|  | /****************************************************************************** | 
|  | * | 
|  | * This file is provided under a dual BSD/GPLv2 license.  When using or | 
|  | * redistributing this file, you may do so under either license. | 
|  | * | 
|  | * GPL LICENSE SUMMARY | 
|  | * | 
|  | * Copyright(c) 2008 - 2010 Intel Corporation. All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of version 2 of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, | 
|  | * USA | 
|  | * | 
|  | * The full GNU General Public License is included in this distribution | 
|  | * in the file called LICENSE.GPL. | 
|  | * | 
|  | * Contact Information: | 
|  | *  Intel Linux Wireless <ilw@linux.intel.com> | 
|  | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  | * | 
|  | * BSD LICENSE | 
|  | * | 
|  | * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved. | 
|  | * All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | *  * Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | *  * Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | *  * Neither the name Intel Corporation nor the names of its | 
|  | *    contributors may be used to endorse or promote products derived | 
|  | *    from this software without specific prior written permission. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | *****************************************************************************/ | 
|  |  | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  |  | 
|  | #include <net/mac80211.h> | 
|  |  | 
|  | #include "iwl-commands.h" | 
|  | #include "iwl-dev.h" | 
|  | #include "iwl-core.h" | 
|  | #include "iwl-debug.h" | 
|  | #include "iwl-eeprom.h" | 
|  | #include "iwl-io.h" | 
|  |  | 
|  | /************************** EEPROM BANDS **************************** | 
|  | * | 
|  | * The iwl_eeprom_band definitions below provide the mapping from the | 
|  | * EEPROM contents to the specific channel number supported for each | 
|  | * band. | 
|  | * | 
|  | * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3 | 
|  | * definition below maps to physical channel 42 in the 5.2GHz spectrum. | 
|  | * The specific geography and calibration information for that channel | 
|  | * is contained in the eeprom map itself. | 
|  | * | 
|  | * During init, we copy the eeprom information and channel map | 
|  | * information into priv->channel_info_24/52 and priv->channel_map_24/52 | 
|  | * | 
|  | * channel_map_24/52 provides the index in the channel_info array for a | 
|  | * given channel.  We have to have two separate maps as there is channel | 
|  | * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and | 
|  | * band_2 | 
|  | * | 
|  | * A value of 0xff stored in the channel_map indicates that the channel | 
|  | * is not supported by the hardware at all. | 
|  | * | 
|  | * A value of 0xfe in the channel_map indicates that the channel is not | 
|  | * valid for Tx with the current hardware.  This means that | 
|  | * while the system can tune and receive on a given channel, it may not | 
|  | * be able to associate or transmit any frames on that | 
|  | * channel.  There is no corresponding channel information for that | 
|  | * entry. | 
|  | * | 
|  | *********************************************************************/ | 
|  |  | 
|  | /* 2.4 GHz */ | 
|  | const u8 iwl_eeprom_band_1[14] = { | 
|  | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | 
|  | }; | 
|  |  | 
|  | /* 5.2 GHz bands */ | 
|  | static const u8 iwl_eeprom_band_2[] = {	/* 4915-5080MHz */ | 
|  | 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16 | 
|  | }; | 
|  |  | 
|  | static const u8 iwl_eeprom_band_3[] = {	/* 5170-5320MHz */ | 
|  | 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64 | 
|  | }; | 
|  |  | 
|  | static const u8 iwl_eeprom_band_4[] = {	/* 5500-5700MHz */ | 
|  | 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 | 
|  | }; | 
|  |  | 
|  | static const u8 iwl_eeprom_band_5[] = {	/* 5725-5825MHz */ | 
|  | 145, 149, 153, 157, 161, 165 | 
|  | }; | 
|  |  | 
|  | static const u8 iwl_eeprom_band_6[] = {       /* 2.4 ht40 channel */ | 
|  | 1, 2, 3, 4, 5, 6, 7 | 
|  | }; | 
|  |  | 
|  | static const u8 iwl_eeprom_band_7[] = {       /* 5.2 ht40 channel */ | 
|  | 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157 | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct iwl_txpwr_section: eeprom section information | 
|  | * @offset: indirect address into eeprom image | 
|  | * @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section | 
|  | * @band: band type for the section | 
|  | * @is_common - true: common section, false: channel section | 
|  | * @is_cck - true: cck section, false: not cck section | 
|  | * @is_ht_40 - true: all channel in the section are HT40 channel, | 
|  | * 	       false: legacy or HT 20 MHz | 
|  | *	       ignore if it is common section | 
|  | * @iwl_eeprom_section_channel: channel array in the section, | 
|  | *	       ignore if common section | 
|  | */ | 
|  | struct iwl_txpwr_section { | 
|  | u32 offset; | 
|  | u8 count; | 
|  | enum ieee80211_band band; | 
|  | bool is_common; | 
|  | bool is_cck; | 
|  | bool is_ht40; | 
|  | u8 iwl_eeprom_section_channel[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS]; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * section 1 - 3 are regulatory tx power apply to all channels based on | 
|  | *    modulation: CCK, OFDM | 
|  | *    Band: 2.4GHz, 5.2GHz | 
|  | * section 4 - 10 are regulatory tx power apply to specified channels | 
|  | *    For example: | 
|  | *	1L - Channel 1 Legacy | 
|  | *	1HT - Channel 1 HT | 
|  | *	(1,+1) - Channel 1 HT40 "_above_" | 
|  | * | 
|  | * Section 1: all CCK channels | 
|  | * Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels | 
|  | * Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels | 
|  | * Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT | 
|  | * Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1) | 
|  | * Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT | 
|  | * Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1) | 
|  | * Section 8: 2.4 GHz channel: 13L, 13HT | 
|  | * Section 9: 2.4 GHz channel: 140L, 140HT | 
|  | * Section 10: 2.4 GHz 40MHz channels: (132,+1)  (44,+1) | 
|  | * | 
|  | */ | 
|  | static const struct iwl_txpwr_section enhinfo[] = { | 
|  | { EEPROM_LB_CCK_20_COMMON, 1, IEEE80211_BAND_2GHZ, true, true, false }, | 
|  | { EEPROM_LB_OFDM_COMMON, 3, IEEE80211_BAND_2GHZ, true, false, false }, | 
|  | { EEPROM_HB_OFDM_COMMON, 3, IEEE80211_BAND_5GHZ, true, false, false }, | 
|  | { EEPROM_LB_OFDM_20_BAND, 8, IEEE80211_BAND_2GHZ, | 
|  | false, false, false, | 
|  | {1, 1, 2, 2, 10, 10, 11, 11 } }, | 
|  | { EEPROM_LB_OFDM_HT40_BAND, 5, IEEE80211_BAND_2GHZ, | 
|  | false, false, true, | 
|  | { 1, 2, 6, 7, 9 } }, | 
|  | { EEPROM_HB_OFDM_20_BAND, 6, IEEE80211_BAND_5GHZ, | 
|  | false, false, false, | 
|  | { 36, 64, 100, 36, 64, 100 } }, | 
|  | { EEPROM_HB_OFDM_HT40_BAND, 3, IEEE80211_BAND_5GHZ, | 
|  | false, false, true, | 
|  | { 36, 60, 100 } }, | 
|  | { EEPROM_LB_OFDM_20_CHANNEL_13, 2, IEEE80211_BAND_2GHZ, | 
|  | false, false, false, | 
|  | { 13, 13 } }, | 
|  | { EEPROM_HB_OFDM_20_CHANNEL_140, 2, IEEE80211_BAND_5GHZ, | 
|  | false, false, false, | 
|  | { 140, 140 } }, | 
|  | { EEPROM_HB_OFDM_HT40_BAND_1, 2, IEEE80211_BAND_5GHZ, | 
|  | false, false, true, | 
|  | { 132, 44 } }, | 
|  | }; | 
|  |  | 
|  | /****************************************************************************** | 
|  | * | 
|  | * EEPROM related functions | 
|  | * | 
|  | ******************************************************************************/ | 
|  |  | 
|  | int iwlcore_eeprom_verify_signature(struct iwl_priv *priv) | 
|  | { | 
|  | u32 gp = iwl_read32(priv, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK; | 
|  | int ret = 0; | 
|  |  | 
|  | IWL_DEBUG_INFO(priv, "EEPROM signature=0x%08x\n", gp); | 
|  | switch (gp) { | 
|  | case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP: | 
|  | if (priv->nvm_device_type != NVM_DEVICE_TYPE_OTP) { | 
|  | IWL_ERR(priv, "EEPROM with bad signature: 0x%08x\n", | 
|  | gp); | 
|  | ret = -ENOENT; | 
|  | } | 
|  | break; | 
|  | case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K: | 
|  | case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K: | 
|  | if (priv->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) { | 
|  | IWL_ERR(priv, "OTP with bad signature: 0x%08x\n", gp); | 
|  | ret = -ENOENT; | 
|  | } | 
|  | break; | 
|  | case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP: | 
|  | default: | 
|  | IWL_ERR(priv, "bad EEPROM/OTP signature, type=%s, " | 
|  | "EEPROM_GP=0x%08x\n", | 
|  | (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) | 
|  | ? "OTP" : "EEPROM", gp); | 
|  | ret = -ENOENT; | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(iwlcore_eeprom_verify_signature); | 
|  |  | 
|  | static void iwl_set_otp_access(struct iwl_priv *priv, enum iwl_access_mode mode) | 
|  | { | 
|  | u32 otpgp; | 
|  |  | 
|  | otpgp = iwl_read32(priv, CSR_OTP_GP_REG); | 
|  | if (mode == IWL_OTP_ACCESS_ABSOLUTE) | 
|  | iwl_clear_bit(priv, CSR_OTP_GP_REG, | 
|  | CSR_OTP_GP_REG_OTP_ACCESS_MODE); | 
|  | else | 
|  | iwl_set_bit(priv, CSR_OTP_GP_REG, | 
|  | CSR_OTP_GP_REG_OTP_ACCESS_MODE); | 
|  | } | 
|  |  | 
|  | static int iwlcore_get_nvm_type(struct iwl_priv *priv) | 
|  | { | 
|  | u32 otpgp; | 
|  | int nvm_type; | 
|  |  | 
|  | /* OTP only valid for CP/PP and after */ | 
|  | switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) { | 
|  | case CSR_HW_REV_TYPE_NONE: | 
|  | IWL_ERR(priv, "Unknown hardware type\n"); | 
|  | return -ENOENT; | 
|  | case CSR_HW_REV_TYPE_3945: | 
|  | case CSR_HW_REV_TYPE_4965: | 
|  | case CSR_HW_REV_TYPE_5300: | 
|  | case CSR_HW_REV_TYPE_5350: | 
|  | case CSR_HW_REV_TYPE_5100: | 
|  | case CSR_HW_REV_TYPE_5150: | 
|  | nvm_type = NVM_DEVICE_TYPE_EEPROM; | 
|  | break; | 
|  | default: | 
|  | otpgp = iwl_read32(priv, CSR_OTP_GP_REG); | 
|  | if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT) | 
|  | nvm_type = NVM_DEVICE_TYPE_OTP; | 
|  | else | 
|  | nvm_type = NVM_DEVICE_TYPE_EEPROM; | 
|  | break; | 
|  | } | 
|  | return  nvm_type; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The device's EEPROM semaphore prevents conflicts between driver and uCode | 
|  | * when accessing the EEPROM; each access is a series of pulses to/from the | 
|  | * EEPROM chip, not a single event, so even reads could conflict if they | 
|  | * weren't arbitrated by the semaphore. | 
|  | */ | 
|  | int iwlcore_eeprom_acquire_semaphore(struct iwl_priv *priv) | 
|  | { | 
|  | u16 count; | 
|  | int ret; | 
|  |  | 
|  | for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) { | 
|  | /* Request semaphore */ | 
|  | iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG, | 
|  | CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM); | 
|  |  | 
|  | /* See if we got it */ | 
|  | ret = iwl_poll_bit(priv, CSR_HW_IF_CONFIG_REG, | 
|  | CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM, | 
|  | CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM, | 
|  | EEPROM_SEM_TIMEOUT); | 
|  | if (ret >= 0) { | 
|  | IWL_DEBUG_IO(priv, "Acquired semaphore after %d tries.\n", | 
|  | count+1); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(iwlcore_eeprom_acquire_semaphore); | 
|  |  | 
|  | void iwlcore_eeprom_release_semaphore(struct iwl_priv *priv) | 
|  | { | 
|  | iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG, | 
|  | CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM); | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL(iwlcore_eeprom_release_semaphore); | 
|  |  | 
|  | const u8 *iwlcore_eeprom_query_addr(const struct iwl_priv *priv, size_t offset) | 
|  | { | 
|  | BUG_ON(offset >= priv->cfg->eeprom_size); | 
|  | return &priv->eeprom[offset]; | 
|  | } | 
|  | EXPORT_SYMBOL(iwlcore_eeprom_query_addr); | 
|  |  | 
|  | static int iwl_init_otp_access(struct iwl_priv *priv) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Enable 40MHz radio clock */ | 
|  | _iwl_write32(priv, CSR_GP_CNTRL, | 
|  | _iwl_read32(priv, CSR_GP_CNTRL) | | 
|  | CSR_GP_CNTRL_REG_FLAG_INIT_DONE); | 
|  |  | 
|  | /* wait for clock to be ready */ | 
|  | ret = iwl_poll_bit(priv, CSR_GP_CNTRL, | 
|  | CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, | 
|  | CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, | 
|  | 25000); | 
|  | if (ret < 0) | 
|  | IWL_ERR(priv, "Time out access OTP\n"); | 
|  | else { | 
|  | iwl_set_bits_prph(priv, APMG_PS_CTRL_REG, | 
|  | APMG_PS_CTRL_VAL_RESET_REQ); | 
|  | udelay(5); | 
|  | iwl_clear_bits_prph(priv, APMG_PS_CTRL_REG, | 
|  | APMG_PS_CTRL_VAL_RESET_REQ); | 
|  |  | 
|  | /* | 
|  | * CSR auto clock gate disable bit - | 
|  | * this is only applicable for HW with OTP shadow RAM | 
|  | */ | 
|  | if (priv->cfg->shadow_ram_support) | 
|  | iwl_set_bit(priv, CSR_DBG_LINK_PWR_MGMT_REG, | 
|  | CSR_RESET_LINK_PWR_MGMT_DISABLED); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int iwl_read_otp_word(struct iwl_priv *priv, u16 addr, __le16 *eeprom_data) | 
|  | { | 
|  | int ret = 0; | 
|  | u32 r; | 
|  | u32 otpgp; | 
|  |  | 
|  | _iwl_write32(priv, CSR_EEPROM_REG, | 
|  | CSR_EEPROM_REG_MSK_ADDR & (addr << 1)); | 
|  | ret = iwl_poll_bit(priv, CSR_EEPROM_REG, | 
|  | CSR_EEPROM_REG_READ_VALID_MSK, | 
|  | CSR_EEPROM_REG_READ_VALID_MSK, | 
|  | IWL_EEPROM_ACCESS_TIMEOUT); | 
|  | if (ret < 0) { | 
|  | IWL_ERR(priv, "Time out reading OTP[%d]\n", addr); | 
|  | return ret; | 
|  | } | 
|  | r = _iwl_read_direct32(priv, CSR_EEPROM_REG); | 
|  | /* check for ECC errors: */ | 
|  | otpgp = iwl_read32(priv, CSR_OTP_GP_REG); | 
|  | if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) { | 
|  | /* stop in this case */ | 
|  | /* set the uncorrectable OTP ECC bit for acknowledgement */ | 
|  | iwl_set_bit(priv, CSR_OTP_GP_REG, | 
|  | CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK); | 
|  | IWL_ERR(priv, "Uncorrectable OTP ECC error, abort OTP read\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) { | 
|  | /* continue in this case */ | 
|  | /* set the correctable OTP ECC bit for acknowledgement */ | 
|  | iwl_set_bit(priv, CSR_OTP_GP_REG, | 
|  | CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK); | 
|  | IWL_ERR(priv, "Correctable OTP ECC error, continue read\n"); | 
|  | } | 
|  | *eeprom_data = cpu_to_le16(r >> 16); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * iwl_is_otp_empty: check for empty OTP | 
|  | */ | 
|  | static bool iwl_is_otp_empty(struct iwl_priv *priv) | 
|  | { | 
|  | u16 next_link_addr = 0; | 
|  | __le16 link_value; | 
|  | bool is_empty = false; | 
|  |  | 
|  | /* locate the beginning of OTP link list */ | 
|  | if (!iwl_read_otp_word(priv, next_link_addr, &link_value)) { | 
|  | if (!link_value) { | 
|  | IWL_ERR(priv, "OTP is empty\n"); | 
|  | is_empty = true; | 
|  | } | 
|  | } else { | 
|  | IWL_ERR(priv, "Unable to read first block of OTP list.\n"); | 
|  | is_empty = true; | 
|  | } | 
|  |  | 
|  | return is_empty; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * iwl_find_otp_image: find EEPROM image in OTP | 
|  | *   finding the OTP block that contains the EEPROM image. | 
|  | *   the last valid block on the link list (the block _before_ the last block) | 
|  | *   is the block we should read and used to configure the device. | 
|  | *   If all the available OTP blocks are full, the last block will be the block | 
|  | *   we should read and used to configure the device. | 
|  | *   only perform this operation if shadow RAM is disabled | 
|  | */ | 
|  | static int iwl_find_otp_image(struct iwl_priv *priv, | 
|  | u16 *validblockaddr) | 
|  | { | 
|  | u16 next_link_addr = 0, valid_addr; | 
|  | __le16 link_value = 0; | 
|  | int usedblocks = 0; | 
|  |  | 
|  | /* set addressing mode to absolute to traverse the link list */ | 
|  | iwl_set_otp_access(priv, IWL_OTP_ACCESS_ABSOLUTE); | 
|  |  | 
|  | /* checking for empty OTP or error */ | 
|  | if (iwl_is_otp_empty(priv)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * start traverse link list | 
|  | * until reach the max number of OTP blocks | 
|  | * different devices have different number of OTP blocks | 
|  | */ | 
|  | do { | 
|  | /* save current valid block address | 
|  | * check for more block on the link list | 
|  | */ | 
|  | valid_addr = next_link_addr; | 
|  | next_link_addr = le16_to_cpu(link_value) * sizeof(u16); | 
|  | IWL_DEBUG_INFO(priv, "OTP blocks %d addr 0x%x\n", | 
|  | usedblocks, next_link_addr); | 
|  | if (iwl_read_otp_word(priv, next_link_addr, &link_value)) | 
|  | return -EINVAL; | 
|  | if (!link_value) { | 
|  | /* | 
|  | * reach the end of link list, return success and | 
|  | * set address point to the starting address | 
|  | * of the image | 
|  | */ | 
|  | *validblockaddr = valid_addr; | 
|  | /* skip first 2 bytes (link list pointer) */ | 
|  | *validblockaddr += 2; | 
|  | return 0; | 
|  | } | 
|  | /* more in the link list, continue */ | 
|  | usedblocks++; | 
|  | } while (usedblocks <= priv->cfg->max_ll_items); | 
|  |  | 
|  | /* OTP has no valid blocks */ | 
|  | IWL_DEBUG_INFO(priv, "OTP has no valid blocks\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * iwl_eeprom_init - read EEPROM contents | 
|  | * | 
|  | * Load the EEPROM contents from adapter into priv->eeprom | 
|  | * | 
|  | * NOTE:  This routine uses the non-debug IO access functions. | 
|  | */ | 
|  | int iwl_eeprom_init(struct iwl_priv *priv) | 
|  | { | 
|  | __le16 *e; | 
|  | u32 gp = iwl_read32(priv, CSR_EEPROM_GP); | 
|  | int sz; | 
|  | int ret; | 
|  | u16 addr; | 
|  | u16 validblockaddr = 0; | 
|  | u16 cache_addr = 0; | 
|  |  | 
|  | priv->nvm_device_type = iwlcore_get_nvm_type(priv); | 
|  | if (priv->nvm_device_type == -ENOENT) | 
|  | return -ENOENT; | 
|  | /* allocate eeprom */ | 
|  | IWL_DEBUG_INFO(priv, "NVM size = %d\n", priv->cfg->eeprom_size); | 
|  | sz = priv->cfg->eeprom_size; | 
|  | priv->eeprom = kzalloc(sz, GFP_KERNEL); | 
|  | if (!priv->eeprom) { | 
|  | ret = -ENOMEM; | 
|  | goto alloc_err; | 
|  | } | 
|  | e = (__le16 *)priv->eeprom; | 
|  |  | 
|  | priv->cfg->ops->lib->apm_ops.init(priv); | 
|  |  | 
|  | ret = priv->cfg->ops->lib->eeprom_ops.verify_signature(priv); | 
|  | if (ret < 0) { | 
|  | IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp); | 
|  | ret = -ENOENT; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* Make sure driver (instead of uCode) is allowed to read EEPROM */ | 
|  | ret = priv->cfg->ops->lib->eeprom_ops.acquire_semaphore(priv); | 
|  | if (ret < 0) { | 
|  | IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n"); | 
|  | ret = -ENOENT; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) { | 
|  |  | 
|  | ret = iwl_init_otp_access(priv); | 
|  | if (ret) { | 
|  | IWL_ERR(priv, "Failed to initialize OTP access.\n"); | 
|  | ret = -ENOENT; | 
|  | goto done; | 
|  | } | 
|  | _iwl_write32(priv, CSR_EEPROM_GP, | 
|  | iwl_read32(priv, CSR_EEPROM_GP) & | 
|  | ~CSR_EEPROM_GP_IF_OWNER_MSK); | 
|  |  | 
|  | iwl_set_bit(priv, CSR_OTP_GP_REG, | 
|  | CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK | | 
|  | CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK); | 
|  | /* traversing the linked list if no shadow ram supported */ | 
|  | if (!priv->cfg->shadow_ram_support) { | 
|  | if (iwl_find_otp_image(priv, &validblockaddr)) { | 
|  | ret = -ENOENT; | 
|  | goto done; | 
|  | } | 
|  | } | 
|  | for (addr = validblockaddr; addr < validblockaddr + sz; | 
|  | addr += sizeof(u16)) { | 
|  | __le16 eeprom_data; | 
|  |  | 
|  | ret = iwl_read_otp_word(priv, addr, &eeprom_data); | 
|  | if (ret) | 
|  | goto done; | 
|  | e[cache_addr / 2] = eeprom_data; | 
|  | cache_addr += sizeof(u16); | 
|  | } | 
|  | } else { | 
|  | /* eeprom is an array of 16bit values */ | 
|  | for (addr = 0; addr < sz; addr += sizeof(u16)) { | 
|  | u32 r; | 
|  |  | 
|  | _iwl_write32(priv, CSR_EEPROM_REG, | 
|  | CSR_EEPROM_REG_MSK_ADDR & (addr << 1)); | 
|  |  | 
|  | ret = iwl_poll_bit(priv, CSR_EEPROM_REG, | 
|  | CSR_EEPROM_REG_READ_VALID_MSK, | 
|  | CSR_EEPROM_REG_READ_VALID_MSK, | 
|  | IWL_EEPROM_ACCESS_TIMEOUT); | 
|  | if (ret < 0) { | 
|  | IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr); | 
|  | goto done; | 
|  | } | 
|  | r = _iwl_read_direct32(priv, CSR_EEPROM_REG); | 
|  | e[addr / 2] = cpu_to_le16(r >> 16); | 
|  | } | 
|  | } | 
|  |  | 
|  | IWL_DEBUG_INFO(priv, "NVM Type: %s, version: 0x%x\n", | 
|  | (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) | 
|  | ? "OTP" : "EEPROM", | 
|  | iwl_eeprom_query16(priv, EEPROM_VERSION)); | 
|  |  | 
|  | ret = 0; | 
|  | done: | 
|  | priv->cfg->ops->lib->eeprom_ops.release_semaphore(priv); | 
|  |  | 
|  | err: | 
|  | if (ret) | 
|  | iwl_eeprom_free(priv); | 
|  | /* Reset chip to save power until we load uCode during "up". */ | 
|  | priv->cfg->ops->lib->apm_ops.stop(priv); | 
|  | alloc_err: | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_eeprom_init); | 
|  |  | 
|  | void iwl_eeprom_free(struct iwl_priv *priv) | 
|  | { | 
|  | kfree(priv->eeprom); | 
|  | priv->eeprom = NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_eeprom_free); | 
|  |  | 
|  | int iwl_eeprom_check_version(struct iwl_priv *priv) | 
|  | { | 
|  | u16 eeprom_ver; | 
|  | u16 calib_ver; | 
|  |  | 
|  | eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION); | 
|  | calib_ver = priv->cfg->ops->lib->eeprom_ops.calib_version(priv); | 
|  |  | 
|  | if (eeprom_ver < priv->cfg->eeprom_ver || | 
|  | calib_ver < priv->cfg->eeprom_calib_ver) | 
|  | goto err; | 
|  |  | 
|  | return 0; | 
|  | err: | 
|  | IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n", | 
|  | eeprom_ver, priv->cfg->eeprom_ver, | 
|  | calib_ver,  priv->cfg->eeprom_calib_ver); | 
|  | return -EINVAL; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_eeprom_check_version); | 
|  |  | 
|  | const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset) | 
|  | { | 
|  | return priv->cfg->ops->lib->eeprom_ops.query_addr(priv, offset); | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_eeprom_query_addr); | 
|  |  | 
|  | u16 iwl_eeprom_query16(const struct iwl_priv *priv, size_t offset) | 
|  | { | 
|  | if (!priv->eeprom) | 
|  | return 0; | 
|  | return (u16)priv->eeprom[offset] | ((u16)priv->eeprom[offset + 1] << 8); | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_eeprom_query16); | 
|  |  | 
|  | void iwl_eeprom_get_mac(const struct iwl_priv *priv, u8 *mac) | 
|  | { | 
|  | const u8 *addr = priv->cfg->ops->lib->eeprom_ops.query_addr(priv, | 
|  | EEPROM_MAC_ADDRESS); | 
|  | memcpy(mac, addr, ETH_ALEN); | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_eeprom_get_mac); | 
|  |  | 
|  | static void iwl_init_band_reference(const struct iwl_priv *priv, | 
|  | int eep_band, int *eeprom_ch_count, | 
|  | const struct iwl_eeprom_channel **eeprom_ch_info, | 
|  | const u8 **eeprom_ch_index) | 
|  | { | 
|  | u32 offset = priv->cfg->ops->lib-> | 
|  | eeprom_ops.regulatory_bands[eep_band - 1]; | 
|  | switch (eep_band) { | 
|  | case 1:		/* 2.4GHz band */ | 
|  | *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1); | 
|  | *eeprom_ch_info = (struct iwl_eeprom_channel *) | 
|  | iwl_eeprom_query_addr(priv, offset); | 
|  | *eeprom_ch_index = iwl_eeprom_band_1; | 
|  | break; | 
|  | case 2:		/* 4.9GHz band */ | 
|  | *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2); | 
|  | *eeprom_ch_info = (struct iwl_eeprom_channel *) | 
|  | iwl_eeprom_query_addr(priv, offset); | 
|  | *eeprom_ch_index = iwl_eeprom_band_2; | 
|  | break; | 
|  | case 3:		/* 5.2GHz band */ | 
|  | *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3); | 
|  | *eeprom_ch_info = (struct iwl_eeprom_channel *) | 
|  | iwl_eeprom_query_addr(priv, offset); | 
|  | *eeprom_ch_index = iwl_eeprom_band_3; | 
|  | break; | 
|  | case 4:		/* 5.5GHz band */ | 
|  | *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4); | 
|  | *eeprom_ch_info = (struct iwl_eeprom_channel *) | 
|  | iwl_eeprom_query_addr(priv, offset); | 
|  | *eeprom_ch_index = iwl_eeprom_band_4; | 
|  | break; | 
|  | case 5:		/* 5.7GHz band */ | 
|  | *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5); | 
|  | *eeprom_ch_info = (struct iwl_eeprom_channel *) | 
|  | iwl_eeprom_query_addr(priv, offset); | 
|  | *eeprom_ch_index = iwl_eeprom_band_5; | 
|  | break; | 
|  | case 6:		/* 2.4GHz ht40 channels */ | 
|  | *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6); | 
|  | *eeprom_ch_info = (struct iwl_eeprom_channel *) | 
|  | iwl_eeprom_query_addr(priv, offset); | 
|  | *eeprom_ch_index = iwl_eeprom_band_6; | 
|  | break; | 
|  | case 7:		/* 5 GHz ht40 channels */ | 
|  | *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7); | 
|  | *eeprom_ch_info = (struct iwl_eeprom_channel *) | 
|  | iwl_eeprom_query_addr(priv, offset); | 
|  | *eeprom_ch_index = iwl_eeprom_band_7; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \ | 
|  | ? # x " " : "") | 
|  |  | 
|  | /** | 
|  | * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv. | 
|  | * | 
|  | * Does not set up a command, or touch hardware. | 
|  | */ | 
|  | static int iwl_mod_ht40_chan_info(struct iwl_priv *priv, | 
|  | enum ieee80211_band band, u16 channel, | 
|  | const struct iwl_eeprom_channel *eeprom_ch, | 
|  | u8 clear_ht40_extension_channel) | 
|  | { | 
|  | struct iwl_channel_info *ch_info; | 
|  |  | 
|  | ch_info = (struct iwl_channel_info *) | 
|  | iwl_get_channel_info(priv, band, channel); | 
|  |  | 
|  | if (!is_channel_valid(ch_info)) | 
|  | return -1; | 
|  |  | 
|  | IWL_DEBUG_INFO(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):" | 
|  | " Ad-Hoc %ssupported\n", | 
|  | ch_info->channel, | 
|  | is_channel_a_band(ch_info) ? | 
|  | "5.2" : "2.4", | 
|  | CHECK_AND_PRINT(IBSS), | 
|  | CHECK_AND_PRINT(ACTIVE), | 
|  | CHECK_AND_PRINT(RADAR), | 
|  | CHECK_AND_PRINT(WIDE), | 
|  | CHECK_AND_PRINT(DFS), | 
|  | eeprom_ch->flags, | 
|  | eeprom_ch->max_power_avg, | 
|  | ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) | 
|  | && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? | 
|  | "" : "not "); | 
|  |  | 
|  | ch_info->ht40_eeprom = *eeprom_ch; | 
|  | ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg; | 
|  | ch_info->ht40_flags = eeprom_ch->flags; | 
|  | if (eeprom_ch->flags & EEPROM_CHANNEL_VALID) | 
|  | ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * iwl_get_max_txpower_avg - get the highest tx power from all chains. | 
|  | *     find the highest tx power from all chains for the channel | 
|  | */ | 
|  | static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv, | 
|  | struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, | 
|  | int element, s8 *max_txpower_in_half_dbm) | 
|  | { | 
|  | s8 max_txpower_avg = 0; /* (dBm) */ | 
|  |  | 
|  | IWL_DEBUG_INFO(priv, "%d - " | 
|  | "chain_a: %d dB chain_b: %d dB " | 
|  | "chain_c: %d dB mimo2: %d dB mimo3: %d dB\n", | 
|  | element, | 
|  | enhanced_txpower[element].chain_a_max >> 1, | 
|  | enhanced_txpower[element].chain_b_max >> 1, | 
|  | enhanced_txpower[element].chain_c_max >> 1, | 
|  | enhanced_txpower[element].mimo2_max >> 1, | 
|  | enhanced_txpower[element].mimo3_max >> 1); | 
|  | /* Take the highest tx power from any valid chains */ | 
|  | if ((priv->cfg->valid_tx_ant & ANT_A) && | 
|  | (enhanced_txpower[element].chain_a_max > max_txpower_avg)) | 
|  | max_txpower_avg = enhanced_txpower[element].chain_a_max; | 
|  | if ((priv->cfg->valid_tx_ant & ANT_B) && | 
|  | (enhanced_txpower[element].chain_b_max > max_txpower_avg)) | 
|  | max_txpower_avg = enhanced_txpower[element].chain_b_max; | 
|  | if ((priv->cfg->valid_tx_ant & ANT_C) && | 
|  | (enhanced_txpower[element].chain_c_max > max_txpower_avg)) | 
|  | max_txpower_avg = enhanced_txpower[element].chain_c_max; | 
|  | if (((priv->cfg->valid_tx_ant == ANT_AB) | | 
|  | (priv->cfg->valid_tx_ant == ANT_BC) | | 
|  | (priv->cfg->valid_tx_ant == ANT_AC)) && | 
|  | (enhanced_txpower[element].mimo2_max > max_txpower_avg)) | 
|  | max_txpower_avg =  enhanced_txpower[element].mimo2_max; | 
|  | if ((priv->cfg->valid_tx_ant == ANT_ABC) && | 
|  | (enhanced_txpower[element].mimo3_max > max_txpower_avg)) | 
|  | max_txpower_avg = enhanced_txpower[element].mimo3_max; | 
|  |  | 
|  | /* | 
|  | * max. tx power in EEPROM is in 1/2 dBm format | 
|  | * convert from 1/2 dBm to dBm (round-up convert) | 
|  | * but we also do not want to loss 1/2 dBm resolution which | 
|  | * will impact performance | 
|  | */ | 
|  | *max_txpower_in_half_dbm = max_txpower_avg; | 
|  | return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * iwl_update_common_txpower: update channel tx power | 
|  | *     update tx power per band based on EEPROM enhanced tx power info. | 
|  | */ | 
|  | static s8 iwl_update_common_txpower(struct iwl_priv *priv, | 
|  | struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, | 
|  | int section, int element, s8 *max_txpower_in_half_dbm) | 
|  | { | 
|  | struct iwl_channel_info *ch_info; | 
|  | int ch; | 
|  | bool is_ht40 = false; | 
|  | s8 max_txpower_avg; /* (dBm) */ | 
|  |  | 
|  | /* it is common section, contain all type (Legacy, HT and HT40) | 
|  | * based on the element in the section to determine | 
|  | * is it HT 40 or not | 
|  | */ | 
|  | if (element == EEPROM_TXPOWER_COMMON_HT40_INDEX) | 
|  | is_ht40 = true; | 
|  | max_txpower_avg = | 
|  | iwl_get_max_txpower_avg(priv, enhanced_txpower, | 
|  | element, max_txpower_in_half_dbm); | 
|  |  | 
|  | ch_info = priv->channel_info; | 
|  |  | 
|  | for (ch = 0; ch < priv->channel_count; ch++) { | 
|  | /* find matching band and update tx power if needed */ | 
|  | if ((ch_info->band == enhinfo[section].band) && | 
|  | (ch_info->max_power_avg < max_txpower_avg) && | 
|  | (!is_ht40)) { | 
|  | /* Update regulatory-based run-time data */ | 
|  | ch_info->max_power_avg = ch_info->curr_txpow = | 
|  | max_txpower_avg; | 
|  | ch_info->scan_power = max_txpower_avg; | 
|  | } | 
|  | if ((ch_info->band == enhinfo[section].band) && is_ht40 && | 
|  | (ch_info->ht40_max_power_avg < max_txpower_avg)) { | 
|  | /* Update regulatory-based run-time data */ | 
|  | ch_info->ht40_max_power_avg = max_txpower_avg; | 
|  | } | 
|  | ch_info++; | 
|  | } | 
|  | return max_txpower_avg; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * iwl_update_channel_txpower: update channel tx power | 
|  | *      update channel tx power based on EEPROM enhanced tx power info. | 
|  | */ | 
|  | static s8 iwl_update_channel_txpower(struct iwl_priv *priv, | 
|  | struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, | 
|  | int section, int element, s8 *max_txpower_in_half_dbm) | 
|  | { | 
|  | struct iwl_channel_info *ch_info; | 
|  | int ch; | 
|  | u8 channel; | 
|  | s8 max_txpower_avg; /* (dBm) */ | 
|  |  | 
|  | channel = enhinfo[section].iwl_eeprom_section_channel[element]; | 
|  | max_txpower_avg = | 
|  | iwl_get_max_txpower_avg(priv, enhanced_txpower, | 
|  | element, max_txpower_in_half_dbm); | 
|  |  | 
|  | ch_info = priv->channel_info; | 
|  | for (ch = 0; ch < priv->channel_count; ch++) { | 
|  | /* find matching channel and update tx power if needed */ | 
|  | if (ch_info->channel == channel) { | 
|  | if ((ch_info->max_power_avg < max_txpower_avg) && | 
|  | (!enhinfo[section].is_ht40)) { | 
|  | /* Update regulatory-based run-time data */ | 
|  | ch_info->max_power_avg = max_txpower_avg; | 
|  | ch_info->curr_txpow = max_txpower_avg; | 
|  | ch_info->scan_power = max_txpower_avg; | 
|  | } | 
|  | if ((enhinfo[section].is_ht40) && | 
|  | (ch_info->ht40_max_power_avg < max_txpower_avg)) { | 
|  | /* Update regulatory-based run-time data */ | 
|  | ch_info->ht40_max_power_avg = max_txpower_avg; | 
|  | } | 
|  | break; | 
|  | } | 
|  | ch_info++; | 
|  | } | 
|  | return max_txpower_avg; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * iwlcore_eeprom_enhanced_txpower: process enhanced tx power info | 
|  | */ | 
|  | void iwlcore_eeprom_enhanced_txpower(struct iwl_priv *priv) | 
|  | { | 
|  | int eeprom_section_count = 0; | 
|  | int section, element; | 
|  | struct iwl_eeprom_enhanced_txpwr *enhanced_txpower; | 
|  | u32 offset; | 
|  | s8 max_txpower_avg; /* (dBm) */ | 
|  | s8 max_txpower_in_half_dbm; /* (half-dBm) */ | 
|  |  | 
|  | /* Loop through all the sections | 
|  | * adjust bands and channel's max tx power | 
|  | * Set the tx_power_user_lmt to the highest power | 
|  | * supported by any channels and chains | 
|  | */ | 
|  | for (section = 0; section < ARRAY_SIZE(enhinfo); section++) { | 
|  | eeprom_section_count = enhinfo[section].count; | 
|  | offset = enhinfo[section].offset; | 
|  | enhanced_txpower = (struct iwl_eeprom_enhanced_txpwr *) | 
|  | iwl_eeprom_query_addr(priv, offset); | 
|  |  | 
|  | /* | 
|  | * check for valid entry - | 
|  | * different version of EEPROM might contain different set | 
|  | * of enhanced tx power table | 
|  | * always check for valid entry before process | 
|  | * the information | 
|  | */ | 
|  | if (!enhanced_txpower->common || enhanced_txpower->reserved) | 
|  | continue; | 
|  |  | 
|  | for (element = 0; element < eeprom_section_count; element++) { | 
|  | if (enhinfo[section].is_common) | 
|  | max_txpower_avg = | 
|  | iwl_update_common_txpower(priv, | 
|  | enhanced_txpower, section, | 
|  | element, | 
|  | &max_txpower_in_half_dbm); | 
|  | else | 
|  | max_txpower_avg = | 
|  | iwl_update_channel_txpower(priv, | 
|  | enhanced_txpower, section, | 
|  | element, | 
|  | &max_txpower_in_half_dbm); | 
|  |  | 
|  | /* Update the tx_power_user_lmt to the highest power | 
|  | * supported by any channel */ | 
|  | if (max_txpower_avg > priv->tx_power_user_lmt) | 
|  | priv->tx_power_user_lmt = max_txpower_avg; | 
|  |  | 
|  | /* | 
|  | * Update the tx_power_lmt_in_half_dbm to | 
|  | * the highest power supported by any channel | 
|  | */ | 
|  | if (max_txpower_in_half_dbm > | 
|  | priv->tx_power_lmt_in_half_dbm) | 
|  | priv->tx_power_lmt_in_half_dbm = | 
|  | max_txpower_in_half_dbm; | 
|  | } | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(iwlcore_eeprom_enhanced_txpower); | 
|  |  | 
|  | #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \ | 
|  | ? # x " " : "") | 
|  |  | 
|  | /** | 
|  | * iwl_init_channel_map - Set up driver's info for all possible channels | 
|  | */ | 
|  | int iwl_init_channel_map(struct iwl_priv *priv) | 
|  | { | 
|  | int eeprom_ch_count = 0; | 
|  | const u8 *eeprom_ch_index = NULL; | 
|  | const struct iwl_eeprom_channel *eeprom_ch_info = NULL; | 
|  | int band, ch; | 
|  | struct iwl_channel_info *ch_info; | 
|  |  | 
|  | if (priv->channel_count) { | 
|  | IWL_DEBUG_INFO(priv, "Channel map already initialized.\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | IWL_DEBUG_INFO(priv, "Initializing regulatory info from EEPROM\n"); | 
|  |  | 
|  | priv->channel_count = | 
|  | ARRAY_SIZE(iwl_eeprom_band_1) + | 
|  | ARRAY_SIZE(iwl_eeprom_band_2) + | 
|  | ARRAY_SIZE(iwl_eeprom_band_3) + | 
|  | ARRAY_SIZE(iwl_eeprom_band_4) + | 
|  | ARRAY_SIZE(iwl_eeprom_band_5); | 
|  |  | 
|  | IWL_DEBUG_INFO(priv, "Parsing data for %d channels.\n", priv->channel_count); | 
|  |  | 
|  | priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) * | 
|  | priv->channel_count, GFP_KERNEL); | 
|  | if (!priv->channel_info) { | 
|  | IWL_ERR(priv, "Could not allocate channel_info\n"); | 
|  | priv->channel_count = 0; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ch_info = priv->channel_info; | 
|  |  | 
|  | /* Loop through the 5 EEPROM bands adding them in order to the | 
|  | * channel map we maintain (that contains additional information than | 
|  | * what just in the EEPROM) */ | 
|  | for (band = 1; band <= 5; band++) { | 
|  |  | 
|  | iwl_init_band_reference(priv, band, &eeprom_ch_count, | 
|  | &eeprom_ch_info, &eeprom_ch_index); | 
|  |  | 
|  | /* Loop through each band adding each of the channels */ | 
|  | for (ch = 0; ch < eeprom_ch_count; ch++) { | 
|  | ch_info->channel = eeprom_ch_index[ch]; | 
|  | ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ : | 
|  | IEEE80211_BAND_5GHZ; | 
|  |  | 
|  | /* permanently store EEPROM's channel regulatory flags | 
|  | *   and max power in channel info database. */ | 
|  | ch_info->eeprom = eeprom_ch_info[ch]; | 
|  |  | 
|  | /* Copy the run-time flags so they are there even on | 
|  | * invalid channels */ | 
|  | ch_info->flags = eeprom_ch_info[ch].flags; | 
|  | /* First write that ht40 is not enabled, and then enable | 
|  | * one by one */ | 
|  | ch_info->ht40_extension_channel = | 
|  | IEEE80211_CHAN_NO_HT40; | 
|  |  | 
|  | if (!(is_channel_valid(ch_info))) { | 
|  | IWL_DEBUG_INFO(priv, "Ch. %d Flags %x [%sGHz] - " | 
|  | "No traffic\n", | 
|  | ch_info->channel, | 
|  | ch_info->flags, | 
|  | is_channel_a_band(ch_info) ? | 
|  | "5.2" : "2.4"); | 
|  | ch_info++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Initialize regulatory-based run-time data */ | 
|  | ch_info->max_power_avg = ch_info->curr_txpow = | 
|  | eeprom_ch_info[ch].max_power_avg; | 
|  | ch_info->scan_power = eeprom_ch_info[ch].max_power_avg; | 
|  | ch_info->min_power = 0; | 
|  |  | 
|  | IWL_DEBUG_INFO(priv, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm):" | 
|  | " Ad-Hoc %ssupported\n", | 
|  | ch_info->channel, | 
|  | is_channel_a_band(ch_info) ? | 
|  | "5.2" : "2.4", | 
|  | CHECK_AND_PRINT_I(VALID), | 
|  | CHECK_AND_PRINT_I(IBSS), | 
|  | CHECK_AND_PRINT_I(ACTIVE), | 
|  | CHECK_AND_PRINT_I(RADAR), | 
|  | CHECK_AND_PRINT_I(WIDE), | 
|  | CHECK_AND_PRINT_I(DFS), | 
|  | eeprom_ch_info[ch].flags, | 
|  | eeprom_ch_info[ch].max_power_avg, | 
|  | ((eeprom_ch_info[ch]. | 
|  | flags & EEPROM_CHANNEL_IBSS) | 
|  | && !(eeprom_ch_info[ch]. | 
|  | flags & EEPROM_CHANNEL_RADAR)) | 
|  | ? "" : "not "); | 
|  |  | 
|  | /* Set the tx_power_user_lmt to the highest power | 
|  | * supported by any channel */ | 
|  | if (eeprom_ch_info[ch].max_power_avg > | 
|  | priv->tx_power_user_lmt) | 
|  | priv->tx_power_user_lmt = | 
|  | eeprom_ch_info[ch].max_power_avg; | 
|  |  | 
|  | ch_info++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check if we do have HT40 channels */ | 
|  | if (priv->cfg->ops->lib->eeprom_ops.regulatory_bands[5] == | 
|  | EEPROM_REGULATORY_BAND_NO_HT40 && | 
|  | priv->cfg->ops->lib->eeprom_ops.regulatory_bands[6] == | 
|  | EEPROM_REGULATORY_BAND_NO_HT40) | 
|  | return 0; | 
|  |  | 
|  | /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */ | 
|  | for (band = 6; band <= 7; band++) { | 
|  | enum ieee80211_band ieeeband; | 
|  |  | 
|  | iwl_init_band_reference(priv, band, &eeprom_ch_count, | 
|  | &eeprom_ch_info, &eeprom_ch_index); | 
|  |  | 
|  | /* EEPROM band 6 is 2.4, band 7 is 5 GHz */ | 
|  | ieeeband = | 
|  | (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; | 
|  |  | 
|  | /* Loop through each band adding each of the channels */ | 
|  | for (ch = 0; ch < eeprom_ch_count; ch++) { | 
|  | /* Set up driver's info for lower half */ | 
|  | iwl_mod_ht40_chan_info(priv, ieeeband, | 
|  | eeprom_ch_index[ch], | 
|  | &eeprom_ch_info[ch], | 
|  | IEEE80211_CHAN_NO_HT40PLUS); | 
|  |  | 
|  | /* Set up driver's info for upper half */ | 
|  | iwl_mod_ht40_chan_info(priv, ieeeband, | 
|  | eeprom_ch_index[ch] + 4, | 
|  | &eeprom_ch_info[ch], | 
|  | IEEE80211_CHAN_NO_HT40MINUS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* for newer device (6000 series and up) | 
|  | * EEPROM contain enhanced tx power information | 
|  | * driver need to process addition information | 
|  | * to determine the max channel tx power limits | 
|  | */ | 
|  | if (priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower) | 
|  | priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower(priv); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_init_channel_map); | 
|  |  | 
|  | /* | 
|  | * iwl_free_channel_map - undo allocations in iwl_init_channel_map | 
|  | */ | 
|  | void iwl_free_channel_map(struct iwl_priv *priv) | 
|  | { | 
|  | kfree(priv->channel_info); | 
|  | priv->channel_count = 0; | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_free_channel_map); | 
|  |  | 
|  | /** | 
|  | * iwl_get_channel_info - Find driver's private channel info | 
|  | * | 
|  | * Based on band and channel number. | 
|  | */ | 
|  | const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv, | 
|  | enum ieee80211_band band, u16 channel) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | switch (band) { | 
|  | case IEEE80211_BAND_5GHZ: | 
|  | for (i = 14; i < priv->channel_count; i++) { | 
|  | if (priv->channel_info[i].channel == channel) | 
|  | return &priv->channel_info[i]; | 
|  | } | 
|  | break; | 
|  | case IEEE80211_BAND_2GHZ: | 
|  | if (channel >= 1 && channel <= 14) | 
|  | return &priv->channel_info[channel - 1]; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(iwl_get_channel_info); | 
|  |  |