|  | /**************************************************************************** | 
|  | * Driver for Solarflare Solarstorm network controllers and boards | 
|  | * Copyright 2005-2006 Fen Systems Ltd. | 
|  | * Copyright 2005-2009 Solarflare Communications Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published | 
|  | * by the Free Software Foundation, incorporated herein by reference. | 
|  | */ | 
|  |  | 
|  | #include <linux/socket.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/udp.h> | 
|  | #include <net/ip.h> | 
|  | #include <net/checksum.h> | 
|  | #include "net_driver.h" | 
|  | #include "efx.h" | 
|  | #include "nic.h" | 
|  | #include "selftest.h" | 
|  | #include "workarounds.h" | 
|  |  | 
|  | /* Number of RX descriptors pushed at once. */ | 
|  | #define EFX_RX_BATCH  8 | 
|  |  | 
|  | /* Size of buffer allocated for skb header area. */ | 
|  | #define EFX_SKB_HEADERS  64u | 
|  |  | 
|  | /* | 
|  | * rx_alloc_method - RX buffer allocation method | 
|  | * | 
|  | * This driver supports two methods for allocating and using RX buffers: | 
|  | * each RX buffer may be backed by an skb or by an order-n page. | 
|  | * | 
|  | * When LRO is in use then the second method has a lower overhead, | 
|  | * since we don't have to allocate then free skbs on reassembled frames. | 
|  | * | 
|  | * Values: | 
|  | *   - RX_ALLOC_METHOD_AUTO = 0 | 
|  | *   - RX_ALLOC_METHOD_SKB  = 1 | 
|  | *   - RX_ALLOC_METHOD_PAGE = 2 | 
|  | * | 
|  | * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count | 
|  | * controlled by the parameters below. | 
|  | * | 
|  | *   - Since pushing and popping descriptors are separated by the rx_queue | 
|  | *     size, so the watermarks should be ~rxd_size. | 
|  | *   - The performance win by using page-based allocation for LRO is less | 
|  | *     than the performance hit of using page-based allocation of non-LRO, | 
|  | *     so the watermarks should reflect this. | 
|  | * | 
|  | * Per channel we maintain a single variable, updated by each channel: | 
|  | * | 
|  | *   rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO : | 
|  | *                      RX_ALLOC_FACTOR_SKB) | 
|  | * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which | 
|  | * limits the hysteresis), and update the allocation strategy: | 
|  | * | 
|  | *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ? | 
|  | *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB) | 
|  | */ | 
|  | static int rx_alloc_method = RX_ALLOC_METHOD_AUTO; | 
|  |  | 
|  | #define RX_ALLOC_LEVEL_LRO 0x2000 | 
|  | #define RX_ALLOC_LEVEL_MAX 0x3000 | 
|  | #define RX_ALLOC_FACTOR_LRO 1 | 
|  | #define RX_ALLOC_FACTOR_SKB (-2) | 
|  |  | 
|  | /* This is the percentage fill level below which new RX descriptors | 
|  | * will be added to the RX descriptor ring. | 
|  | */ | 
|  | static unsigned int rx_refill_threshold = 90; | 
|  |  | 
|  | /* This is the percentage fill level to which an RX queue will be refilled | 
|  | * when the "RX refill threshold" is reached. | 
|  | */ | 
|  | static unsigned int rx_refill_limit = 95; | 
|  |  | 
|  | /* | 
|  | * RX maximum head room required. | 
|  | * | 
|  | * This must be at least 1 to prevent overflow and at least 2 to allow | 
|  | * pipelined receives. | 
|  | */ | 
|  | #define EFX_RXD_HEAD_ROOM 2 | 
|  |  | 
|  | static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf) | 
|  | { | 
|  | /* Offset is always within one page, so we don't need to consider | 
|  | * the page order. | 
|  | */ | 
|  | return (__force unsigned long) buf->data & (PAGE_SIZE - 1); | 
|  | } | 
|  | static inline unsigned int efx_rx_buf_size(struct efx_nic *efx) | 
|  | { | 
|  | return PAGE_SIZE << efx->rx_buffer_order; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * efx_init_rx_buffer_skb - create new RX buffer using skb-based allocation | 
|  | * | 
|  | * @rx_queue:		Efx RX queue | 
|  | * @rx_buf:		RX buffer structure to populate | 
|  | * | 
|  | * This allocates memory for a new receive buffer, maps it for DMA, | 
|  | * and populates a struct efx_rx_buffer with the relevant | 
|  | * information.  Return a negative error code or 0 on success. | 
|  | */ | 
|  | static int efx_init_rx_buffer_skb(struct efx_rx_queue *rx_queue, | 
|  | struct efx_rx_buffer *rx_buf) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | struct net_device *net_dev = efx->net_dev; | 
|  | int skb_len = efx->rx_buffer_len; | 
|  |  | 
|  | rx_buf->skb = netdev_alloc_skb(net_dev, skb_len); | 
|  | if (unlikely(!rx_buf->skb)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Adjust the SKB for padding and checksum */ | 
|  | skb_reserve(rx_buf->skb, NET_IP_ALIGN); | 
|  | rx_buf->len = skb_len - NET_IP_ALIGN; | 
|  | rx_buf->data = (char *)rx_buf->skb->data; | 
|  | rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  |  | 
|  | rx_buf->dma_addr = pci_map_single(efx->pci_dev, | 
|  | rx_buf->data, rx_buf->len, | 
|  | PCI_DMA_FROMDEVICE); | 
|  |  | 
|  | if (unlikely(pci_dma_mapping_error(efx->pci_dev, rx_buf->dma_addr))) { | 
|  | dev_kfree_skb_any(rx_buf->skb); | 
|  | rx_buf->skb = NULL; | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * efx_init_rx_buffer_page - create new RX buffer using page-based allocation | 
|  | * | 
|  | * @rx_queue:		Efx RX queue | 
|  | * @rx_buf:		RX buffer structure to populate | 
|  | * | 
|  | * This allocates memory for a new receive buffer, maps it for DMA, | 
|  | * and populates a struct efx_rx_buffer with the relevant | 
|  | * information.  Return a negative error code or 0 on success. | 
|  | */ | 
|  | static int efx_init_rx_buffer_page(struct efx_rx_queue *rx_queue, | 
|  | struct efx_rx_buffer *rx_buf) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | int bytes, space, offset; | 
|  |  | 
|  | bytes = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN; | 
|  |  | 
|  | /* If there is space left in the previously allocated page, | 
|  | * then use it. Otherwise allocate a new one */ | 
|  | rx_buf->page = rx_queue->buf_page; | 
|  | if (rx_buf->page == NULL) { | 
|  | dma_addr_t dma_addr; | 
|  |  | 
|  | rx_buf->page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC, | 
|  | efx->rx_buffer_order); | 
|  | if (unlikely(rx_buf->page == NULL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dma_addr = pci_map_page(efx->pci_dev, rx_buf->page, | 
|  | 0, efx_rx_buf_size(efx), | 
|  | PCI_DMA_FROMDEVICE); | 
|  |  | 
|  | if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) { | 
|  | __free_pages(rx_buf->page, efx->rx_buffer_order); | 
|  | rx_buf->page = NULL; | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | rx_queue->buf_page = rx_buf->page; | 
|  | rx_queue->buf_dma_addr = dma_addr; | 
|  | rx_queue->buf_data = (page_address(rx_buf->page) + | 
|  | EFX_PAGE_IP_ALIGN); | 
|  | } | 
|  |  | 
|  | rx_buf->len = bytes; | 
|  | rx_buf->data = rx_queue->buf_data; | 
|  | offset = efx_rx_buf_offset(rx_buf); | 
|  | rx_buf->dma_addr = rx_queue->buf_dma_addr + offset; | 
|  |  | 
|  | /* Try to pack multiple buffers per page */ | 
|  | if (efx->rx_buffer_order == 0) { | 
|  | /* The next buffer starts on the next 512 byte boundary */ | 
|  | rx_queue->buf_data += ((bytes + 0x1ff) & ~0x1ff); | 
|  | offset += ((bytes + 0x1ff) & ~0x1ff); | 
|  |  | 
|  | space = efx_rx_buf_size(efx) - offset; | 
|  | if (space >= bytes) { | 
|  | /* Refs dropped on kernel releasing each skb */ | 
|  | get_page(rx_queue->buf_page); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This is the final RX buffer for this page, so mark it for | 
|  | * unmapping */ | 
|  | rx_queue->buf_page = NULL; | 
|  | rx_buf->unmap_addr = rx_queue->buf_dma_addr; | 
|  |  | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This allocates memory for a new receive buffer, maps it for DMA, | 
|  | * and populates a struct efx_rx_buffer with the relevant | 
|  | * information. | 
|  | */ | 
|  | static int efx_init_rx_buffer(struct efx_rx_queue *rx_queue, | 
|  | struct efx_rx_buffer *new_rx_buf) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | if (rx_queue->channel->rx_alloc_push_pages) { | 
|  | new_rx_buf->skb = NULL; | 
|  | rc = efx_init_rx_buffer_page(rx_queue, new_rx_buf); | 
|  | rx_queue->alloc_page_count++; | 
|  | } else { | 
|  | new_rx_buf->page = NULL; | 
|  | rc = efx_init_rx_buffer_skb(rx_queue, new_rx_buf); | 
|  | rx_queue->alloc_skb_count++; | 
|  | } | 
|  |  | 
|  | if (unlikely(rc < 0)) | 
|  | EFX_LOG_RL(rx_queue->efx, "%s RXQ[%d] =%d\n", __func__, | 
|  | rx_queue->queue, rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void efx_unmap_rx_buffer(struct efx_nic *efx, | 
|  | struct efx_rx_buffer *rx_buf) | 
|  | { | 
|  | if (rx_buf->page) { | 
|  | EFX_BUG_ON_PARANOID(rx_buf->skb); | 
|  | if (rx_buf->unmap_addr) { | 
|  | pci_unmap_page(efx->pci_dev, rx_buf->unmap_addr, | 
|  | efx_rx_buf_size(efx), | 
|  | PCI_DMA_FROMDEVICE); | 
|  | rx_buf->unmap_addr = 0; | 
|  | } | 
|  | } else if (likely(rx_buf->skb)) { | 
|  | pci_unmap_single(efx->pci_dev, rx_buf->dma_addr, | 
|  | rx_buf->len, PCI_DMA_FROMDEVICE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void efx_free_rx_buffer(struct efx_nic *efx, | 
|  | struct efx_rx_buffer *rx_buf) | 
|  | { | 
|  | if (rx_buf->page) { | 
|  | __free_pages(rx_buf->page, efx->rx_buffer_order); | 
|  | rx_buf->page = NULL; | 
|  | } else if (likely(rx_buf->skb)) { | 
|  | dev_kfree_skb_any(rx_buf->skb); | 
|  | rx_buf->skb = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, | 
|  | struct efx_rx_buffer *rx_buf) | 
|  | { | 
|  | efx_unmap_rx_buffer(rx_queue->efx, rx_buf); | 
|  | efx_free_rx_buffer(rx_queue->efx, rx_buf); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * efx_fast_push_rx_descriptors - push new RX descriptors quickly | 
|  | * @rx_queue:		RX descriptor queue | 
|  | * @retry:              Recheck the fill level | 
|  | * This will aim to fill the RX descriptor queue up to | 
|  | * @rx_queue->@fast_fill_limit. If there is insufficient atomic | 
|  | * memory to do so, the caller should retry. | 
|  | */ | 
|  | static int __efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, | 
|  | int retry) | 
|  | { | 
|  | struct efx_rx_buffer *rx_buf; | 
|  | unsigned fill_level, index; | 
|  | int i, space, rc = 0; | 
|  |  | 
|  | /* Calculate current fill level.  Do this outside the lock, | 
|  | * because most of the time we'll end up not wanting to do the | 
|  | * fill anyway. | 
|  | */ | 
|  | fill_level = (rx_queue->added_count - rx_queue->removed_count); | 
|  | EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE); | 
|  |  | 
|  | /* Don't fill if we don't need to */ | 
|  | if (fill_level >= rx_queue->fast_fill_trigger) | 
|  | return 0; | 
|  |  | 
|  | /* Record minimum fill level */ | 
|  | if (unlikely(fill_level < rx_queue->min_fill)) { | 
|  | if (fill_level) | 
|  | rx_queue->min_fill = fill_level; | 
|  | } | 
|  |  | 
|  | /* Acquire RX add lock.  If this lock is contended, then a fast | 
|  | * fill must already be in progress (e.g. in the refill | 
|  | * tasklet), so we don't need to do anything | 
|  | */ | 
|  | if (!spin_trylock_bh(&rx_queue->add_lock)) | 
|  | return -1; | 
|  |  | 
|  | retry: | 
|  | /* Recalculate current fill level now that we have the lock */ | 
|  | fill_level = (rx_queue->added_count - rx_queue->removed_count); | 
|  | EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE); | 
|  | space = rx_queue->fast_fill_limit - fill_level; | 
|  | if (space < EFX_RX_BATCH) | 
|  | goto out_unlock; | 
|  |  | 
|  | EFX_TRACE(rx_queue->efx, "RX queue %d fast-filling descriptor ring from" | 
|  | " level %d to level %d using %s allocation\n", | 
|  | rx_queue->queue, fill_level, rx_queue->fast_fill_limit, | 
|  | rx_queue->channel->rx_alloc_push_pages ? "page" : "skb"); | 
|  |  | 
|  | do { | 
|  | for (i = 0; i < EFX_RX_BATCH; ++i) { | 
|  | index = rx_queue->added_count & EFX_RXQ_MASK; | 
|  | rx_buf = efx_rx_buffer(rx_queue, index); | 
|  | rc = efx_init_rx_buffer(rx_queue, rx_buf); | 
|  | if (unlikely(rc)) | 
|  | goto out; | 
|  | ++rx_queue->added_count; | 
|  | } | 
|  | } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH); | 
|  |  | 
|  | EFX_TRACE(rx_queue->efx, "RX queue %d fast-filled descriptor ring " | 
|  | "to level %d\n", rx_queue->queue, | 
|  | rx_queue->added_count - rx_queue->removed_count); | 
|  |  | 
|  | out: | 
|  | /* Send write pointer to card. */ | 
|  | efx_nic_notify_rx_desc(rx_queue); | 
|  |  | 
|  | /* If the fast fill is running inside from the refill tasklet, then | 
|  | * for SMP systems it may be running on a different CPU to | 
|  | * RX event processing, which means that the fill level may now be | 
|  | * out of date. */ | 
|  | if (unlikely(retry && (rc == 0))) | 
|  | goto retry; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock_bh(&rx_queue->add_lock); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * efx_fast_push_rx_descriptors - push new RX descriptors quickly | 
|  | * @rx_queue:		RX descriptor queue | 
|  | * | 
|  | * This will aim to fill the RX descriptor queue up to | 
|  | * @rx_queue->@fast_fill_limit.  If there is insufficient memory to do so, | 
|  | * it will schedule a work item to immediately continue the fast fill | 
|  | */ | 
|  | void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = __efx_fast_push_rx_descriptors(rx_queue, 0); | 
|  | if (unlikely(rc)) { | 
|  | /* Schedule the work item to run immediately. The hope is | 
|  | * that work is immediately pending to free some memory | 
|  | * (e.g. an RX event or TX completion) | 
|  | */ | 
|  | efx_schedule_slow_fill(rx_queue, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void efx_rx_work(struct work_struct *data) | 
|  | { | 
|  | struct efx_rx_queue *rx_queue; | 
|  | int rc; | 
|  |  | 
|  | rx_queue = container_of(data, struct efx_rx_queue, work.work); | 
|  |  | 
|  | if (unlikely(!rx_queue->channel->enabled)) | 
|  | return; | 
|  |  | 
|  | EFX_TRACE(rx_queue->efx, "RX queue %d worker thread executing on CPU " | 
|  | "%d\n", rx_queue->queue, raw_smp_processor_id()); | 
|  |  | 
|  | ++rx_queue->slow_fill_count; | 
|  | /* Push new RX descriptors, allowing at least 1 jiffy for | 
|  | * the kernel to free some more memory. */ | 
|  | rc = __efx_fast_push_rx_descriptors(rx_queue, 1); | 
|  | if (rc) | 
|  | efx_schedule_slow_fill(rx_queue, 1); | 
|  | } | 
|  |  | 
|  | static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, | 
|  | struct efx_rx_buffer *rx_buf, | 
|  | int len, bool *discard, | 
|  | bool *leak_packet) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; | 
|  |  | 
|  | if (likely(len <= max_len)) | 
|  | return; | 
|  |  | 
|  | /* The packet must be discarded, but this is only a fatal error | 
|  | * if the caller indicated it was | 
|  | */ | 
|  | *discard = true; | 
|  |  | 
|  | if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) { | 
|  | EFX_ERR_RL(efx, " RX queue %d seriously overlength " | 
|  | "RX event (0x%x > 0x%x+0x%x). Leaking\n", | 
|  | rx_queue->queue, len, max_len, | 
|  | efx->type->rx_buffer_padding); | 
|  | /* If this buffer was skb-allocated, then the meta | 
|  | * data at the end of the skb will be trashed. So | 
|  | * we have no choice but to leak the fragment. | 
|  | */ | 
|  | *leak_packet = (rx_buf->skb != NULL); | 
|  | efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); | 
|  | } else { | 
|  | EFX_ERR_RL(efx, " RX queue %d overlength RX event " | 
|  | "(0x%x > 0x%x)\n", rx_queue->queue, len, max_len); | 
|  | } | 
|  |  | 
|  | rx_queue->channel->n_rx_overlength++; | 
|  | } | 
|  |  | 
|  | /* Pass a received packet up through the generic LRO stack | 
|  | * | 
|  | * Handles driverlink veto, and passes the fragment up via | 
|  | * the appropriate LRO method | 
|  | */ | 
|  | static void efx_rx_packet_lro(struct efx_channel *channel, | 
|  | struct efx_rx_buffer *rx_buf, | 
|  | bool checksummed) | 
|  | { | 
|  | struct napi_struct *napi = &channel->napi_str; | 
|  | gro_result_t gro_result; | 
|  |  | 
|  | /* Pass the skb/page into the LRO engine */ | 
|  | if (rx_buf->page) { | 
|  | struct page *page = rx_buf->page; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | EFX_BUG_ON_PARANOID(rx_buf->skb); | 
|  | rx_buf->page = NULL; | 
|  |  | 
|  | skb = napi_get_frags(napi); | 
|  | if (!skb) { | 
|  | put_page(page); | 
|  | return; | 
|  | } | 
|  |  | 
|  | skb_shinfo(skb)->frags[0].page = page; | 
|  | skb_shinfo(skb)->frags[0].page_offset = | 
|  | efx_rx_buf_offset(rx_buf); | 
|  | skb_shinfo(skb)->frags[0].size = rx_buf->len; | 
|  | skb_shinfo(skb)->nr_frags = 1; | 
|  |  | 
|  | skb->len = rx_buf->len; | 
|  | skb->data_len = rx_buf->len; | 
|  | skb->truesize += rx_buf->len; | 
|  | skb->ip_summed = | 
|  | checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE; | 
|  |  | 
|  | skb_record_rx_queue(skb, channel->channel); | 
|  |  | 
|  | gro_result = napi_gro_frags(napi); | 
|  | } else { | 
|  | struct sk_buff *skb = rx_buf->skb; | 
|  |  | 
|  | EFX_BUG_ON_PARANOID(!skb); | 
|  | EFX_BUG_ON_PARANOID(!checksummed); | 
|  | rx_buf->skb = NULL; | 
|  |  | 
|  | gro_result = napi_gro_receive(napi, skb); | 
|  | } | 
|  |  | 
|  | if (gro_result == GRO_NORMAL) { | 
|  | channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; | 
|  | } else if (gro_result != GRO_DROP) { | 
|  | channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO; | 
|  | channel->irq_mod_score += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, | 
|  | unsigned int len, bool checksummed, bool discard) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | struct efx_rx_buffer *rx_buf; | 
|  | bool leak_packet = false; | 
|  |  | 
|  | rx_buf = efx_rx_buffer(rx_queue, index); | 
|  | EFX_BUG_ON_PARANOID(!rx_buf->data); | 
|  | EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page); | 
|  | EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page)); | 
|  |  | 
|  | /* This allows the refill path to post another buffer. | 
|  | * EFX_RXD_HEAD_ROOM ensures that the slot we are using | 
|  | * isn't overwritten yet. | 
|  | */ | 
|  | rx_queue->removed_count++; | 
|  |  | 
|  | /* Validate the length encoded in the event vs the descriptor pushed */ | 
|  | efx_rx_packet__check_len(rx_queue, rx_buf, len, | 
|  | &discard, &leak_packet); | 
|  |  | 
|  | EFX_TRACE(efx, "RX queue %d received id %x at %llx+%x %s%s\n", | 
|  | rx_queue->queue, index, | 
|  | (unsigned long long)rx_buf->dma_addr, len, | 
|  | (checksummed ? " [SUMMED]" : ""), | 
|  | (discard ? " [DISCARD]" : "")); | 
|  |  | 
|  | /* Discard packet, if instructed to do so */ | 
|  | if (unlikely(discard)) { | 
|  | if (unlikely(leak_packet)) | 
|  | rx_queue->channel->n_skbuff_leaks++; | 
|  | else | 
|  | /* We haven't called efx_unmap_rx_buffer yet, | 
|  | * so fini the entire rx_buffer here */ | 
|  | efx_fini_rx_buffer(rx_queue, rx_buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Release card resources - assumes all RX buffers consumed in-order | 
|  | * per RX queue | 
|  | */ | 
|  | efx_unmap_rx_buffer(efx, rx_buf); | 
|  |  | 
|  | /* Prefetch nice and early so data will (hopefully) be in cache by | 
|  | * the time we look at it. | 
|  | */ | 
|  | prefetch(rx_buf->data); | 
|  |  | 
|  | /* Pipeline receives so that we give time for packet headers to be | 
|  | * prefetched into cache. | 
|  | */ | 
|  | rx_buf->len = len; | 
|  | if (rx_queue->channel->rx_pkt) | 
|  | __efx_rx_packet(rx_queue->channel, | 
|  | rx_queue->channel->rx_pkt, | 
|  | rx_queue->channel->rx_pkt_csummed); | 
|  | rx_queue->channel->rx_pkt = rx_buf; | 
|  | rx_queue->channel->rx_pkt_csummed = checksummed; | 
|  | } | 
|  |  | 
|  | /* Handle a received packet.  Second half: Touches packet payload. */ | 
|  | void __efx_rx_packet(struct efx_channel *channel, | 
|  | struct efx_rx_buffer *rx_buf, bool checksummed) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | /* If we're in loopback test, then pass the packet directly to the | 
|  | * loopback layer, and free the rx_buf here | 
|  | */ | 
|  | if (unlikely(efx->loopback_selftest)) { | 
|  | efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len); | 
|  | efx_free_rx_buffer(efx, rx_buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (rx_buf->skb) { | 
|  | prefetch(skb_shinfo(rx_buf->skb)); | 
|  |  | 
|  | skb_put(rx_buf->skb, rx_buf->len); | 
|  |  | 
|  | /* Move past the ethernet header. rx_buf->data still points | 
|  | * at the ethernet header */ | 
|  | rx_buf->skb->protocol = eth_type_trans(rx_buf->skb, | 
|  | efx->net_dev); | 
|  |  | 
|  | skb_record_rx_queue(rx_buf->skb, channel->channel); | 
|  | } | 
|  |  | 
|  | if (likely(checksummed || rx_buf->page)) { | 
|  | efx_rx_packet_lro(channel, rx_buf, checksummed); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* We now own the SKB */ | 
|  | skb = rx_buf->skb; | 
|  | rx_buf->skb = NULL; | 
|  | EFX_BUG_ON_PARANOID(!skb); | 
|  |  | 
|  | /* Set the SKB flags */ | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  |  | 
|  | /* Pass the packet up */ | 
|  | netif_receive_skb(skb); | 
|  |  | 
|  | /* Update allocation strategy method */ | 
|  | channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; | 
|  | } | 
|  |  | 
|  | void efx_rx_strategy(struct efx_channel *channel) | 
|  | { | 
|  | enum efx_rx_alloc_method method = rx_alloc_method; | 
|  |  | 
|  | /* Only makes sense to use page based allocation if LRO is enabled */ | 
|  | if (!(channel->efx->net_dev->features & NETIF_F_GRO)) { | 
|  | method = RX_ALLOC_METHOD_SKB; | 
|  | } else if (method == RX_ALLOC_METHOD_AUTO) { | 
|  | /* Constrain the rx_alloc_level */ | 
|  | if (channel->rx_alloc_level < 0) | 
|  | channel->rx_alloc_level = 0; | 
|  | else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX) | 
|  | channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX; | 
|  |  | 
|  | /* Decide on the allocation method */ | 
|  | method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ? | 
|  | RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB); | 
|  | } | 
|  |  | 
|  | /* Push the option */ | 
|  | channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE); | 
|  | } | 
|  |  | 
|  | int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | unsigned int rxq_size; | 
|  | int rc; | 
|  |  | 
|  | EFX_LOG(efx, "creating RX queue %d\n", rx_queue->queue); | 
|  |  | 
|  | /* Allocate RX buffers */ | 
|  | rxq_size = EFX_RXQ_SIZE * sizeof(*rx_queue->buffer); | 
|  | rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL); | 
|  | if (!rx_queue->buffer) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rc = efx_nic_probe_rx(rx_queue); | 
|  | if (rc) { | 
|  | kfree(rx_queue->buffer); | 
|  | rx_queue->buffer = NULL; | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | void efx_init_rx_queue(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | unsigned int max_fill, trigger, limit; | 
|  |  | 
|  | EFX_LOG(rx_queue->efx, "initialising RX queue %d\n", rx_queue->queue); | 
|  |  | 
|  | /* Initialise ptr fields */ | 
|  | rx_queue->added_count = 0; | 
|  | rx_queue->notified_count = 0; | 
|  | rx_queue->removed_count = 0; | 
|  | rx_queue->min_fill = -1U; | 
|  | rx_queue->min_overfill = -1U; | 
|  |  | 
|  | /* Initialise limit fields */ | 
|  | max_fill = EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM; | 
|  | trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; | 
|  | limit = max_fill * min(rx_refill_limit, 100U) / 100U; | 
|  |  | 
|  | rx_queue->max_fill = max_fill; | 
|  | rx_queue->fast_fill_trigger = trigger; | 
|  | rx_queue->fast_fill_limit = limit; | 
|  |  | 
|  | /* Set up RX descriptor ring */ | 
|  | efx_nic_init_rx(rx_queue); | 
|  | } | 
|  |  | 
|  | void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | int i; | 
|  | struct efx_rx_buffer *rx_buf; | 
|  |  | 
|  | EFX_LOG(rx_queue->efx, "shutting down RX queue %d\n", rx_queue->queue); | 
|  |  | 
|  | efx_nic_fini_rx(rx_queue); | 
|  |  | 
|  | /* Release RX buffers NB start at index 0 not current HW ptr */ | 
|  | if (rx_queue->buffer) { | 
|  | for (i = 0; i <= EFX_RXQ_MASK; i++) { | 
|  | rx_buf = efx_rx_buffer(rx_queue, i); | 
|  | efx_fini_rx_buffer(rx_queue, rx_buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* For a page that is part-way through splitting into RX buffers */ | 
|  | if (rx_queue->buf_page != NULL) { | 
|  | pci_unmap_page(rx_queue->efx->pci_dev, rx_queue->buf_dma_addr, | 
|  | efx_rx_buf_size(rx_queue->efx), | 
|  | PCI_DMA_FROMDEVICE); | 
|  | __free_pages(rx_queue->buf_page, | 
|  | rx_queue->efx->rx_buffer_order); | 
|  | rx_queue->buf_page = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | EFX_LOG(rx_queue->efx, "destroying RX queue %d\n", rx_queue->queue); | 
|  |  | 
|  | efx_nic_remove_rx(rx_queue); | 
|  |  | 
|  | kfree(rx_queue->buffer); | 
|  | rx_queue->buffer = NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | module_param(rx_alloc_method, int, 0644); | 
|  | MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers"); | 
|  |  | 
|  | module_param(rx_refill_threshold, uint, 0444); | 
|  | MODULE_PARM_DESC(rx_refill_threshold, | 
|  | "RX descriptor ring fast/slow fill threshold (%)"); | 
|  |  |