SPI_MAX_LEN]; | 
|  | size_t block_len, pos = 0; | 
|  | unsigned int command; | 
|  | int rc = 0; | 
|  |  | 
|  | while (pos < len) { | 
|  | rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0); | 
|  | if (rc) | 
|  | break; | 
|  |  | 
|  | block_len = min(len - pos, | 
|  | falcon_spi_write_limit(spi, start + pos)); | 
|  | command = efx_spi_munge_command(spi, SPI_WRITE, start + pos); | 
|  | rc = falcon_spi_cmd(efx, spi, command, start + pos, | 
|  | buffer + pos, NULL, block_len); | 
|  | if (rc) | 
|  | break; | 
|  |  | 
|  | rc = falcon_spi_wait_write(efx, spi); | 
|  | if (rc) | 
|  | break; | 
|  |  | 
|  | command = efx_spi_munge_command(spi, SPI_READ, start + pos); | 
|  | rc = falcon_spi_cmd(efx, spi, command, start + pos, | 
|  | NULL, verify_buffer, block_len); | 
|  | if (memcmp(verify_buffer, buffer + pos, block_len)) { | 
|  | rc = -EIO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | pos += block_len; | 
|  |  | 
|  | /* Avoid locking up the system */ | 
|  | cond_resched(); | 
|  | if (signal_pending(current)) { | 
|  | rc = -EINTR; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (retlen) | 
|  | *retlen = pos; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * MAC wrapper | 
|  | * | 
|  | ************************************************************************** | 
|  | */ | 
|  |  | 
|  | static void falcon_push_multicast_hash(struct efx_nic *efx) | 
|  | { | 
|  | union efx_multicast_hash *mc_hash = &efx->multicast_hash; | 
|  |  | 
|  | WARN_ON(!mutex_is_locked(&efx->mac_lock)); | 
|  |  | 
|  | efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0); | 
|  | efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1); | 
|  | } | 
|  |  | 
|  | static void falcon_reset_macs(struct efx_nic *efx) | 
|  | { | 
|  | struct falcon_nic_data *nic_data = efx->nic_data; | 
|  | efx_oword_t reg, mac_ctrl; | 
|  | int count; | 
|  |  | 
|  | if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) { | 
|  | /* It's not safe to use GLB_CTL_REG to reset the | 
|  | * macs, so instead use the internal MAC resets | 
|  | */ | 
|  | if (!EFX_IS10G(efx)) { | 
|  | EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1); | 
|  | efx_writeo(efx, ®, FR_AB_GM_CFG1); | 
|  | udelay(1000); | 
|  |  | 
|  | EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0); | 
|  | efx_writeo(efx, ®, FR_AB_GM_CFG1); | 
|  | udelay(1000); | 
|  | return; | 
|  | } else { | 
|  | EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1); | 
|  | efx_writeo(efx, ®, FR_AB_XM_GLB_CFG); | 
|  |  | 
|  | for (count = 0; count < 10000; count++) { | 
|  | efx_reado(efx, ®, FR_AB_XM_GLB_CFG); | 
|  | if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) == | 
|  | 0) | 
|  | return; | 
|  | udelay(10); | 
|  | } | 
|  |  | 
|  | EFX_ERR(efx, "timed out waiting for XMAC core reset\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Mac stats will fail whist the TX fifo is draining */ | 
|  | WARN_ON(nic_data->stats_disable_count == 0); | 
|  |  | 
|  | efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL); | 
|  | EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1); | 
|  | efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL); | 
|  |  | 
|  | efx_reado(efx, ®, FR_AB_GLB_CTL); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1); | 
|  | efx_writeo(efx, ®, FR_AB_GLB_CTL); | 
|  |  | 
|  | count = 0; | 
|  | while (1) { | 
|  | efx_reado(efx, ®, FR_AB_GLB_CTL); | 
|  | if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) && | 
|  | !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) && | 
|  | !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) { | 
|  | EFX_LOG(efx, "Completed MAC reset after %d loops\n", | 
|  | count); | 
|  | break; | 
|  | } | 
|  | if (count > 20) { | 
|  | EFX_ERR(efx, "MAC reset failed\n"); | 
|  | break; | 
|  | } | 
|  | count++; | 
|  | udelay(10); | 
|  | } | 
|  |  | 
|  | /* Ensure the correct MAC is selected before statistics | 
|  | * are re-enabled by the caller */ | 
|  | efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL); | 
|  |  | 
|  | /* This can run even when the GMAC is selected */ | 
|  | falcon_setup_xaui(efx); | 
|  | } | 
|  |  | 
|  | void falcon_drain_tx_fifo(struct efx_nic *efx) | 
|  | { | 
|  | efx_oword_t reg; | 
|  |  | 
|  | if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) || | 
|  | (efx->loopback_mode != LOOPBACK_NONE)) | 
|  | return; | 
|  |  | 
|  | efx_reado(efx, ®, FR_AB_MAC_CTRL); | 
|  | /* There is no point in draining more than once */ | 
|  | if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN)) | 
|  | return; | 
|  |  | 
|  | falcon_reset_macs(efx); | 
|  | } | 
|  |  | 
|  | static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx) | 
|  | { | 
|  | efx_oword_t reg; | 
|  |  | 
|  | if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) | 
|  | return; | 
|  |  | 
|  | /* Isolate the MAC -> RX */ | 
|  | efx_reado(efx, ®, FR_AZ_RX_CFG); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0); | 
|  | efx_writeo(efx, ®, FR_AZ_RX_CFG); | 
|  |  | 
|  | /* Isolate TX -> MAC */ | 
|  | falcon_drain_tx_fifo(efx); | 
|  | } | 
|  |  | 
|  | void falcon_reconfigure_mac_wrapper(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_link_state *link_state = &efx->link_state; | 
|  | efx_oword_t reg; | 
|  | int link_speed; | 
|  |  | 
|  | switch (link_state->speed) { | 
|  | case 10000: link_speed = 3; break; | 
|  | case 1000:  link_speed = 2; break; | 
|  | case 100:   link_speed = 1; break; | 
|  | default:    link_speed = 0; break; | 
|  | } | 
|  | /* MAC_LINK_STATUS controls MAC backpressure but doesn't work | 
|  | * as advertised.  Disable to ensure packets are not | 
|  | * indefinitely held and TX queue can be flushed at any point | 
|  | * while the link is down. */ | 
|  | EFX_POPULATE_OWORD_5(reg, | 
|  | FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */, | 
|  | FRF_AB_MAC_BCAD_ACPT, 1, | 
|  | FRF_AB_MAC_UC_PROM, efx->promiscuous, | 
|  | FRF_AB_MAC_LINK_STATUS, 1, /* always set */ | 
|  | FRF_AB_MAC_SPEED, link_speed); | 
|  | /* On B0, MAC backpressure can be disabled and packets get | 
|  | * discarded. */ | 
|  | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, | 
|  | !link_state->up); | 
|  | } | 
|  |  | 
|  | efx_writeo(efx, ®, FR_AB_MAC_CTRL); | 
|  |  | 
|  | /* Restore the multicast hash registers. */ | 
|  | falcon_push_multicast_hash(efx); | 
|  |  | 
|  | efx_reado(efx, ®, FR_AZ_RX_CFG); | 
|  | /* Enable XOFF signal from RX FIFO (we enabled it during NIC | 
|  | * initialisation but it may read back as 0) */ | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1); | 
|  | /* Unisolate the MAC -> RX */ | 
|  | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1); | 
|  | efx_writeo(efx, ®, FR_AZ_RX_CFG); | 
|  | } | 
|  |  | 
|  | static void falcon_stats_request(struct efx_nic *efx) | 
|  | { | 
|  | struct falcon_nic_data *nic_data = efx->nic_data; | 
|  | efx_oword_t reg; | 
|  |  | 
|  | WARN_ON(nic_data->stats_pending); | 
|  | WARN_ON(nic_data->stats_disable_count); | 
|  |  | 
|  | if (nic_data->stats_dma_done == NULL) | 
|  | return;	/* no mac selected */ | 
|  |  | 
|  | *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE; | 
|  | nic_data->stats_pending = true; | 
|  | wmb(); /* ensure done flag is clear */ | 
|  |  | 
|  | /* Initiate DMA transfer of stats */ | 
|  | EFX_POPULATE_OWORD_2(reg, | 
|  | FRF_AB_MAC_STAT_DMA_CMD, 1, | 
|  | FRF_AB_MAC_STAT_DMA_ADR, | 
|  | efx->stats_buffer.dma_addr); | 
|  | efx_writeo(efx, ®, FR_AB_MAC_STAT_DMA); | 
|  |  | 
|  | mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2)); | 
|  | } | 
|  |  | 
|  | static void falcon_stats_complete(struct efx_nic *efx) | 
|  | { | 
|  | struct falcon_nic_data *nic_data = efx->nic_data; | 
|  |  | 
|  | if (!nic_data->stats_pending) | 
|  | return; | 
|  |  | 
|  | nic_data->stats_pending = 0; | 
|  | if (*nic_data->stats_dma_done == FALCON_STATS_DONE) { | 
|  | rmb(); /* read the done flag before the stats */ | 
|  | efx->mac_op->update_stats(efx); | 
|  | } else { | 
|  | EFX_ERR(efx, "timed out waiting for statistics\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void falcon_stats_timer_func(unsigned long context) | 
|  | { | 
|  | struct efx_nic *efx = (struct efx_nic *)context; | 
|  | struct falcon_nic_data *nic_data = efx->nic_data; | 
|  |  | 
|  | spin_lock(&efx->stats_lock); | 
|  |  | 
|  | falcon_stats_complete(efx); | 
|  | if (nic_data->stats_disable_count == 0) | 
|  | falcon_stats_request(efx); | 
|  |  | 
|  | spin_unlock(&efx->stats_lock); | 
|  | } | 
|  |  | 
|  | static void falcon_switch_mac(struct efx_nic *efx); | 
|  |  | 
|  | static bool falcon_loopback_link_poll(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_link_state old_state = efx->link_state; | 
|  |  | 
|  | WARN_ON(!mutex_is_locked(&efx->mac_lock)); | 
|  | WARN_ON(!LOOPBACK_INTERNAL(efx)); | 
|  |  | 
|  | efx->link_state.fd = true; | 
|  | efx->link_state.fc = efx->wanted_fc; | 
|  | efx->link_state.up = true; | 
|  |  | 
|  | if (efx->loopback_mode == LOOPBACK_GMAC) | 
|  | efx->link_state.speed = 1000; | 
|  | else | 
|  | efx->link_state.speed = 10000; | 
|  |  | 
|  | return !efx_link_state_equal(&efx->link_state, &old_state); | 
|  | } | 
|  |  | 
|  | static int falcon_reconfigure_port(struct efx_nic *efx) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0); | 
|  |  | 
|  | /* Poll the PHY link state *before* reconfiguring it. This means we | 
|  | * will pick up the correct speed (in loopback) to select the correct | 
|  | * MAC. | 
|  | */ | 
|  | if (LOOPBACK_INTERNAL(efx)) | 
|  | falcon_loopback_link_poll(efx); | 
|  | else | 
|  | efx->phy_op->poll(efx); | 
|  |  | 
|  | falcon_stop_nic_stats(efx); | 
|  | falcon_deconfigure_mac_wrapper(efx); | 
|  |  | 
|  | falcon_switch_mac(efx); | 
|  |  | 
|  | efx->phy_op->reconfigure(efx); | 
|  | rc = efx->mac_op->reconfigure(efx); | 
|  | BUG_ON(rc); | 
|  |  | 
|  | falcon_start_nic_stats(efx); | 
|  |  | 
|  | /* Synchronise efx->link_state with the kernel */ | 
|  | efx_link_status_changed(efx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * PHY access via GMII | 
|  | * | 
|  | ************************************************************************** | 
|  | */ | 
|  |  | 
|  | /* Wait for GMII access to complete */ | 
|  | static int falcon_gmii_wait(struct efx_nic *efx) | 
|  | { | 
|  | efx_oword_t md_stat; | 
|  | int count; | 
|  |  | 
|  | /* wait upto 50ms - taken max from datasheet */ | 
|  | for (count = 0; count < 5000; count++) { | 
|  | efx_reado(efx, &md_stat, FR_AB_MD_STAT); | 
|  | if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) { | 
|  | if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 || | 
|  | EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) { | 
|  | EFX_ERR(efx, "error from GMII access " | 
|  | EFX_OWORD_FMT"\n", | 
|  | EFX_OWORD_VAL(md_stat)); | 
|  | return -EIO; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | udelay(10); | 
|  | } | 
|  | EFX_ERR(efx, "timed out waiting for GMII\n"); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | /* Write an MDIO register of a PHY connected to Falcon. */ | 
|  | static int falcon_mdio_write(struct net_device *net_dev, | 
|  | int prtad, int devad, u16 addr, u16 value) | 
|  | { | 
|  | struct efx_nic *efx = netdev_priv(net_dev); | 
|  | efx_oword_t reg; | 
|  | int rc; | 
|  |  | 
|  | EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n", | 
|  | prtad, devad, addr, value); | 
|  |  | 
|  | mutex_lock(&efx->mdio_lock); | 
|  |  | 
|  | /* Check MDIO not currently being accessed */ | 
|  | rc = falcon_gmii_wait(efx); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | /* Write the address/ID register */ | 
|  | EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr); | 
|  | efx_writeo(efx, ®, FR_AB_MD_PHY_ADR); | 
|  |  | 
|  | EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad, | 
|  | FRF_AB_MD_DEV_ADR, devad); | 
|  | efx_writeo(efx, ®, FR_AB_MD_ID); | 
|  |  | 
|  | /* Write data */ | 
|  | EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value); | 
|  | efx_writeo(efx, ®, FR_AB_MD_TXD); | 
|  |  | 
|  | EFX_POPULATE_OWORD_2(reg, | 
|  | FRF_AB_MD_WRC, 1, | 
|  | FRF_AB_MD_GC, 0); | 
|  | efx_writeo(efx, ®, FR_AB_MD_CS); | 
|  |  | 
|  | /* Wait for data to be written */ | 
|  | rc = falcon_gmii_wait(efx); | 
|  | if (rc) { | 
|  | /* Abort the write operation */ | 
|  | EFX_POPULATE_OWORD_2(reg, | 
|  | FRF_AB_MD_WRC, 0, | 
|  | FRF_AB_MD_GC, 1); | 
|  | efx_writeo(efx, ®, FR_AB_MD_CS); | 
|  | udelay(10); | 
|  | } | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&efx->mdio_lock); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Read an MDIO register of a PHY connected to Falcon. */ | 
|  | static int falcon_mdio_read(struct net_device *net_dev, | 
|  | int prtad, int devad, u16 addr) | 
|  | { | 
|  | struct efx_nic *efx = netdev_priv(net_dev); | 
|  | efx_oword_t reg; | 
|  | int rc; | 
|  |  | 
|  | mutex_lock(&efx->mdio_lock); | 
|  |  | 
|  | /* Check MDIO not currently being accessed */ | 
|  | rc = falcon_gmii_wait(efx); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr); | 
|  | efx_writeo(efx, ®, FR_AB_MD_PHY_ADR); | 
|  |  | 
|  | EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad, | 
|  | FRF_AB_MD_DEV_ADR, devad); | 
|  | efx_writeo(efx, ®, FR_AB_MD_ID); | 
|  |  | 
|  | /* Request data to be read */ | 
|  | EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0); | 
|  | efx_writeo(efx, ®, FR_AB_MD_CS); | 
|  |  | 
|  | /* Wait for data to become available */ | 
|  | rc = falcon_gmii_wait(efx); | 
|  | if (rc == 0) { | 
|  | efx_reado(efx, ®, FR_AB_MD_RXD); | 
|  | rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD); | 
|  | EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n", | 
|  | prtad, devad, addr, rc); | 
|  | } else { | 
|  | /* Abort the read operation */ | 
|  | EFX_POPULATE_OWORD_2(reg, | 
|  | FRF_AB_MD_RIC, 0, | 
|  | FRF_AB_MD_GC, 1); | 
|  | efx_writeo(efx, ®, FR_AB_MD_CS); | 
|  |  | 
|  | EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n", | 
|  | prtad, devad, addr, rc); | 
|  | } | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&efx->mdio_lock); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void falcon_clock_mac(struct efx_nic *efx) | 
|  | { | 
|  | unsigned strap_val; | 
|  | efx_oword_t nic_stat; | 
|  |  | 
|  | /* Configure the NIC generated MAC clock correctly */ | 
|  | efx_reado(efx, &nic_stat, FR_AB_NIC_STAT); | 
|  | strap_val = EFX_IS10G(efx) ? 5 : 3; | 
|  | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { | 
|  | EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1); | 
|  | EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val); | 
|  | efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT); | 
|  | } else { | 
|  | /* Falcon A1 does not support 1G/10G speed switching | 
|  | * and must not be used with a PHY that does. */ | 
|  | BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) != | 
|  | strap_val); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void falcon_switch_mac(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_mac_operations *old_mac_op = efx->mac_op; | 
|  | struct falcon_nic_data *nic_data = efx->nic_data; | 
|  | unsigned int stats_done_offset; | 
|  |  | 
|  | WARN_ON(!mutex_is_locked(&efx->mac_lock)); | 
|  | WARN_ON(nic_data->stats_disable_count == 0); | 
|  |  | 
|  | efx->mac_op = (EFX_IS10G(efx) ? | 
|  | &falcon_xmac_operations : &falcon_gmac_operations); | 
|  |  | 
|  | if (EFX_IS10G(efx)) | 
|  | stats_done_offset = XgDmaDone_offset; | 
|  | else | 
|  | stats_done_offset = GDmaDone_offset; | 
|  | nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset; | 
|  |  | 
|  | if (old_mac_op == efx->mac_op) | 
|  | return; | 
|  |  | 
|  | falcon_clock_mac(efx); | 
|  |  | 
|  | EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G'); | 
|  | /* Not all macs support a mac-level link state */ | 
|  | efx->xmac_poll_required = false; | 
|  | falcon_reset_macs(efx); | 
|  | } | 
|  |  | 
|  | /* This call is responsible for hooking in the MAC and PHY operations */ | 
|  | static int falcon_probe_port(struct efx_nic *efx) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | switch (efx->phy_type) { | 
|  | case PHY_TYPE_SFX7101: | 
|  | efx->phy_op = &falcon_sfx7101_phy_ops; | 
|  | break; | 
|  | case PHY_TYPE_SFT9001A: | 
|  | case PHY_TYPE_SFT9001B: | 
|  | efx->phy_op = &falcon_sft9001_phy_ops; | 
|  | break; | 
|  | case PHY_TYPE_QT2022C2: | 
|  | case PHY_TYPE_QT2025C: | 
|  | efx->phy_op = &falcon_qt202x_phy_ops; | 
|  | break; | 
|  | default: | 
|  | EFX_ERR(efx, "Unknown PHY type %d\n", | 
|  | efx->phy_type); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Fill out MDIO structure and loopback modes */ | 
|  | efx->mdio.mdio_read = falcon_mdio_read; | 
|  | efx->mdio.mdio_write = falcon_mdio_write; | 
|  | rc = efx->phy_op->probe(efx); | 
|  | if (rc != 0) | 
|  | return rc; | 
|  |  | 
|  | /* Initial assumption */ | 
|  | efx->link_state.speed = 10000; | 
|  | efx->link_state.fd = true; | 
|  |  | 
|  | /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */ | 
|  | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) | 
|  | efx->wanted_fc = EFX_FC_RX | EFX_FC_TX; | 
|  | else | 
|  | efx->wanted_fc = EFX_FC_RX; | 
|  | if (efx->mdio.mmds & MDIO_DEVS_AN) | 
|  | efx->wanted_fc |= EFX_FC_AUTO; | 
|  |  | 
|  | /* Allocate buffer for stats */ | 
|  | rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer, | 
|  | FALCON_MAC_STATS_SIZE); | 
|  | if (rc) | 
|  | return rc; | 
|  | EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n", | 
|  | (u64)efx->stats_buffer.dma_addr, | 
|  | efx->stats_buffer.addr, | 
|  | (u64)virt_to_phys(efx->stats_buffer.addr)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void falcon_remove_port(struct efx_nic *efx) | 
|  | { | 
|  | efx->phy_op->remove(efx); | 
|  | efx_nic_free_buffer(efx, &efx->stats_buffer); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Falcon test code | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | static int | 
|  | falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out) | 
|  | { | 
|  | struct falcon_nvconfig *nvconfig; | 
|  | struct efx_spi_device *spi; | 
|  | void *region; | 
|  | int rc, magic_num, struct_ver; | 
|  | __le16 *word, *limit; | 
|  | u32 csum; | 
|  |  | 
|  | spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom; | 
|  | if (!spi) | 
|  | return -EINVAL; | 
|  |  | 
|  | region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL); | 
|  | if (!region) | 
|  | return -ENOMEM; | 
|  | nvconfig = region + FALCON_NVCONFIG_OFFSET; | 
|  |  | 
|  | mutex_lock(&efx->spi_lock); | 
|  | rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region); | 
|  | mutex_unlock(&efx->spi_lock); | 
|  | if (rc) { | 
|  | EFX_ERR(efx, "Failed to read %s\n", | 
|  | efx->spi_flash ? "flash" : "EEPROM"); | 
|  | rc = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | magic_num = le16_to_cpu(nvconfig->board_magic_num); | 
|  | struct_ver = le16_to_cpu(nvconfig->board_struct_ver); | 
|  |  | 
|  | rc = -EINVAL; | 
|  | if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) { | 
|  | EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num); | 
|  | goto out; | 
|  | } | 
|  | if (struct_ver < 2) { | 
|  | EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver); | 
|  | goto out; | 
|  | } else if (struct_ver < 4) { | 
|  | word = &nvconfig->board_magic_num; | 
|  | limit = (__le16 *) (nvconfig + 1); | 
|  | } else { | 
|  | word = region; | 
|  | limit = region + FALCON_NVCONFIG_END; | 
|  | } | 
|  | for (csum = 0; word < limit; ++word) | 
|  | csum += le16_to_cpu(*word); | 
|  |  | 
|  | if (~csum & 0xffff) { | 
|  | EFX_ERR(efx, "NVRAM has incorrect checksum\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rc = 0; | 
|  | if (nvconfig_out) | 
|  | memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig)); | 
|  |  | 
|  | out: | 
|  | kfree(region); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int falcon_test_nvram(struct efx_nic *efx) | 
|  | { | 
|  | return falcon_read_nvram(efx, NULL); | 
|  | } | 
|  |  | 
|  | static const struct efx_nic_register_test falcon_b0_register_tests[] = { | 
|  | { FR_AZ_ADR_REGION, | 
|  | EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) }, | 
|  | { FR_AZ_RX_CFG, | 
|  | EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) }, | 
|  | { FR_AZ_TX_CFG, | 
|  | EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) }, | 
|  | { FR_AZ_TX_RESERVED, | 
|  | EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) }, | 
|  | { FR_AB_MAC_CTRL, | 
|  | EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) }, | 
|  | { FR_AZ_SRM_TX_DC_CFG, | 
|  | EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) }, | 
|  | { FR_AZ_RX_DC_CFG, | 
|  | EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) }, | 
|  | { FR_AZ_RX_DC_PF_WM, | 
|  | EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) }, | 
|  | { FR_BZ_DP_CTRL, | 
|  | EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) }, | 
|  | { FR_AB_GM_CFG2, | 
|  | EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) }, | 
|  | { FR_AB_GMF_CFG0, | 
|  | EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) }, | 
|  | { FR_AB_XM_GLB_CFG, | 
|  | EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) }, | 
|  | { FR_AB_XM_TX_CFG, | 
|  | EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) }, | 
|  | { FR_AB_XM_RX_CFG, | 
|  | EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) }, | 
|  | { FR_AB_XM_RX_PARAM, | 
|  | EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) }, | 
|  | { FR_AB_XM_FC, | 
|  | EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) }, | 
|  | { FR_AB_XM_ADR_LO, | 
|  | EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) }, | 
|  | { FR_AB_XX_SD_CTL, | 
|  | EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) }, | 
|  | }; | 
|  |  | 
|  | static int falcon_b0_test_registers(struct efx_nic *efx) | 
|  | { | 
|  | return efx_nic_test_registers(efx, falcon_b0_register_tests, | 
|  | ARRAY_SIZE(falcon_b0_register_tests)); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Device reset | 
|  | * | 
|  | ************************************************************************** | 
|  | */ | 
|  |  | 
|  | /* Resets NIC to known state.  This routine must be called in process | 
|  | * context and is allowed to sleep. */ | 
|  | static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method) | 
|  | { | 
|  | struct falcon_nic_data *nic_data = efx->nic_data; | 
|  | efx_oword_t glb_ctl_reg_ker; | 
|  | int rc; | 
|  |  | 
|  | EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method)); | 
|  |  | 
|  | /* Initiate device reset */ | 
|  | if (method == RESET_TYPE_WORLD) { | 
|  | rc = pci_save_state(efx->pci_dev); | 
|  | if (rc) { | 
|  | EFX_ERR(efx, "failed to backup PCI state of primary " | 
|  | "function prior to hardware reset\n"); | 
|  | goto fail1; | 
|  | } | 
|  | if (efx_nic_is_dual_func(efx)) { | 
|  | rc = pci_save_state(nic_data->pci_dev2); | 
|  | if (rc) { | 
|  | EFX_ERR(efx, "failed to backup PCI state of " | 
|  | "secondary function prior to " | 
|  | "hardware reset\n"); | 
|  | goto fail2; | 
|  | } | 
|  | } | 
|  |  | 
|  | EFX_POPULATE_OWORD_2(glb_ctl_reg_ker, | 
|  | FRF_AB_EXT_PHY_RST_DUR, | 
|  | FFE_AB_EXT_PHY_RST_DUR_10240US, | 
|  | FRF_AB_SWRST, 1); | 
|  | } else { | 
|  | EFX_POPULATE_OWORD_7(glb_ctl_reg_ker, | 
|  | /* exclude PHY from "invisible" reset */ | 
|  | FRF_AB_EXT_PHY_RST_CTL, | 
|  | method == RESET_TYPE_INVISIBLE, | 
|  | /* exclude EEPROM/flash and PCIe */ | 
|  | FRF_AB_PCIE_CORE_RST_CTL, 1, | 
|  | FRF_AB_PCIE_NSTKY_RST_CTL, 1, | 
|  | FRF_AB_PCIE_SD_RST_CTL, 1, | 
|  | FRF_AB_EE_RST_CTL, 1, | 
|  | FRF_AB_EXT_PHY_RST_DUR, | 
|  | FFE_AB_EXT_PHY_RST_DUR_10240US, | 
|  | FRF_AB_SWRST, 1); | 
|  | } | 
|  | efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL); | 
|  |  | 
|  | EFX_LOG(efx, "waiting for hardware reset\n"); | 
|  | schedule_timeout_uninterruptible(HZ / 20); | 
|  |  | 
|  | /* Restore PCI configuration if needed */ | 
|  | if (method == RESET_TYPE_WORLD) { | 
|  | if (efx_nic_is_dual_func(efx)) { | 
|  | rc = pci_restore_state(nic_data->pci_dev2); | 
|  | if (rc) { | 
|  | EFX_ERR(efx, "failed to restore PCI config for " | 
|  | "the secondary function\n"); | 
|  | goto fail3; | 
|  | } | 
|  | } | 
|  | rc = pci_restore_state(efx->pci_dev); | 
|  | if (rc) { | 
|  | EFX_ERR(efx, "failed to restore PCI config for the " | 
|  | "primary function\n"); | 
|  | goto fail4; | 
|  | } | 
|  | EFX_LOG(efx, "successfully restored PCI config\n"); | 
|  | } | 
|  |  | 
|  | /* Assert that reset complete */ | 
|  | efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL); | 
|  | if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) { | 
|  | rc = -ETIMEDOUT; | 
|  | EFX_ERR(efx, "timed out waiting for hardware reset\n"); | 
|  | goto fail5; | 
|  | } | 
|  | EFX_LOG(efx, "hardware reset complete\n"); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | /* pci_save_state() and pci_restore_state() MUST be called in pairs */ | 
|  | fail2: | 
|  | fail3: | 
|  | pci_restore_state(efx->pci_dev); | 
|  | fail1: | 
|  | fail4: | 
|  | fail5: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void falcon_monitor(struct efx_nic *efx) | 
|  | { | 
|  | bool link_changed; | 
|  | int rc; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&efx->mac_lock)); | 
|  |  | 
|  | rc = falcon_board(efx)->type->monitor(efx); | 
|  | if (rc) { | 
|  | EFX_ERR(efx, "Board sensor %s; shutting down PHY\n", | 
|  | (rc == -ERANGE) ? "reported fault" : "failed"); | 
|  | efx->phy_mode |= PHY_MODE_LOW_POWER; | 
|  | rc = __efx_reconfigure_port(efx); | 
|  | WARN_ON(rc); | 
|  | } | 
|  |  | 
|  | if (LOOPBACK_INTERNAL(efx)) | 
|  | link_changed = falcon_loopback_link_poll(efx); | 
|  | else | 
|  | link_changed = efx->phy_op->poll(efx); | 
|  |  | 
|  | if (link_changed) { | 
|  | falcon_stop_nic_stats(efx); | 
|  | falcon_deconfigure_mac_wrapper(efx); | 
|  |  | 
|  | falcon_switch_mac(efx); | 
|  | rc = efx->mac_op->reconfigure(efx); | 
|  | BUG_ON(rc); | 
|  |  | 
|  | falcon_start_nic_stats(efx); | 
|  |  | 
|  | efx_link_status_changed(efx); | 
|  | } | 
|  |  | 
|  | if (EFX_IS10G(efx)) | 
|  | falcon_poll_xmac(efx); | 
|  | } | 
|  |  | 
|  | /* Zeroes out the SRAM contents.  This routine must be called in | 
|  | * process context and is allowed to sleep. | 
|  | */ | 
|  | static int falcon_reset_sram(struct efx_nic *efx) | 
|  | { | 
|  | efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker; | 
|  | int count; | 
|  |  | 
|  | /* Set the SRAM wake/sleep GPIO appropriately. */ | 
|  | efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL); | 
|  | EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1); | 
|  | EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1); | 
|  | efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL); | 
|  |  | 
|  | /* Initiate SRAM reset */ | 
|  | EFX_POPULATE_OWORD_2(srm_cfg_reg_ker, | 
|  | FRF_AZ_SRM_INIT_EN, 1, | 
|  | FRF_AZ_SRM_NB_SZ, 0); | 
|  | efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG); | 
|  |  | 
|  | /* Wait for SRAM reset to complete */ | 
|  | count = 0; | 
|  | do { | 
|  | EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count); | 
|  |  | 
|  | /* SRAM reset is slow; expect around 16ms */ | 
|  | schedule_timeout_uninterruptible(HZ / 50); | 
|  |  | 
|  | /* Check for reset complete */ | 
|  | efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG); | 
|  | if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) { | 
|  | EFX_LOG(efx, "SRAM reset complete\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | } while (++count < 20);	/* wait upto 0.4 sec */ | 
|  |  | 
|  | EFX_ERR(efx, "timed out waiting for SRAM reset\n"); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | static int falcon_spi_device_init(struct efx_nic *efx, | 
|  | struct efx_spi_device **spi_device_ret, | 
|  | unsigned int device_id, u32 device_type) | 
|  | { | 
|  | struct efx_spi_device *spi_device; | 
|  |  | 
|  | if (device_type != 0) { | 
|  | spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL); | 
|  | if (!spi_device) | 
|  | return -ENOMEM; | 
|  | spi_device->device_id = device_id; | 
|  | spi_device->size = | 
|  | 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE); | 
|  | spi_device->addr_len = | 
|  | SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN); | 
|  | spi_device->munge_address = (spi_device->size == 1 << 9 && | 
|  | spi_device->addr_len == 1); | 
|  | spi_device->erase_command = | 
|  | SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD); | 
|  | spi_device->erase_size = | 
|  | 1 << SPI_DEV_TYPE_FIELD(device_type, | 
|  | SPI_DEV_TYPE_ERASE_SIZE); | 
|  | spi_device->block_size = | 
|  | 1 << SPI_DEV_TYPE_FIELD(device_type, | 
|  | SPI_DEV_TYPE_BLOCK_SIZE); | 
|  | } else { | 
|  | spi_device = NULL; | 
|  | } | 
|  |  | 
|  | kfree(*spi_device_ret); | 
|  | *spi_device_ret = spi_device; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void falcon_remove_spi_devices(struct efx_nic *efx) | 
|  | { | 
|  | kfree(efx->spi_eeprom); | 
|  | efx->spi_eeprom = NULL; | 
|  | kfree(efx->spi_flash); | 
|  | efx->spi_flash = NULL; | 
|  | } | 
|  |  | 
|  | /* Extract non-volatile configuration */ | 
|  | static int falcon_probe_nvconfig(struct efx_nic *efx) | 
|  | { | 
|  | struct falcon_nvconfig *nvconfig; | 
|  | int board_rev; | 
|  | int rc; | 
|  |  | 
|  | nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL); | 
|  | if (!nvconfig) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rc = falcon_read_nvram(efx, nvconfig); | 
|  | if (rc == -EINVAL) { | 
|  | EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n"); | 
|  | efx->phy_type = PHY_TYPE_NONE; | 
|  | efx->mdio.prtad = MDIO_PRTAD_NONE; | 
|  | board_rev = 0; | 
|  | rc = 0; | 
|  | } else if (rc) { | 
|  | goto fail1; | 
|  | } else { | 
|  | struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2; | 
|  | struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3; | 
|  |  | 
|  | efx->phy_type = v2->port0_phy_type; | 
|  | efx->mdio.prtad = v2->port0_phy_addr; | 
|  | board_rev = le16_to_cpu(v2->board_revision); | 
|  |  | 
|  | if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) { | 
|  | rc = falcon_spi_device_init( | 
|  | efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH, | 
|  | le32_to_cpu(v3->spi_device_type | 
|  | [FFE_AB_SPI_DEVICE_FLASH])); | 
|  | if (rc) | 
|  | goto fail2; | 
|  | rc = falcon_spi_device_init( | 
|  | efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM, | 
|  | le32_to_cpu(v3->spi_device_type | 
|  | [FFE_AB_SPI_DEVICE_EEPROM])); | 
|  | if (rc) | 
|  | goto fail2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Read the MAC addresses */ | 
|  | memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN); | 
|  |  | 
|  | EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad); | 
|  |  | 
|  | rc = falcon_probe_board(efx, board_rev); | 
|  | if (rc) | 
|  | goto fail2; | 
|  |  | 
|  | kfree(nvconfig); | 
|  | return 0; | 
|  |  | 
|  | fail2: | 
|  | falcon_remove_spi_devices(efx); | 
|  | fail1: | 
|  | kfree(nvconfig); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Probe all SPI devices on the NIC */ | 
|  | static void falcon_probe_spi_devices(struct efx_nic *efx) | 
|  | { | 
|  | efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg; | 
|  | int boot_dev; | 
|  |  | 
|  | efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL); | 
|  | efx_reado(efx, &nic_stat, FR_AB_NIC_STAT); | 
|  | efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0); | 
|  |  | 
|  | if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) { | 
|  | boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ? | 
|  | FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM); | 
|  | EFX_LOG(efx, "Booted from %s\n", | 
|  | boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM"); | 
|  | } else { | 
|  | /* Disable VPD and set clock dividers to safe | 
|  | * values for initial programming. */ | 
|  | boot_dev = -1; | 
|  | EFX_LOG(efx, "Booted from internal ASIC settings;" | 
|  | " setting SPI config\n"); | 
|  | EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0, | 
|  | /* 125 MHz / 7 ~= 20 MHz */ | 
|  | FRF_AB_EE_SF_CLOCK_DIV, 7, | 
|  | /* 125 MHz / 63 ~= 2 MHz */ | 
|  | FRF_AB_EE_EE_CLOCK_DIV, 63); | 
|  | efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0); | 
|  | } | 
|  |  | 
|  | if (boot_dev == FFE_AB_SPI_DEVICE_FLASH) | 
|  | falcon_spi_device_init(efx, &efx->spi_flash, | 
|  | FFE_AB_SPI_DEVICE_FLASH, | 
|  | default_flash_type); | 
|  | if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM) | 
|  | falcon_spi_device_init(efx, &efx->spi_eeprom, | 
|  | FFE_AB_SPI_DEVICE_EEPROM, | 
|  | large_eeprom_type); | 
|  | } | 
|  |  | 
|  | static int falcon_probe_nic(struct efx_nic *efx) | 
|  | { | 
|  | struct falcon_nic_data *nic_data; | 
|  | struct falcon_board *board; | 
|  | int rc; | 
|  |  | 
|  | /* Allocate storage for hardware specific data */ | 
|  | nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); | 
|  | if (!nic_data) | 
|  | return -ENOMEM; | 
|  | efx->nic_data = nic_data; | 
|  |  | 
|  | rc = -ENODEV; | 
|  |  | 
|  | if (efx_nic_fpga_ver(efx) != 0) { | 
|  | EFX_ERR(efx, "Falcon FPGA not supported\n"); | 
|  | goto fail1; | 
|  | } | 
|  |  | 
|  | if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) { | 
|  | efx_oword_t nic_stat; | 
|  | struct pci_dev *dev; | 
|  | u8 pci_rev = efx->pci_dev->revision; | 
|  |  | 
|  | if ((pci_rev == 0xff) || (pci_rev == 0)) { | 
|  | EFX_ERR(efx, "Falcon rev A0 not supported\n"); | 
|  | goto fail1; | 
|  | } | 
|  | efx_reado(efx, &nic_stat, FR_AB_NIC_STAT); | 
|  | if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) { | 
|  | EFX_ERR(efx, "Falcon rev A1 1G not supported\n"); | 
|  | goto fail1; | 
|  | } | 
|  | if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) { | 
|  | EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n"); | 
|  | goto fail1; | 
|  | } | 
|  |  | 
|  | dev = pci_dev_get(efx->pci_dev); | 
|  | while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID, | 
|  | dev))) { | 
|  | if (dev->bus == efx->pci_dev->bus && | 
|  | dev->devfn == efx->pci_dev->devfn + 1) { | 
|  | nic_data->pci_dev2 = dev; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!nic_data->pci_dev2) { | 
|  | EFX_ERR(efx, "failed to find secondary function\n"); | 
|  | rc = -ENODEV; | 
|  | goto fail2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now we can reset the NIC */ | 
|  | rc = falcon_reset_hw(efx, RESET_TYPE_ALL); | 
|  | if (rc) { | 
|  | EFX_ERR(efx, "failed to reset NIC\n"); | 
|  | goto fail3; | 
|  | } | 
|  |  | 
|  | /* Allocate memory for INT_KER */ | 
|  | rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t)); | 
|  | if (rc) | 
|  | goto fail4; | 
|  | BUG_ON(efx->irq_status.dma_addr & 0x0f); | 
|  |  | 
|  | EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n", | 
|  | (u64)efx->irq_status.dma_addr, | 
|  | efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr)); | 
|  |  | 
|  | falcon_probe_spi_devices(efx); | 
|  |  | 
|  | /* Read in the non-volatile configuration */ | 
|  | rc = falcon_probe_nvconfig(efx); | 
|  | if (rc) | 
|  | goto fail5; | 
|  |  | 
|  | /* Initialise I2C adapter */ | 
|  | board = falcon_board(efx); | 
|  | board->i2c_adap.owner = THIS_MODULE; | 
|  | board->i2c_data = falcon_i2c_bit_operations; | 
|  | board->i2c_data.data = efx; | 
|  | board->i2c_adap.algo_data = &board->i2c_data; | 
|  | board->i2c_adap.dev.parent = &efx->pci_dev->dev; | 
|  | strlcpy(board->i2c_adap.name, "SFC4000 GPIO", | 
|  | sizeof(board->i2c_adap.name)); | 
|  | rc = i2c_bit_add_bus(&board->i2c_adap); | 
|  | if (rc) | 
|  | goto fail5; | 
|  |  | 
|  | rc = falcon_board(efx)->type->init(efx); | 
|  | if (rc) { | 
|  | EFX_ERR(efx, "failed to initialise board\n"); | 
|  | goto fail6; | 
|  | } | 
|  |  | 
|  | nic_data->stats_disable_count = 1; | 
|  | setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func, | 
|  | (unsigned long)efx); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail6: | 
|  | BUG_ON(i2c_del_adapter(&board->i2c_adap)); | 
|  | memset(&board->i2c_adap, 0, sizeof(board->i2c_adap)); | 
|  | fail5: | 
|  | falcon_remove_spi_devices(efx); | 
|  | efx_nic_free_buffer(efx, &efx->irq_status); | 
|  | fail4: | 
|  | fail3: | 
|  | if (nic_data->pci_dev2) { | 
|  | pci_dev_put(nic_data->pci_dev2); | 
|  | nic_data->pci_dev2 = NULL; | 
|  | } | 
|  | fail2: | 
|  | fail1: | 
|  | kfree(efx->nic_data); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void falcon_init_rx_cfg(struct efx_nic *efx) | 
|  | { | 
|  | /* Prior to Siena the RX DMA engine will split each frame at | 
|  | * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to | 
|  | * be so large that that never happens. */ | 
|  | const unsigned huge_buf_size = (3 * 4096) >> 5; | 
|  | /* RX control FIFO thresholds (32 entries) */ | 
|  | const unsigned ctrl_xon_thr = 20; | 
|  | const unsigned ctrl_xoff_thr = 25; | 
|  | /* RX data FIFO thresholds (256-byte units; size varies) */ | 
|  | int data_xon_thr = efx_nic_rx_xon_thresh >> 8; | 
|  | int data_xoff_thr = efx_nic_rx_xoff_thresh >> 8; | 
|  | efx_oword_t reg; | 
|  |  | 
|  | efx_reado(efx, ®, FR_AZ_RX_CFG); | 
|  | if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) { | 
|  | /* Data FIFO size is 5.5K */ | 
|  | if (data_xon_thr < 0) | 
|  | data_xon_thr = 512 >> 8; | 
|  | if (data_xoff_thr < 0) | 
|  | data_xoff_thr = 2048 >> 8; | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE, | 
|  | huge_buf_size); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr); | 
|  | } else { | 
|  | /* Data FIFO size is 80K; register fields moved */ | 
|  | if (data_xon_thr < 0) | 
|  | data_xon_thr = 27648 >> 8; /* ~3*max MTU */ | 
|  | if (data_xoff_thr < 0) | 
|  | data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */ | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE, | 
|  | huge_buf_size); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1); | 
|  | } | 
|  | /* Always enable XOFF signal from RX FIFO.  We enable | 
|  | * or disable transmission of pause frames at the MAC. */ | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1); | 
|  | efx_writeo(efx, ®, FR_AZ_RX_CFG); | 
|  | } | 
|  |  | 
|  | /* This call performs hardware-specific global initialisation, such as | 
|  | * defining the descriptor cache sizes and number of RSS channels. | 
|  | * It does not set up any buffers, descriptor rings or event queues. | 
|  | */ | 
|  | static int falcon_init_nic(struct efx_nic *efx) | 
|  | { | 
|  | efx_oword_t temp; | 
|  | int rc; | 
|  |  | 
|  | /* Use on-chip SRAM */ | 
|  | efx_reado(efx, &temp, FR_AB_NIC_STAT); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1); | 
|  | efx_writeo(efx, &temp, FR_AB_NIC_STAT); | 
|  |  | 
|  | /* Set the source of the GMAC clock */ | 
|  | if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) { | 
|  | efx_reado(efx, &temp, FR_AB_GPIO_CTL); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true); | 
|  | efx_writeo(efx, &temp, FR_AB_GPIO_CTL); | 
|  | } | 
|  |  | 
|  | /* Select the correct MAC */ | 
|  | falcon_clock_mac(efx); | 
|  |  | 
|  | rc = falcon_reset_sram(efx); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* Clear the parity enables on the TX data fifos as | 
|  | * they produce false parity errors because of timing issues | 
|  | */ | 
|  | if (EFX_WORKAROUND_5129(efx)) { | 
|  | efx_reado(efx, &temp, FR_AZ_CSR_SPARE); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0); | 
|  | efx_writeo(efx, &temp, FR_AZ_CSR_SPARE); | 
|  | } | 
|  |  | 
|  | if (EFX_WORKAROUND_7244(efx)) { | 
|  | efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8); | 
|  | efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL); | 
|  | } | 
|  |  | 
|  | /* XXX This is documented only for Falcon A0/A1 */ | 
|  | /* Setup RX.  Wait for descriptor is broken and must | 
|  | * be disabled.  RXDP recovery shouldn't be needed, but is. | 
|  | */ | 
|  | efx_reado(efx, &temp, FR_AA_RX_SELF_RST); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1); | 
|  | if (EFX_WORKAROUND_5583(efx)) | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1); | 
|  | efx_writeo(efx, &temp, FR_AA_RX_SELF_RST); | 
|  |  | 
|  | /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16 | 
|  | * descriptors (which is bad). | 
|  | */ | 
|  | efx_reado(efx, &temp, FR_AZ_TX_CFG); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0); | 
|  | efx_writeo(efx, &temp, FR_AZ_TX_CFG); | 
|  |  | 
|  | falcon_init_rx_cfg(efx); | 
|  |  | 
|  | /* Set destination of both TX and RX Flush events */ | 
|  | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { | 
|  | EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0); | 
|  | efx_writeo(efx, &temp, FR_BZ_DP_CTRL); | 
|  | } | 
|  |  | 
|  | efx_nic_init_common(efx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void falcon_remove_nic(struct efx_nic *efx) | 
|  | { | 
|  | struct falcon_nic_data *nic_data = efx->nic_data; | 
|  | struct falcon_board *board = falcon_board(efx); | 
|  | int rc; | 
|  |  | 
|  | board->type->fini(efx); | 
|  |  | 
|  | /* Remove I2C adapter and clear it in preparation for a retry */ | 
|  | rc = i2c_del_adapter(&board->i2c_adap); | 
|  | BUG_ON(rc); | 
|  | memset(&board->i2c_adap, 0, sizeof(board->i2c_adap)); | 
|  |  | 
|  | falcon_remove_spi_devices(efx); | 
|  | efx_nic_free_buffer(efx, &efx->irq_status); | 
|  |  | 
|  | falcon_reset_hw(efx, RESET_TYPE_ALL); | 
|  |  | 
|  | /* Release the second function after the reset */ | 
|  | if (nic_data->pci_dev2) { | 
|  | pci_dev_put(nic_data->pci_dev2); | 
|  | nic_data->pci_dev2 = NULL; | 
|  | } | 
|  |  | 
|  | /* Tear down the private nic state */ | 
|  | kfree(efx->nic_data); | 
|  | efx->nic_data = NULL; | 
|  | } | 
|  |  | 
|  | static void falcon_update_nic_stats(struct efx_nic *efx) | 
|  | { | 
|  | struct falcon_nic_data *nic_data = efx->nic_data; | 
|  | efx_oword_t cnt; | 
|  |  | 
|  | if (nic_data->stats_disable_count) | 
|  | return; | 
|  |  | 
|  | efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP); | 
|  | efx->n_rx_nodesc_drop_cnt += | 
|  | EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT); | 
|  |  | 
|  | if (nic_data->stats_pending && | 
|  | *nic_data->stats_dma_done == FALCON_STATS_DONE) { | 
|  | nic_data->stats_pending = false; | 
|  | rmb(); /* read the done flag before the stats */ | 
|  | efx->mac_op->update_stats(efx); | 
|  | } | 
|  | } | 
|  |  | 
|  | void falcon_start_nic_stats(struct efx_nic *efx) | 
|  | { | 
|  | struct falcon_nic_data *nic_data = efx->nic_data; | 
|  |  | 
|  | spin_lock_bh(&efx->stats_lock); | 
|  | if (--nic_data->stats_disable_count == 0) | 
|  | falcon_stats_request(efx); | 
|  | spin_unlock_bh(&efx->stats_lock); | 
|  | } | 
|  |  | 
|  | void falcon_stop_nic_stats(struct efx_nic *efx) | 
|  | { | 
|  | struct falcon_nic_data *nic_data = efx->nic_data; | 
|  | int i; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | spin_lock_bh(&efx->stats_lock); | 
|  | ++nic_data->stats_disable_count; | 
|  | spin_unlock_bh(&efx->stats_lock); | 
|  |  | 
|  | del_timer_sync(&nic_data->stats_timer); | 
|  |  | 
|  | /* Wait enough time for the most recent transfer to | 
|  | * complete. */ | 
|  | for (i = 0; i < 4 && nic_data->stats_pending; i++) { | 
|  | if (*nic_data->stats_dma_done == FALCON_STATS_DONE) | 
|  | break; | 
|  | msleep(1); | 
|  | } | 
|  |  | 
|  | spin_lock_bh(&efx->stats_lock); | 
|  | falcon_stats_complete(efx); | 
|  | spin_unlock_bh(&efx->stats_lock); | 
|  | } | 
|  |  | 
|  | static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) | 
|  | { | 
|  | falcon_board(efx)->type->set_id_led(efx, mode); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Wake on LAN | 
|  | * | 
|  | ************************************************************************** | 
|  | */ | 
|  |  | 
|  | static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol) | 
|  | { | 
|  | wol->supported = 0; | 
|  | wol->wolopts = 0; | 
|  | memset(&wol->sopass, 0, sizeof(wol->sopass)); | 
|  | } | 
|  |  | 
|  | static int falcon_set_wol(struct efx_nic *efx, u32 type) | 
|  | { | 
|  | if (type != 0) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Revision-dependent attributes used by efx.c and nic.c | 
|  | * | 
|  | ************************************************************************** | 
|  | */ | 
|  |  | 
|  | struct efx_nic_type falcon_a1_nic_type = { | 
|  | .probe = falcon_probe_nic, | 
|  | .remove = falcon_remove_nic, | 
|  | .init = falcon_init_nic, | 
|  | .fini = efx_port_dummy_op_void, | 
|  | .monitor = falcon_monitor, | 
|  | .reset = falcon_reset_hw, | 
|  | .probe_port = falcon_probe_port, | 
|  | .remove_port = falcon_remove_port, | 
|  | .prepare_flush = falcon_prepare_flush, | 
|  | .update_stats = falcon_update_nic_stats, | 
|  | .start_stats = falcon_start_nic_stats, | 
|  | .stop_stats = falcon_stop_nic_stats, | 
|  | .set_id_led = falcon_set_id_led, | 
|  | .push_irq_moderation = falcon_push_irq_moderation, | 
|  | .push_multicast_hash = falcon_push_multicast_hash, | 
|  | .reconfigure_port = falcon_reconfigure_port, | 
|  | .get_wol = falcon_get_wol, | 
|  | .set_wol = falcon_set_wol, | 
|  | .resume_wol = efx_port_dummy_op_void, | 
|  | .test_nvram = falcon_test_nvram, | 
|  | .default_mac_ops = &falcon_xmac_operations, | 
|  |  | 
|  | .revision = EFX_REV_FALCON_A1, | 
|  | .mem_map_size = 0x20000, | 
|  | .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER, | 
|  | .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER, | 
|  | .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER, | 
|  | .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER, | 
|  | .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER, | 
|  | .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH), | 
|  | .rx_buffer_padding = 0x24, | 
|  | .max_interrupt_mode = EFX_INT_MODE_MSI, | 
|  | .phys_addr_channels = 4, | 
|  | .tx_dc_base = 0x130000, | 
|  | .rx_dc_base = 0x100000, | 
|  | .offload_features = NETIF_F_IP_CSUM, | 
|  | .reset_world_flags = ETH_RESET_IRQ, | 
|  | }; | 
|  |  | 
|  | struct efx_nic_type falcon_b0_nic_type = { | 
|  | .probe = falcon_probe_nic, | 
|  | .remove = falcon_remove_nic, | 
|  | .init = falcon_init_nic, | 
|  | .fini = efx_port_dummy_op_void, | 
|  | .monitor = falcon_monitor, | 
|  | .reset = falcon_reset_hw, | 
|  | .probe_port = falcon_probe_port, | 
|  | .remove_port = falcon_remove_port, | 
|  | .prepare_flush = falcon_prepare_flush, | 
|  | .update_stats = falcon_update_nic_stats, | 
|  | .start_stats = falcon_start_nic_stats, | 
|  | .stop_stats = falcon_stop_nic_stats, | 
|  | .set_id_led = falcon_set_id_led, | 
|  | .push_irq_moderation = falcon_push_irq_moderation, | 
|  | .push_multicast_hash = falcon_push_multicast_hash, | 
|  | .reconfigure_port = falcon_reconfigure_port, | 
|  | .get_wol = falcon_get_wol, | 
|  | .set_wol = falcon_set_wol, | 
|  | .resume_wol = efx_port_dummy_op_void, | 
|  | .test_registers = falcon_b0_test_registers, | 
|  | .test_nvram = falcon_test_nvram, | 
|  | .default_mac_ops = &falcon_xmac_operations, | 
|  |  | 
|  | .revision = EFX_REV_FALCON_B0, | 
|  | /* Map everything up to and including the RSS indirection | 
|  | * table.  Don't map MSI-X table, MSI-X PBA since Linux | 
|  | * requires that they not be mapped.  */ | 
|  | .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL + | 
|  | FR_BZ_RX_INDIRECTION_TBL_STEP * | 
|  | FR_BZ_RX_INDIRECTION_TBL_ROWS), | 
|  | .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL, | 
|  | .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL, | 
|  | .buf_tbl_base = FR_BZ_BUF_FULL_TBL, | 
|  | .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL, | 
|  | .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR, | 
|  | .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH), | 
|  | .rx_buffer_padding = 0, | 
|  | .max_interrupt_mode = EFX_INT_MODE_MSIX, | 
|  | .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy | 
|  | * interrupt handler only supports 32 | 
|  | * channels */ | 
|  | .tx_dc_base = 0x130000, | 
|  | .rx_dc_base = 0x100000, | 
|  | .offload_features = NETIF_F_IP_CSUM, | 
|  | .reset_world_flags = ETH_RESET_IRQ, | 
|  | }; | 
|  |  |