|  | /* | 
|  | *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org> | 
|  | *  Copyright (C) 2003		Red Hat <alan@redhat.com> | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/major.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/genhd.h> | 
|  | #include <linux/blkpg.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/hdreg.h> | 
|  | #include <linux/ide.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/nmi.h> | 
|  |  | 
|  | #include <asm/byteorder.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | /* | 
|  | *	Conventional PIO operations for ATA devices | 
|  | */ | 
|  |  | 
|  | static u8 ide_inb (unsigned long port) | 
|  | { | 
|  | return (u8) inb(port); | 
|  | } | 
|  |  | 
|  | static u16 ide_inw (unsigned long port) | 
|  | { | 
|  | return (u16) inw(port); | 
|  | } | 
|  |  | 
|  | static void ide_insw (unsigned long port, void *addr, u32 count) | 
|  | { | 
|  | insw(port, addr, count); | 
|  | } | 
|  |  | 
|  | static void ide_insl (unsigned long port, void *addr, u32 count) | 
|  | { | 
|  | insl(port, addr, count); | 
|  | } | 
|  |  | 
|  | static void ide_outb (u8 val, unsigned long port) | 
|  | { | 
|  | outb(val, port); | 
|  | } | 
|  |  | 
|  | static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port) | 
|  | { | 
|  | outb(addr, port); | 
|  | } | 
|  |  | 
|  | static void ide_outw (u16 val, unsigned long port) | 
|  | { | 
|  | outw(val, port); | 
|  | } | 
|  |  | 
|  | static void ide_outsw (unsigned long port, void *addr, u32 count) | 
|  | { | 
|  | outsw(port, addr, count); | 
|  | } | 
|  |  | 
|  | static void ide_outsl (unsigned long port, void *addr, u32 count) | 
|  | { | 
|  | outsl(port, addr, count); | 
|  | } | 
|  |  | 
|  | void default_hwif_iops (ide_hwif_t *hwif) | 
|  | { | 
|  | hwif->OUTB	= ide_outb; | 
|  | hwif->OUTBSYNC	= ide_outbsync; | 
|  | hwif->OUTW	= ide_outw; | 
|  | hwif->OUTSW	= ide_outsw; | 
|  | hwif->OUTSL	= ide_outsl; | 
|  | hwif->INB	= ide_inb; | 
|  | hwif->INW	= ide_inw; | 
|  | hwif->INSW	= ide_insw; | 
|  | hwif->INSL	= ide_insl; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	MMIO operations, typically used for SATA controllers | 
|  | */ | 
|  |  | 
|  | static u8 ide_mm_inb (unsigned long port) | 
|  | { | 
|  | return (u8) readb((void __iomem *) port); | 
|  | } | 
|  |  | 
|  | static u16 ide_mm_inw (unsigned long port) | 
|  | { | 
|  | return (u16) readw((void __iomem *) port); | 
|  | } | 
|  |  | 
|  | static void ide_mm_insw (unsigned long port, void *addr, u32 count) | 
|  | { | 
|  | __ide_mm_insw((void __iomem *) port, addr, count); | 
|  | } | 
|  |  | 
|  | static void ide_mm_insl (unsigned long port, void *addr, u32 count) | 
|  | { | 
|  | __ide_mm_insl((void __iomem *) port, addr, count); | 
|  | } | 
|  |  | 
|  | static void ide_mm_outb (u8 value, unsigned long port) | 
|  | { | 
|  | writeb(value, (void __iomem *) port); | 
|  | } | 
|  |  | 
|  | static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port) | 
|  | { | 
|  | writeb(value, (void __iomem *) port); | 
|  | } | 
|  |  | 
|  | static void ide_mm_outw (u16 value, unsigned long port) | 
|  | { | 
|  | writew(value, (void __iomem *) port); | 
|  | } | 
|  |  | 
|  | static void ide_mm_outsw (unsigned long port, void *addr, u32 count) | 
|  | { | 
|  | __ide_mm_outsw((void __iomem *) port, addr, count); | 
|  | } | 
|  |  | 
|  | static void ide_mm_outsl (unsigned long port, void *addr, u32 count) | 
|  | { | 
|  | __ide_mm_outsl((void __iomem *) port, addr, count); | 
|  | } | 
|  |  | 
|  | void default_hwif_mmiops (ide_hwif_t *hwif) | 
|  | { | 
|  | hwif->OUTB	= ide_mm_outb; | 
|  | /* Most systems will need to override OUTBSYNC, alas however | 
|  | this one is controller specific! */ | 
|  | hwif->OUTBSYNC	= ide_mm_outbsync; | 
|  | hwif->OUTW	= ide_mm_outw; | 
|  | hwif->OUTSW	= ide_mm_outsw; | 
|  | hwif->OUTSL	= ide_mm_outsl; | 
|  | hwif->INB	= ide_mm_inb; | 
|  | hwif->INW	= ide_mm_inw; | 
|  | hwif->INSW	= ide_mm_insw; | 
|  | hwif->INSL	= ide_mm_insl; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(default_hwif_mmiops); | 
|  |  | 
|  | void SELECT_DRIVE (ide_drive_t *drive) | 
|  | { | 
|  | if (HWIF(drive)->selectproc) | 
|  | HWIF(drive)->selectproc(drive); | 
|  | HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG); | 
|  | } | 
|  |  | 
|  | void SELECT_MASK (ide_drive_t *drive, int mask) | 
|  | { | 
|  | if (HWIF(drive)->maskproc) | 
|  | HWIF(drive)->maskproc(drive, mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some localbus EIDE interfaces require a special access sequence | 
|  | * when using 32-bit I/O instructions to transfer data.  We call this | 
|  | * the "vlb_sync" sequence, which consists of three successive reads | 
|  | * of the sector count register location, with interrupts disabled | 
|  | * to ensure that the reads all happen together. | 
|  | */ | 
|  | static void ata_vlb_sync(ide_drive_t *drive, unsigned long port) | 
|  | { | 
|  | (void) HWIF(drive)->INB(port); | 
|  | (void) HWIF(drive)->INB(port); | 
|  | (void) HWIF(drive)->INB(port); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is used for most PIO data transfers *from* the IDE interface | 
|  | */ | 
|  | static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount) | 
|  | { | 
|  | ide_hwif_t *hwif	= HWIF(drive); | 
|  | u8 io_32bit		= drive->io_32bit; | 
|  |  | 
|  | if (io_32bit) { | 
|  | if (io_32bit & 2) { | 
|  | unsigned long flags; | 
|  | local_irq_save(flags); | 
|  | ata_vlb_sync(drive, IDE_NSECTOR_REG); | 
|  | hwif->INSL(IDE_DATA_REG, buffer, wcount); | 
|  | local_irq_restore(flags); | 
|  | } else | 
|  | hwif->INSL(IDE_DATA_REG, buffer, wcount); | 
|  | } else { | 
|  | hwif->INSW(IDE_DATA_REG, buffer, wcount<<1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is used for most PIO data transfers *to* the IDE interface | 
|  | */ | 
|  | static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount) | 
|  | { | 
|  | ide_hwif_t *hwif	= HWIF(drive); | 
|  | u8 io_32bit		= drive->io_32bit; | 
|  |  | 
|  | if (io_32bit) { | 
|  | if (io_32bit & 2) { | 
|  | unsigned long flags; | 
|  | local_irq_save(flags); | 
|  | ata_vlb_sync(drive, IDE_NSECTOR_REG); | 
|  | hwif->OUTSL(IDE_DATA_REG, buffer, wcount); | 
|  | local_irq_restore(flags); | 
|  | } else | 
|  | hwif->OUTSL(IDE_DATA_REG, buffer, wcount); | 
|  | } else { | 
|  | hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following routines are mainly used by the ATAPI drivers. | 
|  | * | 
|  | * These routines will round up any request for an odd number of bytes, | 
|  | * so if an odd bytecount is specified, be sure that there's at least one | 
|  | * extra byte allocated for the buffer. | 
|  | */ | 
|  |  | 
|  | static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount) | 
|  | { | 
|  | ide_hwif_t *hwif = HWIF(drive); | 
|  |  | 
|  | ++bytecount; | 
|  | #if defined(CONFIG_ATARI) || defined(CONFIG_Q40) | 
|  | if (MACH_IS_ATARI || MACH_IS_Q40) { | 
|  | /* Atari has a byte-swapped IDE interface */ | 
|  | insw_swapw(IDE_DATA_REG, buffer, bytecount / 2); | 
|  | return; | 
|  | } | 
|  | #endif /* CONFIG_ATARI || CONFIG_Q40 */ | 
|  | hwif->ata_input_data(drive, buffer, bytecount / 4); | 
|  | if ((bytecount & 0x03) >= 2) | 
|  | hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1); | 
|  | } | 
|  |  | 
|  | static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount) | 
|  | { | 
|  | ide_hwif_t *hwif = HWIF(drive); | 
|  |  | 
|  | ++bytecount; | 
|  | #if defined(CONFIG_ATARI) || defined(CONFIG_Q40) | 
|  | if (MACH_IS_ATARI || MACH_IS_Q40) { | 
|  | /* Atari has a byte-swapped IDE interface */ | 
|  | outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2); | 
|  | return; | 
|  | } | 
|  | #endif /* CONFIG_ATARI || CONFIG_Q40 */ | 
|  | hwif->ata_output_data(drive, buffer, bytecount / 4); | 
|  | if ((bytecount & 0x03) >= 2) | 
|  | hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1); | 
|  | } | 
|  |  | 
|  | void default_hwif_transport(ide_hwif_t *hwif) | 
|  | { | 
|  | hwif->ata_input_data		= ata_input_data; | 
|  | hwif->ata_output_data		= ata_output_data; | 
|  | hwif->atapi_input_bytes		= atapi_input_bytes; | 
|  | hwif->atapi_output_bytes	= atapi_output_bytes; | 
|  | } | 
|  |  | 
|  | void ide_fix_driveid (struct hd_driveid *id) | 
|  | { | 
|  | #ifndef __LITTLE_ENDIAN | 
|  | # ifdef __BIG_ENDIAN | 
|  | int i; | 
|  | u16 *stringcast; | 
|  |  | 
|  | id->config         = __le16_to_cpu(id->config); | 
|  | id->cyls           = __le16_to_cpu(id->cyls); | 
|  | id->reserved2      = __le16_to_cpu(id->reserved2); | 
|  | id->heads          = __le16_to_cpu(id->heads); | 
|  | id->track_bytes    = __le16_to_cpu(id->track_bytes); | 
|  | id->sector_bytes   = __le16_to_cpu(id->sector_bytes); | 
|  | id->sectors        = __le16_to_cpu(id->sectors); | 
|  | id->vendor0        = __le16_to_cpu(id->vendor0); | 
|  | id->vendor1        = __le16_to_cpu(id->vendor1); | 
|  | id->vendor2        = __le16_to_cpu(id->vendor2); | 
|  | stringcast = (u16 *)&id->serial_no[0]; | 
|  | for (i = 0; i < (20/2); i++) | 
|  | stringcast[i] = __le16_to_cpu(stringcast[i]); | 
|  | id->buf_type       = __le16_to_cpu(id->buf_type); | 
|  | id->buf_size       = __le16_to_cpu(id->buf_size); | 
|  | id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes); | 
|  | stringcast = (u16 *)&id->fw_rev[0]; | 
|  | for (i = 0; i < (8/2); i++) | 
|  | stringcast[i] = __le16_to_cpu(stringcast[i]); | 
|  | stringcast = (u16 *)&id->model[0]; | 
|  | for (i = 0; i < (40/2); i++) | 
|  | stringcast[i] = __le16_to_cpu(stringcast[i]); | 
|  | id->dword_io       = __le16_to_cpu(id->dword_io); | 
|  | id->reserved50     = __le16_to_cpu(id->reserved50); | 
|  | id->field_valid    = __le16_to_cpu(id->field_valid); | 
|  | id->cur_cyls       = __le16_to_cpu(id->cur_cyls); | 
|  | id->cur_heads      = __le16_to_cpu(id->cur_heads); | 
|  | id->cur_sectors    = __le16_to_cpu(id->cur_sectors); | 
|  | id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0); | 
|  | id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1); | 
|  | id->lba_capacity   = __le32_to_cpu(id->lba_capacity); | 
|  | id->dma_1word      = __le16_to_cpu(id->dma_1word); | 
|  | id->dma_mword      = __le16_to_cpu(id->dma_mword); | 
|  | id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes); | 
|  | id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min); | 
|  | id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time); | 
|  | id->eide_pio       = __le16_to_cpu(id->eide_pio); | 
|  | id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy); | 
|  | for (i = 0; i < 2; ++i) | 
|  | id->words69_70[i] = __le16_to_cpu(id->words69_70[i]); | 
|  | for (i = 0; i < 4; ++i) | 
|  | id->words71_74[i] = __le16_to_cpu(id->words71_74[i]); | 
|  | id->queue_depth    = __le16_to_cpu(id->queue_depth); | 
|  | for (i = 0; i < 4; ++i) | 
|  | id->words76_79[i] = __le16_to_cpu(id->words76_79[i]); | 
|  | id->major_rev_num  = __le16_to_cpu(id->major_rev_num); | 
|  | id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num); | 
|  | id->command_set_1  = __le16_to_cpu(id->command_set_1); | 
|  | id->command_set_2  = __le16_to_cpu(id->command_set_2); | 
|  | id->cfsse          = __le16_to_cpu(id->cfsse); | 
|  | id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1); | 
|  | id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2); | 
|  | id->csf_default    = __le16_to_cpu(id->csf_default); | 
|  | id->dma_ultra      = __le16_to_cpu(id->dma_ultra); | 
|  | id->trseuc         = __le16_to_cpu(id->trseuc); | 
|  | id->trsEuc         = __le16_to_cpu(id->trsEuc); | 
|  | id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues); | 
|  | id->mprc           = __le16_to_cpu(id->mprc); | 
|  | id->hw_config      = __le16_to_cpu(id->hw_config); | 
|  | id->acoustic       = __le16_to_cpu(id->acoustic); | 
|  | id->msrqs          = __le16_to_cpu(id->msrqs); | 
|  | id->sxfert         = __le16_to_cpu(id->sxfert); | 
|  | id->sal            = __le16_to_cpu(id->sal); | 
|  | id->spg            = __le32_to_cpu(id->spg); | 
|  | id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2); | 
|  | for (i = 0; i < 22; i++) | 
|  | id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]); | 
|  | id->last_lun       = __le16_to_cpu(id->last_lun); | 
|  | id->word127        = __le16_to_cpu(id->word127); | 
|  | id->dlf            = __le16_to_cpu(id->dlf); | 
|  | id->csfo           = __le16_to_cpu(id->csfo); | 
|  | for (i = 0; i < 26; i++) | 
|  | id->words130_155[i] = __le16_to_cpu(id->words130_155[i]); | 
|  | id->word156        = __le16_to_cpu(id->word156); | 
|  | for (i = 0; i < 3; i++) | 
|  | id->words157_159[i] = __le16_to_cpu(id->words157_159[i]); | 
|  | id->cfa_power      = __le16_to_cpu(id->cfa_power); | 
|  | for (i = 0; i < 14; i++) | 
|  | id->words161_175[i] = __le16_to_cpu(id->words161_175[i]); | 
|  | for (i = 0; i < 31; i++) | 
|  | id->words176_205[i] = __le16_to_cpu(id->words176_205[i]); | 
|  | for (i = 0; i < 48; i++) | 
|  | id->words206_254[i] = __le16_to_cpu(id->words206_254[i]); | 
|  | id->integrity_word  = __le16_to_cpu(id->integrity_word); | 
|  | # else | 
|  | #  error "Please fix <asm/byteorder.h>" | 
|  | # endif | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ide_fixstring() cleans up and (optionally) byte-swaps a text string, | 
|  | * removing leading/trailing blanks and compressing internal blanks. | 
|  | * It is primarily used to tidy up the model name/number fields as | 
|  | * returned by the WIN_[P]IDENTIFY commands. | 
|  | */ | 
|  |  | 
|  | void ide_fixstring (u8 *s, const int bytecount, const int byteswap) | 
|  | { | 
|  | u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */ | 
|  |  | 
|  | if (byteswap) { | 
|  | /* convert from big-endian to host byte order */ | 
|  | for (p = end ; p != s;) { | 
|  | unsigned short *pp = (unsigned short *) (p -= 2); | 
|  | *pp = ntohs(*pp); | 
|  | } | 
|  | } | 
|  | /* strip leading blanks */ | 
|  | while (s != end && *s == ' ') | 
|  | ++s; | 
|  | /* compress internal blanks and strip trailing blanks */ | 
|  | while (s != end && *s) { | 
|  | if (*s++ != ' ' || (s != end && *s && *s != ' ')) | 
|  | *p++ = *(s-1); | 
|  | } | 
|  | /* wipe out trailing garbage */ | 
|  | while (p != end) | 
|  | *p++ = '\0'; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(ide_fixstring); | 
|  |  | 
|  | /* | 
|  | * Needed for PCI irq sharing | 
|  | */ | 
|  | int drive_is_ready (ide_drive_t *drive) | 
|  | { | 
|  | ide_hwif_t *hwif	= HWIF(drive); | 
|  | u8 stat			= 0; | 
|  |  | 
|  | if (drive->waiting_for_dma) | 
|  | return hwif->ide_dma_test_irq(drive); | 
|  |  | 
|  | #if 0 | 
|  | /* need to guarantee 400ns since last command was issued */ | 
|  | udelay(1); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We do a passive status test under shared PCI interrupts on | 
|  | * cards that truly share the ATA side interrupt, but may also share | 
|  | * an interrupt with another pci card/device.  We make no assumptions | 
|  | * about possible isa-pnp and pci-pnp issues yet. | 
|  | */ | 
|  | if (IDE_CONTROL_REG) | 
|  | stat = ide_read_altstatus(drive); | 
|  | else | 
|  | /* Note: this may clear a pending IRQ!! */ | 
|  | stat = ide_read_status(drive); | 
|  |  | 
|  | if (stat & BUSY_STAT) | 
|  | /* drive busy:  definitely not interrupting */ | 
|  | return 0; | 
|  |  | 
|  | /* drive ready: *might* be interrupting */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(drive_is_ready); | 
|  |  | 
|  | /* | 
|  | * This routine busy-waits for the drive status to be not "busy". | 
|  | * It then checks the status for all of the "good" bits and none | 
|  | * of the "bad" bits, and if all is okay it returns 0.  All other | 
|  | * cases return error -- caller may then invoke ide_error(). | 
|  | * | 
|  | * This routine should get fixed to not hog the cpu during extra long waits.. | 
|  | * That could be done by busy-waiting for the first jiffy or two, and then | 
|  | * setting a timer to wake up at half second intervals thereafter, | 
|  | * until timeout is achieved, before timing out. | 
|  | */ | 
|  | static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat) | 
|  | { | 
|  | unsigned long flags; | 
|  | int i; | 
|  | u8 stat; | 
|  |  | 
|  | udelay(1);	/* spec allows drive 400ns to assert "BUSY" */ | 
|  | stat = ide_read_status(drive); | 
|  |  | 
|  | if (stat & BUSY_STAT) { | 
|  | local_irq_set(flags); | 
|  | timeout += jiffies; | 
|  | while ((stat = ide_read_status(drive)) & BUSY_STAT) { | 
|  | if (time_after(jiffies, timeout)) { | 
|  | /* | 
|  | * One last read after the timeout in case | 
|  | * heavy interrupt load made us not make any | 
|  | * progress during the timeout.. | 
|  | */ | 
|  | stat = ide_read_status(drive); | 
|  | if (!(stat & BUSY_STAT)) | 
|  | break; | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | *rstat = stat; | 
|  | return -EBUSY; | 
|  | } | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | /* | 
|  | * Allow status to settle, then read it again. | 
|  | * A few rare drives vastly violate the 400ns spec here, | 
|  | * so we'll wait up to 10usec for a "good" status | 
|  | * rather than expensively fail things immediately. | 
|  | * This fix courtesy of Matthew Faupel & Niccolo Rigacci. | 
|  | */ | 
|  | for (i = 0; i < 10; i++) { | 
|  | udelay(1); | 
|  | stat = ide_read_status(drive); | 
|  |  | 
|  | if (OK_STAT(stat, good, bad)) { | 
|  | *rstat = stat; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | *rstat = stat; | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In case of error returns error value after doing "*startstop = ide_error()". | 
|  | * The caller should return the updated value of "startstop" in this case, | 
|  | * "startstop" is unchanged when the function returns 0. | 
|  | */ | 
|  | int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout) | 
|  | { | 
|  | int err; | 
|  | u8 stat; | 
|  |  | 
|  | /* bail early if we've exceeded max_failures */ | 
|  | if (drive->max_failures && (drive->failures > drive->max_failures)) { | 
|  | *startstop = ide_stopped; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | err = __ide_wait_stat(drive, good, bad, timeout, &stat); | 
|  |  | 
|  | if (err) { | 
|  | char *s = (err == -EBUSY) ? "status timeout" : "status error"; | 
|  | *startstop = ide_error(drive, s, stat); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(ide_wait_stat); | 
|  |  | 
|  | /** | 
|  | *	ide_in_drive_list	-	look for drive in black/white list | 
|  | *	@id: drive identifier | 
|  | *	@drive_table: list to inspect | 
|  | * | 
|  | *	Look for a drive in the blacklist and the whitelist tables | 
|  | *	Returns 1 if the drive is found in the table. | 
|  | */ | 
|  |  | 
|  | int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table) | 
|  | { | 
|  | for ( ; drive_table->id_model; drive_table++) | 
|  | if ((!strcmp(drive_table->id_model, id->model)) && | 
|  | (!drive_table->id_firmware || | 
|  | strstr(id->fw_rev, drive_table->id_firmware))) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(ide_in_drive_list); | 
|  |  | 
|  | /* | 
|  | * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid. | 
|  | * We list them here and depend on the device side cable detection for them. | 
|  | * | 
|  | * Some optical devices with the buggy firmwares have the same problem. | 
|  | */ | 
|  | static const struct drive_list_entry ivb_list[] = { | 
|  | { "QUANTUM FIREBALLlct10 05"	, "A03.0900"	}, | 
|  | { "TSSTcorp CDDVDW SH-S202J"	, "SB00"	}, | 
|  | { "TSSTcorp CDDVDW SH-S202J"	, "SB01"	}, | 
|  | { "TSSTcorp CDDVDW SH-S202N"	, "SB00"	}, | 
|  | { "TSSTcorp CDDVDW SH-S202N"	, "SB01"	}, | 
|  | { NULL				, NULL		} | 
|  | }; | 
|  |  | 
|  | /* | 
|  | *  All hosts that use the 80c ribbon must use! | 
|  | *  The name is derived from upper byte of word 93 and the 80c ribbon. | 
|  | */ | 
|  | u8 eighty_ninty_three (ide_drive_t *drive) | 
|  | { | 
|  | ide_hwif_t *hwif = drive->hwif; | 
|  | struct hd_driveid *id = drive->id; | 
|  | int ivb = ide_in_drive_list(id, ivb_list); | 
|  |  | 
|  | if (hwif->cbl == ATA_CBL_PATA40_SHORT) | 
|  | return 1; | 
|  |  | 
|  | if (ivb) | 
|  | printk(KERN_DEBUG "%s: skipping word 93 validity check\n", | 
|  | drive->name); | 
|  |  | 
|  | if (ide_dev_is_sata(id) && !ivb) | 
|  | return 1; | 
|  |  | 
|  | if (hwif->cbl != ATA_CBL_PATA80 && !ivb) | 
|  | goto no_80w; | 
|  |  | 
|  | /* | 
|  | * FIXME: | 
|  | * - force bit13 (80c cable present) check also for !ivb devices | 
|  | *   (unless the slave device is pre-ATA3) | 
|  | */ | 
|  | if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000))) | 
|  | return 1; | 
|  |  | 
|  | no_80w: | 
|  | if (drive->udma33_warned == 1) | 
|  | return 0; | 
|  |  | 
|  | printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, " | 
|  | "limiting max speed to UDMA33\n", | 
|  | drive->name, | 
|  | hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host"); | 
|  |  | 
|  | drive->udma33_warned = 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ide_driveid_update(ide_drive_t *drive) | 
|  | { | 
|  | ide_hwif_t *hwif = drive->hwif; | 
|  | struct hd_driveid *id; | 
|  | unsigned long timeout, flags; | 
|  | u8 stat; | 
|  |  | 
|  | /* | 
|  | * Re-read drive->id for possible DMA mode | 
|  | * change (copied from ide-probe.c) | 
|  | */ | 
|  |  | 
|  | SELECT_MASK(drive, 1); | 
|  | ide_set_irq(drive, 1); | 
|  | msleep(50); | 
|  | hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG); | 
|  | timeout = jiffies + WAIT_WORSTCASE; | 
|  | do { | 
|  | if (time_after(jiffies, timeout)) { | 
|  | SELECT_MASK(drive, 0); | 
|  | return 0;	/* drive timed-out */ | 
|  | } | 
|  |  | 
|  | msleep(50);	/* give drive a breather */ | 
|  | stat = ide_read_altstatus(drive); | 
|  | } while (stat & BUSY_STAT); | 
|  |  | 
|  | msleep(50);	/* wait for IRQ and DRQ_STAT */ | 
|  | stat = ide_read_status(drive); | 
|  |  | 
|  | if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) { | 
|  | SELECT_MASK(drive, 0); | 
|  | printk("%s: CHECK for good STATUS\n", drive->name); | 
|  | return 0; | 
|  | } | 
|  | local_irq_save(flags); | 
|  | SELECT_MASK(drive, 0); | 
|  | id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC); | 
|  | if (!id) { | 
|  | local_irq_restore(flags); | 
|  | return 0; | 
|  | } | 
|  | ata_input_data(drive, id, SECTOR_WORDS); | 
|  | (void)ide_read_status(drive);	/* clear drive IRQ */ | 
|  | local_irq_enable(); | 
|  | local_irq_restore(flags); | 
|  | ide_fix_driveid(id); | 
|  | if (id) { | 
|  | drive->id->dma_ultra = id->dma_ultra; | 
|  | drive->id->dma_mword = id->dma_mword; | 
|  | drive->id->dma_1word = id->dma_1word; | 
|  | /* anything more ? */ | 
|  | kfree(id); | 
|  |  | 
|  | if (drive->using_dma && ide_id_dma_bug(drive)) | 
|  | ide_dma_off(drive); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ide_config_drive_speed(ide_drive_t *drive, u8 speed) | 
|  | { | 
|  | ide_hwif_t *hwif = drive->hwif; | 
|  | int error = 0; | 
|  | u8 stat; | 
|  |  | 
|  | //	while (HWGROUP(drive)->busy) | 
|  | //		msleep(50); | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_IDEDMA | 
|  | if (hwif->dma_host_set)	/* check if host supports DMA */ | 
|  | hwif->dma_host_set(drive, 0); | 
|  | #endif | 
|  |  | 
|  | /* Skip setting PIO flow-control modes on pre-EIDE drives */ | 
|  | if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08)) | 
|  | goto skip; | 
|  |  | 
|  | /* | 
|  | * Don't use ide_wait_cmd here - it will | 
|  | * attempt to set_geometry and recalibrate, | 
|  | * but for some reason these don't work at | 
|  | * this point (lost interrupt). | 
|  | */ | 
|  | /* | 
|  | * Select the drive, and issue the SETFEATURES command | 
|  | */ | 
|  | disable_irq_nosync(hwif->irq); | 
|  |  | 
|  | /* | 
|  | *	FIXME: we race against the running IRQ here if | 
|  | *	this is called from non IRQ context. If we use | 
|  | *	disable_irq() we hang on the error path. Work | 
|  | *	is needed. | 
|  | */ | 
|  |  | 
|  | udelay(1); | 
|  | SELECT_DRIVE(drive); | 
|  | SELECT_MASK(drive, 0); | 
|  | udelay(1); | 
|  | ide_set_irq(drive, 0); | 
|  | hwif->OUTB(speed, IDE_NSECTOR_REG); | 
|  | hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG); | 
|  | hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG); | 
|  | if (drive->quirk_list == 2) | 
|  | ide_set_irq(drive, 1); | 
|  |  | 
|  | error = __ide_wait_stat(drive, drive->ready_stat, | 
|  | BUSY_STAT|DRQ_STAT|ERR_STAT, | 
|  | WAIT_CMD, &stat); | 
|  |  | 
|  | SELECT_MASK(drive, 0); | 
|  |  | 
|  | enable_irq(hwif->irq); | 
|  |  | 
|  | if (error) { | 
|  | (void) ide_dump_status(drive, "set_drive_speed_status", stat); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | drive->id->dma_ultra &= ~0xFF00; | 
|  | drive->id->dma_mword &= ~0x0F00; | 
|  | drive->id->dma_1word &= ~0x0F00; | 
|  |  | 
|  | skip: | 
|  | #ifdef CONFIG_BLK_DEV_IDEDMA | 
|  | if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) && | 
|  | drive->using_dma) | 
|  | hwif->dma_host_set(drive, 1); | 
|  | else if (hwif->dma_host_set)	/* check if host supports DMA */ | 
|  | ide_dma_off_quietly(drive); | 
|  | #endif | 
|  |  | 
|  | switch(speed) { | 
|  | case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break; | 
|  | case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break; | 
|  | case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break; | 
|  | case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break; | 
|  | case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break; | 
|  | case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break; | 
|  | case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break; | 
|  | case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break; | 
|  | case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break; | 
|  | case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break; | 
|  | case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break; | 
|  | case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break; | 
|  | case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break; | 
|  | case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break; | 
|  | default: break; | 
|  | } | 
|  | if (!drive->init_speed) | 
|  | drive->init_speed = speed; | 
|  | drive->current_speed = speed; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This should get invoked any time we exit the driver to | 
|  | * wait for an interrupt response from a drive.  handler() points | 
|  | * at the appropriate code to handle the next interrupt, and a | 
|  | * timer is started to prevent us from waiting forever in case | 
|  | * something goes wrong (see the ide_timer_expiry() handler later on). | 
|  | * | 
|  | * See also ide_execute_command | 
|  | */ | 
|  | static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, | 
|  | unsigned int timeout, ide_expiry_t *expiry) | 
|  | { | 
|  | ide_hwgroup_t *hwgroup = HWGROUP(drive); | 
|  |  | 
|  | BUG_ON(hwgroup->handler); | 
|  | hwgroup->handler	= handler; | 
|  | hwgroup->expiry		= expiry; | 
|  | hwgroup->timer.expires	= jiffies + timeout; | 
|  | hwgroup->req_gen_timer	= hwgroup->req_gen; | 
|  | add_timer(&hwgroup->timer); | 
|  | } | 
|  |  | 
|  | void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, | 
|  | unsigned int timeout, ide_expiry_t *expiry) | 
|  | { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&ide_lock, flags); | 
|  | __ide_set_handler(drive, handler, timeout, expiry); | 
|  | spin_unlock_irqrestore(&ide_lock, flags); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(ide_set_handler); | 
|  |  | 
|  | /** | 
|  | *	ide_execute_command	-	execute an IDE command | 
|  | *	@drive: IDE drive to issue the command against | 
|  | *	@command: command byte to write | 
|  | *	@handler: handler for next phase | 
|  | *	@timeout: timeout for command | 
|  | *	@expiry:  handler to run on timeout | 
|  | * | 
|  | *	Helper function to issue an IDE command. This handles the | 
|  | *	atomicity requirements, command timing and ensures that the | 
|  | *	handler and IRQ setup do not race. All IDE command kick off | 
|  | *	should go via this function or do equivalent locking. | 
|  | */ | 
|  |  | 
|  | void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler, | 
|  | unsigned timeout, ide_expiry_t *expiry) | 
|  | { | 
|  | unsigned long flags; | 
|  | ide_hwif_t *hwif = HWIF(drive); | 
|  |  | 
|  | spin_lock_irqsave(&ide_lock, flags); | 
|  | __ide_set_handler(drive, handler, timeout, expiry); | 
|  | hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG); | 
|  | /* | 
|  | * Drive takes 400nS to respond, we must avoid the IRQ being | 
|  | * serviced before that. | 
|  | * | 
|  | * FIXME: we could skip this delay with care on non shared devices | 
|  | */ | 
|  | ndelay(400); | 
|  | spin_unlock_irqrestore(&ide_lock, flags); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(ide_execute_command); | 
|  |  | 
|  |  | 
|  | /* needed below */ | 
|  | static ide_startstop_t do_reset1 (ide_drive_t *, int); | 
|  |  | 
|  | /* | 
|  | * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms | 
|  | * during an atapi drive reset operation. If the drive has not yet responded, | 
|  | * and we have not yet hit our maximum waiting time, then the timer is restarted | 
|  | * for another 50ms. | 
|  | */ | 
|  | static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive) | 
|  | { | 
|  | ide_hwgroup_t *hwgroup	= HWGROUP(drive); | 
|  | u8 stat; | 
|  |  | 
|  | SELECT_DRIVE(drive); | 
|  | udelay (10); | 
|  | stat = ide_read_status(drive); | 
|  |  | 
|  | if (OK_STAT(stat, 0, BUSY_STAT)) | 
|  | printk("%s: ATAPI reset complete\n", drive->name); | 
|  | else { | 
|  | if (time_before(jiffies, hwgroup->poll_timeout)) { | 
|  | ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); | 
|  | /* continue polling */ | 
|  | return ide_started; | 
|  | } | 
|  | /* end of polling */ | 
|  | hwgroup->polling = 0; | 
|  | printk("%s: ATAPI reset timed-out, status=0x%02x\n", | 
|  | drive->name, stat); | 
|  | /* do it the old fashioned way */ | 
|  | return do_reset1(drive, 1); | 
|  | } | 
|  | /* done polling */ | 
|  | hwgroup->polling = 0; | 
|  | hwgroup->resetting = 0; | 
|  | return ide_stopped; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * reset_pollfunc() gets invoked to poll the interface for completion every 50ms | 
|  | * during an ide reset operation. If the drives have not yet responded, | 
|  | * and we have not yet hit our maximum waiting time, then the timer is restarted | 
|  | * for another 50ms. | 
|  | */ | 
|  | static ide_startstop_t reset_pollfunc (ide_drive_t *drive) | 
|  | { | 
|  | ide_hwgroup_t *hwgroup	= HWGROUP(drive); | 
|  | ide_hwif_t *hwif	= HWIF(drive); | 
|  | u8 tmp; | 
|  |  | 
|  | if (hwif->reset_poll != NULL) { | 
|  | if (hwif->reset_poll(drive)) { | 
|  | printk(KERN_ERR "%s: host reset_poll failure for %s.\n", | 
|  | hwif->name, drive->name); | 
|  | return ide_stopped; | 
|  | } | 
|  | } | 
|  |  | 
|  | tmp = ide_read_status(drive); | 
|  |  | 
|  | if (!OK_STAT(tmp, 0, BUSY_STAT)) { | 
|  | if (time_before(jiffies, hwgroup->poll_timeout)) { | 
|  | ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); | 
|  | /* continue polling */ | 
|  | return ide_started; | 
|  | } | 
|  | printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp); | 
|  | drive->failures++; | 
|  | } else  { | 
|  | printk("%s: reset: ", hwif->name); | 
|  | tmp = ide_read_error(drive); | 
|  |  | 
|  | if (tmp == 1) { | 
|  | printk("success\n"); | 
|  | drive->failures = 0; | 
|  | } else { | 
|  | drive->failures++; | 
|  | printk("master: "); | 
|  | switch (tmp & 0x7f) { | 
|  | case 1: printk("passed"); | 
|  | break; | 
|  | case 2: printk("formatter device error"); | 
|  | break; | 
|  | case 3: printk("sector buffer error"); | 
|  | break; | 
|  | case 4: printk("ECC circuitry error"); | 
|  | break; | 
|  | case 5: printk("controlling MPU error"); | 
|  | break; | 
|  | default:printk("error (0x%02x?)", tmp); | 
|  | } | 
|  | if (tmp & 0x80) | 
|  | printk("; slave: failed"); | 
|  | printk("\n"); | 
|  | } | 
|  | } | 
|  | hwgroup->polling = 0;	/* done polling */ | 
|  | hwgroup->resetting = 0; /* done reset attempt */ | 
|  | return ide_stopped; | 
|  | } | 
|  |  | 
|  | static void ide_disk_pre_reset(ide_drive_t *drive) | 
|  | { | 
|  | int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1; | 
|  |  | 
|  | drive->special.all = 0; | 
|  | drive->special.b.set_geometry = legacy; | 
|  | drive->special.b.recalibrate  = legacy; | 
|  | drive->mult_count = 0; | 
|  | if (!drive->keep_settings && !drive->using_dma) | 
|  | drive->mult_req = 0; | 
|  | if (drive->mult_req != drive->mult_count) | 
|  | drive->special.b.set_multmode = 1; | 
|  | } | 
|  |  | 
|  | static void pre_reset(ide_drive_t *drive) | 
|  | { | 
|  | if (drive->media == ide_disk) | 
|  | ide_disk_pre_reset(drive); | 
|  | else | 
|  | drive->post_reset = 1; | 
|  |  | 
|  | if (drive->using_dma) { | 
|  | if (drive->crc_count) | 
|  | ide_check_dma_crc(drive); | 
|  | else | 
|  | ide_dma_off(drive); | 
|  | } | 
|  |  | 
|  | if (!drive->keep_settings) { | 
|  | if (!drive->using_dma) { | 
|  | drive->unmask = 0; | 
|  | drive->io_32bit = 0; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (HWIF(drive)->pre_reset != NULL) | 
|  | HWIF(drive)->pre_reset(drive); | 
|  |  | 
|  | if (drive->current_speed != 0xff) | 
|  | drive->desired_speed = drive->current_speed; | 
|  | drive->current_speed = 0xff; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do_reset1() attempts to recover a confused drive by resetting it. | 
|  | * Unfortunately, resetting a disk drive actually resets all devices on | 
|  | * the same interface, so it can really be thought of as resetting the | 
|  | * interface rather than resetting the drive. | 
|  | * | 
|  | * ATAPI devices have their own reset mechanism which allows them to be | 
|  | * individually reset without clobbering other devices on the same interface. | 
|  | * | 
|  | * Unfortunately, the IDE interface does not generate an interrupt to let | 
|  | * us know when the reset operation has finished, so we must poll for this. | 
|  | * Equally poor, though, is the fact that this may a very long time to complete, | 
|  | * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it, | 
|  | * we set a timer to poll at 50ms intervals. | 
|  | */ | 
|  | static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi) | 
|  | { | 
|  | unsigned int unit; | 
|  | unsigned long flags; | 
|  | ide_hwif_t *hwif; | 
|  | ide_hwgroup_t *hwgroup; | 
|  |  | 
|  | spin_lock_irqsave(&ide_lock, flags); | 
|  | hwif = HWIF(drive); | 
|  | hwgroup = HWGROUP(drive); | 
|  |  | 
|  | /* We must not reset with running handlers */ | 
|  | BUG_ON(hwgroup->handler != NULL); | 
|  |  | 
|  | /* For an ATAPI device, first try an ATAPI SRST. */ | 
|  | if (drive->media != ide_disk && !do_not_try_atapi) { | 
|  | hwgroup->resetting = 1; | 
|  | pre_reset(drive); | 
|  | SELECT_DRIVE(drive); | 
|  | udelay (20); | 
|  | hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG); | 
|  | ndelay(400); | 
|  | hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; | 
|  | hwgroup->polling = 1; | 
|  | __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); | 
|  | spin_unlock_irqrestore(&ide_lock, flags); | 
|  | return ide_started; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * First, reset any device state data we were maintaining | 
|  | * for any of the drives on this interface. | 
|  | */ | 
|  | for (unit = 0; unit < MAX_DRIVES; ++unit) | 
|  | pre_reset(&hwif->drives[unit]); | 
|  |  | 
|  | if (!IDE_CONTROL_REG) { | 
|  | spin_unlock_irqrestore(&ide_lock, flags); | 
|  | return ide_stopped; | 
|  | } | 
|  |  | 
|  | hwgroup->resetting = 1; | 
|  | /* | 
|  | * Note that we also set nIEN while resetting the device, | 
|  | * to mask unwanted interrupts from the interface during the reset. | 
|  | * However, due to the design of PC hardware, this will cause an | 
|  | * immediate interrupt due to the edge transition it produces. | 
|  | * This single interrupt gives us a "fast poll" for drives that | 
|  | * recover from reset very quickly, saving us the first 50ms wait time. | 
|  | */ | 
|  | /* set SRST and nIEN */ | 
|  | hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG); | 
|  | /* more than enough time */ | 
|  | udelay(10); | 
|  | if (drive->quirk_list == 2) { | 
|  | /* clear SRST and nIEN */ | 
|  | hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG); | 
|  | } else { | 
|  | /* clear SRST, leave nIEN */ | 
|  | hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG); | 
|  | } | 
|  | /* more than enough time */ | 
|  | udelay(10); | 
|  | hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; | 
|  | hwgroup->polling = 1; | 
|  | __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); | 
|  |  | 
|  | /* | 
|  | * Some weird controller like resetting themselves to a strange | 
|  | * state when the disks are reset this way. At least, the Winbond | 
|  | * 553 documentation says that | 
|  | */ | 
|  | if (hwif->resetproc) | 
|  | hwif->resetproc(drive); | 
|  |  | 
|  | spin_unlock_irqrestore(&ide_lock, flags); | 
|  | return ide_started; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ide_do_reset() is the entry point to the drive/interface reset code. | 
|  | */ | 
|  |  | 
|  | ide_startstop_t ide_do_reset (ide_drive_t *drive) | 
|  | { | 
|  | return do_reset1(drive, 0); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(ide_do_reset); | 
|  |  | 
|  | /* | 
|  | * ide_wait_not_busy() waits for the currently selected device on the hwif | 
|  | * to report a non-busy status, see comments in ide_probe_port(). | 
|  | */ | 
|  | int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout) | 
|  | { | 
|  | u8 stat = 0; | 
|  |  | 
|  | while(timeout--) { | 
|  | /* | 
|  | * Turn this into a schedule() sleep once I'm sure | 
|  | * about locking issues (2.5 work ?). | 
|  | */ | 
|  | mdelay(1); | 
|  | stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); | 
|  | if ((stat & BUSY_STAT) == 0) | 
|  | return 0; | 
|  | /* | 
|  | * Assume a value of 0xff means nothing is connected to | 
|  | * the interface and it doesn't implement the pull-down | 
|  | * resistor on D7. | 
|  | */ | 
|  | if (stat == 0xff) | 
|  | return -ENODEV; | 
|  | touch_softlockup_watchdog(); | 
|  | touch_nmi_watchdog(); | 
|  | } | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(ide_wait_not_busy); | 
|  |  |