|  | /* | 
|  | * Driver for Alauda-based card readers | 
|  | * | 
|  | * Current development and maintenance by: | 
|  | *   (c) 2005 Daniel Drake <dsd@gentoo.org> | 
|  | * | 
|  | * The 'Alauda' is a chip manufacturered by RATOC for OEM use. | 
|  | * | 
|  | * Alauda implements a vendor-specific command set to access two media reader | 
|  | * ports (XD, SmartMedia). This driver converts SCSI commands to the commands | 
|  | * which are accepted by these devices. | 
|  | * | 
|  | * The driver was developed through reverse-engineering, with the help of the | 
|  | * sddr09 driver which has many similarities, and with some help from the | 
|  | * (very old) vendor-supplied GPL sma03 driver. | 
|  | * | 
|  | * For protocol info, see http://alauda.sourceforge.net | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the | 
|  | * Free Software Foundation; either version 2, or (at your option) any | 
|  | * later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along | 
|  | * with this program; if not, write to the Free Software Foundation, Inc., | 
|  | * 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <scsi/scsi.h> | 
|  | #include <scsi/scsi_cmnd.h> | 
|  | #include <scsi/scsi_device.h> | 
|  |  | 
|  | #include "usb.h" | 
|  | #include "transport.h" | 
|  | #include "protocol.h" | 
|  | #include "debug.h" | 
|  |  | 
|  | MODULE_DESCRIPTION("Driver for Alauda-based card readers"); | 
|  | MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | /* | 
|  | * Status bytes | 
|  | */ | 
|  | #define ALAUDA_STATUS_ERROR		0x01 | 
|  | #define ALAUDA_STATUS_READY		0x40 | 
|  |  | 
|  | /* | 
|  | * Control opcodes (for request field) | 
|  | */ | 
|  | #define ALAUDA_GET_XD_MEDIA_STATUS	0x08 | 
|  | #define ALAUDA_GET_SM_MEDIA_STATUS	0x98 | 
|  | #define ALAUDA_ACK_XD_MEDIA_CHANGE	0x0a | 
|  | #define ALAUDA_ACK_SM_MEDIA_CHANGE	0x9a | 
|  | #define ALAUDA_GET_XD_MEDIA_SIG		0x86 | 
|  | #define ALAUDA_GET_SM_MEDIA_SIG		0x96 | 
|  |  | 
|  | /* | 
|  | * Bulk command identity (byte 0) | 
|  | */ | 
|  | #define ALAUDA_BULK_CMD			0x40 | 
|  |  | 
|  | /* | 
|  | * Bulk opcodes (byte 1) | 
|  | */ | 
|  | #define ALAUDA_BULK_GET_REDU_DATA	0x85 | 
|  | #define ALAUDA_BULK_READ_BLOCK		0x94 | 
|  | #define ALAUDA_BULK_ERASE_BLOCK		0xa3 | 
|  | #define ALAUDA_BULK_WRITE_BLOCK		0xb4 | 
|  | #define ALAUDA_BULK_GET_STATUS2		0xb7 | 
|  | #define ALAUDA_BULK_RESET_MEDIA		0xe0 | 
|  |  | 
|  | /* | 
|  | * Port to operate on (byte 8) | 
|  | */ | 
|  | #define ALAUDA_PORT_XD			0x00 | 
|  | #define ALAUDA_PORT_SM			0x01 | 
|  |  | 
|  | /* | 
|  | * LBA and PBA are unsigned ints. Special values. | 
|  | */ | 
|  | #define UNDEF    0xffff | 
|  | #define SPARE    0xfffe | 
|  | #define UNUSABLE 0xfffd | 
|  |  | 
|  | struct alauda_media_info { | 
|  | unsigned long capacity;		/* total media size in bytes */ | 
|  | unsigned int pagesize;		/* page size in bytes */ | 
|  | unsigned int blocksize;		/* number of pages per block */ | 
|  | unsigned int uzonesize;		/* number of usable blocks per zone */ | 
|  | unsigned int zonesize;		/* number of blocks per zone */ | 
|  | unsigned int blockmask;		/* mask to get page from address */ | 
|  |  | 
|  | unsigned char pageshift; | 
|  | unsigned char blockshift; | 
|  | unsigned char zoneshift; | 
|  |  | 
|  | u16 **lba_to_pba;		/* logical to physical block map */ | 
|  | u16 **pba_to_lba;		/* physical to logical block map */ | 
|  | }; | 
|  |  | 
|  | struct alauda_info { | 
|  | struct alauda_media_info port[2]; | 
|  | int wr_ep;			/* endpoint to write data out of */ | 
|  |  | 
|  | unsigned char sense_key; | 
|  | unsigned long sense_asc;	/* additional sense code */ | 
|  | unsigned long sense_ascq;	/* additional sense code qualifier */ | 
|  | }; | 
|  |  | 
|  | #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) ) | 
|  | #define LSB_of(s) ((s)&0xFF) | 
|  | #define MSB_of(s) ((s)>>8) | 
|  |  | 
|  | #define MEDIA_PORT(us) us->srb->device->lun | 
|  | #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)] | 
|  |  | 
|  | #define PBA_LO(pba) ((pba & 0xF) << 5) | 
|  | #define PBA_HI(pba) (pba >> 3) | 
|  | #define PBA_ZONE(pba) (pba >> 11) | 
|  |  | 
|  | static int init_alauda(struct us_data *us); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The table of devices | 
|  | */ | 
|  | #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ | 
|  | vendorName, productName, useProtocol, useTransport, \ | 
|  | initFunction, flags) \ | 
|  | { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ | 
|  | .driver_info = (flags)|(USB_US_TYPE_STOR<<24) } | 
|  |  | 
|  | struct usb_device_id alauda_usb_ids[] = { | 
|  | #	include "unusual_alauda.h" | 
|  | { }		/* Terminating entry */ | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(usb, alauda_usb_ids); | 
|  |  | 
|  | #undef UNUSUAL_DEV | 
|  |  | 
|  | /* | 
|  | * The flags table | 
|  | */ | 
|  | #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ | 
|  | vendor_name, product_name, use_protocol, use_transport, \ | 
|  | init_function, Flags) \ | 
|  | { \ | 
|  | .vendorName = vendor_name,	\ | 
|  | .productName = product_name,	\ | 
|  | .useProtocol = use_protocol,	\ | 
|  | .useTransport = use_transport,	\ | 
|  | .initFunction = init_function,	\ | 
|  | } | 
|  |  | 
|  | static struct us_unusual_dev alauda_unusual_dev_list[] = { | 
|  | #	include "unusual_alauda.h" | 
|  | { }		/* Terminating entry */ | 
|  | }; | 
|  |  | 
|  | #undef UNUSUAL_DEV | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Media handling | 
|  | */ | 
|  |  | 
|  | struct alauda_card_info { | 
|  | unsigned char id;		/* id byte */ | 
|  | unsigned char chipshift;	/* 1<<cs bytes total capacity */ | 
|  | unsigned char pageshift;	/* 1<<ps bytes in a page */ | 
|  | unsigned char blockshift;	/* 1<<bs pages per block */ | 
|  | unsigned char zoneshift;	/* 1<<zs blocks per zone */ | 
|  | }; | 
|  |  | 
|  | static struct alauda_card_info alauda_card_ids[] = { | 
|  | /* NAND flash */ | 
|  | { 0x6e, 20, 8, 4, 8},	/* 1 MB */ | 
|  | { 0xe8, 20, 8, 4, 8},	/* 1 MB */ | 
|  | { 0xec, 20, 8, 4, 8},	/* 1 MB */ | 
|  | { 0x64, 21, 8, 4, 9}, 	/* 2 MB */ | 
|  | { 0xea, 21, 8, 4, 9},	/* 2 MB */ | 
|  | { 0x6b, 22, 9, 4, 9},	/* 4 MB */ | 
|  | { 0xe3, 22, 9, 4, 9},	/* 4 MB */ | 
|  | { 0xe5, 22, 9, 4, 9},	/* 4 MB */ | 
|  | { 0xe6, 23, 9, 4, 10},	/* 8 MB */ | 
|  | { 0x73, 24, 9, 5, 10},	/* 16 MB */ | 
|  | { 0x75, 25, 9, 5, 10},	/* 32 MB */ | 
|  | { 0x76, 26, 9, 5, 10},	/* 64 MB */ | 
|  | { 0x79, 27, 9, 5, 10},	/* 128 MB */ | 
|  | { 0x71, 28, 9, 5, 10},	/* 256 MB */ | 
|  |  | 
|  | /* MASK ROM */ | 
|  | { 0x5d, 21, 9, 4, 8},	/* 2 MB */ | 
|  | { 0xd5, 22, 9, 4, 9},	/* 4 MB */ | 
|  | { 0xd6, 23, 9, 4, 10},	/* 8 MB */ | 
|  | { 0x57, 24, 9, 4, 11},	/* 16 MB */ | 
|  | { 0x58, 25, 9, 4, 12},	/* 32 MB */ | 
|  | { 0,} | 
|  | }; | 
|  |  | 
|  | static struct alauda_card_info *alauda_card_find_id(unsigned char id) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; alauda_card_ids[i].id != 0; i++) | 
|  | if (alauda_card_ids[i].id == id) | 
|  | return &(alauda_card_ids[i]); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ECC computation. | 
|  | */ | 
|  |  | 
|  | static unsigned char parity[256]; | 
|  | static unsigned char ecc2[256]; | 
|  |  | 
|  | static void nand_init_ecc(void) { | 
|  | int i, j, a; | 
|  |  | 
|  | parity[0] = 0; | 
|  | for (i = 1; i < 256; i++) | 
|  | parity[i] = (parity[i&(i-1)] ^ 1); | 
|  |  | 
|  | for (i = 0; i < 256; i++) { | 
|  | a = 0; | 
|  | for (j = 0; j < 8; j++) { | 
|  | if (i & (1<<j)) { | 
|  | if ((j & 1) == 0) | 
|  | a ^= 0x04; | 
|  | if ((j & 2) == 0) | 
|  | a ^= 0x10; | 
|  | if ((j & 4) == 0) | 
|  | a ^= 0x40; | 
|  | } | 
|  | } | 
|  | ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* compute 3-byte ecc on 256 bytes */ | 
|  | static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) { | 
|  | int i, j, a; | 
|  | unsigned char par, bit, bits[8]; | 
|  |  | 
|  | par = 0; | 
|  | for (j = 0; j < 8; j++) | 
|  | bits[j] = 0; | 
|  |  | 
|  | /* collect 16 checksum bits */ | 
|  | for (i = 0; i < 256; i++) { | 
|  | par ^= data[i]; | 
|  | bit = parity[data[i]]; | 
|  | for (j = 0; j < 8; j++) | 
|  | if ((i & (1<<j)) == 0) | 
|  | bits[j] ^= bit; | 
|  | } | 
|  |  | 
|  | /* put 4+4+4 = 12 bits in the ecc */ | 
|  | a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0]; | 
|  | ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); | 
|  |  | 
|  | a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4]; | 
|  | ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); | 
|  |  | 
|  | ecc[2] = ecc2[par]; | 
|  | } | 
|  |  | 
|  | static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) { | 
|  | return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]); | 
|  | } | 
|  |  | 
|  | static void nand_store_ecc(unsigned char *data, unsigned char *ecc) { | 
|  | memcpy(data, ecc, 3); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Alauda driver | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Forget our PBA <---> LBA mappings for a particular port | 
|  | */ | 
|  | static void alauda_free_maps (struct alauda_media_info *media_info) | 
|  | { | 
|  | unsigned int shift = media_info->zoneshift | 
|  | + media_info->blockshift + media_info->pageshift; | 
|  | unsigned int num_zones = media_info->capacity >> shift; | 
|  | unsigned int i; | 
|  |  | 
|  | if (media_info->lba_to_pba != NULL) | 
|  | for (i = 0; i < num_zones; i++) { | 
|  | kfree(media_info->lba_to_pba[i]); | 
|  | media_info->lba_to_pba[i] = NULL; | 
|  | } | 
|  |  | 
|  | if (media_info->pba_to_lba != NULL) | 
|  | for (i = 0; i < num_zones; i++) { | 
|  | kfree(media_info->pba_to_lba[i]); | 
|  | media_info->pba_to_lba[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns 2 bytes of status data | 
|  | * The first byte describes media status, and second byte describes door status | 
|  | */ | 
|  | static int alauda_get_media_status(struct us_data *us, unsigned char *data) | 
|  | { | 
|  | int rc; | 
|  | unsigned char command; | 
|  |  | 
|  | if (MEDIA_PORT(us) == ALAUDA_PORT_XD) | 
|  | command = ALAUDA_GET_XD_MEDIA_STATUS; | 
|  | else | 
|  | command = ALAUDA_GET_SM_MEDIA_STATUS; | 
|  |  | 
|  | rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, | 
|  | command, 0xc0, 0, 1, data, 2); | 
|  |  | 
|  | US_DEBUGP("alauda_get_media_status: Media status %02X %02X\n", | 
|  | data[0], data[1]); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clears the "media was changed" bit so that we know when it changes again | 
|  | * in the future. | 
|  | */ | 
|  | static int alauda_ack_media(struct us_data *us) | 
|  | { | 
|  | unsigned char command; | 
|  |  | 
|  | if (MEDIA_PORT(us) == ALAUDA_PORT_XD) | 
|  | command = ALAUDA_ACK_XD_MEDIA_CHANGE; | 
|  | else | 
|  | command = ALAUDA_ACK_SM_MEDIA_CHANGE; | 
|  |  | 
|  | return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, | 
|  | command, 0x40, 0, 1, NULL, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retrieves a 4-byte media signature, which indicates manufacturer, capacity, | 
|  | * and some other details. | 
|  | */ | 
|  | static int alauda_get_media_signature(struct us_data *us, unsigned char *data) | 
|  | { | 
|  | unsigned char command; | 
|  |  | 
|  | if (MEDIA_PORT(us) == ALAUDA_PORT_XD) | 
|  | command = ALAUDA_GET_XD_MEDIA_SIG; | 
|  | else | 
|  | command = ALAUDA_GET_SM_MEDIA_SIG; | 
|  |  | 
|  | return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, | 
|  | command, 0xc0, 0, 0, data, 4); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Resets the media status (but not the whole device?) | 
|  | */ | 
|  | static int alauda_reset_media(struct us_data *us) | 
|  | { | 
|  | unsigned char *command = us->iobuf; | 
|  |  | 
|  | memset(command, 0, 9); | 
|  | command[0] = ALAUDA_BULK_CMD; | 
|  | command[1] = ALAUDA_BULK_RESET_MEDIA; | 
|  | command[8] = MEDIA_PORT(us); | 
|  |  | 
|  | return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, | 
|  | command, 9, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Examines the media and deduces capacity, etc. | 
|  | */ | 
|  | static int alauda_init_media(struct us_data *us) | 
|  | { | 
|  | unsigned char *data = us->iobuf; | 
|  | int ready = 0; | 
|  | struct alauda_card_info *media_info; | 
|  | unsigned int num_zones; | 
|  |  | 
|  | while (ready == 0) { | 
|  | msleep(20); | 
|  |  | 
|  | if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) | 
|  | return USB_STOR_TRANSPORT_ERROR; | 
|  |  | 
|  | if (data[0] & 0x10) | 
|  | ready = 1; | 
|  | } | 
|  |  | 
|  | US_DEBUGP("alauda_init_media: We are ready for action!\n"); | 
|  |  | 
|  | if (alauda_ack_media(us) != USB_STOR_XFER_GOOD) | 
|  | return USB_STOR_TRANSPORT_ERROR; | 
|  |  | 
|  | msleep(10); | 
|  |  | 
|  | if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) | 
|  | return USB_STOR_TRANSPORT_ERROR; | 
|  |  | 
|  | if (data[0] != 0x14) { | 
|  | US_DEBUGP("alauda_init_media: Media not ready after ack\n"); | 
|  | return USB_STOR_TRANSPORT_ERROR; | 
|  | } | 
|  |  | 
|  | if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD) | 
|  | return USB_STOR_TRANSPORT_ERROR; | 
|  |  | 
|  | US_DEBUGP("alauda_init_media: Media signature: %02X %02X %02X %02X\n", | 
|  | data[0], data[1], data[2], data[3]); | 
|  | media_info = alauda_card_find_id(data[1]); | 
|  | if (media_info == NULL) { | 
|  | printk(KERN_WARNING | 
|  | "alauda_init_media: Unrecognised media signature: " | 
|  | "%02X %02X %02X %02X\n", | 
|  | data[0], data[1], data[2], data[3]); | 
|  | return USB_STOR_TRANSPORT_ERROR; | 
|  | } | 
|  |  | 
|  | MEDIA_INFO(us).capacity = 1 << media_info->chipshift; | 
|  | US_DEBUGP("Found media with capacity: %ldMB\n", | 
|  | MEDIA_INFO(us).capacity >> 20); | 
|  |  | 
|  | MEDIA_INFO(us).pageshift = media_info->pageshift; | 
|  | MEDIA_INFO(us).blockshift = media_info->blockshift; | 
|  | MEDIA_INFO(us).zoneshift = media_info->zoneshift; | 
|  |  | 
|  | MEDIA_INFO(us).pagesize = 1 << media_info->pageshift; | 
|  | MEDIA_INFO(us).blocksize = 1 << media_info->blockshift; | 
|  | MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift; | 
|  |  | 
|  | MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125; | 
|  | MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1; | 
|  |  | 
|  | num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift | 
|  | + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); | 
|  | MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); | 
|  | MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); | 
|  |  | 
|  | if (alauda_reset_media(us) != USB_STOR_XFER_GOOD) | 
|  | return USB_STOR_TRANSPORT_ERROR; | 
|  |  | 
|  | return USB_STOR_TRANSPORT_GOOD; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Examines the media status and does the right thing when the media has gone, | 
|  | * appeared, or changed. | 
|  | */ | 
|  | static int alauda_check_media(struct us_data *us) | 
|  | { | 
|  | struct alauda_info *info = (struct alauda_info *) us->extra; | 
|  | unsigned char status[2]; | 
|  | int rc; | 
|  |  | 
|  | rc = alauda_get_media_status(us, status); | 
|  |  | 
|  | /* Check for no media or door open */ | 
|  | if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10) | 
|  | || ((status[1] & 0x01) == 0)) { | 
|  | US_DEBUGP("alauda_check_media: No media, or door open\n"); | 
|  | alauda_free_maps(&MEDIA_INFO(us)); | 
|  | info->sense_key = 0x02; | 
|  | info->sense_asc = 0x3A; | 
|  | info->sense_ascq = 0x00; | 
|  | return USB_STOR_TRANSPORT_FAILED; | 
|  | } | 
|  |  | 
|  | /* Check for media change */ | 
|  | if (status[0] & 0x08) { | 
|  | US_DEBUGP("alauda_check_media: Media change detected\n"); | 
|  | alauda_free_maps(&MEDIA_INFO(us)); | 
|  | alauda_init_media(us); | 
|  |  | 
|  | info->sense_key = UNIT_ATTENTION; | 
|  | info->sense_asc = 0x28; | 
|  | info->sense_ascq = 0x00; | 
|  | return USB_STOR_TRANSPORT_FAILED; | 
|  | } | 
|  |  | 
|  | return USB_STOR_TRANSPORT_GOOD; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks the status from the 2nd status register | 
|  | * Returns 3 bytes of status data, only the first is known | 
|  | */ | 
|  | static int alauda_check_status2(struct us_data *us) | 
|  | { | 
|  | int rc; | 
|  | unsigned char command[] = { | 
|  | ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2, | 
|  | 0, 0, 0, 0, 3, 0, MEDIA_PORT(us) | 
|  | }; | 
|  | unsigned char data[3]; | 
|  |  | 
|  | rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, | 
|  | command, 9, NULL); | 
|  | if (rc != USB_STOR_XFER_GOOD) | 
|  | return rc; | 
|  |  | 
|  | rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, | 
|  | data, 3, NULL); | 
|  | if (rc != USB_STOR_XFER_GOOD) | 
|  | return rc; | 
|  |  | 
|  | US_DEBUGP("alauda_check_status2: %02X %02X %02X\n", data[0], data[1], data[2]); | 
|  | if (data[0] & ALAUDA_STATUS_ERROR) | 
|  | return USB_STOR_XFER_ERROR; | 
|  |  | 
|  | return USB_STOR_XFER_GOOD; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Gets the redundancy data for the first page of a PBA | 
|  | * Returns 16 bytes. | 
|  | */ | 
|  | static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data) | 
|  | { | 
|  | int rc; | 
|  | unsigned char command[] = { | 
|  | ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA, | 
|  | PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us) | 
|  | }; | 
|  |  | 
|  | rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, | 
|  | command, 9, NULL); | 
|  | if (rc != USB_STOR_XFER_GOOD) | 
|  | return rc; | 
|  |  | 
|  | return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, | 
|  | data, 16, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finds the first unused PBA in a zone | 
|  | * Returns the absolute PBA of an unused PBA, or 0 if none found. | 
|  | */ | 
|  | static u16 alauda_find_unused_pba(struct alauda_media_info *info, | 
|  | unsigned int zone) | 
|  | { | 
|  | u16 *pba_to_lba = info->pba_to_lba[zone]; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < info->zonesize; i++) | 
|  | if (pba_to_lba[i] == UNDEF) | 
|  | return (zone << info->zoneshift) + i; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reads the redundancy data for all PBA's in a zone | 
|  | * Produces lba <--> pba mappings | 
|  | */ | 
|  | static int alauda_read_map(struct us_data *us, unsigned int zone) | 
|  | { | 
|  | unsigned char *data = us->iobuf; | 
|  | int result; | 
|  | int i, j; | 
|  | unsigned int zonesize = MEDIA_INFO(us).zonesize; | 
|  | unsigned int uzonesize = MEDIA_INFO(us).uzonesize; | 
|  | unsigned int lba_offset, lba_real, blocknum; | 
|  | unsigned int zone_base_lba = zone * uzonesize; | 
|  | unsigned int zone_base_pba = zone * zonesize; | 
|  | u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); | 
|  | u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); | 
|  | if (lba_to_pba == NULL || pba_to_lba == NULL) { | 
|  | result = USB_STOR_TRANSPORT_ERROR; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | US_DEBUGP("alauda_read_map: Mapping blocks for zone %d\n", zone); | 
|  |  | 
|  | /* 1024 PBA's per zone */ | 
|  | for (i = 0; i < zonesize; i++) | 
|  | lba_to_pba[i] = pba_to_lba[i] = UNDEF; | 
|  |  | 
|  | for (i = 0; i < zonesize; i++) { | 
|  | blocknum = zone_base_pba + i; | 
|  |  | 
|  | result = alauda_get_redu_data(us, blocknum, data); | 
|  | if (result != USB_STOR_XFER_GOOD) { | 
|  | result = USB_STOR_TRANSPORT_ERROR; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* special PBAs have control field 0^16 */ | 
|  | for (j = 0; j < 16; j++) | 
|  | if (data[j] != 0) | 
|  | goto nonz; | 
|  | pba_to_lba[i] = UNUSABLE; | 
|  | US_DEBUGP("alauda_read_map: PBA %d has no logical mapping\n", blocknum); | 
|  | continue; | 
|  |  | 
|  | nonz: | 
|  | /* unwritten PBAs have control field FF^16 */ | 
|  | for (j = 0; j < 16; j++) | 
|  | if (data[j] != 0xff) | 
|  | goto nonff; | 
|  | continue; | 
|  |  | 
|  | nonff: | 
|  | /* normal PBAs start with six FFs */ | 
|  | if (j < 6) { | 
|  | US_DEBUGP("alauda_read_map: PBA %d has no logical mapping: " | 
|  | "reserved area = %02X%02X%02X%02X " | 
|  | "data status %02X block status %02X\n", | 
|  | blocknum, data[0], data[1], data[2], data[3], | 
|  | data[4], data[5]); | 
|  | pba_to_lba[i] = UNUSABLE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((data[6] >> 4) != 0x01) { | 
|  | US_DEBUGP("alauda_read_map: PBA %d has invalid address " | 
|  | "field %02X%02X/%02X%02X\n", | 
|  | blocknum, data[6], data[7], data[11], data[12]); | 
|  | pba_to_lba[i] = UNUSABLE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* check even parity */ | 
|  | if (parity[data[6] ^ data[7]]) { | 
|  | printk(KERN_WARNING | 
|  | "alauda_read_map: Bad parity in LBA for block %d" | 
|  | " (%02X %02X)\n", i, data[6], data[7]); | 
|  | pba_to_lba[i] = UNUSABLE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | lba_offset = short_pack(data[7], data[6]); | 
|  | lba_offset = (lba_offset & 0x07FF) >> 1; | 
|  | lba_real = lba_offset + zone_base_lba; | 
|  |  | 
|  | /* | 
|  | * Every 1024 physical blocks ("zone"), the LBA numbers | 
|  | * go back to zero, but are within a higher block of LBA's. | 
|  | * Also, there is a maximum of 1000 LBA's per zone. | 
|  | * In other words, in PBA 1024-2047 you will find LBA 0-999 | 
|  | * which are really LBA 1000-1999. This allows for 24 bad | 
|  | * or special physical blocks per zone. | 
|  | */ | 
|  |  | 
|  | if (lba_offset >= uzonesize) { | 
|  | printk(KERN_WARNING | 
|  | "alauda_read_map: Bad low LBA %d for block %d\n", | 
|  | lba_real, blocknum); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (lba_to_pba[lba_offset] != UNDEF) { | 
|  | printk(KERN_WARNING | 
|  | "alauda_read_map: " | 
|  | "LBA %d seen for PBA %d and %d\n", | 
|  | lba_real, lba_to_pba[lba_offset], blocknum); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pba_to_lba[i] = lba_real; | 
|  | lba_to_pba[lba_offset] = blocknum; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba; | 
|  | MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba; | 
|  | result = 0; | 
|  | goto out; | 
|  |  | 
|  | error: | 
|  | kfree(lba_to_pba); | 
|  | kfree(pba_to_lba); | 
|  | out: | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks to see whether we have already mapped a certain zone | 
|  | * If we haven't, the map is generated | 
|  | */ | 
|  | static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone) | 
|  | { | 
|  | if (MEDIA_INFO(us).lba_to_pba[zone] == NULL | 
|  | || MEDIA_INFO(us).pba_to_lba[zone] == NULL) | 
|  | alauda_read_map(us, zone); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Erases an entire block | 
|  | */ | 
|  | static int alauda_erase_block(struct us_data *us, u16 pba) | 
|  | { | 
|  | int rc; | 
|  | unsigned char command[] = { | 
|  | ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba), | 
|  | PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us) | 
|  | }; | 
|  | unsigned char buf[2]; | 
|  |  | 
|  | US_DEBUGP("alauda_erase_block: Erasing PBA %d\n", pba); | 
|  |  | 
|  | rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, | 
|  | command, 9, NULL); | 
|  | if (rc != USB_STOR_XFER_GOOD) | 
|  | return rc; | 
|  |  | 
|  | rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, | 
|  | buf, 2, NULL); | 
|  | if (rc != USB_STOR_XFER_GOOD) | 
|  | return rc; | 
|  |  | 
|  | US_DEBUGP("alauda_erase_block: Erase result: %02X %02X\n", | 
|  | buf[0], buf[1]); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reads data from a certain offset page inside a PBA, including interleaved | 
|  | * redundancy data. Returns (pagesize+64)*pages bytes in data. | 
|  | */ | 
|  | static int alauda_read_block_raw(struct us_data *us, u16 pba, | 
|  | unsigned int page, unsigned int pages, unsigned char *data) | 
|  | { | 
|  | int rc; | 
|  | unsigned char command[] = { | 
|  | ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba), | 
|  | PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us) | 
|  | }; | 
|  |  | 
|  | US_DEBUGP("alauda_read_block: pba %d page %d count %d\n", | 
|  | pba, page, pages); | 
|  |  | 
|  | rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, | 
|  | command, 9, NULL); | 
|  | if (rc != USB_STOR_XFER_GOOD) | 
|  | return rc; | 
|  |  | 
|  | return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, | 
|  | data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reads data from a certain offset page inside a PBA, excluding redundancy | 
|  | * data. Returns pagesize*pages bytes in data. Note that data must be big enough | 
|  | * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra' | 
|  | * trailing bytes outside this function. | 
|  | */ | 
|  | static int alauda_read_block(struct us_data *us, u16 pba, | 
|  | unsigned int page, unsigned int pages, unsigned char *data) | 
|  | { | 
|  | int i, rc; | 
|  | unsigned int pagesize = MEDIA_INFO(us).pagesize; | 
|  |  | 
|  | rc = alauda_read_block_raw(us, pba, page, pages, data); | 
|  | if (rc != USB_STOR_XFER_GOOD) | 
|  | return rc; | 
|  |  | 
|  | /* Cut out the redundancy data */ | 
|  | for (i = 0; i < pages; i++) { | 
|  | int dest_offset = i * pagesize; | 
|  | int src_offset = i * (pagesize + 64); | 
|  | memmove(data + dest_offset, data + src_offset, pagesize); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Writes an entire block of data and checks status after write. | 
|  | * Redundancy data must be already included in data. Data should be | 
|  | * (pagesize+64)*blocksize bytes in length. | 
|  | */ | 
|  | static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data) | 
|  | { | 
|  | int rc; | 
|  | struct alauda_info *info = (struct alauda_info *) us->extra; | 
|  | unsigned char command[] = { | 
|  | ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba), | 
|  | PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us) | 
|  | }; | 
|  |  | 
|  | US_DEBUGP("alauda_write_block: pba %d\n", pba); | 
|  |  | 
|  | rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, | 
|  | command, 9, NULL); | 
|  | if (rc != USB_STOR_XFER_GOOD) | 
|  | return rc; | 
|  |  | 
|  | rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data, | 
|  | (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize, | 
|  | NULL); | 
|  | if (rc != USB_STOR_XFER_GOOD) | 
|  | return rc; | 
|  |  | 
|  | return alauda_check_status2(us); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write some data to a specific LBA. | 
|  | */ | 
|  | static int alauda_write_lba(struct us_data *us, u16 lba, | 
|  | unsigned int page, unsigned int pages, | 
|  | unsigned char *ptr, unsigned char *blockbuffer) | 
|  | { | 
|  | u16 pba, lbap, new_pba; | 
|  | unsigned char *bptr, *cptr, *xptr; | 
|  | unsigned char ecc[3]; | 
|  | int i, result; | 
|  | unsigned int uzonesize = MEDIA_INFO(us).uzonesize; | 
|  | unsigned int zonesize = MEDIA_INFO(us).zonesize; | 
|  | unsigned int pagesize = MEDIA_INFO(us).pagesize; | 
|  | unsigned int blocksize = MEDIA_INFO(us).blocksize; | 
|  | unsigned int lba_offset = lba % uzonesize; | 
|  | unsigned int new_pba_offset; | 
|  | unsigned int zone = lba / uzonesize; | 
|  |  | 
|  | alauda_ensure_map_for_zone(us, zone); | 
|  |  | 
|  | pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; | 
|  | if (pba == 1) { | 
|  | /* Maybe it is impossible to write to PBA 1. | 
|  | Fake success, but don't do anything. */ | 
|  | printk(KERN_WARNING | 
|  | "alauda_write_lba: avoid writing to pba 1\n"); | 
|  | return USB_STOR_TRANSPORT_GOOD; | 
|  | } | 
|  |  | 
|  | new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone); | 
|  | if (!new_pba) { | 
|  | printk(KERN_WARNING | 
|  | "alauda_write_lba: Out of unused blocks\n"); | 
|  | return USB_STOR_TRANSPORT_ERROR; | 
|  | } | 
|  |  | 
|  | /* read old contents */ | 
|  | if (pba != UNDEF) { | 
|  | result = alauda_read_block_raw(us, pba, 0, | 
|  | blocksize, blockbuffer); | 
|  | if (result != USB_STOR_XFER_GOOD) | 
|  | return result; | 
|  | } else { | 
|  | memset(blockbuffer, 0, blocksize * (pagesize + 64)); | 
|  | } | 
|  |  | 
|  | lbap = (lba_offset << 1) | 0x1000; | 
|  | if (parity[MSB_of(lbap) ^ LSB_of(lbap)]) | 
|  | lbap ^= 1; | 
|  |  | 
|  | /* check old contents and fill lba */ | 
|  | for (i = 0; i < blocksize; i++) { | 
|  | bptr = blockbuffer + (i * (pagesize + 64)); | 
|  | cptr = bptr + pagesize; | 
|  | nand_compute_ecc(bptr, ecc); | 
|  | if (!nand_compare_ecc(cptr+13, ecc)) { | 
|  | US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n", | 
|  | i, pba); | 
|  | nand_store_ecc(cptr+13, ecc); | 
|  | } | 
|  | nand_compute_ecc(bptr + (pagesize / 2), ecc); | 
|  | if (!nand_compare_ecc(cptr+8, ecc)) { | 
|  | US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n", | 
|  | i, pba); | 
|  | nand_store_ecc(cptr+8, ecc); | 
|  | } | 
|  | cptr[6] = cptr[11] = MSB_of(lbap); | 
|  | cptr[7] = cptr[12] = LSB_of(lbap); | 
|  | } | 
|  |  | 
|  | /* copy in new stuff and compute ECC */ | 
|  | xptr = ptr; | 
|  | for (i = page; i < page+pages; i++) { | 
|  | bptr = blockbuffer + (i * (pagesize + 64)); | 
|  | cptr = bptr + pagesize; | 
|  | memcpy(bptr, xptr, pagesize); | 
|  | xptr += pagesize; | 
|  | nand_compute_ecc(bptr, ecc); | 
|  | nand_store_ecc(cptr+13, ecc); | 
|  | nand_compute_ecc(bptr + (pagesize / 2), ecc); | 
|  | nand_store_ecc(cptr+8, ecc); | 
|  | } | 
|  |  | 
|  | result = alauda_write_block(us, new_pba, blockbuffer); | 
|  | if (result != USB_STOR_XFER_GOOD) | 
|  | return result; | 
|  |  | 
|  | new_pba_offset = new_pba - (zone * zonesize); | 
|  | MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba; | 
|  | MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba; | 
|  | US_DEBUGP("alauda_write_lba: Remapped LBA %d to PBA %d\n", | 
|  | lba, new_pba); | 
|  |  | 
|  | if (pba != UNDEF) { | 
|  | unsigned int pba_offset = pba - (zone * zonesize); | 
|  | result = alauda_erase_block(us, pba); | 
|  | if (result != USB_STOR_XFER_GOOD) | 
|  | return result; | 
|  | MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF; | 
|  | } | 
|  |  | 
|  | return USB_STOR_TRANSPORT_GOOD; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read data from a specific sector address | 
|  | */ | 
|  | static int alauda_read_data(struct us_data *us, unsigned long address, | 
|  | unsigned int sectors) | 
|  | { | 
|  | unsigned char *buffer; | 
|  | u16 lba, max_lba; | 
|  | unsigned int page, len, offset; | 
|  | unsigned int blockshift = MEDIA_INFO(us).blockshift; | 
|  | unsigned int pageshift = MEDIA_INFO(us).pageshift; | 
|  | unsigned int blocksize = MEDIA_INFO(us).blocksize; | 
|  | unsigned int pagesize = MEDIA_INFO(us).pagesize; | 
|  | unsigned int uzonesize = MEDIA_INFO(us).uzonesize; | 
|  | struct scatterlist *sg; | 
|  | int result; | 
|  |  | 
|  | /* | 
|  | * Since we only read in one block at a time, we have to create | 
|  | * a bounce buffer and move the data a piece at a time between the | 
|  | * bounce buffer and the actual transfer buffer. | 
|  | * We make this buffer big enough to hold temporary redundancy data, | 
|  | * which we use when reading the data blocks. | 
|  | */ | 
|  |  | 
|  | len = min(sectors, blocksize) * (pagesize + 64); | 
|  | buffer = kmalloc(len, GFP_NOIO); | 
|  | if (buffer == NULL) { | 
|  | printk(KERN_WARNING "alauda_read_data: Out of memory\n"); | 
|  | return USB_STOR_TRANSPORT_ERROR; | 
|  | } | 
|  |  | 
|  | /* Figure out the initial LBA and page */ | 
|  | lba = address >> blockshift; | 
|  | page = (address & MEDIA_INFO(us).blockmask); | 
|  | max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift); | 
|  |  | 
|  | result = USB_STOR_TRANSPORT_GOOD; | 
|  | offset = 0; | 
|  | sg = NULL; | 
|  |  | 
|  | while (sectors > 0) { | 
|  | unsigned int zone = lba / uzonesize; /* integer division */ | 
|  | unsigned int lba_offset = lba - (zone * uzonesize); | 
|  | unsigned int pages; | 
|  | u16 pba; | 
|  | alauda_ensure_map_for_zone(us, zone); | 
|  |  | 
|  | /* Not overflowing capacity? */ | 
|  | if (lba >= max_lba) { | 
|  | US_DEBUGP("Error: Requested lba %u exceeds " | 
|  | "maximum %u\n", lba, max_lba); | 
|  | result = USB_STOR_TRANSPORT_ERROR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Find number of pages we can read in this block */ | 
|  | pages = min(sectors, blocksize - page); | 
|  | len = pages << pageshift; | 
|  |  | 
|  | /* Find where this lba lives on disk */ | 
|  | pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; | 
|  |  | 
|  | if (pba == UNDEF) {	/* this lba was never written */ | 
|  | US_DEBUGP("Read %d zero pages (LBA %d) page %d\n", | 
|  | pages, lba, page); | 
|  |  | 
|  | /* This is not really an error. It just means | 
|  | that the block has never been written. | 
|  | Instead of returning USB_STOR_TRANSPORT_ERROR | 
|  | it is better to return all zero data. */ | 
|  |  | 
|  | memset(buffer, 0, len); | 
|  | } else { | 
|  | US_DEBUGP("Read %d pages, from PBA %d" | 
|  | " (LBA %d) page %d\n", | 
|  | pages, pba, lba, page); | 
|  |  | 
|  | result = alauda_read_block(us, pba, page, pages, buffer); | 
|  | if (result != USB_STOR_TRANSPORT_GOOD) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Store the data in the transfer buffer */ | 
|  | usb_stor_access_xfer_buf(buffer, len, us->srb, | 
|  | &sg, &offset, TO_XFER_BUF); | 
|  |  | 
|  | page = 0; | 
|  | lba++; | 
|  | sectors -= pages; | 
|  | } | 
|  |  | 
|  | kfree(buffer); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write data to a specific sector address | 
|  | */ | 
|  | static int alauda_write_data(struct us_data *us, unsigned long address, | 
|  | unsigned int sectors) | 
|  | { | 
|  | unsigned char *buffer, *blockbuffer; | 
|  | unsigned int page, len, offset; | 
|  | unsigned int blockshift = MEDIA_INFO(us).blockshift; | 
|  | unsigned int pageshift = MEDIA_INFO(us).pageshift; | 
|  | unsigned int blocksize = MEDIA_INFO(us).blocksize; | 
|  | unsigned int pagesize = MEDIA_INFO(us).pagesize; | 
|  | struct scatterlist *sg; | 
|  | u16 lba, max_lba; | 
|  | int result; | 
|  |  | 
|  | /* | 
|  | * Since we don't write the user data directly to the device, | 
|  | * we have to create a bounce buffer and move the data a piece | 
|  | * at a time between the bounce buffer and the actual transfer buffer. | 
|  | */ | 
|  |  | 
|  | len = min(sectors, blocksize) * pagesize; | 
|  | buffer = kmalloc(len, GFP_NOIO); | 
|  | if (buffer == NULL) { | 
|  | printk(KERN_WARNING "alauda_write_data: Out of memory\n"); | 
|  | return USB_STOR_TRANSPORT_ERROR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We also need a temporary block buffer, where we read in the old data, | 
|  | * overwrite parts with the new data, and manipulate the redundancy data | 
|  | */ | 
|  | blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO); | 
|  | if (blockbuffer == NULL) { | 
|  | printk(KERN_WARNING "alauda_write_data: Out of memory\n"); | 
|  | kfree(buffer); | 
|  | return USB_STOR_TRANSPORT_ERROR; | 
|  | } | 
|  |  | 
|  | /* Figure out the initial LBA and page */ | 
|  | lba = address >> blockshift; | 
|  | page = (address & MEDIA_INFO(us).blockmask); | 
|  | max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift); | 
|  |  | 
|  | result = USB_STOR_TRANSPORT_GOOD; | 
|  | offset = 0; | 
|  | sg = NULL; | 
|  |  | 
|  | while (sectors > 0) { | 
|  | /* Write as many sectors as possible in this block */ | 
|  | unsigned int pages = min(sectors, blocksize - page); | 
|  | len = pages << pageshift; | 
|  |  | 
|  | /* Not overflowing capacity? */ | 
|  | if (lba >= max_lba) { | 
|  | US_DEBUGP("alauda_write_data: Requested lba %u exceeds " | 
|  | "maximum %u\n", lba, max_lba); | 
|  | result = USB_STOR_TRANSPORT_ERROR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Get the data from the transfer buffer */ | 
|  | usb_stor_access_xfer_buf(buffer, len, us->srb, | 
|  | &sg, &offset, FROM_XFER_BUF); | 
|  |  | 
|  | result = alauda_write_lba(us, lba, page, pages, buffer, | 
|  | blockbuffer); | 
|  | if (result != USB_STOR_TRANSPORT_GOOD) | 
|  | break; | 
|  |  | 
|  | page = 0; | 
|  | lba++; | 
|  | sectors -= pages; | 
|  | } | 
|  |  | 
|  | kfree(buffer); | 
|  | kfree(blockbuffer); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Our interface with the rest of the world | 
|  | */ | 
|  |  | 
|  | static void alauda_info_destructor(void *extra) | 
|  | { | 
|  | struct alauda_info *info = (struct alauda_info *) extra; | 
|  | int port; | 
|  |  | 
|  | if (!info) | 
|  | return; | 
|  |  | 
|  | for (port = 0; port < 2; port++) { | 
|  | struct alauda_media_info *media_info = &info->port[port]; | 
|  |  | 
|  | alauda_free_maps(media_info); | 
|  | kfree(media_info->lba_to_pba); | 
|  | kfree(media_info->pba_to_lba); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize alauda_info struct and find the data-write endpoint | 
|  | */ | 
|  | static int init_alauda(struct us_data *us) | 
|  | { | 
|  | struct alauda_info *info; | 
|  | struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting; | 
|  | nand_init_ecc(); | 
|  |  | 
|  | us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO); | 
|  | if (!us->extra) { | 
|  | US_DEBUGP("init_alauda: Gah! Can't allocate storage for" | 
|  | "alauda info struct!\n"); | 
|  | return USB_STOR_TRANSPORT_ERROR; | 
|  | } | 
|  | info = (struct alauda_info *) us->extra; | 
|  | us->extra_destructor = alauda_info_destructor; | 
|  |  | 
|  | info->wr_ep = usb_sndbulkpipe(us->pusb_dev, | 
|  | altsetting->endpoint[0].desc.bEndpointAddress | 
|  | & USB_ENDPOINT_NUMBER_MASK); | 
|  |  | 
|  | return USB_STOR_TRANSPORT_GOOD; | 
|  | } | 
|  |  | 
|  | static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us) | 
|  | { | 
|  | int rc; | 
|  | struct alauda_info *info = (struct alauda_info *) us->extra; | 
|  | unsigned char *ptr = us->iobuf; | 
|  | static unsigned char inquiry_response[36] = { | 
|  | 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00 | 
|  | }; | 
|  |  | 
|  | if (srb->cmnd[0] == INQUIRY) { | 
|  | US_DEBUGP("alauda_transport: INQUIRY. " | 
|  | "Returning bogus response.\n"); | 
|  | memcpy(ptr, inquiry_response, sizeof(inquiry_response)); | 
|  | fill_inquiry_response(us, ptr, 36); | 
|  | return USB_STOR_TRANSPORT_GOOD; | 
|  | } | 
|  |  | 
|  | if (srb->cmnd[0] == TEST_UNIT_READY) { | 
|  | US_DEBUGP("alauda_transport: TEST_UNIT_READY.\n"); | 
|  | return alauda_check_media(us); | 
|  | } | 
|  |  | 
|  | if (srb->cmnd[0] == READ_CAPACITY) { | 
|  | unsigned int num_zones; | 
|  | unsigned long capacity; | 
|  |  | 
|  | rc = alauda_check_media(us); | 
|  | if (rc != USB_STOR_TRANSPORT_GOOD) | 
|  | return rc; | 
|  |  | 
|  | num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift | 
|  | + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); | 
|  |  | 
|  | capacity = num_zones * MEDIA_INFO(us).uzonesize | 
|  | * MEDIA_INFO(us).blocksize; | 
|  |  | 
|  | /* Report capacity and page size */ | 
|  | ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1); | 
|  | ((__be32 *) ptr)[1] = cpu_to_be32(512); | 
|  |  | 
|  | usb_stor_set_xfer_buf(ptr, 8, srb); | 
|  | return USB_STOR_TRANSPORT_GOOD; | 
|  | } | 
|  |  | 
|  | if (srb->cmnd[0] == READ_10) { | 
|  | unsigned int page, pages; | 
|  |  | 
|  | rc = alauda_check_media(us); | 
|  | if (rc != USB_STOR_TRANSPORT_GOOD) | 
|  | return rc; | 
|  |  | 
|  | page = short_pack(srb->cmnd[3], srb->cmnd[2]); | 
|  | page <<= 16; | 
|  | page |= short_pack(srb->cmnd[5], srb->cmnd[4]); | 
|  | pages = short_pack(srb->cmnd[8], srb->cmnd[7]); | 
|  |  | 
|  | US_DEBUGP("alauda_transport: READ_10: page %d pagect %d\n", | 
|  | page, pages); | 
|  |  | 
|  | return alauda_read_data(us, page, pages); | 
|  | } | 
|  |  | 
|  | if (srb->cmnd[0] == WRITE_10) { | 
|  | unsigned int page, pages; | 
|  |  | 
|  | rc = alauda_check_media(us); | 
|  | if (rc != USB_STOR_TRANSPORT_GOOD) | 
|  | return rc; | 
|  |  | 
|  | page = short_pack(srb->cmnd[3], srb->cmnd[2]); | 
|  | page <<= 16; | 
|  | page |= short_pack(srb->cmnd[5], srb->cmnd[4]); | 
|  | pages = short_pack(srb->cmnd[8], srb->cmnd[7]); | 
|  |  | 
|  | US_DEBUGP("alauda_transport: WRITE_10: page %d pagect %d\n", | 
|  | page, pages); | 
|  |  | 
|  | return alauda_write_data(us, page, pages); | 
|  | } | 
|  |  | 
|  | if (srb->cmnd[0] == REQUEST_SENSE) { | 
|  | US_DEBUGP("alauda_transport: REQUEST_SENSE.\n"); | 
|  |  | 
|  | memset(ptr, 0, 18); | 
|  | ptr[0] = 0xF0; | 
|  | ptr[2] = info->sense_key; | 
|  | ptr[7] = 11; | 
|  | ptr[12] = info->sense_asc; | 
|  | ptr[13] = info->sense_ascq; | 
|  | usb_stor_set_xfer_buf(ptr, 18, srb); | 
|  |  | 
|  | return USB_STOR_TRANSPORT_GOOD; | 
|  | } | 
|  |  | 
|  | if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { | 
|  | /* sure.  whatever.  not like we can stop the user from popping | 
|  | the media out of the device (no locking doors, etc) */ | 
|  | return USB_STOR_TRANSPORT_GOOD; | 
|  | } | 
|  |  | 
|  | US_DEBUGP("alauda_transport: Gah! Unknown command: %d (0x%x)\n", | 
|  | srb->cmnd[0], srb->cmnd[0]); | 
|  | info->sense_key = 0x05; | 
|  | info->sense_asc = 0x20; | 
|  | info->sense_ascq = 0x00; | 
|  | return USB_STOR_TRANSPORT_FAILED; | 
|  | } | 
|  |  | 
|  | static int alauda_probe(struct usb_interface *intf, | 
|  | const struct usb_device_id *id) | 
|  | { | 
|  | struct us_data *us; | 
|  | int result; | 
|  |  | 
|  | result = usb_stor_probe1(&us, intf, id, | 
|  | (id - alauda_usb_ids) + alauda_unusual_dev_list); | 
|  | if (result) | 
|  | return result; | 
|  |  | 
|  | us->transport_name  = "Alauda Control/Bulk"; | 
|  | us->transport = alauda_transport; | 
|  | us->transport_reset = usb_stor_Bulk_reset; | 
|  | us->max_lun = 1; | 
|  |  | 
|  | result = usb_stor_probe2(us); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static struct usb_driver alauda_driver = { | 
|  | .name =		"ums-alauda", | 
|  | .probe =	alauda_probe, | 
|  | .disconnect =	usb_stor_disconnect, | 
|  | .suspend =	usb_stor_suspend, | 
|  | .resume =	usb_stor_resume, | 
|  | .reset_resume =	usb_stor_reset_resume, | 
|  | .pre_reset =	usb_stor_pre_reset, | 
|  | .post_reset =	usb_stor_post_reset, | 
|  | .id_table =	alauda_usb_ids, | 
|  | .soft_unbind =	1, | 
|  | }; | 
|  |  | 
|  | static int __init alauda_init(void) | 
|  | { | 
|  | return usb_register(&alauda_driver); | 
|  | } | 
|  |  | 
|  | static void __exit alauda_exit(void) | 
|  | { | 
|  | usb_deregister(&alauda_driver); | 
|  | } | 
|  |  | 
|  | module_init(alauda_init); | 
|  | module_exit(alauda_exit); |