| /******************************************************************************* | 
 |  | 
 |   Intel PRO/1000 Linux driver | 
 |   Copyright(c) 1999 - 2006 Intel Corporation. | 
 |  | 
 |   This program is free software; you can redistribute it and/or modify it | 
 |   under the terms and conditions of the GNU General Public License, | 
 |   version 2, as published by the Free Software Foundation. | 
 |  | 
 |   This program is distributed in the hope it will be useful, but WITHOUT | 
 |   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |   more details. | 
 |  | 
 |   You should have received a copy of the GNU General Public License along with | 
 |   this program; if not, write to the Free Software Foundation, Inc., | 
 |   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
 |  | 
 |   The full GNU General Public License is included in this distribution in | 
 |   the file called "COPYING". | 
 |  | 
 |   Contact Information: | 
 |   Linux NICS <linux.nics@intel.com> | 
 |   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
 |   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
 |  | 
 | *******************************************************************************/ | 
 |  | 
 | #include "e1000.h" | 
 | #include <net/ip6_checksum.h> | 
 |  | 
 | char e1000_driver_name[] = "e1000"; | 
 | static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; | 
 | #define DRV_VERSION "7.3.20-k3-NAPI" | 
 | const char e1000_driver_version[] = DRV_VERSION; | 
 | static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; | 
 |  | 
 | /* e1000_pci_tbl - PCI Device ID Table | 
 |  * | 
 |  * Last entry must be all 0s | 
 |  * | 
 |  * Macro expands to... | 
 |  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} | 
 |  */ | 
 | static struct pci_device_id e1000_pci_tbl[] = { | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1000), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1001), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1004), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1008), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1009), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x100C), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x100D), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x100E), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x100F), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1010), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1011), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1012), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1013), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1014), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1015), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1016), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1017), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1018), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1019), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x101A), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x101D), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x101E), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1026), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1027), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1028), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1075), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1076), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1077), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1078), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1079), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x107A), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x107B), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x107C), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x108A), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x1099), | 
 | 	INTEL_E1000_ETHERNET_DEVICE(0x10B5), | 
 | 	/* required last entry */ | 
 | 	{0,} | 
 | }; | 
 |  | 
 | MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); | 
 |  | 
 | int e1000_up(struct e1000_adapter *adapter); | 
 | void e1000_down(struct e1000_adapter *adapter); | 
 | void e1000_reinit_locked(struct e1000_adapter *adapter); | 
 | void e1000_reset(struct e1000_adapter *adapter); | 
 | int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx); | 
 | int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); | 
 | int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); | 
 | void e1000_free_all_tx_resources(struct e1000_adapter *adapter); | 
 | void e1000_free_all_rx_resources(struct e1000_adapter *adapter); | 
 | static int e1000_setup_tx_resources(struct e1000_adapter *adapter, | 
 |                              struct e1000_tx_ring *txdr); | 
 | static int e1000_setup_rx_resources(struct e1000_adapter *adapter, | 
 |                              struct e1000_rx_ring *rxdr); | 
 | static void e1000_free_tx_resources(struct e1000_adapter *adapter, | 
 |                              struct e1000_tx_ring *tx_ring); | 
 | static void e1000_free_rx_resources(struct e1000_adapter *adapter, | 
 |                              struct e1000_rx_ring *rx_ring); | 
 | void e1000_update_stats(struct e1000_adapter *adapter); | 
 |  | 
 | static int e1000_init_module(void); | 
 | static void e1000_exit_module(void); | 
 | static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); | 
 | static void __devexit e1000_remove(struct pci_dev *pdev); | 
 | static int e1000_alloc_queues(struct e1000_adapter *adapter); | 
 | static int e1000_sw_init(struct e1000_adapter *adapter); | 
 | static int e1000_open(struct net_device *netdev); | 
 | static int e1000_close(struct net_device *netdev); | 
 | static void e1000_configure_tx(struct e1000_adapter *adapter); | 
 | static void e1000_configure_rx(struct e1000_adapter *adapter); | 
 | static void e1000_setup_rctl(struct e1000_adapter *adapter); | 
 | static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); | 
 | static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); | 
 | static void e1000_clean_tx_ring(struct e1000_adapter *adapter, | 
 |                                 struct e1000_tx_ring *tx_ring); | 
 | static void e1000_clean_rx_ring(struct e1000_adapter *adapter, | 
 |                                 struct e1000_rx_ring *rx_ring); | 
 | static void e1000_set_rx_mode(struct net_device *netdev); | 
 | static void e1000_update_phy_info(unsigned long data); | 
 | static void e1000_watchdog(unsigned long data); | 
 | static void e1000_82547_tx_fifo_stall(unsigned long data); | 
 | static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); | 
 | static struct net_device_stats * e1000_get_stats(struct net_device *netdev); | 
 | static int e1000_change_mtu(struct net_device *netdev, int new_mtu); | 
 | static int e1000_set_mac(struct net_device *netdev, void *p); | 
 | static irqreturn_t e1000_intr(int irq, void *data); | 
 | static irqreturn_t e1000_intr_msi(int irq, void *data); | 
 | static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, | 
 | 			       struct e1000_tx_ring *tx_ring); | 
 | static int e1000_clean(struct napi_struct *napi, int budget); | 
 | static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, | 
 | 			       struct e1000_rx_ring *rx_ring, | 
 | 			       int *work_done, int work_to_do); | 
 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | 
 |                                    struct e1000_rx_ring *rx_ring, | 
 | 				   int cleaned_count); | 
 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); | 
 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | 
 | 			   int cmd); | 
 | static void e1000_enter_82542_rst(struct e1000_adapter *adapter); | 
 | static void e1000_leave_82542_rst(struct e1000_adapter *adapter); | 
 | static void e1000_tx_timeout(struct net_device *dev); | 
 | static void e1000_reset_task(struct work_struct *work); | 
 | static void e1000_smartspeed(struct e1000_adapter *adapter); | 
 | static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, | 
 |                                        struct sk_buff *skb); | 
 |  | 
 | static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); | 
 | static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid); | 
 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid); | 
 | static void e1000_restore_vlan(struct e1000_adapter *adapter); | 
 |  | 
 | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); | 
 | #ifdef CONFIG_PM | 
 | static int e1000_resume(struct pci_dev *pdev); | 
 | #endif | 
 | static void e1000_shutdown(struct pci_dev *pdev); | 
 |  | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | /* for netdump / net console */ | 
 | static void e1000_netpoll (struct net_device *netdev); | 
 | #endif | 
 |  | 
 | #define COPYBREAK_DEFAULT 256 | 
 | static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; | 
 | module_param(copybreak, uint, 0644); | 
 | MODULE_PARM_DESC(copybreak, | 
 | 	"Maximum size of packet that is copied to a new buffer on receive"); | 
 |  | 
 | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | 
 |                      pci_channel_state_t state); | 
 | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); | 
 | static void e1000_io_resume(struct pci_dev *pdev); | 
 |  | 
 | static struct pci_error_handlers e1000_err_handler = { | 
 | 	.error_detected = e1000_io_error_detected, | 
 | 	.slot_reset = e1000_io_slot_reset, | 
 | 	.resume = e1000_io_resume, | 
 | }; | 
 |  | 
 | static struct pci_driver e1000_driver = { | 
 | 	.name     = e1000_driver_name, | 
 | 	.id_table = e1000_pci_tbl, | 
 | 	.probe    = e1000_probe, | 
 | 	.remove   = __devexit_p(e1000_remove), | 
 | #ifdef CONFIG_PM | 
 | 	/* Power Managment Hooks */ | 
 | 	.suspend  = e1000_suspend, | 
 | 	.resume   = e1000_resume, | 
 | #endif | 
 | 	.shutdown = e1000_shutdown, | 
 | 	.err_handler = &e1000_err_handler | 
 | }; | 
 |  | 
 | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); | 
 | MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_VERSION(DRV_VERSION); | 
 |  | 
 | static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; | 
 | module_param(debug, int, 0); | 
 | MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); | 
 |  | 
 | /** | 
 |  * e1000_init_module - Driver Registration Routine | 
 |  * | 
 |  * e1000_init_module is the first routine called when the driver is | 
 |  * loaded. All it does is register with the PCI subsystem. | 
 |  **/ | 
 |  | 
 | static int __init e1000_init_module(void) | 
 | { | 
 | 	int ret; | 
 | 	printk(KERN_INFO "%s - version %s\n", | 
 | 	       e1000_driver_string, e1000_driver_version); | 
 |  | 
 | 	printk(KERN_INFO "%s\n", e1000_copyright); | 
 |  | 
 | 	ret = pci_register_driver(&e1000_driver); | 
 | 	if (copybreak != COPYBREAK_DEFAULT) { | 
 | 		if (copybreak == 0) | 
 | 			printk(KERN_INFO "e1000: copybreak disabled\n"); | 
 | 		else | 
 | 			printk(KERN_INFO "e1000: copybreak enabled for " | 
 | 			       "packets <= %u bytes\n", copybreak); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | module_init(e1000_init_module); | 
 |  | 
 | /** | 
 |  * e1000_exit_module - Driver Exit Cleanup Routine | 
 |  * | 
 |  * e1000_exit_module is called just before the driver is removed | 
 |  * from memory. | 
 |  **/ | 
 |  | 
 | static void __exit e1000_exit_module(void) | 
 | { | 
 | 	pci_unregister_driver(&e1000_driver); | 
 | } | 
 |  | 
 | module_exit(e1000_exit_module); | 
 |  | 
 | static int e1000_request_irq(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	irq_handler_t handler = e1000_intr; | 
 | 	int irq_flags = IRQF_SHARED; | 
 | 	int err; | 
 |  | 
 | 	if (hw->mac_type >= e1000_82571) { | 
 | 		adapter->have_msi = !pci_enable_msi(adapter->pdev); | 
 | 		if (adapter->have_msi) { | 
 | 			handler = e1000_intr_msi; | 
 | 			irq_flags = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, | 
 | 	                  netdev); | 
 | 	if (err) { | 
 | 		if (adapter->have_msi) | 
 | 			pci_disable_msi(adapter->pdev); | 
 | 		DPRINTK(PROBE, ERR, | 
 | 		        "Unable to allocate interrupt Error: %d\n", err); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void e1000_free_irq(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct net_device *netdev = adapter->netdev; | 
 |  | 
 | 	free_irq(adapter->pdev->irq, netdev); | 
 |  | 
 | 	if (adapter->have_msi) | 
 | 		pci_disable_msi(adapter->pdev); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_irq_disable - Mask off interrupt generation on the NIC | 
 |  * @adapter: board private structure | 
 |  **/ | 
 |  | 
 | static void e1000_irq_disable(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	ew32(IMC, ~0); | 
 | 	E1000_WRITE_FLUSH(); | 
 | 	synchronize_irq(adapter->pdev->irq); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_irq_enable - Enable default interrupt generation settings | 
 |  * @adapter: board private structure | 
 |  **/ | 
 |  | 
 | static void e1000_irq_enable(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	ew32(IMS, IMS_ENABLE_MASK); | 
 | 	E1000_WRITE_FLUSH(); | 
 | } | 
 |  | 
 | static void e1000_update_mng_vlan(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	u16 vid = hw->mng_cookie.vlan_id; | 
 | 	u16 old_vid = adapter->mng_vlan_id; | 
 | 	if (adapter->vlgrp) { | 
 | 		if (!vlan_group_get_device(adapter->vlgrp, vid)) { | 
 | 			if (hw->mng_cookie.status & | 
 | 				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { | 
 | 				e1000_vlan_rx_add_vid(netdev, vid); | 
 | 				adapter->mng_vlan_id = vid; | 
 | 			} else | 
 | 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
 |  | 
 | 			if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && | 
 | 					(vid != old_vid) && | 
 | 			    !vlan_group_get_device(adapter->vlgrp, old_vid)) | 
 | 				e1000_vlan_rx_kill_vid(netdev, old_vid); | 
 | 		} else | 
 | 			adapter->mng_vlan_id = vid; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_release_hw_control - release control of the h/w to f/w | 
 |  * @adapter: address of board private structure | 
 |  * | 
 |  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. | 
 |  * For ASF and Pass Through versions of f/w this means that the | 
 |  * driver is no longer loaded. For AMT version (only with 82573) i | 
 |  * of the f/w this means that the network i/f is closed. | 
 |  * | 
 |  **/ | 
 |  | 
 | static void e1000_release_hw_control(struct e1000_adapter *adapter) | 
 | { | 
 | 	u32 ctrl_ext; | 
 | 	u32 swsm; | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	/* Let firmware taken over control of h/w */ | 
 | 	switch (hw->mac_type) { | 
 | 	case e1000_82573: | 
 | 		swsm = er32(SWSM); | 
 | 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); | 
 | 		break; | 
 | 	case e1000_82571: | 
 | 	case e1000_82572: | 
 | 	case e1000_80003es2lan: | 
 | 	case e1000_ich8lan: | 
 | 		ctrl_ext = er32(CTRL_EXT); | 
 | 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_get_hw_control - get control of the h/w from f/w | 
 |  * @adapter: address of board private structure | 
 |  * | 
 |  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. | 
 |  * For ASF and Pass Through versions of f/w this means that | 
 |  * the driver is loaded. For AMT version (only with 82573) | 
 |  * of the f/w this means that the network i/f is open. | 
 |  * | 
 |  **/ | 
 |  | 
 | static void e1000_get_hw_control(struct e1000_adapter *adapter) | 
 | { | 
 | 	u32 ctrl_ext; | 
 | 	u32 swsm; | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	/* Let firmware know the driver has taken over */ | 
 | 	switch (hw->mac_type) { | 
 | 	case e1000_82573: | 
 | 		swsm = er32(SWSM); | 
 | 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); | 
 | 		break; | 
 | 	case e1000_82571: | 
 | 	case e1000_82572: | 
 | 	case e1000_80003es2lan: | 
 | 	case e1000_ich8lan: | 
 | 		ctrl_ext = er32(CTRL_EXT); | 
 | 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void e1000_init_manageability(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	if (adapter->en_mng_pt) { | 
 | 		u32 manc = er32(MANC); | 
 |  | 
 | 		/* disable hardware interception of ARP */ | 
 | 		manc &= ~(E1000_MANC_ARP_EN); | 
 |  | 
 | 		/* enable receiving management packets to the host */ | 
 | 		/* this will probably generate destination unreachable messages | 
 | 		 * from the host OS, but the packets will be handled on SMBUS */ | 
 | 		if (hw->has_manc2h) { | 
 | 			u32 manc2h = er32(MANC2H); | 
 |  | 
 | 			manc |= E1000_MANC_EN_MNG2HOST; | 
 | #define E1000_MNG2HOST_PORT_623 (1 << 5) | 
 | #define E1000_MNG2HOST_PORT_664 (1 << 6) | 
 | 			manc2h |= E1000_MNG2HOST_PORT_623; | 
 | 			manc2h |= E1000_MNG2HOST_PORT_664; | 
 | 			ew32(MANC2H, manc2h); | 
 | 		} | 
 |  | 
 | 		ew32(MANC, manc); | 
 | 	} | 
 | } | 
 |  | 
 | static void e1000_release_manageability(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	if (adapter->en_mng_pt) { | 
 | 		u32 manc = er32(MANC); | 
 |  | 
 | 		/* re-enable hardware interception of ARP */ | 
 | 		manc |= E1000_MANC_ARP_EN; | 
 |  | 
 | 		if (hw->has_manc2h) | 
 | 			manc &= ~E1000_MANC_EN_MNG2HOST; | 
 |  | 
 | 		/* don't explicitly have to mess with MANC2H since | 
 | 		 * MANC has an enable disable that gates MANC2H */ | 
 |  | 
 | 		ew32(MANC, manc); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_configure - configure the hardware for RX and TX | 
 |  * @adapter = private board structure | 
 |  **/ | 
 | static void e1000_configure(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	int i; | 
 |  | 
 | 	e1000_set_rx_mode(netdev); | 
 |  | 
 | 	e1000_restore_vlan(adapter); | 
 | 	e1000_init_manageability(adapter); | 
 |  | 
 | 	e1000_configure_tx(adapter); | 
 | 	e1000_setup_rctl(adapter); | 
 | 	e1000_configure_rx(adapter); | 
 | 	/* call E1000_DESC_UNUSED which always leaves | 
 | 	 * at least 1 descriptor unused to make sure | 
 | 	 * next_to_use != next_to_clean */ | 
 | 	for (i = 0; i < adapter->num_rx_queues; i++) { | 
 | 		struct e1000_rx_ring *ring = &adapter->rx_ring[i]; | 
 | 		adapter->alloc_rx_buf(adapter, ring, | 
 | 		                      E1000_DESC_UNUSED(ring)); | 
 | 	} | 
 |  | 
 | 	adapter->tx_queue_len = netdev->tx_queue_len; | 
 | } | 
 |  | 
 | int e1000_up(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	/* hardware has been reset, we need to reload some things */ | 
 | 	e1000_configure(adapter); | 
 |  | 
 | 	clear_bit(__E1000_DOWN, &adapter->flags); | 
 |  | 
 | 	napi_enable(&adapter->napi); | 
 |  | 
 | 	e1000_irq_enable(adapter); | 
 |  | 
 | 	/* fire a link change interrupt to start the watchdog */ | 
 | 	ew32(ICS, E1000_ICS_LSC); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_power_up_phy - restore link in case the phy was powered down | 
 |  * @adapter: address of board private structure | 
 |  * | 
 |  * The phy may be powered down to save power and turn off link when the | 
 |  * driver is unloaded and wake on lan is not enabled (among others) | 
 |  * *** this routine MUST be followed by a call to e1000_reset *** | 
 |  * | 
 |  **/ | 
 |  | 
 | void e1000_power_up_phy(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u16 mii_reg = 0; | 
 |  | 
 | 	/* Just clear the power down bit to wake the phy back up */ | 
 | 	if (hw->media_type == e1000_media_type_copper) { | 
 | 		/* according to the manual, the phy will retain its | 
 | 		 * settings across a power-down/up cycle */ | 
 | 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); | 
 | 		mii_reg &= ~MII_CR_POWER_DOWN; | 
 | 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); | 
 | 	} | 
 | } | 
 |  | 
 | static void e1000_power_down_phy(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	/* Power down the PHY so no link is implied when interface is down * | 
 | 	 * The PHY cannot be powered down if any of the following is true * | 
 | 	 * (a) WoL is enabled | 
 | 	 * (b) AMT is active | 
 | 	 * (c) SoL/IDER session is active */ | 
 | 	if (!adapter->wol && hw->mac_type >= e1000_82540 && | 
 | 	   hw->media_type == e1000_media_type_copper) { | 
 | 		u16 mii_reg = 0; | 
 |  | 
 | 		switch (hw->mac_type) { | 
 | 		case e1000_82540: | 
 | 		case e1000_82545: | 
 | 		case e1000_82545_rev_3: | 
 | 		case e1000_82546: | 
 | 		case e1000_82546_rev_3: | 
 | 		case e1000_82541: | 
 | 		case e1000_82541_rev_2: | 
 | 		case e1000_82547: | 
 | 		case e1000_82547_rev_2: | 
 | 			if (er32(MANC) & E1000_MANC_SMBUS_EN) | 
 | 				goto out; | 
 | 			break; | 
 | 		case e1000_82571: | 
 | 		case e1000_82572: | 
 | 		case e1000_82573: | 
 | 		case e1000_80003es2lan: | 
 | 		case e1000_ich8lan: | 
 | 			if (e1000_check_mng_mode(hw) || | 
 | 			    e1000_check_phy_reset_block(hw)) | 
 | 				goto out; | 
 | 			break; | 
 | 		default: | 
 | 			goto out; | 
 | 		} | 
 | 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); | 
 | 		mii_reg |= MII_CR_POWER_DOWN; | 
 | 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); | 
 | 		mdelay(1); | 
 | 	} | 
 | out: | 
 | 	return; | 
 | } | 
 |  | 
 | void e1000_down(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct net_device *netdev = adapter->netdev; | 
 |  | 
 | 	/* signal that we're down so the interrupt handler does not | 
 | 	 * reschedule our watchdog timer */ | 
 | 	set_bit(__E1000_DOWN, &adapter->flags); | 
 |  | 
 | 	napi_disable(&adapter->napi); | 
 |  | 
 | 	e1000_irq_disable(adapter); | 
 |  | 
 | 	del_timer_sync(&adapter->tx_fifo_stall_timer); | 
 | 	del_timer_sync(&adapter->watchdog_timer); | 
 | 	del_timer_sync(&adapter->phy_info_timer); | 
 |  | 
 | 	netdev->tx_queue_len = adapter->tx_queue_len; | 
 | 	adapter->link_speed = 0; | 
 | 	adapter->link_duplex = 0; | 
 | 	netif_carrier_off(netdev); | 
 | 	netif_stop_queue(netdev); | 
 |  | 
 | 	e1000_reset(adapter); | 
 | 	e1000_clean_all_tx_rings(adapter); | 
 | 	e1000_clean_all_rx_rings(adapter); | 
 | } | 
 |  | 
 | void e1000_reinit_locked(struct e1000_adapter *adapter) | 
 | { | 
 | 	WARN_ON(in_interrupt()); | 
 | 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | 
 | 		msleep(1); | 
 | 	e1000_down(adapter); | 
 | 	e1000_up(adapter); | 
 | 	clear_bit(__E1000_RESETTING, &adapter->flags); | 
 | } | 
 |  | 
 | void e1000_reset(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 pba = 0, tx_space, min_tx_space, min_rx_space; | 
 | 	u16 fc_high_water_mark = E1000_FC_HIGH_DIFF; | 
 | 	bool legacy_pba_adjust = false; | 
 |  | 
 | 	/* Repartition Pba for greater than 9k mtu | 
 | 	 * To take effect CTRL.RST is required. | 
 | 	 */ | 
 |  | 
 | 	switch (hw->mac_type) { | 
 | 	case e1000_82542_rev2_0: | 
 | 	case e1000_82542_rev2_1: | 
 | 	case e1000_82543: | 
 | 	case e1000_82544: | 
 | 	case e1000_82540: | 
 | 	case e1000_82541: | 
 | 	case e1000_82541_rev_2: | 
 | 		legacy_pba_adjust = true; | 
 | 		pba = E1000_PBA_48K; | 
 | 		break; | 
 | 	case e1000_82545: | 
 | 	case e1000_82545_rev_3: | 
 | 	case e1000_82546: | 
 | 	case e1000_82546_rev_3: | 
 | 		pba = E1000_PBA_48K; | 
 | 		break; | 
 | 	case e1000_82547: | 
 | 	case e1000_82547_rev_2: | 
 | 		legacy_pba_adjust = true; | 
 | 		pba = E1000_PBA_30K; | 
 | 		break; | 
 | 	case e1000_82571: | 
 | 	case e1000_82572: | 
 | 	case e1000_80003es2lan: | 
 | 		pba = E1000_PBA_38K; | 
 | 		break; | 
 | 	case e1000_82573: | 
 | 		pba = E1000_PBA_20K; | 
 | 		break; | 
 | 	case e1000_ich8lan: | 
 | 		pba = E1000_PBA_8K; | 
 | 	case e1000_undefined: | 
 | 	case e1000_num_macs: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (legacy_pba_adjust) { | 
 | 		if (adapter->netdev->mtu > E1000_RXBUFFER_8192) | 
 | 			pba -= 8; /* allocate more FIFO for Tx */ | 
 |  | 
 | 		if (hw->mac_type == e1000_82547) { | 
 | 			adapter->tx_fifo_head = 0; | 
 | 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; | 
 | 			adapter->tx_fifo_size = | 
 | 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; | 
 | 			atomic_set(&adapter->tx_fifo_stall, 0); | 
 | 		} | 
 | 	} else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) { | 
 | 		/* adjust PBA for jumbo frames */ | 
 | 		ew32(PBA, pba); | 
 |  | 
 | 		/* To maintain wire speed transmits, the Tx FIFO should be | 
 | 		 * large enough to accomodate two full transmit packets, | 
 | 		 * rounded up to the next 1KB and expressed in KB.  Likewise, | 
 | 		 * the Rx FIFO should be large enough to accomodate at least | 
 | 		 * one full receive packet and is similarly rounded up and | 
 | 		 * expressed in KB. */ | 
 | 		pba = er32(PBA); | 
 | 		/* upper 16 bits has Tx packet buffer allocation size in KB */ | 
 | 		tx_space = pba >> 16; | 
 | 		/* lower 16 bits has Rx packet buffer allocation size in KB */ | 
 | 		pba &= 0xffff; | 
 | 		/* don't include ethernet FCS because hardware appends/strips */ | 
 | 		min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE + | 
 | 		               VLAN_TAG_SIZE; | 
 | 		min_tx_space = min_rx_space; | 
 | 		min_tx_space *= 2; | 
 | 		min_tx_space = ALIGN(min_tx_space, 1024); | 
 | 		min_tx_space >>= 10; | 
 | 		min_rx_space = ALIGN(min_rx_space, 1024); | 
 | 		min_rx_space >>= 10; | 
 |  | 
 | 		/* If current Tx allocation is less than the min Tx FIFO size, | 
 | 		 * and the min Tx FIFO size is less than the current Rx FIFO | 
 | 		 * allocation, take space away from current Rx allocation */ | 
 | 		if (tx_space < min_tx_space && | 
 | 		    ((min_tx_space - tx_space) < pba)) { | 
 | 			pba = pba - (min_tx_space - tx_space); | 
 |  | 
 | 			/* PCI/PCIx hardware has PBA alignment constraints */ | 
 | 			switch (hw->mac_type) { | 
 | 			case e1000_82545 ... e1000_82546_rev_3: | 
 | 				pba &= ~(E1000_PBA_8K - 1); | 
 | 				break; | 
 | 			default: | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* if short on rx space, rx wins and must trump tx | 
 | 			 * adjustment or use Early Receive if available */ | 
 | 			if (pba < min_rx_space) { | 
 | 				switch (hw->mac_type) { | 
 | 				case e1000_82573: | 
 | 					/* ERT enabled in e1000_configure_rx */ | 
 | 					break; | 
 | 				default: | 
 | 					pba = min_rx_space; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ew32(PBA, pba); | 
 |  | 
 | 	/* flow control settings */ | 
 | 	/* Set the FC high water mark to 90% of the FIFO size. | 
 | 	 * Required to clear last 3 LSB */ | 
 | 	fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8; | 
 | 	/* We can't use 90% on small FIFOs because the remainder | 
 | 	 * would be less than 1 full frame.  In this case, we size | 
 | 	 * it to allow at least a full frame above the high water | 
 | 	 *  mark. */ | 
 | 	if (pba < E1000_PBA_16K) | 
 | 		fc_high_water_mark = (pba * 1024) - 1600; | 
 |  | 
 | 	hw->fc_high_water = fc_high_water_mark; | 
 | 	hw->fc_low_water = fc_high_water_mark - 8; | 
 | 	if (hw->mac_type == e1000_80003es2lan) | 
 | 		hw->fc_pause_time = 0xFFFF; | 
 | 	else | 
 | 		hw->fc_pause_time = E1000_FC_PAUSE_TIME; | 
 | 	hw->fc_send_xon = 1; | 
 | 	hw->fc = hw->original_fc; | 
 |  | 
 | 	/* Allow time for pending master requests to run */ | 
 | 	e1000_reset_hw(hw); | 
 | 	if (hw->mac_type >= e1000_82544) | 
 | 		ew32(WUC, 0); | 
 |  | 
 | 	if (e1000_init_hw(hw)) | 
 | 		DPRINTK(PROBE, ERR, "Hardware Error\n"); | 
 | 	e1000_update_mng_vlan(adapter); | 
 |  | 
 | 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ | 
 | 	if (hw->mac_type >= e1000_82544 && | 
 | 	    hw->mac_type <= e1000_82547_rev_2 && | 
 | 	    hw->autoneg == 1 && | 
 | 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) { | 
 | 		u32 ctrl = er32(CTRL); | 
 | 		/* clear phy power management bit if we are in gig only mode, | 
 | 		 * which if enabled will attempt negotiation to 100Mb, which | 
 | 		 * can cause a loss of link at power off or driver unload */ | 
 | 		ctrl &= ~E1000_CTRL_SWDPIN3; | 
 | 		ew32(CTRL, ctrl); | 
 | 	} | 
 |  | 
 | 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | 
 | 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE); | 
 |  | 
 | 	e1000_reset_adaptive(hw); | 
 | 	e1000_phy_get_info(hw, &adapter->phy_info); | 
 |  | 
 | 	if (!adapter->smart_power_down && | 
 | 	    (hw->mac_type == e1000_82571 || | 
 | 	     hw->mac_type == e1000_82572)) { | 
 | 		u16 phy_data = 0; | 
 | 		/* speed up time to link by disabling smart power down, ignore | 
 | 		 * the return value of this function because there is nothing | 
 | 		 * different we would do if it failed */ | 
 | 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 
 | 		                   &phy_data); | 
 | 		phy_data &= ~IGP02E1000_PM_SPD; | 
 | 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 
 | 		                    phy_data); | 
 | 	} | 
 |  | 
 | 	e1000_release_manageability(adapter); | 
 | } | 
 |  | 
 | /** | 
 |  *  Dump the eeprom for users having checksum issues | 
 |  **/ | 
 | static void e1000_dump_eeprom(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	struct ethtool_eeprom eeprom; | 
 | 	const struct ethtool_ops *ops = netdev->ethtool_ops; | 
 | 	u8 *data; | 
 | 	int i; | 
 | 	u16 csum_old, csum_new = 0; | 
 |  | 
 | 	eeprom.len = ops->get_eeprom_len(netdev); | 
 | 	eeprom.offset = 0; | 
 |  | 
 | 	data = kmalloc(eeprom.len, GFP_KERNEL); | 
 | 	if (!data) { | 
 | 		printk(KERN_ERR "Unable to allocate memory to dump EEPROM" | 
 | 		       " data\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ops->get_eeprom(netdev, &eeprom, data); | 
 |  | 
 | 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + | 
 | 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); | 
 | 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) | 
 | 		csum_new += data[i] + (data[i + 1] << 8); | 
 | 	csum_new = EEPROM_SUM - csum_new; | 
 |  | 
 | 	printk(KERN_ERR "/*********************/\n"); | 
 | 	printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old); | 
 | 	printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new); | 
 |  | 
 | 	printk(KERN_ERR "Offset    Values\n"); | 
 | 	printk(KERN_ERR "========  ======\n"); | 
 | 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); | 
 |  | 
 | 	printk(KERN_ERR "Include this output when contacting your support " | 
 | 	       "provider.\n"); | 
 | 	printk(KERN_ERR "This is not a software error! Something bad " | 
 | 	       "happened to your hardware or\n"); | 
 | 	printk(KERN_ERR "EEPROM image. Ignoring this " | 
 | 	       "problem could result in further problems,\n"); | 
 | 	printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n"); | 
 | 	printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, " | 
 | 	       "which is invalid\n"); | 
 | 	printk(KERN_ERR "and requires you to set the proper MAC " | 
 | 	       "address manually before continuing\n"); | 
 | 	printk(KERN_ERR "to enable this network device.\n"); | 
 | 	printk(KERN_ERR "Please inspect the EEPROM dump and report the issue " | 
 | 	       "to your hardware vendor\n"); | 
 | 	printk(KERN_ERR "or Intel Customer Support.\n"); | 
 | 	printk(KERN_ERR "/*********************/\n"); | 
 |  | 
 | 	kfree(data); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not | 
 |  * @pdev: PCI device information struct | 
 |  * | 
 |  * Return true if an adapter needs ioport resources | 
 |  **/ | 
 | static int e1000_is_need_ioport(struct pci_dev *pdev) | 
 | { | 
 | 	switch (pdev->device) { | 
 | 	case E1000_DEV_ID_82540EM: | 
 | 	case E1000_DEV_ID_82540EM_LOM: | 
 | 	case E1000_DEV_ID_82540EP: | 
 | 	case E1000_DEV_ID_82540EP_LOM: | 
 | 	case E1000_DEV_ID_82540EP_LP: | 
 | 	case E1000_DEV_ID_82541EI: | 
 | 	case E1000_DEV_ID_82541EI_MOBILE: | 
 | 	case E1000_DEV_ID_82541ER: | 
 | 	case E1000_DEV_ID_82541ER_LOM: | 
 | 	case E1000_DEV_ID_82541GI: | 
 | 	case E1000_DEV_ID_82541GI_LF: | 
 | 	case E1000_DEV_ID_82541GI_MOBILE: | 
 | 	case E1000_DEV_ID_82544EI_COPPER: | 
 | 	case E1000_DEV_ID_82544EI_FIBER: | 
 | 	case E1000_DEV_ID_82544GC_COPPER: | 
 | 	case E1000_DEV_ID_82544GC_LOM: | 
 | 	case E1000_DEV_ID_82545EM_COPPER: | 
 | 	case E1000_DEV_ID_82545EM_FIBER: | 
 | 	case E1000_DEV_ID_82546EB_COPPER: | 
 | 	case E1000_DEV_ID_82546EB_FIBER: | 
 | 	case E1000_DEV_ID_82546EB_QUAD_COPPER: | 
 | 		return true; | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_probe - Device Initialization Routine | 
 |  * @pdev: PCI device information struct | 
 |  * @ent: entry in e1000_pci_tbl | 
 |  * | 
 |  * Returns 0 on success, negative on failure | 
 |  * | 
 |  * e1000_probe initializes an adapter identified by a pci_dev structure. | 
 |  * The OS initialization, configuring of the adapter private structure, | 
 |  * and a hardware reset occur. | 
 |  **/ | 
 | static int __devinit e1000_probe(struct pci_dev *pdev, | 
 | 				 const struct pci_device_id *ent) | 
 | { | 
 | 	struct net_device *netdev; | 
 | 	struct e1000_adapter *adapter; | 
 | 	struct e1000_hw *hw; | 
 |  | 
 | 	static int cards_found = 0; | 
 | 	static int global_quad_port_a = 0; /* global ksp3 port a indication */ | 
 | 	int i, err, pci_using_dac; | 
 | 	u16 eeprom_data = 0; | 
 | 	u16 eeprom_apme_mask = E1000_EEPROM_APME; | 
 | 	int bars, need_ioport; | 
 | 	DECLARE_MAC_BUF(mac); | 
 |  | 
 | 	/* do not allocate ioport bars when not needed */ | 
 | 	need_ioport = e1000_is_need_ioport(pdev); | 
 | 	if (need_ioport) { | 
 | 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); | 
 | 		err = pci_enable_device(pdev); | 
 | 	} else { | 
 | 		bars = pci_select_bars(pdev, IORESOURCE_MEM); | 
 | 		err = pci_enable_device(pdev); | 
 | 	} | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) && | 
 | 	    !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) { | 
 | 		pci_using_dac = 1; | 
 | 	} else { | 
 | 		err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); | 
 | 		if (err) { | 
 | 			err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); | 
 | 			if (err) { | 
 | 				E1000_ERR("No usable DMA configuration, " | 
 | 					  "aborting\n"); | 
 | 				goto err_dma; | 
 | 			} | 
 | 		} | 
 | 		pci_using_dac = 0; | 
 | 	} | 
 |  | 
 | 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name); | 
 | 	if (err) | 
 | 		goto err_pci_reg; | 
 |  | 
 | 	pci_set_master(pdev); | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	netdev = alloc_etherdev(sizeof(struct e1000_adapter)); | 
 | 	if (!netdev) | 
 | 		goto err_alloc_etherdev; | 
 |  | 
 | 	SET_NETDEV_DEV(netdev, &pdev->dev); | 
 |  | 
 | 	pci_set_drvdata(pdev, netdev); | 
 | 	adapter = netdev_priv(netdev); | 
 | 	adapter->netdev = netdev; | 
 | 	adapter->pdev = pdev; | 
 | 	adapter->msg_enable = (1 << debug) - 1; | 
 | 	adapter->bars = bars; | 
 | 	adapter->need_ioport = need_ioport; | 
 |  | 
 | 	hw = &adapter->hw; | 
 | 	hw->back = adapter; | 
 |  | 
 | 	err = -EIO; | 
 | 	hw->hw_addr = ioremap(pci_resource_start(pdev, BAR_0), | 
 | 			      pci_resource_len(pdev, BAR_0)); | 
 | 	if (!hw->hw_addr) | 
 | 		goto err_ioremap; | 
 |  | 
 | 	if (adapter->need_ioport) { | 
 | 		for (i = BAR_1; i <= BAR_5; i++) { | 
 | 			if (pci_resource_len(pdev, i) == 0) | 
 | 				continue; | 
 | 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { | 
 | 				hw->io_base = pci_resource_start(pdev, i); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	netdev->open = &e1000_open; | 
 | 	netdev->stop = &e1000_close; | 
 | 	netdev->hard_start_xmit = &e1000_xmit_frame; | 
 | 	netdev->get_stats = &e1000_get_stats; | 
 | 	netdev->set_rx_mode = &e1000_set_rx_mode; | 
 | 	netdev->set_mac_address = &e1000_set_mac; | 
 | 	netdev->change_mtu = &e1000_change_mtu; | 
 | 	netdev->do_ioctl = &e1000_ioctl; | 
 | 	e1000_set_ethtool_ops(netdev); | 
 | 	netdev->tx_timeout = &e1000_tx_timeout; | 
 | 	netdev->watchdog_timeo = 5 * HZ; | 
 | 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); | 
 | 	netdev->vlan_rx_register = e1000_vlan_rx_register; | 
 | 	netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; | 
 | 	netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | 	netdev->poll_controller = e1000_netpoll; | 
 | #endif | 
 | 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | 
 |  | 
 | 	adapter->bd_number = cards_found; | 
 |  | 
 | 	/* setup the private structure */ | 
 |  | 
 | 	err = e1000_sw_init(adapter); | 
 | 	if (err) | 
 | 		goto err_sw_init; | 
 |  | 
 | 	err = -EIO; | 
 | 	/* Flash BAR mapping must happen after e1000_sw_init | 
 | 	 * because it depends on mac_type */ | 
 | 	if ((hw->mac_type == e1000_ich8lan) && | 
 | 	   (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { | 
 | 		hw->flash_address = | 
 | 			ioremap(pci_resource_start(pdev, 1), | 
 | 				pci_resource_len(pdev, 1)); | 
 | 		if (!hw->flash_address) | 
 | 			goto err_flashmap; | 
 | 	} | 
 |  | 
 | 	if (e1000_check_phy_reset_block(hw)) | 
 | 		DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); | 
 |  | 
 | 	if (hw->mac_type >= e1000_82543) { | 
 | 		netdev->features = NETIF_F_SG | | 
 | 				   NETIF_F_HW_CSUM | | 
 | 				   NETIF_F_HW_VLAN_TX | | 
 | 				   NETIF_F_HW_VLAN_RX | | 
 | 				   NETIF_F_HW_VLAN_FILTER; | 
 | 		if (hw->mac_type == e1000_ich8lan) | 
 | 			netdev->features &= ~NETIF_F_HW_VLAN_FILTER; | 
 | 	} | 
 |  | 
 | 	if ((hw->mac_type >= e1000_82544) && | 
 | 	   (hw->mac_type != e1000_82547)) | 
 | 		netdev->features |= NETIF_F_TSO; | 
 |  | 
 | 	if (hw->mac_type > e1000_82547_rev_2) | 
 | 		netdev->features |= NETIF_F_TSO6; | 
 | 	if (pci_using_dac) | 
 | 		netdev->features |= NETIF_F_HIGHDMA; | 
 |  | 
 | 	netdev->features |= NETIF_F_LLTX; | 
 |  | 
 | 	netdev->vlan_features |= NETIF_F_TSO; | 
 | 	netdev->vlan_features |= NETIF_F_TSO6; | 
 | 	netdev->vlan_features |= NETIF_F_HW_CSUM; | 
 | 	netdev->vlan_features |= NETIF_F_SG; | 
 |  | 
 | 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); | 
 |  | 
 | 	/* initialize eeprom parameters */ | 
 | 	if (e1000_init_eeprom_params(hw)) { | 
 | 		E1000_ERR("EEPROM initialization failed\n"); | 
 | 		goto err_eeprom; | 
 | 	} | 
 |  | 
 | 	/* before reading the EEPROM, reset the controller to | 
 | 	 * put the device in a known good starting state */ | 
 |  | 
 | 	e1000_reset_hw(hw); | 
 |  | 
 | 	/* make sure the EEPROM is good */ | 
 | 	if (e1000_validate_eeprom_checksum(hw) < 0) { | 
 | 		DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n"); | 
 | 		e1000_dump_eeprom(adapter); | 
 | 		/* | 
 | 		 * set MAC address to all zeroes to invalidate and temporary | 
 | 		 * disable this device for the user. This blocks regular | 
 | 		 * traffic while still permitting ethtool ioctls from reaching | 
 | 		 * the hardware as well as allowing the user to run the | 
 | 		 * interface after manually setting a hw addr using | 
 | 		 * `ip set address` | 
 | 		 */ | 
 | 		memset(hw->mac_addr, 0, netdev->addr_len); | 
 | 	} else { | 
 | 		/* copy the MAC address out of the EEPROM */ | 
 | 		if (e1000_read_mac_addr(hw)) | 
 | 			DPRINTK(PROBE, ERR, "EEPROM Read Error\n"); | 
 | 	} | 
 | 	/* don't block initalization here due to bad MAC address */ | 
 | 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); | 
 | 	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len); | 
 |  | 
 | 	if (!is_valid_ether_addr(netdev->perm_addr)) | 
 | 		DPRINTK(PROBE, ERR, "Invalid MAC Address\n"); | 
 |  | 
 | 	e1000_get_bus_info(hw); | 
 |  | 
 | 	init_timer(&adapter->tx_fifo_stall_timer); | 
 | 	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall; | 
 | 	adapter->tx_fifo_stall_timer.data = (unsigned long)adapter; | 
 |  | 
 | 	init_timer(&adapter->watchdog_timer); | 
 | 	adapter->watchdog_timer.function = &e1000_watchdog; | 
 | 	adapter->watchdog_timer.data = (unsigned long) adapter; | 
 |  | 
 | 	init_timer(&adapter->phy_info_timer); | 
 | 	adapter->phy_info_timer.function = &e1000_update_phy_info; | 
 | 	adapter->phy_info_timer.data = (unsigned long)adapter; | 
 |  | 
 | 	INIT_WORK(&adapter->reset_task, e1000_reset_task); | 
 |  | 
 | 	e1000_check_options(adapter); | 
 |  | 
 | 	/* Initial Wake on LAN setting | 
 | 	 * If APM wake is enabled in the EEPROM, | 
 | 	 * enable the ACPI Magic Packet filter | 
 | 	 */ | 
 |  | 
 | 	switch (hw->mac_type) { | 
 | 	case e1000_82542_rev2_0: | 
 | 	case e1000_82542_rev2_1: | 
 | 	case e1000_82543: | 
 | 		break; | 
 | 	case e1000_82544: | 
 | 		e1000_read_eeprom(hw, | 
 | 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); | 
 | 		eeprom_apme_mask = E1000_EEPROM_82544_APM; | 
 | 		break; | 
 | 	case e1000_ich8lan: | 
 | 		e1000_read_eeprom(hw, | 
 | 			EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data); | 
 | 		eeprom_apme_mask = E1000_EEPROM_ICH8_APME; | 
 | 		break; | 
 | 	case e1000_82546: | 
 | 	case e1000_82546_rev_3: | 
 | 	case e1000_82571: | 
 | 	case e1000_80003es2lan: | 
 | 		if (er32(STATUS) & E1000_STATUS_FUNC_1){ | 
 | 			e1000_read_eeprom(hw, | 
 | 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | 
 | 			break; | 
 | 		} | 
 | 		/* Fall Through */ | 
 | 	default: | 
 | 		e1000_read_eeprom(hw, | 
 | 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | 
 | 		break; | 
 | 	} | 
 | 	if (eeprom_data & eeprom_apme_mask) | 
 | 		adapter->eeprom_wol |= E1000_WUFC_MAG; | 
 |  | 
 | 	/* now that we have the eeprom settings, apply the special cases | 
 | 	 * where the eeprom may be wrong or the board simply won't support | 
 | 	 * wake on lan on a particular port */ | 
 | 	switch (pdev->device) { | 
 | 	case E1000_DEV_ID_82546GB_PCIE: | 
 | 		adapter->eeprom_wol = 0; | 
 | 		break; | 
 | 	case E1000_DEV_ID_82546EB_FIBER: | 
 | 	case E1000_DEV_ID_82546GB_FIBER: | 
 | 	case E1000_DEV_ID_82571EB_FIBER: | 
 | 		/* Wake events only supported on port A for dual fiber | 
 | 		 * regardless of eeprom setting */ | 
 | 		if (er32(STATUS) & E1000_STATUS_FUNC_1) | 
 | 			adapter->eeprom_wol = 0; | 
 | 		break; | 
 | 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | 
 | 	case E1000_DEV_ID_82571EB_QUAD_COPPER: | 
 | 	case E1000_DEV_ID_82571EB_QUAD_FIBER: | 
 | 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: | 
 | 	case E1000_DEV_ID_82571PT_QUAD_COPPER: | 
 | 		/* if quad port adapter, disable WoL on all but port A */ | 
 | 		if (global_quad_port_a != 0) | 
 | 			adapter->eeprom_wol = 0; | 
 | 		else | 
 | 			adapter->quad_port_a = 1; | 
 | 		/* Reset for multiple quad port adapters */ | 
 | 		if (++global_quad_port_a == 4) | 
 | 			global_quad_port_a = 0; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* initialize the wol settings based on the eeprom settings */ | 
 | 	adapter->wol = adapter->eeprom_wol; | 
 | 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); | 
 |  | 
 | 	/* print bus type/speed/width info */ | 
 | 	DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ", | 
 | 		((hw->bus_type == e1000_bus_type_pcix) ? "-X" : | 
 | 		 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")), | 
 | 		((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" : | 
 | 		 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" : | 
 | 		 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" : | 
 | 		 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" : | 
 | 		 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"), | 
 | 		((hw->bus_width == e1000_bus_width_64) ? "64-bit" : | 
 | 		 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" : | 
 | 		 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" : | 
 | 		 "32-bit")); | 
 |  | 
 | 	printk("%s\n", print_mac(mac, netdev->dev_addr)); | 
 |  | 
 | 	if (hw->bus_type == e1000_bus_type_pci_express) { | 
 | 		DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no " | 
 | 			"longer be supported by this driver in the future.\n", | 
 | 			pdev->vendor, pdev->device); | 
 | 		DPRINTK(PROBE, WARNING, "please use the \"e1000e\" " | 
 | 			"driver instead.\n"); | 
 | 	} | 
 |  | 
 | 	/* reset the hardware with the new settings */ | 
 | 	e1000_reset(adapter); | 
 |  | 
 | 	/* If the controller is 82573 and f/w is AMT, do not set | 
 | 	 * DRV_LOAD until the interface is up.  For all other cases, | 
 | 	 * let the f/w know that the h/w is now under the control | 
 | 	 * of the driver. */ | 
 | 	if (hw->mac_type != e1000_82573 || | 
 | 	    !e1000_check_mng_mode(hw)) | 
 | 		e1000_get_hw_control(adapter); | 
 |  | 
 | 	/* tell the stack to leave us alone until e1000_open() is called */ | 
 | 	netif_carrier_off(netdev); | 
 | 	netif_stop_queue(netdev); | 
 |  | 
 | 	strcpy(netdev->name, "eth%d"); | 
 | 	err = register_netdev(netdev); | 
 | 	if (err) | 
 | 		goto err_register; | 
 |  | 
 | 	DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n"); | 
 |  | 
 | 	cards_found++; | 
 | 	return 0; | 
 |  | 
 | err_register: | 
 | 	e1000_release_hw_control(adapter); | 
 | err_eeprom: | 
 | 	if (!e1000_check_phy_reset_block(hw)) | 
 | 		e1000_phy_hw_reset(hw); | 
 |  | 
 | 	if (hw->flash_address) | 
 | 		iounmap(hw->flash_address); | 
 | err_flashmap: | 
 | 	for (i = 0; i < adapter->num_rx_queues; i++) | 
 | 		dev_put(&adapter->polling_netdev[i]); | 
 |  | 
 | 	kfree(adapter->tx_ring); | 
 | 	kfree(adapter->rx_ring); | 
 | 	kfree(adapter->polling_netdev); | 
 | err_sw_init: | 
 | 	iounmap(hw->hw_addr); | 
 | err_ioremap: | 
 | 	free_netdev(netdev); | 
 | err_alloc_etherdev: | 
 | 	pci_release_selected_regions(pdev, bars); | 
 | err_pci_reg: | 
 | err_dma: | 
 | 	pci_disable_device(pdev); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_remove - Device Removal Routine | 
 |  * @pdev: PCI device information struct | 
 |  * | 
 |  * e1000_remove is called by the PCI subsystem to alert the driver | 
 |  * that it should release a PCI device.  The could be caused by a | 
 |  * Hot-Plug event, or because the driver is going to be removed from | 
 |  * memory. | 
 |  **/ | 
 |  | 
 | static void __devexit e1000_remove(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *netdev = pci_get_drvdata(pdev); | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	int i; | 
 |  | 
 | 	cancel_work_sync(&adapter->reset_task); | 
 |  | 
 | 	e1000_release_manageability(adapter); | 
 |  | 
 | 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this | 
 | 	 * would have already happened in close and is redundant. */ | 
 | 	e1000_release_hw_control(adapter); | 
 |  | 
 | 	for (i = 0; i < adapter->num_rx_queues; i++) | 
 | 		dev_put(&adapter->polling_netdev[i]); | 
 |  | 
 | 	unregister_netdev(netdev); | 
 |  | 
 | 	if (!e1000_check_phy_reset_block(hw)) | 
 | 		e1000_phy_hw_reset(hw); | 
 |  | 
 | 	kfree(adapter->tx_ring); | 
 | 	kfree(adapter->rx_ring); | 
 | 	kfree(adapter->polling_netdev); | 
 |  | 
 | 	iounmap(hw->hw_addr); | 
 | 	if (hw->flash_address) | 
 | 		iounmap(hw->flash_address); | 
 | 	pci_release_selected_regions(pdev, adapter->bars); | 
 |  | 
 | 	free_netdev(netdev); | 
 |  | 
 | 	pci_disable_device(pdev); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | 
 |  * @adapter: board private structure to initialize | 
 |  * | 
 |  * e1000_sw_init initializes the Adapter private data structure. | 
 |  * Fields are initialized based on PCI device information and | 
 |  * OS network device settings (MTU size). | 
 |  **/ | 
 |  | 
 | static int __devinit e1000_sw_init(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 | 	int i; | 
 |  | 
 | 	/* PCI config space info */ | 
 |  | 
 | 	hw->vendor_id = pdev->vendor; | 
 | 	hw->device_id = pdev->device; | 
 | 	hw->subsystem_vendor_id = pdev->subsystem_vendor; | 
 | 	hw->subsystem_id = pdev->subsystem_device; | 
 | 	hw->revision_id = pdev->revision; | 
 |  | 
 | 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); | 
 |  | 
 | 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | 
 | 	hw->max_frame_size = netdev->mtu + | 
 | 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; | 
 | 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; | 
 |  | 
 | 	/* identify the MAC */ | 
 |  | 
 | 	if (e1000_set_mac_type(hw)) { | 
 | 		DPRINTK(PROBE, ERR, "Unknown MAC Type\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	switch (hw->mac_type) { | 
 | 	default: | 
 | 		break; | 
 | 	case e1000_82541: | 
 | 	case e1000_82547: | 
 | 	case e1000_82541_rev_2: | 
 | 	case e1000_82547_rev_2: | 
 | 		hw->phy_init_script = 1; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	e1000_set_media_type(hw); | 
 |  | 
 | 	hw->wait_autoneg_complete = false; | 
 | 	hw->tbi_compatibility_en = true; | 
 | 	hw->adaptive_ifs = true; | 
 |  | 
 | 	/* Copper options */ | 
 |  | 
 | 	if (hw->media_type == e1000_media_type_copper) { | 
 | 		hw->mdix = AUTO_ALL_MODES; | 
 | 		hw->disable_polarity_correction = false; | 
 | 		hw->master_slave = E1000_MASTER_SLAVE; | 
 | 	} | 
 |  | 
 | 	adapter->num_tx_queues = 1; | 
 | 	adapter->num_rx_queues = 1; | 
 |  | 
 | 	if (e1000_alloc_queues(adapter)) { | 
 | 		DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < adapter->num_rx_queues; i++) { | 
 | 		adapter->polling_netdev[i].priv = adapter; | 
 | 		dev_hold(&adapter->polling_netdev[i]); | 
 | 		set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state); | 
 | 	} | 
 | 	spin_lock_init(&adapter->tx_queue_lock); | 
 |  | 
 | 	/* Explicitly disable IRQ since the NIC can be in any state. */ | 
 | 	e1000_irq_disable(adapter); | 
 |  | 
 | 	spin_lock_init(&adapter->stats_lock); | 
 |  | 
 | 	set_bit(__E1000_DOWN, &adapter->flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_alloc_queues - Allocate memory for all rings | 
 |  * @adapter: board private structure to initialize | 
 |  * | 
 |  * We allocate one ring per queue at run-time since we don't know the | 
 |  * number of queues at compile-time.  The polling_netdev array is | 
 |  * intended for Multiqueue, but should work fine with a single queue. | 
 |  **/ | 
 |  | 
 | static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) | 
 | { | 
 | 	adapter->tx_ring = kcalloc(adapter->num_tx_queues, | 
 | 	                           sizeof(struct e1000_tx_ring), GFP_KERNEL); | 
 | 	if (!adapter->tx_ring) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	adapter->rx_ring = kcalloc(adapter->num_rx_queues, | 
 | 	                           sizeof(struct e1000_rx_ring), GFP_KERNEL); | 
 | 	if (!adapter->rx_ring) { | 
 | 		kfree(adapter->tx_ring); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	adapter->polling_netdev = kcalloc(adapter->num_rx_queues, | 
 | 	                                  sizeof(struct net_device), | 
 | 	                                  GFP_KERNEL); | 
 | 	if (!adapter->polling_netdev) { | 
 | 		kfree(adapter->tx_ring); | 
 | 		kfree(adapter->rx_ring); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return E1000_SUCCESS; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_open - Called when a network interface is made active | 
 |  * @netdev: network interface device structure | 
 |  * | 
 |  * Returns 0 on success, negative value on failure | 
 |  * | 
 |  * The open entry point is called when a network interface is made | 
 |  * active by the system (IFF_UP).  At this point all resources needed | 
 |  * for transmit and receive operations are allocated, the interrupt | 
 |  * handler is registered with the OS, the watchdog timer is started, | 
 |  * and the stack is notified that the interface is ready. | 
 |  **/ | 
 |  | 
 | static int e1000_open(struct net_device *netdev) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	int err; | 
 |  | 
 | 	/* disallow open during test */ | 
 | 	if (test_bit(__E1000_TESTING, &adapter->flags)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	/* allocate transmit descriptors */ | 
 | 	err = e1000_setup_all_tx_resources(adapter); | 
 | 	if (err) | 
 | 		goto err_setup_tx; | 
 |  | 
 | 	/* allocate receive descriptors */ | 
 | 	err = e1000_setup_all_rx_resources(adapter); | 
 | 	if (err) | 
 | 		goto err_setup_rx; | 
 |  | 
 | 	e1000_power_up_phy(adapter); | 
 |  | 
 | 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
 | 	if ((hw->mng_cookie.status & | 
 | 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { | 
 | 		e1000_update_mng_vlan(adapter); | 
 | 	} | 
 |  | 
 | 	/* If AMT is enabled, let the firmware know that the network | 
 | 	 * interface is now open */ | 
 | 	if (hw->mac_type == e1000_82573 && | 
 | 	    e1000_check_mng_mode(hw)) | 
 | 		e1000_get_hw_control(adapter); | 
 |  | 
 | 	/* before we allocate an interrupt, we must be ready to handle it. | 
 | 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | 
 | 	 * as soon as we call pci_request_irq, so we have to setup our | 
 | 	 * clean_rx handler before we do so.  */ | 
 | 	e1000_configure(adapter); | 
 |  | 
 | 	err = e1000_request_irq(adapter); | 
 | 	if (err) | 
 | 		goto err_req_irq; | 
 |  | 
 | 	/* From here on the code is the same as e1000_up() */ | 
 | 	clear_bit(__E1000_DOWN, &adapter->flags); | 
 |  | 
 | 	napi_enable(&adapter->napi); | 
 |  | 
 | 	e1000_irq_enable(adapter); | 
 |  | 
 | 	netif_start_queue(netdev); | 
 |  | 
 | 	/* fire a link status change interrupt to start the watchdog */ | 
 | 	ew32(ICS, E1000_ICS_LSC); | 
 |  | 
 | 	return E1000_SUCCESS; | 
 |  | 
 | err_req_irq: | 
 | 	e1000_release_hw_control(adapter); | 
 | 	e1000_power_down_phy(adapter); | 
 | 	e1000_free_all_rx_resources(adapter); | 
 | err_setup_rx: | 
 | 	e1000_free_all_tx_resources(adapter); | 
 | err_setup_tx: | 
 | 	e1000_reset(adapter); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_close - Disables a network interface | 
 |  * @netdev: network interface device structure | 
 |  * | 
 |  * Returns 0, this is not allowed to fail | 
 |  * | 
 |  * The close entry point is called when an interface is de-activated | 
 |  * by the OS.  The hardware is still under the drivers control, but | 
 |  * needs to be disabled.  A global MAC reset is issued to stop the | 
 |  * hardware, and all transmit and receive resources are freed. | 
 |  **/ | 
 |  | 
 | static int e1000_close(struct net_device *netdev) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); | 
 | 	e1000_down(adapter); | 
 | 	e1000_power_down_phy(adapter); | 
 | 	e1000_free_irq(adapter); | 
 |  | 
 | 	e1000_free_all_tx_resources(adapter); | 
 | 	e1000_free_all_rx_resources(adapter); | 
 |  | 
 | 	/* kill manageability vlan ID if supported, but not if a vlan with | 
 | 	 * the same ID is registered on the host OS (let 8021q kill it) */ | 
 | 	if ((hw->mng_cookie.status & | 
 | 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && | 
 | 	     !(adapter->vlgrp && | 
 | 	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) { | 
 | 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | 
 | 	} | 
 |  | 
 | 	/* If AMT is enabled, let the firmware know that the network | 
 | 	 * interface is now closed */ | 
 | 	if (hw->mac_type == e1000_82573 && | 
 | 	    e1000_check_mng_mode(hw)) | 
 | 		e1000_release_hw_control(adapter); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary | 
 |  * @adapter: address of board private structure | 
 |  * @start: address of beginning of memory | 
 |  * @len: length of memory | 
 |  **/ | 
 | static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, | 
 | 				  unsigned long len) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	unsigned long begin = (unsigned long)start; | 
 | 	unsigned long end = begin + len; | 
 |  | 
 | 	/* First rev 82545 and 82546 need to not allow any memory | 
 | 	 * write location to cross 64k boundary due to errata 23 */ | 
 | 	if (hw->mac_type == e1000_82545 || | 
 | 	    hw->mac_type == e1000_82546) { | 
 | 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_setup_tx_resources - allocate Tx resources (Descriptors) | 
 |  * @adapter: board private structure | 
 |  * @txdr:    tx descriptor ring (for a specific queue) to setup | 
 |  * | 
 |  * Return 0 on success, negative on failure | 
 |  **/ | 
 |  | 
 | static int e1000_setup_tx_resources(struct e1000_adapter *adapter, | 
 | 				    struct e1000_tx_ring *txdr) | 
 | { | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 | 	int size; | 
 |  | 
 | 	size = sizeof(struct e1000_buffer) * txdr->count; | 
 | 	txdr->buffer_info = vmalloc(size); | 
 | 	if (!txdr->buffer_info) { | 
 | 		DPRINTK(PROBE, ERR, | 
 | 		"Unable to allocate memory for the transmit descriptor ring\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	memset(txdr->buffer_info, 0, size); | 
 |  | 
 | 	/* round up to nearest 4K */ | 
 |  | 
 | 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc); | 
 | 	txdr->size = ALIGN(txdr->size, 4096); | 
 |  | 
 | 	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); | 
 | 	if (!txdr->desc) { | 
 | setup_tx_desc_die: | 
 | 		vfree(txdr->buffer_info); | 
 | 		DPRINTK(PROBE, ERR, | 
 | 		"Unable to allocate memory for the transmit descriptor ring\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Fix for errata 23, can't cross 64kB boundary */ | 
 | 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { | 
 | 		void *olddesc = txdr->desc; | 
 | 		dma_addr_t olddma = txdr->dma; | 
 | 		DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes " | 
 | 				     "at %p\n", txdr->size, txdr->desc); | 
 | 		/* Try again, without freeing the previous */ | 
 | 		txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); | 
 | 		/* Failed allocation, critical failure */ | 
 | 		if (!txdr->desc) { | 
 | 			pci_free_consistent(pdev, txdr->size, olddesc, olddma); | 
 | 			goto setup_tx_desc_die; | 
 | 		} | 
 |  | 
 | 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { | 
 | 			/* give up */ | 
 | 			pci_free_consistent(pdev, txdr->size, txdr->desc, | 
 | 					    txdr->dma); | 
 | 			pci_free_consistent(pdev, txdr->size, olddesc, olddma); | 
 | 			DPRINTK(PROBE, ERR, | 
 | 				"Unable to allocate aligned memory " | 
 | 				"for the transmit descriptor ring\n"); | 
 | 			vfree(txdr->buffer_info); | 
 | 			return -ENOMEM; | 
 | 		} else { | 
 | 			/* Free old allocation, new allocation was successful */ | 
 | 			pci_free_consistent(pdev, txdr->size, olddesc, olddma); | 
 | 		} | 
 | 	} | 
 | 	memset(txdr->desc, 0, txdr->size); | 
 |  | 
 | 	txdr->next_to_use = 0; | 
 | 	txdr->next_to_clean = 0; | 
 | 	spin_lock_init(&txdr->tx_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources | 
 |  * 				  (Descriptors) for all queues | 
 |  * @adapter: board private structure | 
 |  * | 
 |  * Return 0 on success, negative on failure | 
 |  **/ | 
 |  | 
 | int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) | 
 | { | 
 | 	int i, err = 0; | 
 |  | 
 | 	for (i = 0; i < adapter->num_tx_queues; i++) { | 
 | 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); | 
 | 		if (err) { | 
 | 			DPRINTK(PROBE, ERR, | 
 | 				"Allocation for Tx Queue %u failed\n", i); | 
 | 			for (i-- ; i >= 0; i--) | 
 | 				e1000_free_tx_resources(adapter, | 
 | 							&adapter->tx_ring[i]); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset | 
 |  * @adapter: board private structure | 
 |  * | 
 |  * Configure the Tx unit of the MAC after a reset. | 
 |  **/ | 
 |  | 
 | static void e1000_configure_tx(struct e1000_adapter *adapter) | 
 | { | 
 | 	u64 tdba; | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 tdlen, tctl, tipg, tarc; | 
 | 	u32 ipgr1, ipgr2; | 
 |  | 
 | 	/* Setup the HW Tx Head and Tail descriptor pointers */ | 
 |  | 
 | 	switch (adapter->num_tx_queues) { | 
 | 	case 1: | 
 | 	default: | 
 | 		tdba = adapter->tx_ring[0].dma; | 
 | 		tdlen = adapter->tx_ring[0].count * | 
 | 			sizeof(struct e1000_tx_desc); | 
 | 		ew32(TDLEN, tdlen); | 
 | 		ew32(TDBAH, (tdba >> 32)); | 
 | 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); | 
 | 		ew32(TDT, 0); | 
 | 		ew32(TDH, 0); | 
 | 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); | 
 | 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* Set the default values for the Tx Inter Packet Gap timer */ | 
 | 	if (hw->mac_type <= e1000_82547_rev_2 && | 
 | 	    (hw->media_type == e1000_media_type_fiber || | 
 | 	     hw->media_type == e1000_media_type_internal_serdes)) | 
 | 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER; | 
 | 	else | 
 | 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER; | 
 |  | 
 | 	switch (hw->mac_type) { | 
 | 	case e1000_82542_rev2_0: | 
 | 	case e1000_82542_rev2_1: | 
 | 		tipg = DEFAULT_82542_TIPG_IPGT; | 
 | 		ipgr1 = DEFAULT_82542_TIPG_IPGR1; | 
 | 		ipgr2 = DEFAULT_82542_TIPG_IPGR2; | 
 | 		break; | 
 | 	case e1000_80003es2lan: | 
 | 		ipgr1 = DEFAULT_82543_TIPG_IPGR1; | 
 | 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; | 
 | 		break; | 
 | 	default: | 
 | 		ipgr1 = DEFAULT_82543_TIPG_IPGR1; | 
 | 		ipgr2 = DEFAULT_82543_TIPG_IPGR2; | 
 | 		break; | 
 | 	} | 
 | 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; | 
 | 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; | 
 | 	ew32(TIPG, tipg); | 
 |  | 
 | 	/* Set the Tx Interrupt Delay register */ | 
 |  | 
 | 	ew32(TIDV, adapter->tx_int_delay); | 
 | 	if (hw->mac_type >= e1000_82540) | 
 | 		ew32(TADV, adapter->tx_abs_int_delay); | 
 |  | 
 | 	/* Program the Transmit Control Register */ | 
 |  | 
 | 	tctl = er32(TCTL); | 
 | 	tctl &= ~E1000_TCTL_CT; | 
 | 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | 
 | 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | 
 |  | 
 | 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { | 
 | 		tarc = er32(TARC0); | 
 | 		/* set the speed mode bit, we'll clear it if we're not at | 
 | 		 * gigabit link later */ | 
 | 		tarc |= (1 << 21); | 
 | 		ew32(TARC0, tarc); | 
 | 	} else if (hw->mac_type == e1000_80003es2lan) { | 
 | 		tarc = er32(TARC0); | 
 | 		tarc |= 1; | 
 | 		ew32(TARC0, tarc); | 
 | 		tarc = er32(TARC1); | 
 | 		tarc |= 1; | 
 | 		ew32(TARC1, tarc); | 
 | 	} | 
 |  | 
 | 	e1000_config_collision_dist(hw); | 
 |  | 
 | 	/* Setup Transmit Descriptor Settings for eop descriptor */ | 
 | 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; | 
 |  | 
 | 	/* only set IDE if we are delaying interrupts using the timers */ | 
 | 	if (adapter->tx_int_delay) | 
 | 		adapter->txd_cmd |= E1000_TXD_CMD_IDE; | 
 |  | 
 | 	if (hw->mac_type < e1000_82543) | 
 | 		adapter->txd_cmd |= E1000_TXD_CMD_RPS; | 
 | 	else | 
 | 		adapter->txd_cmd |= E1000_TXD_CMD_RS; | 
 |  | 
 | 	/* Cache if we're 82544 running in PCI-X because we'll | 
 | 	 * need this to apply a workaround later in the send path. */ | 
 | 	if (hw->mac_type == e1000_82544 && | 
 | 	    hw->bus_type == e1000_bus_type_pcix) | 
 | 		adapter->pcix_82544 = 1; | 
 |  | 
 | 	ew32(TCTL, tctl); | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_setup_rx_resources - allocate Rx resources (Descriptors) | 
 |  * @adapter: board private structure | 
 |  * @rxdr:    rx descriptor ring (for a specific queue) to setup | 
 |  * | 
 |  * Returns 0 on success, negative on failure | 
 |  **/ | 
 |  | 
 | static int e1000_setup_rx_resources(struct e1000_adapter *adapter, | 
 | 				    struct e1000_rx_ring *rxdr) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 | 	int size, desc_len; | 
 |  | 
 | 	size = sizeof(struct e1000_buffer) * rxdr->count; | 
 | 	rxdr->buffer_info = vmalloc(size); | 
 | 	if (!rxdr->buffer_info) { | 
 | 		DPRINTK(PROBE, ERR, | 
 | 		"Unable to allocate memory for the receive descriptor ring\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	memset(rxdr->buffer_info, 0, size); | 
 |  | 
 | 	if (hw->mac_type <= e1000_82547_rev_2) | 
 | 		desc_len = sizeof(struct e1000_rx_desc); | 
 | 	else | 
 | 		desc_len = sizeof(union e1000_rx_desc_packet_split); | 
 |  | 
 | 	/* Round up to nearest 4K */ | 
 |  | 
 | 	rxdr->size = rxdr->count * desc_len; | 
 | 	rxdr->size = ALIGN(rxdr->size, 4096); | 
 |  | 
 | 	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); | 
 |  | 
 | 	if (!rxdr->desc) { | 
 | 		DPRINTK(PROBE, ERR, | 
 | 		"Unable to allocate memory for the receive descriptor ring\n"); | 
 | setup_rx_desc_die: | 
 | 		vfree(rxdr->buffer_info); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Fix for errata 23, can't cross 64kB boundary */ | 
 | 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { | 
 | 		void *olddesc = rxdr->desc; | 
 | 		dma_addr_t olddma = rxdr->dma; | 
 | 		DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes " | 
 | 				     "at %p\n", rxdr->size, rxdr->desc); | 
 | 		/* Try again, without freeing the previous */ | 
 | 		rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); | 
 | 		/* Failed allocation, critical failure */ | 
 | 		if (!rxdr->desc) { | 
 | 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma); | 
 | 			DPRINTK(PROBE, ERR, | 
 | 				"Unable to allocate memory " | 
 | 				"for the receive descriptor ring\n"); | 
 | 			goto setup_rx_desc_die; | 
 | 		} | 
 |  | 
 | 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { | 
 | 			/* give up */ | 
 | 			pci_free_consistent(pdev, rxdr->size, rxdr->desc, | 
 | 					    rxdr->dma); | 
 | 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma); | 
 | 			DPRINTK(PROBE, ERR, | 
 | 				"Unable to allocate aligned memory " | 
 | 				"for the receive descriptor ring\n"); | 
 | 			goto setup_rx_desc_die; | 
 | 		} else { | 
 | 			/* Free old allocation, new allocation was successful */ | 
 | 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma); | 
 | 		} | 
 | 	} | 
 | 	memset(rxdr->desc, 0, rxdr->size); | 
 |  | 
 | 	rxdr->next_to_clean = 0; | 
 | 	rxdr->next_to_use = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources | 
 |  * 				  (Descriptors) for all queues | 
 |  * @adapter: board private structure | 
 |  * | 
 |  * Return 0 on success, negative on failure | 
 |  **/ | 
 |  | 
 | int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) | 
 | { | 
 | 	int i, err = 0; | 
 |  | 
 | 	for (i = 0; i < adapter->num_rx_queues; i++) { | 
 | 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); | 
 | 		if (err) { | 
 | 			DPRINTK(PROBE, ERR, | 
 | 				"Allocation for Rx Queue %u failed\n", i); | 
 | 			for (i-- ; i >= 0; i--) | 
 | 				e1000_free_rx_resources(adapter, | 
 | 							&adapter->rx_ring[i]); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_setup_rctl - configure the receive control registers | 
 |  * @adapter: Board private structure | 
 |  **/ | 
 | #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ | 
 | 			(((S) & (PAGE_SIZE - 1)) ? 1 : 0)) | 
 | static void e1000_setup_rctl(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 rctl; | 
 |  | 
 | 	rctl = er32(RCTL); | 
 |  | 
 | 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | 
 |  | 
 | 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | | 
 | 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | 
 | 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT); | 
 |  | 
 | 	if (hw->tbi_compatibility_on == 1) | 
 | 		rctl |= E1000_RCTL_SBP; | 
 | 	else | 
 | 		rctl &= ~E1000_RCTL_SBP; | 
 |  | 
 | 	if (adapter->netdev->mtu <= ETH_DATA_LEN) | 
 | 		rctl &= ~E1000_RCTL_LPE; | 
 | 	else | 
 | 		rctl |= E1000_RCTL_LPE; | 
 |  | 
 | 	/* Setup buffer sizes */ | 
 | 	rctl &= ~E1000_RCTL_SZ_4096; | 
 | 	rctl |= E1000_RCTL_BSEX; | 
 | 	switch (adapter->rx_buffer_len) { | 
 | 		case E1000_RXBUFFER_256: | 
 | 			rctl |= E1000_RCTL_SZ_256; | 
 | 			rctl &= ~E1000_RCTL_BSEX; | 
 | 			break; | 
 | 		case E1000_RXBUFFER_512: | 
 | 			rctl |= E1000_RCTL_SZ_512; | 
 | 			rctl &= ~E1000_RCTL_BSEX; | 
 | 			break; | 
 | 		case E1000_RXBUFFER_1024: | 
 | 			rctl |= E1000_RCTL_SZ_1024; | 
 | 			rctl &= ~E1000_RCTL_BSEX; | 
 | 			break; | 
 | 		case E1000_RXBUFFER_2048: | 
 | 		default: | 
 | 			rctl |= E1000_RCTL_SZ_2048; | 
 | 			rctl &= ~E1000_RCTL_BSEX; | 
 | 			break; | 
 | 		case E1000_RXBUFFER_4096: | 
 | 			rctl |= E1000_RCTL_SZ_4096; | 
 | 			break; | 
 | 		case E1000_RXBUFFER_8192: | 
 | 			rctl |= E1000_RCTL_SZ_8192; | 
 | 			break; | 
 | 		case E1000_RXBUFFER_16384: | 
 | 			rctl |= E1000_RCTL_SZ_16384; | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	ew32(RCTL, rctl); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_configure_rx - Configure 8254x Receive Unit after Reset | 
 |  * @adapter: board private structure | 
 |  * | 
 |  * Configure the Rx unit of the MAC after a reset. | 
 |  **/ | 
 |  | 
 | static void e1000_configure_rx(struct e1000_adapter *adapter) | 
 | { | 
 | 	u64 rdba; | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 rdlen, rctl, rxcsum, ctrl_ext; | 
 |  | 
 | 	rdlen = adapter->rx_ring[0].count * | 
 | 		sizeof(struct e1000_rx_desc); | 
 | 	adapter->clean_rx = e1000_clean_rx_irq; | 
 | 	adapter->alloc_rx_buf = e1000_alloc_rx_buffers; | 
 |  | 
 | 	/* disable receives while setting up the descriptors */ | 
 | 	rctl = er32(RCTL); | 
 | 	ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
 |  | 
 | 	/* set the Receive Delay Timer Register */ | 
 | 	ew32(RDTR, adapter->rx_int_delay); | 
 |  | 
 | 	if (hw->mac_type >= e1000_82540) { | 
 | 		ew32(RADV, adapter->rx_abs_int_delay); | 
 | 		if (adapter->itr_setting != 0) | 
 | 			ew32(ITR, 1000000000 / (adapter->itr * 256)); | 
 | 	} | 
 |  | 
 | 	if (hw->mac_type >= e1000_82571) { | 
 | 		ctrl_ext = er32(CTRL_EXT); | 
 | 		/* Reset delay timers after every interrupt */ | 
 | 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; | 
 | 		/* Auto-Mask interrupts upon ICR access */ | 
 | 		ctrl_ext |= E1000_CTRL_EXT_IAME; | 
 | 		ew32(IAM, 0xffffffff); | 
 | 		ew32(CTRL_EXT, ctrl_ext); | 
 | 		E1000_WRITE_FLUSH(); | 
 | 	} | 
 |  | 
 | 	/* Setup the HW Rx Head and Tail Descriptor Pointers and | 
 | 	 * the Base and Length of the Rx Descriptor Ring */ | 
 | 	switch (adapter->num_rx_queues) { | 
 | 	case 1: | 
 | 	default: | 
 | 		rdba = adapter->rx_ring[0].dma; | 
 | 		ew32(RDLEN, rdlen); | 
 | 		ew32(RDBAH, (rdba >> 32)); | 
 | 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); | 
 | 		ew32(RDT, 0); | 
 | 		ew32(RDH, 0); | 
 | 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); | 
 | 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */ | 
 | 	if (hw->mac_type >= e1000_82543) { | 
 | 		rxcsum = er32(RXCSUM); | 
 | 		if (adapter->rx_csum) | 
 | 			rxcsum |= E1000_RXCSUM_TUOFL; | 
 | 		else | 
 | 			/* don't need to clear IPPCSE as it defaults to 0 */ | 
 | 			rxcsum &= ~E1000_RXCSUM_TUOFL; | 
 | 		ew32(RXCSUM, rxcsum); | 
 | 	} | 
 |  | 
 | 	/* Enable Receives */ | 
 | 	ew32(RCTL, rctl); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_free_tx_resources - Free Tx Resources per Queue | 
 |  * @adapter: board private structure | 
 |  * @tx_ring: Tx descriptor ring for a specific queue | 
 |  * | 
 |  * Free all transmit software resources | 
 |  **/ | 
 |  | 
 | static void e1000_free_tx_resources(struct e1000_adapter *adapter, | 
 | 				    struct e1000_tx_ring *tx_ring) | 
 | { | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 |  | 
 | 	e1000_clean_tx_ring(adapter, tx_ring); | 
 |  | 
 | 	vfree(tx_ring->buffer_info); | 
 | 	tx_ring->buffer_info = NULL; | 
 |  | 
 | 	pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma); | 
 |  | 
 | 	tx_ring->desc = NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_free_all_tx_resources - Free Tx Resources for All Queues | 
 |  * @adapter: board private structure | 
 |  * | 
 |  * Free all transmit software resources | 
 |  **/ | 
 |  | 
 | void e1000_free_all_tx_resources(struct e1000_adapter *adapter) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < adapter->num_tx_queues; i++) | 
 | 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); | 
 | } | 
 |  | 
 | static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, | 
 | 					     struct e1000_buffer *buffer_info) | 
 | { | 
 | 	if (buffer_info->dma) { | 
 | 		pci_unmap_page(adapter->pdev, | 
 | 				buffer_info->dma, | 
 | 				buffer_info->length, | 
 | 				PCI_DMA_TODEVICE); | 
 | 		buffer_info->dma = 0; | 
 | 	} | 
 | 	if (buffer_info->skb) { | 
 | 		dev_kfree_skb_any(buffer_info->skb); | 
 | 		buffer_info->skb = NULL; | 
 | 	} | 
 | 	/* buffer_info must be completely set up in the transmit path */ | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_clean_tx_ring - Free Tx Buffers | 
 |  * @adapter: board private structure | 
 |  * @tx_ring: ring to be cleaned | 
 |  **/ | 
 |  | 
 | static void e1000_clean_tx_ring(struct e1000_adapter *adapter, | 
 | 				struct e1000_tx_ring *tx_ring) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	unsigned long size; | 
 | 	unsigned int i; | 
 |  | 
 | 	/* Free all the Tx ring sk_buffs */ | 
 |  | 
 | 	for (i = 0; i < tx_ring->count; i++) { | 
 | 		buffer_info = &tx_ring->buffer_info[i]; | 
 | 		e1000_unmap_and_free_tx_resource(adapter, buffer_info); | 
 | 	} | 
 |  | 
 | 	size = sizeof(struct e1000_buffer) * tx_ring->count; | 
 | 	memset(tx_ring->buffer_info, 0, size); | 
 |  | 
 | 	/* Zero out the descriptor ring */ | 
 |  | 
 | 	memset(tx_ring->desc, 0, tx_ring->size); | 
 |  | 
 | 	tx_ring->next_to_use = 0; | 
 | 	tx_ring->next_to_clean = 0; | 
 | 	tx_ring->last_tx_tso = 0; | 
 |  | 
 | 	writel(0, hw->hw_addr + tx_ring->tdh); | 
 | 	writel(0, hw->hw_addr + tx_ring->tdt); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues | 
 |  * @adapter: board private structure | 
 |  **/ | 
 |  | 
 | static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < adapter->num_tx_queues; i++) | 
 | 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_free_rx_resources - Free Rx Resources | 
 |  * @adapter: board private structure | 
 |  * @rx_ring: ring to clean the resources from | 
 |  * | 
 |  * Free all receive software resources | 
 |  **/ | 
 |  | 
 | static void e1000_free_rx_resources(struct e1000_adapter *adapter, | 
 | 				    struct e1000_rx_ring *rx_ring) | 
 | { | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 |  | 
 | 	e1000_clean_rx_ring(adapter, rx_ring); | 
 |  | 
 | 	vfree(rx_ring->buffer_info); | 
 | 	rx_ring->buffer_info = NULL; | 
 |  | 
 | 	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); | 
 |  | 
 | 	rx_ring->desc = NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_free_all_rx_resources - Free Rx Resources for All Queues | 
 |  * @adapter: board private structure | 
 |  * | 
 |  * Free all receive software resources | 
 |  **/ | 
 |  | 
 | void e1000_free_all_rx_resources(struct e1000_adapter *adapter) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < adapter->num_rx_queues; i++) | 
 | 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_clean_rx_ring - Free Rx Buffers per Queue | 
 |  * @adapter: board private structure | 
 |  * @rx_ring: ring to free buffers from | 
 |  **/ | 
 |  | 
 | static void e1000_clean_rx_ring(struct e1000_adapter *adapter, | 
 | 				struct e1000_rx_ring *rx_ring) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 | 	unsigned long size; | 
 | 	unsigned int i; | 
 |  | 
 | 	/* Free all the Rx ring sk_buffs */ | 
 | 	for (i = 0; i < rx_ring->count; i++) { | 
 | 		buffer_info = &rx_ring->buffer_info[i]; | 
 | 		if (buffer_info->skb) { | 
 | 			pci_unmap_single(pdev, | 
 | 					 buffer_info->dma, | 
 | 					 buffer_info->length, | 
 | 					 PCI_DMA_FROMDEVICE); | 
 |  | 
 | 			dev_kfree_skb(buffer_info->skb); | 
 | 			buffer_info->skb = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	size = sizeof(struct e1000_buffer) * rx_ring->count; | 
 | 	memset(rx_ring->buffer_info, 0, size); | 
 |  | 
 | 	/* Zero out the descriptor ring */ | 
 |  | 
 | 	memset(rx_ring->desc, 0, rx_ring->size); | 
 |  | 
 | 	rx_ring->next_to_clean = 0; | 
 | 	rx_ring->next_to_use = 0; | 
 |  | 
 | 	writel(0, hw->hw_addr + rx_ring->rdh); | 
 | 	writel(0, hw->hw_addr + rx_ring->rdt); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues | 
 |  * @adapter: board private structure | 
 |  **/ | 
 |  | 
 | static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < adapter->num_rx_queues; i++) | 
 | 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); | 
 | } | 
 |  | 
 | /* The 82542 2.0 (revision 2) needs to have the receive unit in reset | 
 |  * and memory write and invalidate disabled for certain operations | 
 |  */ | 
 | static void e1000_enter_82542_rst(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	u32 rctl; | 
 |  | 
 | 	e1000_pci_clear_mwi(hw); | 
 |  | 
 | 	rctl = er32(RCTL); | 
 | 	rctl |= E1000_RCTL_RST; | 
 | 	ew32(RCTL, rctl); | 
 | 	E1000_WRITE_FLUSH(); | 
 | 	mdelay(5); | 
 |  | 
 | 	if (netif_running(netdev)) | 
 | 		e1000_clean_all_rx_rings(adapter); | 
 | } | 
 |  | 
 | static void e1000_leave_82542_rst(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	u32 rctl; | 
 |  | 
 | 	rctl = er32(RCTL); | 
 | 	rctl &= ~E1000_RCTL_RST; | 
 | 	ew32(RCTL, rctl); | 
 | 	E1000_WRITE_FLUSH(); | 
 | 	mdelay(5); | 
 |  | 
 | 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | 
 | 		e1000_pci_set_mwi(hw); | 
 |  | 
 | 	if (netif_running(netdev)) { | 
 | 		/* No need to loop, because 82542 supports only 1 queue */ | 
 | 		struct e1000_rx_ring *ring = &adapter->rx_ring[0]; | 
 | 		e1000_configure_rx(adapter); | 
 | 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_set_mac - Change the Ethernet Address of the NIC | 
 |  * @netdev: network interface device structure | 
 |  * @p: pointer to an address structure | 
 |  * | 
 |  * Returns 0 on success, negative on failure | 
 |  **/ | 
 |  | 
 | static int e1000_set_mac(struct net_device *netdev, void *p) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct sockaddr *addr = p; | 
 |  | 
 | 	if (!is_valid_ether_addr(addr->sa_data)) | 
 | 		return -EADDRNOTAVAIL; | 
 |  | 
 | 	/* 82542 2.0 needs to be in reset to write receive address registers */ | 
 |  | 
 | 	if (hw->mac_type == e1000_82542_rev2_0) | 
 | 		e1000_enter_82542_rst(adapter); | 
 |  | 
 | 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | 
 | 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); | 
 |  | 
 | 	e1000_rar_set(hw, hw->mac_addr, 0); | 
 |  | 
 | 	/* With 82571 controllers, LAA may be overwritten (with the default) | 
 | 	 * due to controller reset from the other port. */ | 
 | 	if (hw->mac_type == e1000_82571) { | 
 | 		/* activate the work around */ | 
 | 		hw->laa_is_present = 1; | 
 |  | 
 | 		/* Hold a copy of the LAA in RAR[14] This is done so that | 
 | 		 * between the time RAR[0] gets clobbered  and the time it | 
 | 		 * gets fixed (in e1000_watchdog), the actual LAA is in one | 
 | 		 * of the RARs and no incoming packets directed to this port | 
 | 		 * are dropped. Eventaully the LAA will be in RAR[0] and | 
 | 		 * RAR[14] */ | 
 | 		e1000_rar_set(hw, hw->mac_addr, | 
 | 					E1000_RAR_ENTRIES - 1); | 
 | 	} | 
 |  | 
 | 	if (hw->mac_type == e1000_82542_rev2_0) | 
 | 		e1000_leave_82542_rst(adapter); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set | 
 |  * @netdev: network interface device structure | 
 |  * | 
 |  * The set_rx_mode entry point is called whenever the unicast or multicast | 
 |  * address lists or the network interface flags are updated. This routine is | 
 |  * responsible for configuring the hardware for proper unicast, multicast, | 
 |  * promiscuous mode, and all-multi behavior. | 
 |  **/ | 
 |  | 
 | static void e1000_set_rx_mode(struct net_device *netdev) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct dev_addr_list *uc_ptr; | 
 | 	struct dev_addr_list *mc_ptr; | 
 | 	u32 rctl; | 
 | 	u32 hash_value; | 
 | 	int i, rar_entries = E1000_RAR_ENTRIES; | 
 | 	int mta_reg_count = (hw->mac_type == e1000_ich8lan) ? | 
 | 				E1000_NUM_MTA_REGISTERS_ICH8LAN : | 
 | 				E1000_NUM_MTA_REGISTERS; | 
 |  | 
 | 	if (hw->mac_type == e1000_ich8lan) | 
 | 		rar_entries = E1000_RAR_ENTRIES_ICH8LAN; | 
 |  | 
 | 	/* reserve RAR[14] for LAA over-write work-around */ | 
 | 	if (hw->mac_type == e1000_82571) | 
 | 		rar_entries--; | 
 |  | 
 | 	/* Check for Promiscuous and All Multicast modes */ | 
 |  | 
 | 	rctl = er32(RCTL); | 
 |  | 
 | 	if (netdev->flags & IFF_PROMISC) { | 
 | 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | 
 | 		rctl &= ~E1000_RCTL_VFE; | 
 | 	} else { | 
 | 		if (netdev->flags & IFF_ALLMULTI) { | 
 | 			rctl |= E1000_RCTL_MPE; | 
 | 		} else { | 
 | 			rctl &= ~E1000_RCTL_MPE; | 
 | 		} | 
 | 		if (adapter->hw.mac_type != e1000_ich8lan) | 
 | 			rctl |= E1000_RCTL_VFE; | 
 | 	} | 
 |  | 
 | 	uc_ptr = NULL; | 
 | 	if (netdev->uc_count > rar_entries - 1) { | 
 | 		rctl |= E1000_RCTL_UPE; | 
 | 	} else if (!(netdev->flags & IFF_PROMISC)) { | 
 | 		rctl &= ~E1000_RCTL_UPE; | 
 | 		uc_ptr = netdev->uc_list; | 
 | 	} | 
 |  | 
 | 	ew32(RCTL, rctl); | 
 |  | 
 | 	/* 82542 2.0 needs to be in reset to write receive address registers */ | 
 |  | 
 | 	if (hw->mac_type == e1000_82542_rev2_0) | 
 | 		e1000_enter_82542_rst(adapter); | 
 |  | 
 | 	/* load the first 14 addresses into the exact filters 1-14. Unicast | 
 | 	 * addresses take precedence to avoid disabling unicast filtering | 
 | 	 * when possible. | 
 | 	 * | 
 | 	 * RAR 0 is used for the station MAC adddress | 
 | 	 * if there are not 14 addresses, go ahead and clear the filters | 
 | 	 * -- with 82571 controllers only 0-13 entries are filled here | 
 | 	 */ | 
 | 	mc_ptr = netdev->mc_list; | 
 |  | 
 | 	for (i = 1; i < rar_entries; i++) { | 
 | 		if (uc_ptr) { | 
 | 			e1000_rar_set(hw, uc_ptr->da_addr, i); | 
 | 			uc_ptr = uc_ptr->next; | 
 | 		} else if (mc_ptr) { | 
 | 			e1000_rar_set(hw, mc_ptr->da_addr, i); | 
 | 			mc_ptr = mc_ptr->next; | 
 | 		} else { | 
 | 			E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); | 
 | 			E1000_WRITE_FLUSH(); | 
 | 			E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); | 
 | 			E1000_WRITE_FLUSH(); | 
 | 		} | 
 | 	} | 
 | 	WARN_ON(uc_ptr != NULL); | 
 |  | 
 | 	/* clear the old settings from the multicast hash table */ | 
 |  | 
 | 	for (i = 0; i < mta_reg_count; i++) { | 
 | 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 
 | 		E1000_WRITE_FLUSH(); | 
 | 	} | 
 |  | 
 | 	/* load any remaining addresses into the hash table */ | 
 |  | 
 | 	for (; mc_ptr; mc_ptr = mc_ptr->next) { | 
 | 		hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr); | 
 | 		e1000_mta_set(hw, hash_value); | 
 | 	} | 
 |  | 
 | 	if (hw->mac_type == e1000_82542_rev2_0) | 
 | 		e1000_leave_82542_rst(adapter); | 
 | } | 
 |  | 
 | /* Need to wait a few seconds after link up to get diagnostic information from | 
 |  * the phy */ | 
 |  | 
 | static void e1000_update_phy_info(unsigned long data) | 
 | { | 
 | 	struct e1000_adapter *adapter = (struct e1000_adapter *)data; | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	e1000_phy_get_info(hw, &adapter->phy_info); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_82547_tx_fifo_stall - Timer Call-back | 
 |  * @data: pointer to adapter cast into an unsigned long | 
 |  **/ | 
 |  | 
 | static void e1000_82547_tx_fifo_stall(unsigned long data) | 
 | { | 
 | 	struct e1000_adapter *adapter = (struct e1000_adapter *)data; | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	u32 tctl; | 
 |  | 
 | 	if (atomic_read(&adapter->tx_fifo_stall)) { | 
 | 		if ((er32(TDT) == er32(TDH)) && | 
 | 		   (er32(TDFT) == er32(TDFH)) && | 
 | 		   (er32(TDFTS) == er32(TDFHS))) { | 
 | 			tctl = er32(TCTL); | 
 | 			ew32(TCTL, tctl & ~E1000_TCTL_EN); | 
 | 			ew32(TDFT, adapter->tx_head_addr); | 
 | 			ew32(TDFH, adapter->tx_head_addr); | 
 | 			ew32(TDFTS, adapter->tx_head_addr); | 
 | 			ew32(TDFHS, adapter->tx_head_addr); | 
 | 			ew32(TCTL, tctl); | 
 | 			E1000_WRITE_FLUSH(); | 
 |  | 
 | 			adapter->tx_fifo_head = 0; | 
 | 			atomic_set(&adapter->tx_fifo_stall, 0); | 
 | 			netif_wake_queue(netdev); | 
 | 		} else { | 
 | 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_watchdog - Timer Call-back | 
 |  * @data: pointer to adapter cast into an unsigned long | 
 |  **/ | 
 | static void e1000_watchdog(unsigned long data) | 
 | { | 
 | 	struct e1000_adapter *adapter = (struct e1000_adapter *)data; | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	struct e1000_tx_ring *txdr = adapter->tx_ring; | 
 | 	u32 link, tctl; | 
 | 	s32 ret_val; | 
 |  | 
 | 	ret_val = e1000_check_for_link(hw); | 
 | 	if ((ret_val == E1000_ERR_PHY) && | 
 | 	    (hw->phy_type == e1000_phy_igp_3) && | 
 | 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { | 
 | 		/* See e1000_kumeran_lock_loss_workaround() */ | 
 | 		DPRINTK(LINK, INFO, | 
 | 			"Gigabit has been disabled, downgrading speed\n"); | 
 | 	} | 
 |  | 
 | 	if (hw->mac_type == e1000_82573) { | 
 | 		e1000_enable_tx_pkt_filtering(hw); | 
 | 		if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id) | 
 | 			e1000_update_mng_vlan(adapter); | 
 | 	} | 
 |  | 
 | 	if ((hw->media_type == e1000_media_type_internal_serdes) && | 
 | 	   !(er32(TXCW) & E1000_TXCW_ANE)) | 
 | 		link = !hw->serdes_link_down; | 
 | 	else | 
 | 		link = er32(STATUS) & E1000_STATUS_LU; | 
 |  | 
 | 	if (link) { | 
 | 		if (!netif_carrier_ok(netdev)) { | 
 | 			u32 ctrl; | 
 | 			bool txb2b = true; | 
 | 			e1000_get_speed_and_duplex(hw, | 
 | 			                           &adapter->link_speed, | 
 | 			                           &adapter->link_duplex); | 
 |  | 
 | 			ctrl = er32(CTRL); | 
 | 			DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, " | 
 | 			        "Flow Control: %s\n", | 
 | 			        adapter->link_speed, | 
 | 			        adapter->link_duplex == FULL_DUPLEX ? | 
 | 			        "Full Duplex" : "Half Duplex", | 
 | 			        ((ctrl & E1000_CTRL_TFCE) && (ctrl & | 
 | 			        E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & | 
 | 			        E1000_CTRL_RFCE) ? "RX" : ((ctrl & | 
 | 			        E1000_CTRL_TFCE) ? "TX" : "None" ))); | 
 |  | 
 | 			/* tweak tx_queue_len according to speed/duplex | 
 | 			 * and adjust the timeout factor */ | 
 | 			netdev->tx_queue_len = adapter->tx_queue_len; | 
 | 			adapter->tx_timeout_factor = 1; | 
 | 			switch (adapter->link_speed) { | 
 | 			case SPEED_10: | 
 | 				txb2b = false; | 
 | 				netdev->tx_queue_len = 10; | 
 | 				adapter->tx_timeout_factor = 8; | 
 | 				break; | 
 | 			case SPEED_100: | 
 | 				txb2b = false; | 
 | 				netdev->tx_queue_len = 100; | 
 | 				/* maybe add some timeout factor ? */ | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			if ((hw->mac_type == e1000_82571 || | 
 | 			     hw->mac_type == e1000_82572) && | 
 | 			    !txb2b) { | 
 | 				u32 tarc0; | 
 | 				tarc0 = er32(TARC0); | 
 | 				tarc0 &= ~(1 << 21); | 
 | 				ew32(TARC0, tarc0); | 
 | 			} | 
 |  | 
 | 			/* disable TSO for pcie and 10/100 speeds, to avoid | 
 | 			 * some hardware issues */ | 
 | 			if (!adapter->tso_force && | 
 | 			    hw->bus_type == e1000_bus_type_pci_express){ | 
 | 				switch (adapter->link_speed) { | 
 | 				case SPEED_10: | 
 | 				case SPEED_100: | 
 | 					DPRINTK(PROBE,INFO, | 
 | 				        "10/100 speed: disabling TSO\n"); | 
 | 					netdev->features &= ~NETIF_F_TSO; | 
 | 					netdev->features &= ~NETIF_F_TSO6; | 
 | 					break; | 
 | 				case SPEED_1000: | 
 | 					netdev->features |= NETIF_F_TSO; | 
 | 					netdev->features |= NETIF_F_TSO6; | 
 | 					break; | 
 | 				default: | 
 | 					/* oops */ | 
 | 					break; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			/* enable transmits in the hardware, need to do this | 
 | 			 * after setting TARC0 */ | 
 | 			tctl = er32(TCTL); | 
 | 			tctl |= E1000_TCTL_EN; | 
 | 			ew32(TCTL, tctl); | 
 |  | 
 | 			netif_carrier_on(netdev); | 
 | 			netif_wake_queue(netdev); | 
 | 			mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); | 
 | 			adapter->smartspeed = 0; | 
 | 		} else { | 
 | 			/* make sure the receive unit is started */ | 
 | 			if (hw->rx_needs_kicking) { | 
 | 				u32 rctl = er32(RCTL); | 
 | 				ew32(RCTL, rctl | E1000_RCTL_EN); | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		if (netif_carrier_ok(netdev)) { | 
 | 			adapter->link_speed = 0; | 
 | 			adapter->link_duplex = 0; | 
 | 			DPRINTK(LINK, INFO, "NIC Link is Down\n"); | 
 | 			netif_carrier_off(netdev); | 
 | 			netif_stop_queue(netdev); | 
 | 			mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); | 
 |  | 
 | 			/* 80003ES2LAN workaround-- | 
 | 			 * For packet buffer work-around on link down event; | 
 | 			 * disable receives in the ISR and | 
 | 			 * reset device here in the watchdog | 
 | 			 */ | 
 | 			if (hw->mac_type == e1000_80003es2lan) | 
 | 				/* reset device */ | 
 | 				schedule_work(&adapter->reset_task); | 
 | 		} | 
 |  | 
 | 		e1000_smartspeed(adapter); | 
 | 	} | 
 |  | 
 | 	e1000_update_stats(adapter); | 
 |  | 
 | 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | 
 | 	adapter->tpt_old = adapter->stats.tpt; | 
 | 	hw->collision_delta = adapter->stats.colc - adapter->colc_old; | 
 | 	adapter->colc_old = adapter->stats.colc; | 
 |  | 
 | 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; | 
 | 	adapter->gorcl_old = adapter->stats.gorcl; | 
 | 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; | 
 | 	adapter->gotcl_old = adapter->stats.gotcl; | 
 |  | 
 | 	e1000_update_adaptive(hw); | 
 |  | 
 | 	if (!netif_carrier_ok(netdev)) { | 
 | 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { | 
 | 			/* We've lost link, so the controller stops DMA, | 
 | 			 * but we've got queued Tx work that's never going | 
 | 			 * to get done, so reset controller to flush Tx. | 
 | 			 * (Do the reset outside of interrupt context). */ | 
 | 			adapter->tx_timeout_count++; | 
 | 			schedule_work(&adapter->reset_task); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Cause software interrupt to ensure rx ring is cleaned */ | 
 | 	ew32(ICS, E1000_ICS_RXDMT0); | 
 |  | 
 | 	/* Force detection of hung controller every watchdog period */ | 
 | 	adapter->detect_tx_hung = true; | 
 |  | 
 | 	/* With 82571 controllers, LAA may be overwritten due to controller | 
 | 	 * reset from the other port. Set the appropriate LAA in RAR[0] */ | 
 | 	if (hw->mac_type == e1000_82571 && hw->laa_is_present) | 
 | 		e1000_rar_set(hw, hw->mac_addr, 0); | 
 |  | 
 | 	/* Reset the timer */ | 
 | 	mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ)); | 
 | } | 
 |  | 
 | enum latency_range { | 
 | 	lowest_latency = 0, | 
 | 	low_latency = 1, | 
 | 	bulk_latency = 2, | 
 | 	latency_invalid = 255 | 
 | }; | 
 |  | 
 | /** | 
 |  * e1000_update_itr - update the dynamic ITR value based on statistics | 
 |  *      Stores a new ITR value based on packets and byte | 
 |  *      counts during the last interrupt.  The advantage of per interrupt | 
 |  *      computation is faster updates and more accurate ITR for the current | 
 |  *      traffic pattern.  Constants in this function were computed | 
 |  *      based on theoretical maximum wire speed and thresholds were set based | 
 |  *      on testing data as well as attempting to minimize response time | 
 |  *      while increasing bulk throughput. | 
 |  *      this functionality is controlled by the InterruptThrottleRate module | 
 |  *      parameter (see e1000_param.c) | 
 |  * @adapter: pointer to adapter | 
 |  * @itr_setting: current adapter->itr | 
 |  * @packets: the number of packets during this measurement interval | 
 |  * @bytes: the number of bytes during this measurement interval | 
 |  **/ | 
 | static unsigned int e1000_update_itr(struct e1000_adapter *adapter, | 
 | 				     u16 itr_setting, int packets, int bytes) | 
 | { | 
 | 	unsigned int retval = itr_setting; | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	if (unlikely(hw->mac_type < e1000_82540)) | 
 | 		goto update_itr_done; | 
 |  | 
 | 	if (packets == 0) | 
 | 		goto update_itr_done; | 
 |  | 
 | 	switch (itr_setting) { | 
 | 	case lowest_latency: | 
 | 		/* jumbo frames get bulk treatment*/ | 
 | 		if (bytes/packets > 8000) | 
 | 			retval = bulk_latency; | 
 | 		else if ((packets < 5) && (bytes > 512)) | 
 | 			retval = low_latency; | 
 | 		break; | 
 | 	case low_latency:  /* 50 usec aka 20000 ints/s */ | 
 | 		if (bytes > 10000) { | 
 | 			/* jumbo frames need bulk latency setting */ | 
 | 			if (bytes/packets > 8000) | 
 | 				retval = bulk_latency; | 
 | 			else if ((packets < 10) || ((bytes/packets) > 1200)) | 
 | 				retval = bulk_latency; | 
 | 			else if ((packets > 35)) | 
 | 				retval = lowest_latency; | 
 | 		} else if (bytes/packets > 2000) | 
 | 			retval = bulk_latency; | 
 | 		else if (packets <= 2 && bytes < 512) | 
 | 			retval = lowest_latency; | 
 | 		break; | 
 | 	case bulk_latency: /* 250 usec aka 4000 ints/s */ | 
 | 		if (bytes > 25000) { | 
 | 			if (packets > 35) | 
 | 				retval = low_latency; | 
 | 		} else if (bytes < 6000) { | 
 | 			retval = low_latency; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | update_itr_done: | 
 | 	return retval; | 
 | } | 
 |  | 
 | static void e1000_set_itr(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u16 current_itr; | 
 | 	u32 new_itr = adapter->itr; | 
 |  | 
 | 	if (unlikely(hw->mac_type < e1000_82540)) | 
 | 		return; | 
 |  | 
 | 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | 
 | 	if (unlikely(adapter->link_speed != SPEED_1000)) { | 
 | 		current_itr = 0; | 
 | 		new_itr = 4000; | 
 | 		goto set_itr_now; | 
 | 	} | 
 |  | 
 | 	adapter->tx_itr = e1000_update_itr(adapter, | 
 | 	                            adapter->tx_itr, | 
 | 	                            adapter->total_tx_packets, | 
 | 	                            adapter->total_tx_bytes); | 
 | 	/* conservative mode (itr 3) eliminates the lowest_latency setting */ | 
 | 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) | 
 | 		adapter->tx_itr = low_latency; | 
 |  | 
 | 	adapter->rx_itr = e1000_update_itr(adapter, | 
 | 	                            adapter->rx_itr, | 
 | 	                            adapter->total_rx_packets, | 
 | 	                            adapter->total_rx_bytes); | 
 | 	/* conservative mode (itr 3) eliminates the lowest_latency setting */ | 
 | 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | 
 | 		adapter->rx_itr = low_latency; | 
 |  | 
 | 	current_itr = max(adapter->rx_itr, adapter->tx_itr); | 
 |  | 
 | 	switch (current_itr) { | 
 | 	/* counts and packets in update_itr are dependent on these numbers */ | 
 | 	case lowest_latency: | 
 | 		new_itr = 70000; | 
 | 		break; | 
 | 	case low_latency: | 
 | 		new_itr = 20000; /* aka hwitr = ~200 */ | 
 | 		break; | 
 | 	case bulk_latency: | 
 | 		new_itr = 4000; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | set_itr_now: | 
 | 	if (new_itr != adapter->itr) { | 
 | 		/* this attempts to bias the interrupt rate towards Bulk | 
 | 		 * by adding intermediate steps when interrupt rate is | 
 | 		 * increasing */ | 
 | 		new_itr = new_itr > adapter->itr ? | 
 | 		             min(adapter->itr + (new_itr >> 2), new_itr) : | 
 | 		             new_itr; | 
 | 		adapter->itr = new_itr; | 
 | 		ew32(ITR, 1000000000 / (new_itr * 256)); | 
 | 	} | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | #define E1000_TX_FLAGS_CSUM		0x00000001 | 
 | #define E1000_TX_FLAGS_VLAN		0x00000002 | 
 | #define E1000_TX_FLAGS_TSO		0x00000004 | 
 | #define E1000_TX_FLAGS_IPV4		0x00000008 | 
 | #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000 | 
 | #define E1000_TX_FLAGS_VLAN_SHIFT	16 | 
 |  | 
 | static int e1000_tso(struct e1000_adapter *adapter, | 
 | 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb) | 
 | { | 
 | 	struct e1000_context_desc *context_desc; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	unsigned int i; | 
 | 	u32 cmd_length = 0; | 
 | 	u16 ipcse = 0, tucse, mss; | 
 | 	u8 ipcss, ipcso, tucss, tucso, hdr_len; | 
 | 	int err; | 
 |  | 
 | 	if (skb_is_gso(skb)) { | 
 | 		if (skb_header_cloned(skb)) { | 
 | 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 |  | 
 | 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | 
 | 		mss = skb_shinfo(skb)->gso_size; | 
 | 		if (skb->protocol == htons(ETH_P_IP)) { | 
 | 			struct iphdr *iph = ip_hdr(skb); | 
 | 			iph->tot_len = 0; | 
 | 			iph->check = 0; | 
 | 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | 
 | 								 iph->daddr, 0, | 
 | 								 IPPROTO_TCP, | 
 | 								 0); | 
 | 			cmd_length = E1000_TXD_CMD_IP; | 
 | 			ipcse = skb_transport_offset(skb) - 1; | 
 | 		} else if (skb->protocol == htons(ETH_P_IPV6)) { | 
 | 			ipv6_hdr(skb)->payload_len = 0; | 
 | 			tcp_hdr(skb)->check = | 
 | 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | 
 | 						 &ipv6_hdr(skb)->daddr, | 
 | 						 0, IPPROTO_TCP, 0); | 
 | 			ipcse = 0; | 
 | 		} | 
 | 		ipcss = skb_network_offset(skb); | 
 | 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; | 
 | 		tucss = skb_transport_offset(skb); | 
 | 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; | 
 | 		tucse = 0; | 
 |  | 
 | 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | 
 | 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); | 
 |  | 
 | 		i = tx_ring->next_to_use; | 
 | 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | 
 | 		buffer_info = &tx_ring->buffer_info[i]; | 
 |  | 
 | 		context_desc->lower_setup.ip_fields.ipcss  = ipcss; | 
 | 		context_desc->lower_setup.ip_fields.ipcso  = ipcso; | 
 | 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse); | 
 | 		context_desc->upper_setup.tcp_fields.tucss = tucss; | 
 | 		context_desc->upper_setup.tcp_fields.tucso = tucso; | 
 | 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); | 
 | 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss); | 
 | 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; | 
 | 		context_desc->cmd_and_length = cpu_to_le32(cmd_length); | 
 |  | 
 | 		buffer_info->time_stamp = jiffies; | 
 | 		buffer_info->next_to_watch = i; | 
 |  | 
 | 		if (++i == tx_ring->count) i = 0; | 
 | 		tx_ring->next_to_use = i; | 
 |  | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool e1000_tx_csum(struct e1000_adapter *adapter, | 
 | 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb) | 
 | { | 
 | 	struct e1000_context_desc *context_desc; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	unsigned int i; | 
 | 	u8 css; | 
 | 	u32 cmd_len = E1000_TXD_CMD_DEXT; | 
 |  | 
 | 	if (skb->ip_summed != CHECKSUM_PARTIAL) | 
 | 		return false; | 
 |  | 
 | 	switch (skb->protocol) { | 
 | 	case __constant_htons(ETH_P_IP): | 
 | 		if (ip_hdr(skb)->protocol == IPPROTO_TCP) | 
 | 			cmd_len |= E1000_TXD_CMD_TCP; | 
 | 		break; | 
 | 	case __constant_htons(ETH_P_IPV6): | 
 | 		/* XXX not handling all IPV6 headers */ | 
 | 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | 
 | 			cmd_len |= E1000_TXD_CMD_TCP; | 
 | 		break; | 
 | 	default: | 
 | 		if (unlikely(net_ratelimit())) | 
 | 			DPRINTK(DRV, WARNING, | 
 | 			        "checksum_partial proto=%x!\n", skb->protocol); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	css = skb_transport_offset(skb); | 
 |  | 
 | 	i = tx_ring->next_to_use; | 
 | 	buffer_info = &tx_ring->buffer_info[i]; | 
 | 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | 
 |  | 
 | 	context_desc->lower_setup.ip_config = 0; | 
 | 	context_desc->upper_setup.tcp_fields.tucss = css; | 
 | 	context_desc->upper_setup.tcp_fields.tucso = | 
 | 		css + skb->csum_offset; | 
 | 	context_desc->upper_setup.tcp_fields.tucse = 0; | 
 | 	context_desc->tcp_seg_setup.data = 0; | 
 | 	context_desc->cmd_and_length = cpu_to_le32(cmd_len); | 
 |  | 
 | 	buffer_info->time_stamp = jiffies; | 
 | 	buffer_info->next_to_watch = i; | 
 |  | 
 | 	if (unlikely(++i == tx_ring->count)) i = 0; | 
 | 	tx_ring->next_to_use = i; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | #define E1000_MAX_TXD_PWR	12 | 
 | #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR) | 
 |  | 
 | static int e1000_tx_map(struct e1000_adapter *adapter, | 
 | 			struct e1000_tx_ring *tx_ring, | 
 | 			struct sk_buff *skb, unsigned int first, | 
 | 			unsigned int max_per_txd, unsigned int nr_frags, | 
 | 			unsigned int mss) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	unsigned int len = skb->len; | 
 | 	unsigned int offset = 0, size, count = 0, i; | 
 | 	unsigned int f; | 
 | 	len -= skb->data_len; | 
 |  | 
 | 	i = tx_ring->next_to_use; | 
 |  | 
 | 	while (len) { | 
 | 		buffer_info = &tx_ring->buffer_info[i]; | 
 | 		size = min(len, max_per_txd); | 
 | 		/* Workaround for Controller erratum -- | 
 | 		 * descriptor for non-tso packet in a linear SKB that follows a | 
 | 		 * tso gets written back prematurely before the data is fully | 
 | 		 * DMA'd to the controller */ | 
 | 		if (!skb->data_len && tx_ring->last_tx_tso && | 
 | 		    !skb_is_gso(skb)) { | 
 | 			tx_ring->last_tx_tso = 0; | 
 | 			size -= 4; | 
 | 		} | 
 |  | 
 | 		/* Workaround for premature desc write-backs | 
 | 		 * in TSO mode.  Append 4-byte sentinel desc */ | 
 | 		if (unlikely(mss && !nr_frags && size == len && size > 8)) | 
 | 			size -= 4; | 
 | 		/* work-around for errata 10 and it applies | 
 | 		 * to all controllers in PCI-X mode | 
 | 		 * The fix is to make sure that the first descriptor of a | 
 | 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes | 
 | 		 */ | 
 | 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) && | 
 | 		                (size > 2015) && count == 0)) | 
 | 		        size = 2015; | 
 |  | 
 | 		/* Workaround for potential 82544 hang in PCI-X.  Avoid | 
 | 		 * terminating buffers within evenly-aligned dwords. */ | 
 | 		if (unlikely(adapter->pcix_82544 && | 
 | 		   !((unsigned long)(skb->data + offset + size - 1) & 4) && | 
 | 		   size > 4)) | 
 | 			size -= 4; | 
 |  | 
 | 		buffer_info->length = size; | 
 | 		buffer_info->dma = | 
 | 			pci_map_single(adapter->pdev, | 
 | 				skb->data + offset, | 
 | 				size, | 
 | 				PCI_DMA_TODEVICE); | 
 | 		buffer_info->time_stamp = jiffies; | 
 | 		buffer_info->next_to_watch = i; | 
 |  | 
 | 		len -= size; | 
 | 		offset += size; | 
 | 		count++; | 
 | 		if (unlikely(++i == tx_ring->count)) i = 0; | 
 | 	} | 
 |  | 
 | 	for (f = 0; f < nr_frags; f++) { | 
 | 		struct skb_frag_struct *frag; | 
 |  | 
 | 		frag = &skb_shinfo(skb)->frags[f]; | 
 | 		len = frag->size; | 
 | 		offset = frag->page_offset; | 
 |  | 
 | 		while (len) { | 
 | 			buffer_info = &tx_ring->buffer_info[i]; | 
 | 			size = min(len, max_per_txd); | 
 | 			/* Workaround for premature desc write-backs | 
 | 			 * in TSO mode.  Append 4-byte sentinel desc */ | 
 | 			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) | 
 | 				size -= 4; | 
 | 			/* Workaround for potential 82544 hang in PCI-X. | 
 | 			 * Avoid terminating buffers within evenly-aligned | 
 | 			 * dwords. */ | 
 | 			if (unlikely(adapter->pcix_82544 && | 
 | 			   !((unsigned long)(frag->page+offset+size-1) & 4) && | 
 | 			   size > 4)) | 
 | 				size -= 4; | 
 |  | 
 | 			buffer_info->length = size; | 
 | 			buffer_info->dma = | 
 | 				pci_map_page(adapter->pdev, | 
 | 					frag->page, | 
 | 					offset, | 
 | 					size, | 
 | 					PCI_DMA_TODEVICE); | 
 | 			buffer_info->time_stamp = jiffies; | 
 | 			buffer_info->next_to_watch = i; | 
 |  | 
 | 			len -= size; | 
 | 			offset += size; | 
 | 			count++; | 
 | 			if (unlikely(++i == tx_ring->count)) i = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	i = (i == 0) ? tx_ring->count - 1 : i - 1; | 
 | 	tx_ring->buffer_info[i].skb = skb; | 
 | 	tx_ring->buffer_info[first].next_to_watch = i; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static void e1000_tx_queue(struct e1000_adapter *adapter, | 
 | 			   struct e1000_tx_ring *tx_ring, int tx_flags, | 
 | 			   int count) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct e1000_tx_desc *tx_desc = NULL; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; | 
 | 	unsigned int i; | 
 |  | 
 | 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { | 
 | 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | 
 | 		             E1000_TXD_CMD_TSE; | 
 | 		txd_upper |= E1000_TXD_POPTS_TXSM << 8; | 
 |  | 
 | 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) | 
 | 			txd_upper |= E1000_TXD_POPTS_IXSM << 8; | 
 | 	} | 
 |  | 
 | 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { | 
 | 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; | 
 | 		txd_upper |= E1000_TXD_POPTS_TXSM << 8; | 
 | 	} | 
 |  | 
 | 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { | 
 | 		txd_lower |= E1000_TXD_CMD_VLE; | 
 | 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); | 
 | 	} | 
 |  | 
 | 	i = tx_ring->next_to_use; | 
 |  | 
 | 	while (count--) { | 
 | 		buffer_info = &tx_ring->buffer_info[i]; | 
 | 		tx_desc = E1000_TX_DESC(*tx_ring, i); | 
 | 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | 
 | 		tx_desc->lower.data = | 
 | 			cpu_to_le32(txd_lower | buffer_info->length); | 
 | 		tx_desc->upper.data = cpu_to_le32(txd_upper); | 
 | 		if (unlikely(++i == tx_ring->count)) i = 0; | 
 | 	} | 
 |  | 
 | 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); | 
 |  | 
 | 	/* Force memory writes to complete before letting h/w | 
 | 	 * know there are new descriptors to fetch.  (Only | 
 | 	 * applicable for weak-ordered memory model archs, | 
 | 	 * such as IA-64). */ | 
 | 	wmb(); | 
 |  | 
 | 	tx_ring->next_to_use = i; | 
 | 	writel(i, hw->hw_addr + tx_ring->tdt); | 
 | 	/* we need this if more than one processor can write to our tail | 
 | 	 * at a time, it syncronizes IO on IA64/Altix systems */ | 
 | 	mmiowb(); | 
 | } | 
 |  | 
 | /** | 
 |  * 82547 workaround to avoid controller hang in half-duplex environment. | 
 |  * The workaround is to avoid queuing a large packet that would span | 
 |  * the internal Tx FIFO ring boundary by notifying the stack to resend | 
 |  * the packet at a later time.  This gives the Tx FIFO an opportunity to | 
 |  * flush all packets.  When that occurs, we reset the Tx FIFO pointers | 
 |  * to the beginning of the Tx FIFO. | 
 |  **/ | 
 |  | 
 | #define E1000_FIFO_HDR			0x10 | 
 | #define E1000_82547_PAD_LEN		0x3E0 | 
 |  | 
 | static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, | 
 | 				       struct sk_buff *skb) | 
 | { | 
 | 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; | 
 | 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; | 
 |  | 
 | 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); | 
 |  | 
 | 	if (adapter->link_duplex != HALF_DUPLEX) | 
 | 		goto no_fifo_stall_required; | 
 |  | 
 | 	if (atomic_read(&adapter->tx_fifo_stall)) | 
 | 		return 1; | 
 |  | 
 | 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { | 
 | 		atomic_set(&adapter->tx_fifo_stall, 1); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | no_fifo_stall_required: | 
 | 	adapter->tx_fifo_head += skb_fifo_len; | 
 | 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size) | 
 | 		adapter->tx_fifo_head -= adapter->tx_fifo_size; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define MINIMUM_DHCP_PACKET_SIZE 282 | 
 | static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, | 
 | 				    struct sk_buff *skb) | 
 | { | 
 | 	struct e1000_hw *hw =  &adapter->hw; | 
 | 	u16 length, offset; | 
 | 	if (vlan_tx_tag_present(skb)) { | 
 | 		if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) && | 
 | 			( hw->mng_cookie.status & | 
 | 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) ) | 
 | 			return 0; | 
 | 	} | 
 | 	if (skb->len > MINIMUM_DHCP_PACKET_SIZE) { | 
 | 		struct ethhdr *eth = (struct ethhdr *)skb->data; | 
 | 		if ((htons(ETH_P_IP) == eth->h_proto)) { | 
 | 			const struct iphdr *ip = | 
 | 				(struct iphdr *)((u8 *)skb->data+14); | 
 | 			if (IPPROTO_UDP == ip->protocol) { | 
 | 				struct udphdr *udp = | 
 | 					(struct udphdr *)((u8 *)ip + | 
 | 						(ip->ihl << 2)); | 
 | 				if (ntohs(udp->dest) == 67) { | 
 | 					offset = (u8 *)udp + 8 - skb->data; | 
 | 					length = skb->len - offset; | 
 |  | 
 | 					return e1000_mng_write_dhcp_info(hw, | 
 | 							(u8 *)udp + 8, | 
 | 							length); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_tx_ring *tx_ring = adapter->tx_ring; | 
 |  | 
 | 	netif_stop_queue(netdev); | 
 | 	/* Herbert's original patch had: | 
 | 	 *  smp_mb__after_netif_stop_queue(); | 
 | 	 * but since that doesn't exist yet, just open code it. */ | 
 | 	smp_mb(); | 
 |  | 
 | 	/* We need to check again in a case another CPU has just | 
 | 	 * made room available. */ | 
 | 	if (likely(E1000_DESC_UNUSED(tx_ring) < size)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	/* A reprieve! */ | 
 | 	netif_start_queue(netdev); | 
 | 	++adapter->restart_queue; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int e1000_maybe_stop_tx(struct net_device *netdev, | 
 |                                struct e1000_tx_ring *tx_ring, int size) | 
 | { | 
 | 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) | 
 | 		return 0; | 
 | 	return __e1000_maybe_stop_tx(netdev, size); | 
 | } | 
 |  | 
 | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) | 
 | static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct e1000_tx_ring *tx_ring; | 
 | 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; | 
 | 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; | 
 | 	unsigned int tx_flags = 0; | 
 | 	unsigned int len = skb->len - skb->data_len; | 
 | 	unsigned long flags; | 
 | 	unsigned int nr_frags; | 
 | 	unsigned int mss; | 
 | 	int count = 0; | 
 | 	int tso; | 
 | 	unsigned int f; | 
 |  | 
 | 	/* This goes back to the question of how to logically map a tx queue | 
 | 	 * to a flow.  Right now, performance is impacted slightly negatively | 
 | 	 * if using multiple tx queues.  If the stack breaks away from a | 
 | 	 * single qdisc implementation, we can look at this again. */ | 
 | 	tx_ring = adapter->tx_ring; | 
 |  | 
 | 	if (unlikely(skb->len <= 0)) { | 
 | 		dev_kfree_skb_any(skb); | 
 | 		return NETDEV_TX_OK; | 
 | 	} | 
 |  | 
 | 	/* 82571 and newer doesn't need the workaround that limited descriptor | 
 | 	 * length to 4kB */ | 
 | 	if (hw->mac_type >= e1000_82571) | 
 | 		max_per_txd = 8192; | 
 |  | 
 | 	mss = skb_shinfo(skb)->gso_size; | 
 | 	/* The controller does a simple calculation to | 
 | 	 * make sure there is enough room in the FIFO before | 
 | 	 * initiating the DMA for each buffer.  The calc is: | 
 | 	 * 4 = ceil(buffer len/mss).  To make sure we don't | 
 | 	 * overrun the FIFO, adjust the max buffer len if mss | 
 | 	 * drops. */ | 
 | 	if (mss) { | 
 | 		u8 hdr_len; | 
 | 		max_per_txd = min(mss << 2, max_per_txd); | 
 | 		max_txd_pwr = fls(max_per_txd) - 1; | 
 |  | 
 | 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data | 
 | 		* points to just header, pull a few bytes of payload from | 
 | 		* frags into skb->data */ | 
 | 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | 
 | 		if (skb->data_len && hdr_len == len) { | 
 | 			switch (hw->mac_type) { | 
 | 				unsigned int pull_size; | 
 | 			case e1000_82544: | 
 | 				/* Make sure we have room to chop off 4 bytes, | 
 | 				 * and that the end alignment will work out to | 
 | 				 * this hardware's requirements | 
 | 				 * NOTE: this is a TSO only workaround | 
 | 				 * if end byte alignment not correct move us | 
 | 				 * into the next dword */ | 
 | 				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4) | 
 | 					break; | 
 | 				/* fall through */ | 
 | 			case e1000_82571: | 
 | 			case e1000_82572: | 
 | 			case e1000_82573: | 
 | 			case e1000_ich8lan: | 
 | 				pull_size = min((unsigned int)4, skb->data_len); | 
 | 				if (!__pskb_pull_tail(skb, pull_size)) { | 
 | 					DPRINTK(DRV, ERR, | 
 | 						"__pskb_pull_tail failed.\n"); | 
 | 					dev_kfree_skb_any(skb); | 
 | 					return NETDEV_TX_OK; | 
 | 				} | 
 | 				len = skb->len - skb->data_len; | 
 | 				break; | 
 | 			default: | 
 | 				/* do nothing */ | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* reserve a descriptor for the offload context */ | 
 | 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) | 
 | 		count++; | 
 | 	count++; | 
 |  | 
 | 	/* Controller Erratum workaround */ | 
 | 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) | 
 | 		count++; | 
 |  | 
 | 	count += TXD_USE_COUNT(len, max_txd_pwr); | 
 |  | 
 | 	if (adapter->pcix_82544) | 
 | 		count++; | 
 |  | 
 | 	/* work-around for errata 10 and it applies to all controllers | 
 | 	 * in PCI-X mode, so add one more descriptor to the count | 
 | 	 */ | 
 | 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) && | 
 | 			(len > 2015))) | 
 | 		count++; | 
 |  | 
 | 	nr_frags = skb_shinfo(skb)->nr_frags; | 
 | 	for (f = 0; f < nr_frags; f++) | 
 | 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, | 
 | 				       max_txd_pwr); | 
 | 	if (adapter->pcix_82544) | 
 | 		count += nr_frags; | 
 |  | 
 |  | 
 | 	if (hw->tx_pkt_filtering && | 
 | 	    (hw->mac_type == e1000_82573)) | 
 | 		e1000_transfer_dhcp_info(adapter, skb); | 
 |  | 
 | 	if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags)) | 
 | 		/* Collision - tell upper layer to requeue */ | 
 | 		return NETDEV_TX_LOCKED; | 
 |  | 
 | 	/* need: count + 2 desc gap to keep tail from touching | 
 | 	 * head, otherwise try next time */ | 
 | 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) { | 
 | 		spin_unlock_irqrestore(&tx_ring->tx_lock, flags); | 
 | 		return NETDEV_TX_BUSY; | 
 | 	} | 
 |  | 
 | 	if (unlikely(hw->mac_type == e1000_82547)) { | 
 | 		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) { | 
 | 			netif_stop_queue(netdev); | 
 | 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); | 
 | 			spin_unlock_irqrestore(&tx_ring->tx_lock, flags); | 
 | 			return NETDEV_TX_BUSY; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { | 
 | 		tx_flags |= E1000_TX_FLAGS_VLAN; | 
 | 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); | 
 | 	} | 
 |  | 
 | 	first = tx_ring->next_to_use; | 
 |  | 
 | 	tso = e1000_tso(adapter, tx_ring, skb); | 
 | 	if (tso < 0) { | 
 | 		dev_kfree_skb_any(skb); | 
 | 		spin_unlock_irqrestore(&tx_ring->tx_lock, flags); | 
 | 		return NETDEV_TX_OK; | 
 | 	} | 
 |  | 
 | 	if (likely(tso)) { | 
 | 		tx_ring->last_tx_tso = 1; | 
 | 		tx_flags |= E1000_TX_FLAGS_TSO; | 
 | 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) | 
 | 		tx_flags |= E1000_TX_FLAGS_CSUM; | 
 |  | 
 | 	/* Old method was to assume IPv4 packet by default if TSO was enabled. | 
 | 	 * 82571 hardware supports TSO capabilities for IPv6 as well... | 
 | 	 * no longer assume, we must. */ | 
 | 	if (likely(skb->protocol == htons(ETH_P_IP))) | 
 | 		tx_flags |= E1000_TX_FLAGS_IPV4; | 
 |  | 
 | 	e1000_tx_queue(adapter, tx_ring, tx_flags, | 
 | 	               e1000_tx_map(adapter, tx_ring, skb, first, | 
 | 	                            max_per_txd, nr_frags, mss)); | 
 |  | 
 | 	netdev->trans_start = jiffies; | 
 |  | 
 | 	/* Make sure there is space in the ring for the next send. */ | 
 | 	e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); | 
 |  | 
 | 	spin_unlock_irqrestore(&tx_ring->tx_lock, flags); | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_tx_timeout - Respond to a Tx Hang | 
 |  * @netdev: network interface device structure | 
 |  **/ | 
 |  | 
 | static void e1000_tx_timeout(struct net_device *netdev) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 |  | 
 | 	/* Do the reset outside of interrupt context */ | 
 | 	adapter->tx_timeout_count++; | 
 | 	schedule_work(&adapter->reset_task); | 
 | } | 
 |  | 
 | static void e1000_reset_task(struct work_struct *work) | 
 | { | 
 | 	struct e1000_adapter *adapter = | 
 | 		container_of(work, struct e1000_adapter, reset_task); | 
 |  | 
 | 	e1000_reinit_locked(adapter); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_get_stats - Get System Network Statistics | 
 |  * @netdev: network interface device structure | 
 |  * | 
 |  * Returns the address of the device statistics structure. | 
 |  * The statistics are actually updated from the timer callback. | 
 |  **/ | 
 |  | 
 | static struct net_device_stats *e1000_get_stats(struct net_device *netdev) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 |  | 
 | 	/* only return the current stats */ | 
 | 	return &adapter->net_stats; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_change_mtu - Change the Maximum Transfer Unit | 
 |  * @netdev: network interface device structure | 
 |  * @new_mtu: new value for maximum frame size | 
 |  * | 
 |  * Returns 0 on success, negative on failure | 
 |  **/ | 
 |  | 
 | static int e1000_change_mtu(struct net_device *netdev, int new_mtu) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; | 
 | 	u16 eeprom_data = 0; | 
 |  | 
 | 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || | 
 | 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) { | 
 | 		DPRINTK(PROBE, ERR, "Invalid MTU setting\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Adapter-specific max frame size limits. */ | 
 | 	switch (hw->mac_type) { | 
 | 	case e1000_undefined ... e1000_82542_rev2_1: | 
 | 	case e1000_ich8lan: | 
 | 		if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { | 
 | 			DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		break; | 
 | 	case e1000_82573: | 
 | 		/* Jumbo Frames not supported if: | 
 | 		 * - this is not an 82573L device | 
 | 		 * - ASPM is enabled in any way (0x1A bits 3:2) */ | 
 | 		e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1, | 
 | 		                  &eeprom_data); | 
 | 		if ((hw->device_id != E1000_DEV_ID_82573L) || | 
 | 		    (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) { | 
 | 			if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { | 
 | 				DPRINTK(PROBE, ERR, | 
 | 			            	"Jumbo Frames not supported.\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		/* ERT will be enabled later to enable wire speed receives */ | 
 |  | 
 | 		/* fall through to get support */ | 
 | 	case e1000_82571: | 
 | 	case e1000_82572: | 
 | 	case e1000_80003es2lan: | 
 | #define MAX_STD_JUMBO_FRAME_SIZE 9234 | 
 | 		if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { | 
 | 			DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | 
 | 	 * means we reserve 2 more, this pushes us to allocate from the next | 
 | 	 * larger slab size | 
 | 	 * i.e. RXBUFFER_2048 --> size-4096 slab */ | 
 |  | 
 | 	if (max_frame <= E1000_RXBUFFER_256) | 
 | 		adapter->rx_buffer_len = E1000_RXBUFFER_256; | 
 | 	else if (max_frame <= E1000_RXBUFFER_512) | 
 | 		adapter->rx_buffer_len = E1000_RXBUFFER_512; | 
 | 	else if (max_frame <= E1000_RXBUFFER_1024) | 
 | 		adapter->rx_buffer_len = E1000_RXBUFFER_1024; | 
 | 	else if (max_frame <= E1000_RXBUFFER_2048) | 
 | 		adapter->rx_buffer_len = E1000_RXBUFFER_2048; | 
 | 	else if (max_frame <= E1000_RXBUFFER_4096) | 
 | 		adapter->rx_buffer_len = E1000_RXBUFFER_4096; | 
 | 	else if (max_frame <= E1000_RXBUFFER_8192) | 
 | 		adapter->rx_buffer_len = E1000_RXBUFFER_8192; | 
 | 	else if (max_frame <= E1000_RXBUFFER_16384) | 
 | 		adapter->rx_buffer_len = E1000_RXBUFFER_16384; | 
 |  | 
 | 	/* adjust allocation if LPE protects us, and we aren't using SBP */ | 
 | 	if (!hw->tbi_compatibility_on && | 
 | 	    ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) || | 
 | 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) | 
 | 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | 
 |  | 
 | 	netdev->mtu = new_mtu; | 
 | 	hw->max_frame_size = max_frame; | 
 |  | 
 | 	if (netif_running(netdev)) | 
 | 		e1000_reinit_locked(adapter); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_update_stats - Update the board statistics counters | 
 |  * @adapter: board private structure | 
 |  **/ | 
 |  | 
 | void e1000_update_stats(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 | 	unsigned long flags; | 
 | 	u16 phy_tmp; | 
 |  | 
 | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF | 
 |  | 
 | 	/* | 
 | 	 * Prevent stats update while adapter is being reset, or if the pci | 
 | 	 * connection is down. | 
 | 	 */ | 
 | 	if (adapter->link_speed == 0) | 
 | 		return; | 
 | 	if (pci_channel_offline(pdev)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&adapter->stats_lock, flags); | 
 |  | 
 | 	/* these counters are modified from e1000_tbi_adjust_stats, | 
 | 	 * called from the interrupt context, so they must only | 
 | 	 * be written while holding adapter->stats_lock | 
 | 	 */ | 
 |  | 
 | 	adapter->stats.crcerrs += er32(CRCERRS); | 
 | 	adapter->stats.gprc += er32(GPRC); | 
 | 	adapter->stats.gorcl += er32(GORCL); | 
 | 	adapter->stats.gorch += er32(GORCH); | 
 | 	adapter->stats.bprc += er32(BPRC); | 
 | 	adapter->stats.mprc += er32(MPRC); | 
 | 	adapter->stats.roc += er32(ROC); | 
 |  | 
 | 	if (hw->mac_type != e1000_ich8lan) { | 
 | 		adapter->stats.prc64 += er32(PRC64); | 
 | 		adapter->stats.prc127 += er32(PRC127); | 
 | 		adapter->stats.prc255 += er32(PRC255); | 
 | 		adapter->stats.prc511 += er32(PRC511); | 
 | 		adapter->stats.prc1023 += er32(PRC1023); | 
 | 		adapter->stats.prc1522 += er32(PRC1522); | 
 | 	} | 
 |  | 
 | 	adapter->stats.symerrs += er32(SYMERRS); | 
 | 	adapter->stats.mpc += er32(MPC); | 
 | 	adapter->stats.scc += er32(SCC); | 
 | 	adapter->stats.ecol += er32(ECOL); | 
 | 	adapter->stats.mcc += er32(MCC); | 
 | 	adapter->stats.latecol += er32(LATECOL); | 
 | 	adapter->stats.dc += er32(DC); | 
 | 	adapter->stats.sec += er32(SEC); | 
 | 	adapter->stats.rlec += er32(RLEC); | 
 | 	adapter->stats.xonrxc += er32(XONRXC); | 
 | 	adapter->stats.xontxc += er32(XONTXC); | 
 | 	adapter->stats.xoffrxc += er32(XOFFRXC); | 
 | 	adapter->stats.xofftxc += er32(XOFFTXC); | 
 | 	adapter->stats.fcruc += er32(FCRUC); | 
 | 	adapter->stats.gptc += er32(GPTC); | 
 | 	adapter->stats.gotcl += er32(GOTCL); | 
 | 	adapter->stats.gotch += er32(GOTCH); | 
 | 	adapter->stats.rnbc += er32(RNBC); | 
 | 	adapter->stats.ruc += er32(RUC); | 
 | 	adapter->stats.rfc += er32(RFC); | 
 | 	adapter->stats.rjc += er32(RJC); | 
 | 	adapter->stats.torl += er32(TORL); | 
 | 	adapter->stats.torh += er32(TORH); | 
 | 	adapter->stats.totl += er32(TOTL); | 
 | 	adapter->stats.toth += er32(TOTH); | 
 | 	adapter->stats.tpr += er32(TPR); | 
 |  | 
 | 	if (hw->mac_type != e1000_ich8lan) { | 
 | 		adapter->stats.ptc64 += er32(PTC64); | 
 | 		adapter->stats.ptc127 += er32(PTC127); | 
 | 		adapter->stats.ptc255 += er32(PTC255); | 
 | 		adapter->stats.ptc511 += er32(PTC511); | 
 | 		adapter->stats.ptc1023 += er32(PTC1023); | 
 | 		adapter->stats.ptc1522 += er32(PTC1522); | 
 | 	} | 
 |  | 
 | 	adapter->stats.mptc += er32(MPTC); | 
 | 	adapter->stats.bptc += er32(BPTC); | 
 |  | 
 | 	/* used for adaptive IFS */ | 
 |  | 
 | 	hw->tx_packet_delta = er32(TPT); | 
 | 	adapter->stats.tpt += hw->tx_packet_delta; | 
 | 	hw->collision_delta = er32(COLC); | 
 | 	adapter->stats.colc += hw->collision_delta; | 
 |  | 
 | 	if (hw->mac_type >= e1000_82543) { | 
 | 		adapter->stats.algnerrc += er32(ALGNERRC); | 
 | 		adapter->stats.rxerrc += er32(RXERRC); | 
 | 		adapter->stats.tncrs += er32(TNCRS); | 
 | 		adapter->stats.cexterr += er32(CEXTERR); | 
 | 		adapter->stats.tsctc += er32(TSCTC); | 
 | 		adapter->stats.tsctfc += er32(TSCTFC); | 
 | 	} | 
 | 	if (hw->mac_type > e1000_82547_rev_2) { | 
 | 		adapter->stats.iac += er32(IAC); | 
 | 		adapter->stats.icrxoc += er32(ICRXOC); | 
 |  | 
 | 		if (hw->mac_type != e1000_ich8lan) { | 
 | 			adapter->stats.icrxptc += er32(ICRXPTC); | 
 | 			adapter->stats.icrxatc += er32(ICRXATC); | 
 | 			adapter->stats.ictxptc += er32(ICTXPTC); | 
 | 			adapter->stats.ictxatc += er32(ICTXATC); | 
 | 			adapter->stats.ictxqec += er32(ICTXQEC); | 
 | 			adapter->stats.ictxqmtc += er32(ICTXQMTC); | 
 | 			adapter->stats.icrxdmtc += er32(ICRXDMTC); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Fill out the OS statistics structure */ | 
 | 	adapter->net_stats.multicast = adapter->stats.mprc; | 
 | 	adapter->net_stats.collisions = adapter->stats.colc; | 
 |  | 
 | 	/* Rx Errors */ | 
 |  | 
 | 	/* RLEC on some newer hardware can be incorrect so build | 
 | 	* our own version based on RUC and ROC */ | 
 | 	adapter->net_stats.rx_errors = adapter->stats.rxerrc + | 
 | 		adapter->stats.crcerrs + adapter->stats.algnerrc + | 
 | 		adapter->stats.ruc + adapter->stats.roc + | 
 | 		adapter->stats.cexterr; | 
 | 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; | 
 | 	adapter->net_stats.rx_length_errors = adapter->stats.rlerrc; | 
 | 	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; | 
 | 	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; | 
 | 	adapter->net_stats.rx_missed_errors = adapter->stats.mpc; | 
 |  | 
 | 	/* Tx Errors */ | 
 | 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; | 
 | 	adapter->net_stats.tx_errors = adapter->stats.txerrc; | 
 | 	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; | 
 | 	adapter->net_stats.tx_window_errors = adapter->stats.latecol; | 
 | 	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; | 
 | 	if (hw->bad_tx_carr_stats_fd && | 
 | 	    adapter->link_duplex == FULL_DUPLEX) { | 
 | 		adapter->net_stats.tx_carrier_errors = 0; | 
 | 		adapter->stats.tncrs = 0; | 
 | 	} | 
 |  | 
 | 	/* Tx Dropped needs to be maintained elsewhere */ | 
 |  | 
 | 	/* Phy Stats */ | 
 | 	if (hw->media_type == e1000_media_type_copper) { | 
 | 		if ((adapter->link_speed == SPEED_1000) && | 
 | 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { | 
 | 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; | 
 | 			adapter->phy_stats.idle_errors += phy_tmp; | 
 | 		} | 
 |  | 
 | 		if ((hw->mac_type <= e1000_82546) && | 
 | 		   (hw->phy_type == e1000_phy_m88) && | 
 | 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) | 
 | 			adapter->phy_stats.receive_errors += phy_tmp; | 
 | 	} | 
 |  | 
 | 	/* Management Stats */ | 
 | 	if (hw->has_smbus) { | 
 | 		adapter->stats.mgptc += er32(MGTPTC); | 
 | 		adapter->stats.mgprc += er32(MGTPRC); | 
 | 		adapter->stats.mgpdc += er32(MGTPDC); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&adapter->stats_lock, flags); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_intr_msi - Interrupt Handler | 
 |  * @irq: interrupt number | 
 |  * @data: pointer to a network interface device structure | 
 |  **/ | 
 |  | 
 | static irqreturn_t e1000_intr_msi(int irq, void *data) | 
 | { | 
 | 	struct net_device *netdev = data; | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 icr = er32(ICR); | 
 |  | 
 | 	/* in NAPI mode read ICR disables interrupts using IAM */ | 
 |  | 
 | 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | 
 | 		hw->get_link_status = 1; | 
 | 		/* 80003ES2LAN workaround-- For packet buffer work-around on | 
 | 		 * link down event; disable receives here in the ISR and reset | 
 | 		 * adapter in watchdog */ | 
 | 		if (netif_carrier_ok(netdev) && | 
 | 		    (hw->mac_type == e1000_80003es2lan)) { | 
 | 			/* disable receives */ | 
 | 			u32 rctl = er32(RCTL); | 
 | 			ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
 | 		} | 
 | 		/* guard against interrupt when we're going down */ | 
 | 		if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
 | 			mod_timer(&adapter->watchdog_timer, jiffies + 1); | 
 | 	} | 
 |  | 
 | 	if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) { | 
 | 		adapter->total_tx_bytes = 0; | 
 | 		adapter->total_tx_packets = 0; | 
 | 		adapter->total_rx_bytes = 0; | 
 | 		adapter->total_rx_packets = 0; | 
 | 		__netif_rx_schedule(netdev, &adapter->napi); | 
 | 	} else | 
 | 		e1000_irq_enable(adapter); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_intr - Interrupt Handler | 
 |  * @irq: interrupt number | 
 |  * @data: pointer to a network interface device structure | 
 |  **/ | 
 |  | 
 | static irqreturn_t e1000_intr(int irq, void *data) | 
 | { | 
 | 	struct net_device *netdev = data; | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 rctl, icr = er32(ICR); | 
 |  | 
 | 	if (unlikely(!icr)) | 
 | 		return IRQ_NONE;  /* Not our interrupt */ | 
 |  | 
 | 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is | 
 | 	 * not set, then the adapter didn't send an interrupt */ | 
 | 	if (unlikely(hw->mac_type >= e1000_82571 && | 
 | 	             !(icr & E1000_ICR_INT_ASSERTED))) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No | 
 | 	 * need for the IMC write */ | 
 |  | 
 | 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { | 
 | 		hw->get_link_status = 1; | 
 | 		/* 80003ES2LAN workaround-- | 
 | 		 * For packet buffer work-around on link down event; | 
 | 		 * disable receives here in the ISR and | 
 | 		 * reset adapter in watchdog | 
 | 		 */ | 
 | 		if (netif_carrier_ok(netdev) && | 
 | 		    (hw->mac_type == e1000_80003es2lan)) { | 
 | 			/* disable receives */ | 
 | 			rctl = er32(RCTL); | 
 | 			ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
 | 		} | 
 | 		/* guard against interrupt when we're going down */ | 
 | 		if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
 | 			mod_timer(&adapter->watchdog_timer, jiffies + 1); | 
 | 	} | 
 |  | 
 | 	if (unlikely(hw->mac_type < e1000_82571)) { | 
 | 		/* disable interrupts, without the synchronize_irq bit */ | 
 | 		ew32(IMC, ~0); | 
 | 		E1000_WRITE_FLUSH(); | 
 | 	} | 
 | 	if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) { | 
 | 		adapter->total_tx_bytes = 0; | 
 | 		adapter->total_tx_packets = 0; | 
 | 		adapter->total_rx_bytes = 0; | 
 | 		adapter->total_rx_packets = 0; | 
 | 		__netif_rx_schedule(netdev, &adapter->napi); | 
 | 	} else | 
 | 		/* this really should not happen! if it does it is basically a | 
 | 		 * bug, but not a hard error, so enable ints and continue */ | 
 | 		e1000_irq_enable(adapter); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_clean - NAPI Rx polling callback | 
 |  * @adapter: board private structure | 
 |  **/ | 
 | static int e1000_clean(struct napi_struct *napi, int budget) | 
 | { | 
 | 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); | 
 | 	struct net_device *poll_dev = adapter->netdev; | 
 | 	int tx_cleaned = 0, work_done = 0; | 
 |  | 
 | 	/* Must NOT use netdev_priv macro here. */ | 
 | 	adapter = poll_dev->priv; | 
 |  | 
 | 	/* e1000_clean is called per-cpu.  This lock protects | 
 | 	 * tx_ring[0] from being cleaned by multiple cpus | 
 | 	 * simultaneously.  A failure obtaining the lock means | 
 | 	 * tx_ring[0] is currently being cleaned anyway. */ | 
 | 	if (spin_trylock(&adapter->tx_queue_lock)) { | 
 | 		tx_cleaned = e1000_clean_tx_irq(adapter, | 
 | 						&adapter->tx_ring[0]); | 
 | 		spin_unlock(&adapter->tx_queue_lock); | 
 | 	} | 
 |  | 
 | 	adapter->clean_rx(adapter, &adapter->rx_ring[0], | 
 | 	                  &work_done, budget); | 
 |  | 
 | 	if (tx_cleaned) | 
 | 		work_done = budget; | 
 |  | 
 | 	/* If budget not fully consumed, exit the polling mode */ | 
 | 	if (work_done < budget) { | 
 | 		if (likely(adapter->itr_setting & 3)) | 
 | 			e1000_set_itr(adapter); | 
 | 		netif_rx_complete(poll_dev, napi); | 
 | 		e1000_irq_enable(adapter); | 
 | 	} | 
 |  | 
 | 	return work_done; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_clean_tx_irq - Reclaim resources after transmit completes | 
 |  * @adapter: board private structure | 
 |  **/ | 
 | static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, | 
 | 			       struct e1000_tx_ring *tx_ring) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	struct e1000_tx_desc *tx_desc, *eop_desc; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	unsigned int i, eop; | 
 | 	unsigned int count = 0; | 
 | 	bool cleaned = false; | 
 | 	unsigned int total_tx_bytes=0, total_tx_packets=0; | 
 |  | 
 | 	i = tx_ring->next_to_clean; | 
 | 	eop = tx_ring->buffer_info[i].next_to_watch; | 
 | 	eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
 |  | 
 | 	while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { | 
 | 		for (cleaned = false; !cleaned; ) { | 
 | 			tx_desc = E1000_TX_DESC(*tx_ring, i); | 
 | 			buffer_info = &tx_ring->buffer_info[i]; | 
 | 			cleaned = (i == eop); | 
 |  | 
 | 			if (cleaned) { | 
 | 				struct sk_buff *skb = buffer_info->skb; | 
 | 				unsigned int segs, bytecount; | 
 | 				segs = skb_shinfo(skb)->gso_segs ?: 1; | 
 | 				/* multiply data chunks by size of headers */ | 
 | 				bytecount = ((segs - 1) * skb_headlen(skb)) + | 
 | 				            skb->len; | 
 | 				total_tx_packets += segs; | 
 | 				total_tx_bytes += bytecount; | 
 | 			} | 
 | 			e1000_unmap_and_free_tx_resource(adapter, buffer_info); | 
 | 			tx_desc->upper.data = 0; | 
 |  | 
 | 			if (unlikely(++i == tx_ring->count)) i = 0; | 
 | 		} | 
 |  | 
 | 		eop = tx_ring->buffer_info[i].next_to_watch; | 
 | 		eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
 | #define E1000_TX_WEIGHT 64 | 
 | 		/* weight of a sort for tx, to avoid endless transmit cleanup */ | 
 | 		if (count++ == E1000_TX_WEIGHT) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	tx_ring->next_to_clean = i; | 
 |  | 
 | #define TX_WAKE_THRESHOLD 32 | 
 | 	if (unlikely(cleaned && netif_carrier_ok(netdev) && | 
 | 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { | 
 | 		/* Make sure that anybody stopping the queue after this | 
 | 		 * sees the new next_to_clean. | 
 | 		 */ | 
 | 		smp_mb(); | 
 | 		if (netif_queue_stopped(netdev)) { | 
 | 			netif_wake_queue(netdev); | 
 | 			++adapter->restart_queue; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (adapter->detect_tx_hung) { | 
 | 		/* Detect a transmit hang in hardware, this serializes the | 
 | 		 * check with the clearing of time_stamp and movement of i */ | 
 | 		adapter->detect_tx_hung = false; | 
 | 		if (tx_ring->buffer_info[eop].dma && | 
 | 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + | 
 | 		               (adapter->tx_timeout_factor * HZ)) | 
 | 		    && !(er32(STATUS) & E1000_STATUS_TXOFF)) { | 
 |  | 
 | 			/* detected Tx unit hang */ | 
 | 			DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n" | 
 | 					"  Tx Queue             <%lu>\n" | 
 | 					"  TDH                  <%x>\n" | 
 | 					"  TDT                  <%x>\n" | 
 | 					"  next_to_use          <%x>\n" | 
 | 					"  next_to_clean        <%x>\n" | 
 | 					"buffer_info[next_to_clean]\n" | 
 | 					"  time_stamp           <%lx>\n" | 
 | 					"  next_to_watch        <%x>\n" | 
 | 					"  jiffies              <%lx>\n" | 
 | 					"  next_to_watch.status <%x>\n", | 
 | 				(unsigned long)((tx_ring - adapter->tx_ring) / | 
 | 					sizeof(struct e1000_tx_ring)), | 
 | 				readl(hw->hw_addr + tx_ring->tdh), | 
 | 				readl(hw->hw_addr + tx_ring->tdt), | 
 | 				tx_ring->next_to_use, | 
 | 				tx_ring->next_to_clean, | 
 | 				tx_ring->buffer_info[eop].time_stamp, | 
 | 				eop, | 
 | 				jiffies, | 
 | 				eop_desc->upper.fields.status); | 
 | 			netif_stop_queue(netdev); | 
 | 		} | 
 | 	} | 
 | 	adapter->total_tx_bytes += total_tx_bytes; | 
 | 	adapter->total_tx_packets += total_tx_packets; | 
 | 	adapter->net_stats.tx_bytes += total_tx_bytes; | 
 | 	adapter->net_stats.tx_packets += total_tx_packets; | 
 | 	return cleaned; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_rx_checksum - Receive Checksum Offload for 82543 | 
 |  * @adapter:     board private structure | 
 |  * @status_err:  receive descriptor status and error fields | 
 |  * @csum:        receive descriptor csum field | 
 |  * @sk_buff:     socket buffer with received data | 
 |  **/ | 
 |  | 
 | static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, | 
 | 			      u32 csum, struct sk_buff *skb) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u16 status = (u16)status_err; | 
 | 	u8 errors = (u8)(status_err >> 24); | 
 | 	skb->ip_summed = CHECKSUM_NONE; | 
 |  | 
 | 	/* 82543 or newer only */ | 
 | 	if (unlikely(hw->mac_type < e1000_82543)) return; | 
 | 	/* Ignore Checksum bit is set */ | 
 | 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return; | 
 | 	/* TCP/UDP checksum error bit is set */ | 
 | 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) { | 
 | 		/* let the stack verify checksum errors */ | 
 | 		adapter->hw_csum_err++; | 
 | 		return; | 
 | 	} | 
 | 	/* TCP/UDP Checksum has not been calculated */ | 
 | 	if (hw->mac_type <= e1000_82547_rev_2) { | 
 | 		if (!(status & E1000_RXD_STAT_TCPCS)) | 
 | 			return; | 
 | 	} else { | 
 | 		if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) | 
 | 			return; | 
 | 	} | 
 | 	/* It must be a TCP or UDP packet with a valid checksum */ | 
 | 	if (likely(status & E1000_RXD_STAT_TCPCS)) { | 
 | 		/* TCP checksum is good */ | 
 | 		skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 | 	} else if (hw->mac_type > e1000_82547_rev_2) { | 
 | 		/* IP fragment with UDP payload */ | 
 | 		/* Hardware complements the payload checksum, so we undo it | 
 | 		 * and then put the value in host order for further stack use. | 
 | 		 */ | 
 | 		__sum16 sum = (__force __sum16)htons(csum); | 
 | 		skb->csum = csum_unfold(~sum); | 
 | 		skb->ip_summed = CHECKSUM_COMPLETE; | 
 | 	} | 
 | 	adapter->hw_csum_good++; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_clean_rx_irq - Send received data up the network stack; legacy | 
 |  * @adapter: board private structure | 
 |  **/ | 
 | static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, | 
 | 			       struct e1000_rx_ring *rx_ring, | 
 | 			       int *work_done, int work_to_do) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 | 	struct e1000_rx_desc *rx_desc, *next_rxd; | 
 | 	struct e1000_buffer *buffer_info, *next_buffer; | 
 | 	unsigned long flags; | 
 | 	u32 length; | 
 | 	u8 last_byte; | 
 | 	unsigned int i; | 
 | 	int cleaned_count = 0; | 
 | 	bool cleaned = false; | 
 | 	unsigned int total_rx_bytes=0, total_rx_packets=0; | 
 |  | 
 | 	i = rx_ring->next_to_clean; | 
 | 	rx_desc = E1000_RX_DESC(*rx_ring, i); | 
 | 	buffer_info = &rx_ring->buffer_info[i]; | 
 |  | 
 | 	while (rx_desc->status & E1000_RXD_STAT_DD) { | 
 | 		struct sk_buff *skb; | 
 | 		u8 status; | 
 |  | 
 | 		if (*work_done >= work_to_do) | 
 | 			break; | 
 | 		(*work_done)++; | 
 |  | 
 | 		status = rx_desc->status; | 
 | 		skb = buffer_info->skb; | 
 | 		buffer_info->skb = NULL; | 
 |  | 
 | 		prefetch(skb->data - NET_IP_ALIGN); | 
 |  | 
 | 		if (++i == rx_ring->count) i = 0; | 
 | 		next_rxd = E1000_RX_DESC(*rx_ring, i); | 
 | 		prefetch(next_rxd); | 
 |  | 
 | 		next_buffer = &rx_ring->buffer_info[i]; | 
 |  | 
 | 		cleaned = true; | 
 | 		cleaned_count++; | 
 | 		pci_unmap_single(pdev, | 
 | 		                 buffer_info->dma, | 
 | 		                 buffer_info->length, | 
 | 		                 PCI_DMA_FROMDEVICE); | 
 |  | 
 | 		length = le16_to_cpu(rx_desc->length); | 
 |  | 
 | 		if (unlikely(!(status & E1000_RXD_STAT_EOP))) { | 
 | 			/* All receives must fit into a single buffer */ | 
 | 			E1000_DBG("%s: Receive packet consumed multiple" | 
 | 				  " buffers\n", netdev->name); | 
 | 			/* recycle */ | 
 | 			buffer_info->skb = skb; | 
 | 			goto next_desc; | 
 | 		} | 
 |  | 
 | 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { | 
 | 			last_byte = *(skb->data + length - 1); | 
 | 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length, | 
 | 				       last_byte)) { | 
 | 				spin_lock_irqsave(&adapter->stats_lock, flags); | 
 | 				e1000_tbi_adjust_stats(hw, &adapter->stats, | 
 | 				                       length, skb->data); | 
 | 				spin_unlock_irqrestore(&adapter->stats_lock, | 
 | 				                       flags); | 
 | 				length--; | 
 | 			} else { | 
 | 				/* recycle */ | 
 | 				buffer_info->skb = skb; | 
 | 				goto next_desc; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* adjust length to remove Ethernet CRC, this must be | 
 | 		 * done after the TBI_ACCEPT workaround above */ | 
 | 		length -= 4; | 
 |  | 
 | 		/* probably a little skewed due to removing CRC */ | 
 | 		total_rx_bytes += length; | 
 | 		total_rx_packets++; | 
 |  | 
 | 		/* code added for copybreak, this should improve | 
 | 		 * performance for small packets with large amounts | 
 | 		 * of reassembly being done in the stack */ | 
 | 		if (length < copybreak) { | 
 | 			struct sk_buff *new_skb = | 
 | 			    netdev_alloc_skb(netdev, length + NET_IP_ALIGN); | 
 | 			if (new_skb) { | 
 | 				skb_reserve(new_skb, NET_IP_ALIGN); | 
 | 				skb_copy_to_linear_data_offset(new_skb, | 
 | 							       -NET_IP_ALIGN, | 
 | 							       (skb->data - | 
 | 							        NET_IP_ALIGN), | 
 | 							       (length + | 
 | 							        NET_IP_ALIGN)); | 
 | 				/* save the skb in buffer_info as good */ | 
 | 				buffer_info->skb = skb; | 
 | 				skb = new_skb; | 
 | 			} | 
 | 			/* else just continue with the old one */ | 
 | 		} | 
 | 		/* end copybreak code */ | 
 | 		skb_put(skb, length); | 
 |  | 
 | 		/* Receive Checksum Offload */ | 
 | 		e1000_rx_checksum(adapter, | 
 | 				  (u32)(status) | | 
 | 				  ((u32)(rx_desc->errors) << 24), | 
 | 				  le16_to_cpu(rx_desc->csum), skb); | 
 |  | 
 | 		skb->protocol = eth_type_trans(skb, netdev); | 
 |  | 
 | 		if (unlikely(adapter->vlgrp && | 
 | 			    (status & E1000_RXD_STAT_VP))) { | 
 | 			vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | 
 | 						 le16_to_cpu(rx_desc->special)); | 
 | 		} else { | 
 | 			netif_receive_skb(skb); | 
 | 		} | 
 |  | 
 | 		netdev->last_rx = jiffies; | 
 |  | 
 | next_desc: | 
 | 		rx_desc->status = 0; | 
 |  | 
 | 		/* return some buffers to hardware, one at a time is too slow */ | 
 | 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { | 
 | 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | 
 | 			cleaned_count = 0; | 
 | 		} | 
 |  | 
 | 		/* use prefetched values */ | 
 | 		rx_desc = next_rxd; | 
 | 		buffer_info = next_buffer; | 
 | 	} | 
 | 	rx_ring->next_to_clean = i; | 
 |  | 
 | 	cleaned_count = E1000_DESC_UNUSED(rx_ring); | 
 | 	if (cleaned_count) | 
 | 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | 
 |  | 
 | 	adapter->total_rx_packets += total_rx_packets; | 
 | 	adapter->total_rx_bytes += total_rx_bytes; | 
 | 	adapter->net_stats.rx_bytes += total_rx_bytes; | 
 | 	adapter->net_stats.rx_packets += total_rx_packets; | 
 | 	return cleaned; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended | 
 |  * @adapter: address of board private structure | 
 |  **/ | 
 |  | 
 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | 
 | 				   struct e1000_rx_ring *rx_ring, | 
 | 				   int cleaned_count) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 | 	struct e1000_rx_desc *rx_desc; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	struct sk_buff *skb; | 
 | 	unsigned int i; | 
 | 	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; | 
 |  | 
 | 	i = rx_ring->next_to_use; | 
 | 	buffer_info = &rx_ring->buffer_info[i]; | 
 |  | 
 | 	while (cleaned_count--) { | 
 | 		skb = buffer_info->skb; | 
 | 		if (skb) { | 
 | 			skb_trim(skb, 0); | 
 | 			goto map_skb; | 
 | 		} | 
 |  | 
 | 		skb = netdev_alloc_skb(netdev, bufsz); | 
 | 		if (unlikely(!skb)) { | 
 | 			/* Better luck next round */ | 
 | 			adapter->alloc_rx_buff_failed++; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Fix for errata 23, can't cross 64kB boundary */ | 
 | 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { | 
 | 			struct sk_buff *oldskb = skb; | 
 | 			DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes " | 
 | 					     "at %p\n", bufsz, skb->data); | 
 | 			/* Try again, without freeing the previous */ | 
 | 			skb = netdev_alloc_skb(netdev, bufsz); | 
 | 			/* Failed allocation, critical failure */ | 
 | 			if (!skb) { | 
 | 				dev_kfree_skb(oldskb); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { | 
 | 				/* give up */ | 
 | 				dev_kfree_skb(skb); | 
 | 				dev_kfree_skb(oldskb); | 
 | 				break; /* while !buffer_info->skb */ | 
 | 			} | 
 |  | 
 | 			/* Use new allocation */ | 
 | 			dev_kfree_skb(oldskb); | 
 | 		} | 
 | 		/* Make buffer alignment 2 beyond a 16 byte boundary | 
 | 		 * this will result in a 16 byte aligned IP header after | 
 | 		 * the 14 byte MAC header is removed | 
 | 		 */ | 
 | 		skb_reserve(skb, NET_IP_ALIGN); | 
 |  | 
 | 		buffer_info->skb = skb; | 
 | 		buffer_info->length = adapter->rx_buffer_len; | 
 | map_skb: | 
 | 		buffer_info->dma = pci_map_single(pdev, | 
 | 						  skb->data, | 
 | 						  adapter->rx_buffer_len, | 
 | 						  PCI_DMA_FROMDEVICE); | 
 |  | 
 | 		/* Fix for errata 23, can't cross 64kB boundary */ | 
 | 		if (!e1000_check_64k_bound(adapter, | 
 | 					(void *)(unsigned long)buffer_info->dma, | 
 | 					adapter->rx_buffer_len)) { | 
 | 			DPRINTK(RX_ERR, ERR, | 
 | 				"dma align check failed: %u bytes at %p\n", | 
 | 				adapter->rx_buffer_len, | 
 | 				(void *)(unsigned long)buffer_info->dma); | 
 | 			dev_kfree_skb(skb); | 
 | 			buffer_info->skb = NULL; | 
 |  | 
 | 			pci_unmap_single(pdev, buffer_info->dma, | 
 | 					 adapter->rx_buffer_len, | 
 | 					 PCI_DMA_FROMDEVICE); | 
 |  | 
 | 			break; /* while !buffer_info->skb */ | 
 | 		} | 
 | 		rx_desc = E1000_RX_DESC(*rx_ring, i); | 
 | 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | 
 |  | 
 | 		if (unlikely(++i == rx_ring->count)) | 
 | 			i = 0; | 
 | 		buffer_info = &rx_ring->buffer_info[i]; | 
 | 	} | 
 |  | 
 | 	if (likely(rx_ring->next_to_use != i)) { | 
 | 		rx_ring->next_to_use = i; | 
 | 		if (unlikely(i-- == 0)) | 
 | 			i = (rx_ring->count - 1); | 
 |  | 
 | 		/* Force memory writes to complete before letting h/w | 
 | 		 * know there are new descriptors to fetch.  (Only | 
 | 		 * applicable for weak-ordered memory model archs, | 
 | 		 * such as IA-64). */ | 
 | 		wmb(); | 
 | 		writel(i, hw->hw_addr + rx_ring->rdt); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. | 
 |  * @adapter: | 
 |  **/ | 
 |  | 
 | static void e1000_smartspeed(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u16 phy_status; | 
 | 	u16 phy_ctrl; | 
 |  | 
 | 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || | 
 | 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) | 
 | 		return; | 
 |  | 
 | 	if (adapter->smartspeed == 0) { | 
 | 		/* If Master/Slave config fault is asserted twice, | 
 | 		 * we assume back-to-back */ | 
 | 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); | 
 | 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; | 
 | 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); | 
 | 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; | 
 | 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); | 
 | 		if (phy_ctrl & CR_1000T_MS_ENABLE) { | 
 | 			phy_ctrl &= ~CR_1000T_MS_ENABLE; | 
 | 			e1000_write_phy_reg(hw, PHY_1000T_CTRL, | 
 | 					    phy_ctrl); | 
 | 			adapter->smartspeed++; | 
 | 			if (!e1000_phy_setup_autoneg(hw) && | 
 | 			   !e1000_read_phy_reg(hw, PHY_CTRL, | 
 | 				   	       &phy_ctrl)) { | 
 | 				phy_ctrl |= (MII_CR_AUTO_NEG_EN | | 
 | 					     MII_CR_RESTART_AUTO_NEG); | 
 | 				e1000_write_phy_reg(hw, PHY_CTRL, | 
 | 						    phy_ctrl); | 
 | 			} | 
 | 		} | 
 | 		return; | 
 | 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { | 
 | 		/* If still no link, perhaps using 2/3 pair cable */ | 
 | 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); | 
 | 		phy_ctrl |= CR_1000T_MS_ENABLE; | 
 | 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); | 
 | 		if (!e1000_phy_setup_autoneg(hw) && | 
 | 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { | 
 | 			phy_ctrl |= (MII_CR_AUTO_NEG_EN | | 
 | 				     MII_CR_RESTART_AUTO_NEG); | 
 | 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); | 
 | 		} | 
 | 	} | 
 | 	/* Restart process after E1000_SMARTSPEED_MAX iterations */ | 
 | 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) | 
 | 		adapter->smartspeed = 0; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_ioctl - | 
 |  * @netdev: | 
 |  * @ifreq: | 
 |  * @cmd: | 
 |  **/ | 
 |  | 
 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | 
 | { | 
 | 	switch (cmd) { | 
 | 	case SIOCGMIIPHY: | 
 | 	case SIOCGMIIREG: | 
 | 	case SIOCSMIIREG: | 
 | 		return e1000_mii_ioctl(netdev, ifr, cmd); | 
 | 	default: | 
 | 		return -EOPNOTSUPP; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_mii_ioctl - | 
 |  * @netdev: | 
 |  * @ifreq: | 
 |  * @cmd: | 
 |  **/ | 
 |  | 
 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | 
 | 			   int cmd) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct mii_ioctl_data *data = if_mii(ifr); | 
 | 	int retval; | 
 | 	u16 mii_reg; | 
 | 	u16 spddplx; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (hw->media_type != e1000_media_type_copper) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	switch (cmd) { | 
 | 	case SIOCGMIIPHY: | 
 | 		data->phy_id = hw->phy_addr; | 
 | 		break; | 
 | 	case SIOCGMIIREG: | 
 | 		if (!capable(CAP_NET_ADMIN)) | 
 | 			return -EPERM; | 
 | 		spin_lock_irqsave(&adapter->stats_lock, flags); | 
 | 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, | 
 | 				   &data->val_out)) { | 
 | 			spin_unlock_irqrestore(&adapter->stats_lock, flags); | 
 | 			return -EIO; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&adapter->stats_lock, flags); | 
 | 		break; | 
 | 	case SIOCSMIIREG: | 
 | 		if (!capable(CAP_NET_ADMIN)) | 
 | 			return -EPERM; | 
 | 		if (data->reg_num & ~(0x1F)) | 
 | 			return -EFAULT; | 
 | 		mii_reg = data->val_in; | 
 | 		spin_lock_irqsave(&adapter->stats_lock, flags); | 
 | 		if (e1000_write_phy_reg(hw, data->reg_num, | 
 | 					mii_reg)) { | 
 | 			spin_unlock_irqrestore(&adapter->stats_lock, flags); | 
 | 			return -EIO; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&adapter->stats_lock, flags); | 
 | 		if (hw->media_type == e1000_media_type_copper) { | 
 | 			switch (data->reg_num) { | 
 | 			case PHY_CTRL: | 
 | 				if (mii_reg & MII_CR_POWER_DOWN) | 
 | 					break; | 
 | 				if (mii_reg & MII_CR_AUTO_NEG_EN) { | 
 | 					hw->autoneg = 1; | 
 | 					hw->autoneg_advertised = 0x2F; | 
 | 				} else { | 
 | 					if (mii_reg & 0x40) | 
 | 						spddplx = SPEED_1000; | 
 | 					else if (mii_reg & 0x2000) | 
 | 						spddplx = SPEED_100; | 
 | 					else | 
 | 						spddplx = SPEED_10; | 
 | 					spddplx += (mii_reg & 0x100) | 
 | 						   ? DUPLEX_FULL : | 
 | 						   DUPLEX_HALF; | 
 | 					retval = e1000_set_spd_dplx(adapter, | 
 | 								    spddplx); | 
 | 					if (retval) | 
 | 						return retval; | 
 | 				} | 
 | 				if (netif_running(adapter->netdev)) | 
 | 					e1000_reinit_locked(adapter); | 
 | 				else | 
 | 					e1000_reset(adapter); | 
 | 				break; | 
 | 			case M88E1000_PHY_SPEC_CTRL: | 
 | 			case M88E1000_EXT_PHY_SPEC_CTRL: | 
 | 				if (e1000_phy_reset(hw)) | 
 | 					return -EIO; | 
 | 				break; | 
 | 			} | 
 | 		} else { | 
 | 			switch (data->reg_num) { | 
 | 			case PHY_CTRL: | 
 | 				if (mii_reg & MII_CR_POWER_DOWN) | 
 | 					break; | 
 | 				if (netif_running(adapter->netdev)) | 
 | 					e1000_reinit_locked(adapter); | 
 | 				else | 
 | 					e1000_reset(adapter); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		return -EOPNOTSUPP; | 
 | 	} | 
 | 	return E1000_SUCCESS; | 
 | } | 
 |  | 
 | void e1000_pci_set_mwi(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_adapter *adapter = hw->back; | 
 | 	int ret_val = pci_set_mwi(adapter->pdev); | 
 |  | 
 | 	if (ret_val) | 
 | 		DPRINTK(PROBE, ERR, "Error in setting MWI\n"); | 
 | } | 
 |  | 
 | void e1000_pci_clear_mwi(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_adapter *adapter = hw->back; | 
 |  | 
 | 	pci_clear_mwi(adapter->pdev); | 
 | } | 
 |  | 
 | int e1000_pcix_get_mmrbc(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_adapter *adapter = hw->back; | 
 | 	return pcix_get_mmrbc(adapter->pdev); | 
 | } | 
 |  | 
 | void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) | 
 | { | 
 | 	struct e1000_adapter *adapter = hw->back; | 
 | 	pcix_set_mmrbc(adapter->pdev, mmrbc); | 
 | } | 
 |  | 
 | s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) | 
 | { | 
 |     struct e1000_adapter *adapter = hw->back; | 
 |     u16 cap_offset; | 
 |  | 
 |     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); | 
 |     if (!cap_offset) | 
 |         return -E1000_ERR_CONFIG; | 
 |  | 
 |     pci_read_config_word(adapter->pdev, cap_offset + reg, value); | 
 |  | 
 |     return E1000_SUCCESS; | 
 | } | 
 |  | 
 | void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) | 
 | { | 
 | 	outl(value, port); | 
 | } | 
 |  | 
 | static void e1000_vlan_rx_register(struct net_device *netdev, | 
 | 				   struct vlan_group *grp) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 ctrl, rctl; | 
 |  | 
 | 	if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
 | 		e1000_irq_disable(adapter); | 
 | 	adapter->vlgrp = grp; | 
 |  | 
 | 	if (grp) { | 
 | 		/* enable VLAN tag insert/strip */ | 
 | 		ctrl = er32(CTRL); | 
 | 		ctrl |= E1000_CTRL_VME; | 
 | 		ew32(CTRL, ctrl); | 
 |  | 
 | 		if (adapter->hw.mac_type != e1000_ich8lan) { | 
 | 			/* enable VLAN receive filtering */ | 
 | 			rctl = er32(RCTL); | 
 | 			rctl &= ~E1000_RCTL_CFIEN; | 
 | 			ew32(RCTL, rctl); | 
 | 			e1000_update_mng_vlan(adapter); | 
 | 		} | 
 | 	} else { | 
 | 		/* disable VLAN tag insert/strip */ | 
 | 		ctrl = er32(CTRL); | 
 | 		ctrl &= ~E1000_CTRL_VME; | 
 | 		ew32(CTRL, ctrl); | 
 |  | 
 | 		if (adapter->hw.mac_type != e1000_ich8lan) { | 
 | 			if (adapter->mng_vlan_id != | 
 | 			    (u16)E1000_MNG_VLAN_NONE) { | 
 | 				e1000_vlan_rx_kill_vid(netdev, | 
 | 				                       adapter->mng_vlan_id); | 
 | 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
 | 		e1000_irq_enable(adapter); | 
 | } | 
 |  | 
 | static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 vfta, index; | 
 |  | 
 | 	if ((hw->mng_cookie.status & | 
 | 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && | 
 | 	    (vid == adapter->mng_vlan_id)) | 
 | 		return; | 
 | 	/* add VID to filter table */ | 
 | 	index = (vid >> 5) & 0x7F; | 
 | 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); | 
 | 	vfta |= (1 << (vid & 0x1F)); | 
 | 	e1000_write_vfta(hw, index, vfta); | 
 | } | 
 |  | 
 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 vfta, index; | 
 |  | 
 | 	if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
 | 		e1000_irq_disable(adapter); | 
 | 	vlan_group_set_device(adapter->vlgrp, vid, NULL); | 
 | 	if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
 | 		e1000_irq_enable(adapter); | 
 |  | 
 | 	if ((hw->mng_cookie.status & | 
 | 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && | 
 | 	    (vid == adapter->mng_vlan_id)) { | 
 | 		/* release control to f/w */ | 
 | 		e1000_release_hw_control(adapter); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* remove VID from filter table */ | 
 | 	index = (vid >> 5) & 0x7F; | 
 | 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); | 
 | 	vfta &= ~(1 << (vid & 0x1F)); | 
 | 	e1000_write_vfta(hw, index, vfta); | 
 | } | 
 |  | 
 | static void e1000_restore_vlan(struct e1000_adapter *adapter) | 
 | { | 
 | 	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); | 
 |  | 
 | 	if (adapter->vlgrp) { | 
 | 		u16 vid; | 
 | 		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { | 
 | 			if (!vlan_group_get_device(adapter->vlgrp, vid)) | 
 | 				continue; | 
 | 			e1000_vlan_rx_add_vid(adapter->netdev, vid); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	hw->autoneg = 0; | 
 |  | 
 | 	/* Fiber NICs only allow 1000 gbps Full duplex */ | 
 | 	if ((hw->media_type == e1000_media_type_fiber) && | 
 | 		spddplx != (SPEED_1000 + DUPLEX_FULL)) { | 
 | 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	switch (spddplx) { | 
 | 	case SPEED_10 + DUPLEX_HALF: | 
 | 		hw->forced_speed_duplex = e1000_10_half; | 
 | 		break; | 
 | 	case SPEED_10 + DUPLEX_FULL: | 
 | 		hw->forced_speed_duplex = e1000_10_full; | 
 | 		break; | 
 | 	case SPEED_100 + DUPLEX_HALF: | 
 | 		hw->forced_speed_duplex = e1000_100_half; | 
 | 		break; | 
 | 	case SPEED_100 + DUPLEX_FULL: | 
 | 		hw->forced_speed_duplex = e1000_100_full; | 
 | 		break; | 
 | 	case SPEED_1000 + DUPLEX_FULL: | 
 | 		hw->autoneg = 1; | 
 | 		hw->autoneg_advertised = ADVERTISE_1000_FULL; | 
 | 		break; | 
 | 	case SPEED_1000 + DUPLEX_HALF: /* not supported */ | 
 | 	default: | 
 | 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) | 
 | { | 
 | 	struct net_device *netdev = pci_get_drvdata(pdev); | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 ctrl, ctrl_ext, rctl, status; | 
 | 	u32 wufc = adapter->wol; | 
 | #ifdef CONFIG_PM | 
 | 	int retval = 0; | 
 | #endif | 
 |  | 
 | 	netif_device_detach(netdev); | 
 |  | 
 | 	if (netif_running(netdev)) { | 
 | 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); | 
 | 		e1000_down(adapter); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_PM | 
 | 	retval = pci_save_state(pdev); | 
 | 	if (retval) | 
 | 		return retval; | 
 | #endif | 
 |  | 
 | 	status = er32(STATUS); | 
 | 	if (status & E1000_STATUS_LU) | 
 | 		wufc &= ~E1000_WUFC_LNKC; | 
 |  | 
 | 	if (wufc) { | 
 | 		e1000_setup_rctl(adapter); | 
 | 		e1000_set_rx_mode(netdev); | 
 |  | 
 | 		/* turn on all-multi mode if wake on multicast is enabled */ | 
 | 		if (wufc & E1000_WUFC_MC) { | 
 | 			rctl = er32(RCTL); | 
 | 			rctl |= E1000_RCTL_MPE; | 
 | 			ew32(RCTL, rctl); | 
 | 		} | 
 |  | 
 | 		if (hw->mac_type >= e1000_82540) { | 
 | 			ctrl = er32(CTRL); | 
 | 			/* advertise wake from D3Cold */ | 
 | 			#define E1000_CTRL_ADVD3WUC 0x00100000 | 
 | 			/* phy power management enable */ | 
 | 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | 
 | 			ctrl |= E1000_CTRL_ADVD3WUC | | 
 | 				E1000_CTRL_EN_PHY_PWR_MGMT; | 
 | 			ew32(CTRL, ctrl); | 
 | 		} | 
 |  | 
 | 		if (hw->media_type == e1000_media_type_fiber || | 
 | 		   hw->media_type == e1000_media_type_internal_serdes) { | 
 | 			/* keep the laser running in D3 */ | 
 | 			ctrl_ext = er32(CTRL_EXT); | 
 | 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; | 
 | 			ew32(CTRL_EXT, ctrl_ext); | 
 | 		} | 
 |  | 
 | 		/* Allow time for pending master requests to run */ | 
 | 		e1000_disable_pciex_master(hw); | 
 |  | 
 | 		ew32(WUC, E1000_WUC_PME_EN); | 
 | 		ew32(WUFC, wufc); | 
 | 		pci_enable_wake(pdev, PCI_D3hot, 1); | 
 | 		pci_enable_wake(pdev, PCI_D3cold, 1); | 
 | 	} else { | 
 | 		ew32(WUC, 0); | 
 | 		ew32(WUFC, 0); | 
 | 		pci_enable_wake(pdev, PCI_D3hot, 0); | 
 | 		pci_enable_wake(pdev, PCI_D3cold, 0); | 
 | 	} | 
 |  | 
 | 	e1000_release_manageability(adapter); | 
 |  | 
 | 	/* make sure adapter isn't asleep if manageability is enabled */ | 
 | 	if (adapter->en_mng_pt) { | 
 | 		pci_enable_wake(pdev, PCI_D3hot, 1); | 
 | 		pci_enable_wake(pdev, PCI_D3cold, 1); | 
 | 	} | 
 |  | 
 | 	if (hw->phy_type == e1000_phy_igp_3) | 
 | 		e1000_phy_powerdown_workaround(hw); | 
 |  | 
 | 	if (netif_running(netdev)) | 
 | 		e1000_free_irq(adapter); | 
 |  | 
 | 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this | 
 | 	 * would have already happened in close and is redundant. */ | 
 | 	e1000_release_hw_control(adapter); | 
 |  | 
 | 	pci_disable_device(pdev); | 
 |  | 
 | 	pci_set_power_state(pdev, pci_choose_state(pdev, state)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM | 
 | static int e1000_resume(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *netdev = pci_get_drvdata(pdev); | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 err; | 
 |  | 
 | 	pci_set_power_state(pdev, PCI_D0); | 
 | 	pci_restore_state(pdev); | 
 |  | 
 | 	if (adapter->need_ioport) | 
 | 		err = pci_enable_device(pdev); | 
 | 	else | 
 | 		err = pci_enable_device_mem(pdev); | 
 | 	if (err) { | 
 | 		printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n"); | 
 | 		return err; | 
 | 	} | 
 | 	pci_set_master(pdev); | 
 |  | 
 | 	pci_enable_wake(pdev, PCI_D3hot, 0); | 
 | 	pci_enable_wake(pdev, PCI_D3cold, 0); | 
 |  | 
 | 	if (netif_running(netdev)) { | 
 | 		err = e1000_request_irq(adapter); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	e1000_power_up_phy(adapter); | 
 | 	e1000_reset(adapter); | 
 | 	ew32(WUS, ~0); | 
 |  | 
 | 	e1000_init_manageability(adapter); | 
 |  | 
 | 	if (netif_running(netdev)) | 
 | 		e1000_up(adapter); | 
 |  | 
 | 	netif_device_attach(netdev); | 
 |  | 
 | 	/* If the controller is 82573 and f/w is AMT, do not set | 
 | 	 * DRV_LOAD until the interface is up.  For all other cases, | 
 | 	 * let the f/w know that the h/w is now under the control | 
 | 	 * of the driver. */ | 
 | 	if (hw->mac_type != e1000_82573 || | 
 | 	    !e1000_check_mng_mode(hw)) | 
 | 		e1000_get_hw_control(adapter); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static void e1000_shutdown(struct pci_dev *pdev) | 
 | { | 
 | 	e1000_suspend(pdev, PMSG_SUSPEND); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | /* | 
 |  * Polling 'interrupt' - used by things like netconsole to send skbs | 
 |  * without having to re-enable interrupts. It's not called while | 
 |  * the interrupt routine is executing. | 
 |  */ | 
 | static void e1000_netpoll(struct net_device *netdev) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 |  | 
 | 	disable_irq(adapter->pdev->irq); | 
 | 	e1000_intr(adapter->pdev->irq, netdev); | 
 | 	enable_irq(adapter->pdev->irq); | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * e1000_io_error_detected - called when PCI error is detected | 
 |  * @pdev: Pointer to PCI device | 
 |  * @state: The current pci conneection state | 
 |  * | 
 |  * This function is called after a PCI bus error affecting | 
 |  * this device has been detected. | 
 |  */ | 
 | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | 
 | 						pci_channel_state_t state) | 
 | { | 
 | 	struct net_device *netdev = pci_get_drvdata(pdev); | 
 | 	struct e1000_adapter *adapter = netdev->priv; | 
 |  | 
 | 	netif_device_detach(netdev); | 
 |  | 
 | 	if (netif_running(netdev)) | 
 | 		e1000_down(adapter); | 
 | 	pci_disable_device(pdev); | 
 |  | 
 | 	/* Request a slot slot reset. */ | 
 | 	return PCI_ERS_RESULT_NEED_RESET; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_io_slot_reset - called after the pci bus has been reset. | 
 |  * @pdev: Pointer to PCI device | 
 |  * | 
 |  * Restart the card from scratch, as if from a cold-boot. Implementation | 
 |  * resembles the first-half of the e1000_resume routine. | 
 |  */ | 
 | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *netdev = pci_get_drvdata(pdev); | 
 | 	struct e1000_adapter *adapter = netdev->priv; | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	int err; | 
 |  | 
 | 	if (adapter->need_ioport) | 
 | 		err = pci_enable_device(pdev); | 
 | 	else | 
 | 		err = pci_enable_device_mem(pdev); | 
 | 	if (err) { | 
 | 		printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n"); | 
 | 		return PCI_ERS_RESULT_DISCONNECT; | 
 | 	} | 
 | 	pci_set_master(pdev); | 
 |  | 
 | 	pci_enable_wake(pdev, PCI_D3hot, 0); | 
 | 	pci_enable_wake(pdev, PCI_D3cold, 0); | 
 |  | 
 | 	e1000_reset(adapter); | 
 | 	ew32(WUS, ~0); | 
 |  | 
 | 	return PCI_ERS_RESULT_RECOVERED; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_io_resume - called when traffic can start flowing again. | 
 |  * @pdev: Pointer to PCI device | 
 |  * | 
 |  * This callback is called when the error recovery driver tells us that | 
 |  * its OK to resume normal operation. Implementation resembles the | 
 |  * second-half of the e1000_resume routine. | 
 |  */ | 
 | static void e1000_io_resume(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *netdev = pci_get_drvdata(pdev); | 
 | 	struct e1000_adapter *adapter = netdev->priv; | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	e1000_init_manageability(adapter); | 
 |  | 
 | 	if (netif_running(netdev)) { | 
 | 		if (e1000_up(adapter)) { | 
 | 			printk("e1000: can't bring device back up after reset\n"); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	netif_device_attach(netdev); | 
 |  | 
 | 	/* If the controller is 82573 and f/w is AMT, do not set | 
 | 	 * DRV_LOAD until the interface is up.  For all other cases, | 
 | 	 * let the f/w know that the h/w is now under the control | 
 | 	 * of the driver. */ | 
 | 	if (hw->mac_type != e1000_82573 || | 
 | 	    !e1000_check_mng_mode(hw)) | 
 | 		e1000_get_hw_control(adapter); | 
 |  | 
 | } | 
 |  | 
 | /* e1000_main.c */ |