|  | /* | 
|  | * SMP boot-related support | 
|  | * | 
|  | * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co | 
|  | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | * Copyright (C) 2001, 2004-2005 Intel Corp | 
|  | * 	Rohit Seth <rohit.seth@intel.com> | 
|  | * 	Suresh Siddha <suresh.b.siddha@intel.com> | 
|  | * 	Gordon Jin <gordon.jin@intel.com> | 
|  | *	Ashok Raj  <ashok.raj@intel.com> | 
|  | * | 
|  | * 01/05/16 Rohit Seth <rohit.seth@intel.com>	Moved SMP booting functions from smp.c to here. | 
|  | * 01/04/27 David Mosberger <davidm@hpl.hp.com>	Added ITC synching code. | 
|  | * 02/07/31 David Mosberger <davidm@hpl.hp.com>	Switch over to hotplug-CPU boot-sequence. | 
|  | *						smp_boot_cpus()/smp_commence() is replaced by | 
|  | *						smp_prepare_cpus()/__cpu_up()/smp_cpus_done(). | 
|  | * 04/06/21 Ashok Raj		<ashok.raj@intel.com> Added CPU Hotplug Support | 
|  | * 04/12/26 Jin Gordon <gordon.jin@intel.com> | 
|  | * 04/12/26 Rohit Seth <rohit.seth@intel.com> | 
|  | *						Add multi-threading and multi-core detection | 
|  | * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com> | 
|  | *						Setup cpu_sibling_map and cpu_core_map | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/bitops.h> | 
|  |  | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/cache.h> | 
|  | #include <asm/current.h> | 
|  | #include <asm/delay.h> | 
|  | #include <asm/ia32.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/machvec.h> | 
|  | #include <asm/mca.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/sal.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/unistd.h> | 
|  | #include <asm/sn/arch.h> | 
|  |  | 
|  | #define SMP_DEBUG 0 | 
|  |  | 
|  | #if SMP_DEBUG | 
|  | #define Dprintk(x...)  printk(x) | 
|  | #else | 
|  | #define Dprintk(x...) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | #ifdef CONFIG_PERMIT_BSP_REMOVE | 
|  | #define bsp_remove_ok	1 | 
|  | #else | 
|  | #define bsp_remove_ok	0 | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Store all idle threads, this can be reused instead of creating | 
|  | * a new thread. Also avoids complicated thread destroy functionality | 
|  | * for idle threads. | 
|  | */ | 
|  | struct task_struct *idle_thread_array[NR_CPUS]; | 
|  |  | 
|  | /* | 
|  | * Global array allocated for NR_CPUS at boot time | 
|  | */ | 
|  | struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS]; | 
|  |  | 
|  | /* | 
|  | * start_ap in head.S uses this to store current booting cpu | 
|  | * info. | 
|  | */ | 
|  | struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0]; | 
|  |  | 
|  | #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]); | 
|  |  | 
|  | #define get_idle_for_cpu(x)		(idle_thread_array[(x)]) | 
|  | #define set_idle_for_cpu(x,p)	(idle_thread_array[(x)] = (p)) | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define get_idle_for_cpu(x)		(NULL) | 
|  | #define set_idle_for_cpu(x,p) | 
|  | #define set_brendez_area(x) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * ITC synchronization related stuff: | 
|  | */ | 
|  | #define MASTER	(0) | 
|  | #define SLAVE	(SMP_CACHE_BYTES/8) | 
|  |  | 
|  | #define NUM_ROUNDS	64	/* magic value */ | 
|  | #define NUM_ITERS	5	/* likewise */ | 
|  |  | 
|  | static DEFINE_SPINLOCK(itc_sync_lock); | 
|  | static volatile unsigned long go[SLAVE + 1]; | 
|  |  | 
|  | #define DEBUG_ITC_SYNC	0 | 
|  |  | 
|  | extern void __devinit calibrate_delay (void); | 
|  | extern void start_ap (void); | 
|  | extern unsigned long ia64_iobase; | 
|  |  | 
|  | struct task_struct *task_for_booting_cpu; | 
|  |  | 
|  | /* | 
|  | * State for each CPU | 
|  | */ | 
|  | DEFINE_PER_CPU(int, cpu_state); | 
|  |  | 
|  | /* Bitmasks of currently online, and possible CPUs */ | 
|  | cpumask_t cpu_online_map; | 
|  | EXPORT_SYMBOL(cpu_online_map); | 
|  | cpumask_t cpu_possible_map = CPU_MASK_NONE; | 
|  | EXPORT_SYMBOL(cpu_possible_map); | 
|  |  | 
|  | cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned; | 
|  | DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map); | 
|  | EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); | 
|  |  | 
|  | int smp_num_siblings = 1; | 
|  | int smp_num_cpucores = 1; | 
|  |  | 
|  | /* which logical CPU number maps to which CPU (physical APIC ID) */ | 
|  | volatile int ia64_cpu_to_sapicid[NR_CPUS]; | 
|  | EXPORT_SYMBOL(ia64_cpu_to_sapicid); | 
|  |  | 
|  | static volatile cpumask_t cpu_callin_map; | 
|  |  | 
|  | struct smp_boot_data smp_boot_data __initdata; | 
|  |  | 
|  | unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */ | 
|  |  | 
|  | char __initdata no_int_routing; | 
|  |  | 
|  | unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */ | 
|  |  | 
|  | #ifdef CONFIG_FORCE_CPEI_RETARGET | 
|  | #define CPEI_OVERRIDE_DEFAULT	(1) | 
|  | #else | 
|  | #define CPEI_OVERRIDE_DEFAULT	(0) | 
|  | #endif | 
|  |  | 
|  | unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT; | 
|  |  | 
|  | static int __init | 
|  | cmdl_force_cpei(char *str) | 
|  | { | 
|  | int value=0; | 
|  |  | 
|  | get_option (&str, &value); | 
|  | force_cpei_retarget = value; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("force_cpei=", cmdl_force_cpei); | 
|  |  | 
|  | static int __init | 
|  | nointroute (char *str) | 
|  | { | 
|  | no_int_routing = 1; | 
|  | printk ("no_int_routing on\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("nointroute", nointroute); | 
|  |  | 
|  | static void fix_b0_for_bsp(void) | 
|  | { | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | int cpuid; | 
|  | static int fix_bsp_b0 = 1; | 
|  |  | 
|  | cpuid = smp_processor_id(); | 
|  |  | 
|  | /* | 
|  | * Cache the b0 value on the first AP that comes up | 
|  | */ | 
|  | if (!(fix_bsp_b0 && cpuid)) | 
|  | return; | 
|  |  | 
|  | sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0]; | 
|  | printk ("Fixed BSP b0 value from CPU %d\n", cpuid); | 
|  |  | 
|  | fix_bsp_b0 = 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void | 
|  | sync_master (void *arg) | 
|  | { | 
|  | unsigned long flags, i; | 
|  |  | 
|  | go[MASTER] = 0; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | { | 
|  | for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) { | 
|  | while (!go[MASTER]) | 
|  | cpu_relax(); | 
|  | go[MASTER] = 0; | 
|  | go[SLAVE] = ia64_get_itc(); | 
|  | } | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the number of cycles by which our itc differs from the itc on the master | 
|  | * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master, | 
|  | * negative that it is behind. | 
|  | */ | 
|  | static inline long | 
|  | get_delta (long *rt, long *master) | 
|  | { | 
|  | unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; | 
|  | unsigned long tcenter, t0, t1, tm; | 
|  | long i; | 
|  |  | 
|  | for (i = 0; i < NUM_ITERS; ++i) { | 
|  | t0 = ia64_get_itc(); | 
|  | go[MASTER] = 1; | 
|  | while (!(tm = go[SLAVE])) | 
|  | cpu_relax(); | 
|  | go[SLAVE] = 0; | 
|  | t1 = ia64_get_itc(); | 
|  |  | 
|  | if (t1 - t0 < best_t1 - best_t0) | 
|  | best_t0 = t0, best_t1 = t1, best_tm = tm; | 
|  | } | 
|  |  | 
|  | *rt = best_t1 - best_t0; | 
|  | *master = best_tm - best_t0; | 
|  |  | 
|  | /* average best_t0 and best_t1 without overflow: */ | 
|  | tcenter = (best_t0/2 + best_t1/2); | 
|  | if (best_t0 % 2 + best_t1 % 2 == 2) | 
|  | ++tcenter; | 
|  | return tcenter - best_tm; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU | 
|  | * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of | 
|  | * unaccounted-for errors (such as getting a machine check in the middle of a calibration | 
|  | * step).  The basic idea is for the slave to ask the master what itc value it has and to | 
|  | * read its own itc before and after the master responds.  Each iteration gives us three | 
|  | * timestamps: | 
|  | * | 
|  | *	slave		master | 
|  | * | 
|  | *	t0 ---\ | 
|  | *             ---\ | 
|  | *		   ---> | 
|  | *			tm | 
|  | *		   /--- | 
|  | *	       /--- | 
|  | *	t1 <--- | 
|  | * | 
|  | * | 
|  | * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0 | 
|  | * and t1.  If we achieve this, the clocks are synchronized provided the interconnect | 
|  | * between the slave and the master is symmetric.  Even if the interconnect were | 
|  | * asymmetric, we would still know that the synchronization error is smaller than the | 
|  | * roundtrip latency (t0 - t1). | 
|  | * | 
|  | * When the interconnect is quiet and symmetric, this lets us synchronize the itc to | 
|  | * within one or two cycles.  However, we can only *guarantee* that the synchronization is | 
|  | * accurate to within a round-trip time, which is typically in the range of several | 
|  | * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually | 
|  | * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better | 
|  | * than half a micro second or so. | 
|  | */ | 
|  | void | 
|  | ia64_sync_itc (unsigned int master) | 
|  | { | 
|  | long i, delta, adj, adjust_latency = 0, done = 0; | 
|  | unsigned long flags, rt, master_time_stamp, bound; | 
|  | #if DEBUG_ITC_SYNC | 
|  | struct { | 
|  | long rt;	/* roundtrip time */ | 
|  | long master;	/* master's timestamp */ | 
|  | long diff;	/* difference between midpoint and master's timestamp */ | 
|  | long lat;	/* estimate of itc adjustment latency */ | 
|  | } t[NUM_ROUNDS]; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Make sure local timer ticks are disabled while we sync.  If | 
|  | * they were enabled, we'd have to worry about nasty issues | 
|  | * like setting the ITC ahead of (or a long time before) the | 
|  | * next scheduled tick. | 
|  | */ | 
|  | BUG_ON((ia64_get_itv() & (1 << 16)) == 0); | 
|  |  | 
|  | go[MASTER] = 1; | 
|  |  | 
|  | if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) { | 
|  | printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (go[MASTER]) | 
|  | cpu_relax();	/* wait for master to be ready */ | 
|  |  | 
|  | spin_lock_irqsave(&itc_sync_lock, flags); | 
|  | { | 
|  | for (i = 0; i < NUM_ROUNDS; ++i) { | 
|  | delta = get_delta(&rt, &master_time_stamp); | 
|  | if (delta == 0) { | 
|  | done = 1;	/* let's lock on to this... */ | 
|  | bound = rt; | 
|  | } | 
|  |  | 
|  | if (!done) { | 
|  | if (i > 0) { | 
|  | adjust_latency += -delta; | 
|  | adj = -delta + adjust_latency/4; | 
|  | } else | 
|  | adj = -delta; | 
|  |  | 
|  | ia64_set_itc(ia64_get_itc() + adj); | 
|  | } | 
|  | #if DEBUG_ITC_SYNC | 
|  | t[i].rt = rt; | 
|  | t[i].master = master_time_stamp; | 
|  | t[i].diff = delta; | 
|  | t[i].lat = adjust_latency/4; | 
|  | #endif | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&itc_sync_lock, flags); | 
|  |  | 
|  | #if DEBUG_ITC_SYNC | 
|  | for (i = 0; i < NUM_ROUNDS; ++i) | 
|  | printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", | 
|  | t[i].rt, t[i].master, t[i].diff, t[i].lat); | 
|  | #endif | 
|  |  | 
|  | printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, " | 
|  | "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ideally sets up per-cpu profiling hooks.  Doesn't do much now... | 
|  | */ | 
|  | static inline void __devinit | 
|  | smp_setup_percpu_timer (void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void __cpuinit | 
|  | smp_callin (void) | 
|  | { | 
|  | int cpuid, phys_id, itc_master; | 
|  | struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo; | 
|  | extern void ia64_init_itm(void); | 
|  | extern volatile int time_keeper_id; | 
|  |  | 
|  | #ifdef CONFIG_PERFMON | 
|  | extern void pfm_init_percpu(void); | 
|  | #endif | 
|  |  | 
|  | cpuid = smp_processor_id(); | 
|  | phys_id = hard_smp_processor_id(); | 
|  | itc_master = time_keeper_id; | 
|  |  | 
|  | if (cpu_online(cpuid)) { | 
|  | printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n", | 
|  | phys_id, cpuid); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | fix_b0_for_bsp(); | 
|  |  | 
|  | lock_ipi_calllock(); | 
|  | spin_lock(&vector_lock); | 
|  | /* Setup the per cpu irq handling data structures */ | 
|  | __setup_vector_irq(cpuid); | 
|  | cpu_set(cpuid, cpu_online_map); | 
|  | unlock_ipi_calllock(); | 
|  | per_cpu(cpu_state, cpuid) = CPU_ONLINE; | 
|  | spin_unlock(&vector_lock); | 
|  |  | 
|  | smp_setup_percpu_timer(); | 
|  |  | 
|  | ia64_mca_cmc_vector_setup();	/* Setup vector on AP */ | 
|  |  | 
|  | #ifdef CONFIG_PERFMON | 
|  | pfm_init_percpu(); | 
|  | #endif | 
|  |  | 
|  | local_irq_enable(); | 
|  |  | 
|  | if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) { | 
|  | /* | 
|  | * Synchronize the ITC with the BP.  Need to do this after irqs are | 
|  | * enabled because ia64_sync_itc() calls smp_call_function_single(), which | 
|  | * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls | 
|  | * local_bh_enable(), which bugs out if irqs are not enabled... | 
|  | */ | 
|  | Dprintk("Going to syncup ITC with ITC Master.\n"); | 
|  | ia64_sync_itc(itc_master); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get our bogomips. | 
|  | */ | 
|  | ia64_init_itm(); | 
|  |  | 
|  | /* | 
|  | * Delay calibration can be skipped if new processor is identical to the | 
|  | * previous processor. | 
|  | */ | 
|  | last_cpuinfo = cpu_data(cpuid - 1); | 
|  | this_cpuinfo = local_cpu_data; | 
|  | if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq || | 
|  | last_cpuinfo->proc_freq != this_cpuinfo->proc_freq || | 
|  | last_cpuinfo->features != this_cpuinfo->features || | 
|  | last_cpuinfo->revision != this_cpuinfo->revision || | 
|  | last_cpuinfo->family != this_cpuinfo->family || | 
|  | last_cpuinfo->archrev != this_cpuinfo->archrev || | 
|  | last_cpuinfo->model != this_cpuinfo->model) | 
|  | calibrate_delay(); | 
|  | local_cpu_data->loops_per_jiffy = loops_per_jiffy; | 
|  |  | 
|  | #ifdef CONFIG_IA32_SUPPORT | 
|  | ia32_gdt_init(); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Allow the master to continue. | 
|  | */ | 
|  | cpu_set(cpuid, cpu_callin_map); | 
|  | Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Activate a secondary processor.  head.S calls this. | 
|  | */ | 
|  | int __cpuinit | 
|  | start_secondary (void *unused) | 
|  | { | 
|  | /* Early console may use I/O ports */ | 
|  | ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase)); | 
|  | Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id()); | 
|  | efi_map_pal_code(); | 
|  | cpu_init(); | 
|  | preempt_disable(); | 
|  | smp_callin(); | 
|  |  | 
|  | cpu_idle(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct pt_regs * __devinit idle_regs(struct pt_regs *regs) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct create_idle { | 
|  | struct work_struct work; | 
|  | struct task_struct *idle; | 
|  | struct completion done; | 
|  | int cpu; | 
|  | }; | 
|  |  | 
|  | void __cpuinit | 
|  | do_fork_idle(struct work_struct *work) | 
|  | { | 
|  | struct create_idle *c_idle = | 
|  | container_of(work, struct create_idle, work); | 
|  |  | 
|  | c_idle->idle = fork_idle(c_idle->cpu); | 
|  | complete(&c_idle->done); | 
|  | } | 
|  |  | 
|  | static int __cpuinit | 
|  | do_boot_cpu (int sapicid, int cpu) | 
|  | { | 
|  | int timeout; | 
|  | struct create_idle c_idle = { | 
|  | .work = __WORK_INITIALIZER(c_idle.work, do_fork_idle), | 
|  | .cpu	= cpu, | 
|  | .done	= COMPLETION_INITIALIZER(c_idle.done), | 
|  | }; | 
|  |  | 
|  | c_idle.idle = get_idle_for_cpu(cpu); | 
|  | if (c_idle.idle) { | 
|  | init_idle(c_idle.idle, cpu); | 
|  | goto do_rest; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can't use kernel_thread since we must avoid to reschedule the child. | 
|  | */ | 
|  | if (!keventd_up() || current_is_keventd()) | 
|  | c_idle.work.func(&c_idle.work); | 
|  | else { | 
|  | schedule_work(&c_idle.work); | 
|  | wait_for_completion(&c_idle.done); | 
|  | } | 
|  |  | 
|  | if (IS_ERR(c_idle.idle)) | 
|  | panic("failed fork for CPU %d", cpu); | 
|  |  | 
|  | set_idle_for_cpu(cpu, c_idle.idle); | 
|  |  | 
|  | do_rest: | 
|  | task_for_booting_cpu = c_idle.idle; | 
|  |  | 
|  | Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid); | 
|  |  | 
|  | set_brendez_area(cpu); | 
|  | platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0); | 
|  |  | 
|  | /* | 
|  | * Wait 10s total for the AP to start | 
|  | */ | 
|  | Dprintk("Waiting on callin_map ..."); | 
|  | for (timeout = 0; timeout < 100000; timeout++) { | 
|  | if (cpu_isset(cpu, cpu_callin_map)) | 
|  | break;  /* It has booted */ | 
|  | udelay(100); | 
|  | } | 
|  | Dprintk("\n"); | 
|  |  | 
|  | if (!cpu_isset(cpu, cpu_callin_map)) { | 
|  | printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid); | 
|  | ia64_cpu_to_sapicid[cpu] = -1; | 
|  | cpu_clear(cpu, cpu_online_map);  /* was set in smp_callin() */ | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init | 
|  | decay (char *str) | 
|  | { | 
|  | int ticks; | 
|  | get_option (&str, &ticks); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("decay=", decay); | 
|  |  | 
|  | /* | 
|  | * Initialize the logical CPU number to SAPICID mapping | 
|  | */ | 
|  | void __init | 
|  | smp_build_cpu_map (void) | 
|  | { | 
|  | int sapicid, cpu, i; | 
|  | int boot_cpu_id = hard_smp_processor_id(); | 
|  |  | 
|  | for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
|  | ia64_cpu_to_sapicid[cpu] = -1; | 
|  | } | 
|  |  | 
|  | ia64_cpu_to_sapicid[0] = boot_cpu_id; | 
|  | cpus_clear(cpu_present_map); | 
|  | cpu_set(0, cpu_present_map); | 
|  | cpu_set(0, cpu_possible_map); | 
|  | for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) { | 
|  | sapicid = smp_boot_data.cpu_phys_id[i]; | 
|  | if (sapicid == boot_cpu_id) | 
|  | continue; | 
|  | cpu_set(cpu, cpu_present_map); | 
|  | cpu_set(cpu, cpu_possible_map); | 
|  | ia64_cpu_to_sapicid[cpu] = sapicid; | 
|  | cpu++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cycle through the APs sending Wakeup IPIs to boot each. | 
|  | */ | 
|  | void __init | 
|  | smp_prepare_cpus (unsigned int max_cpus) | 
|  | { | 
|  | int boot_cpu_id = hard_smp_processor_id(); | 
|  |  | 
|  | /* | 
|  | * Initialize the per-CPU profiling counter/multiplier | 
|  | */ | 
|  |  | 
|  | smp_setup_percpu_timer(); | 
|  |  | 
|  | /* | 
|  | * We have the boot CPU online for sure. | 
|  | */ | 
|  | cpu_set(0, cpu_online_map); | 
|  | cpu_set(0, cpu_callin_map); | 
|  |  | 
|  | local_cpu_data->loops_per_jiffy = loops_per_jiffy; | 
|  | ia64_cpu_to_sapicid[0] = boot_cpu_id; | 
|  |  | 
|  | printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id); | 
|  |  | 
|  | current_thread_info()->cpu = 0; | 
|  |  | 
|  | /* | 
|  | * If SMP should be disabled, then really disable it! | 
|  | */ | 
|  | if (!max_cpus) { | 
|  | printk(KERN_INFO "SMP mode deactivated.\n"); | 
|  | cpus_clear(cpu_online_map); | 
|  | cpus_clear(cpu_present_map); | 
|  | cpus_clear(cpu_possible_map); | 
|  | cpu_set(0, cpu_online_map); | 
|  | cpu_set(0, cpu_present_map); | 
|  | cpu_set(0, cpu_possible_map); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | void __devinit smp_prepare_boot_cpu(void) | 
|  | { | 
|  | cpu_set(smp_processor_id(), cpu_online_map); | 
|  | cpu_set(smp_processor_id(), cpu_callin_map); | 
|  | per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static inline void | 
|  | clear_cpu_sibling_map(int cpu) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu)) | 
|  | cpu_clear(cpu, per_cpu(cpu_sibling_map, i)); | 
|  | for_each_cpu_mask(i, cpu_core_map[cpu]) | 
|  | cpu_clear(cpu, cpu_core_map[i]); | 
|  |  | 
|  | per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE; | 
|  | } | 
|  |  | 
|  | static void | 
|  | remove_siblinginfo(int cpu) | 
|  | { | 
|  | int last = 0; | 
|  |  | 
|  | if (cpu_data(cpu)->threads_per_core == 1 && | 
|  | cpu_data(cpu)->cores_per_socket == 1) { | 
|  | cpu_clear(cpu, cpu_core_map[cpu]); | 
|  | cpu_clear(cpu, per_cpu(cpu_sibling_map, cpu)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0); | 
|  |  | 
|  | /* remove it from all sibling map's */ | 
|  | clear_cpu_sibling_map(cpu); | 
|  | } | 
|  |  | 
|  | extern void fixup_irqs(void); | 
|  |  | 
|  | int migrate_platform_irqs(unsigned int cpu) | 
|  | { | 
|  | int new_cpei_cpu; | 
|  | irq_desc_t *desc = NULL; | 
|  | cpumask_t 	mask; | 
|  | int 		retval = 0; | 
|  |  | 
|  | /* | 
|  | * dont permit CPEI target to removed. | 
|  | */ | 
|  | if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) { | 
|  | printk ("CPU (%d) is CPEI Target\n", cpu); | 
|  | if (can_cpei_retarget()) { | 
|  | /* | 
|  | * Now re-target the CPEI to a different processor | 
|  | */ | 
|  | new_cpei_cpu = any_online_cpu(cpu_online_map); | 
|  | mask = cpumask_of_cpu(new_cpei_cpu); | 
|  | set_cpei_target_cpu(new_cpei_cpu); | 
|  | desc = irq_desc + ia64_cpe_irq; | 
|  | /* | 
|  | * Switch for now, immediately, we need to do fake intr | 
|  | * as other interrupts, but need to study CPEI behaviour with | 
|  | * polling before making changes. | 
|  | */ | 
|  | if (desc) { | 
|  | desc->chip->disable(ia64_cpe_irq); | 
|  | desc->chip->set_affinity(ia64_cpe_irq, mask); | 
|  | desc->chip->enable(ia64_cpe_irq); | 
|  | printk ("Re-targetting CPEI to cpu %d\n", new_cpei_cpu); | 
|  | } | 
|  | } | 
|  | if (!desc) { | 
|  | printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu); | 
|  | retval = -EBUSY; | 
|  | } | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* must be called with cpucontrol mutex held */ | 
|  | int __cpu_disable(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | /* | 
|  | * dont permit boot processor for now | 
|  | */ | 
|  | if (cpu == 0 && !bsp_remove_ok) { | 
|  | printk ("Your platform does not support removal of BSP\n"); | 
|  | return (-EBUSY); | 
|  | } | 
|  |  | 
|  | if (ia64_platform_is("sn2")) { | 
|  | if (!sn_cpu_disable_allowed(cpu)) | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | cpu_clear(cpu, cpu_online_map); | 
|  |  | 
|  | if (migrate_platform_irqs(cpu)) { | 
|  | cpu_set(cpu, cpu_online_map); | 
|  | return (-EBUSY); | 
|  | } | 
|  |  | 
|  | remove_siblinginfo(cpu); | 
|  | cpu_clear(cpu, cpu_online_map); | 
|  | fixup_irqs(); | 
|  | local_flush_tlb_all(); | 
|  | cpu_clear(cpu, cpu_callin_map); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __cpu_die(unsigned int cpu) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < 100; i++) { | 
|  | /* They ack this in play_dead by setting CPU_DEAD */ | 
|  | if (per_cpu(cpu_state, cpu) == CPU_DEAD) | 
|  | { | 
|  | printk ("CPU %d is now offline\n", cpu); | 
|  | return; | 
|  | } | 
|  | msleep(100); | 
|  | } | 
|  | printk(KERN_ERR "CPU %u didn't die...\n", cpu); | 
|  | } | 
|  | #else /* !CONFIG_HOTPLUG_CPU */ | 
|  | int __cpu_disable(void) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | void __cpu_die(unsigned int cpu) | 
|  | { | 
|  | /* We said "no" in __cpu_disable */ | 
|  | BUG(); | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | void | 
|  | smp_cpus_done (unsigned int dummy) | 
|  | { | 
|  | int cpu; | 
|  | unsigned long bogosum = 0; | 
|  |  | 
|  | /* | 
|  | * Allow the user to impress friends. | 
|  | */ | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | bogosum += cpu_data(cpu)->loops_per_jiffy; | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", | 
|  | (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); | 
|  | } | 
|  |  | 
|  | static inline void __devinit | 
|  | set_cpu_sibling_map(int cpu) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) { | 
|  | cpu_set(i, cpu_core_map[cpu]); | 
|  | cpu_set(cpu, cpu_core_map[i]); | 
|  | if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) { | 
|  | cpu_set(i, per_cpu(cpu_sibling_map, cpu)); | 
|  | cpu_set(cpu, per_cpu(cpu_sibling_map, i)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int __cpuinit | 
|  | __cpu_up (unsigned int cpu) | 
|  | { | 
|  | int ret; | 
|  | int sapicid; | 
|  |  | 
|  | sapicid = ia64_cpu_to_sapicid[cpu]; | 
|  | if (sapicid == -1) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Already booted cpu? not valid anymore since we dont | 
|  | * do idle loop tightspin anymore. | 
|  | */ | 
|  | if (cpu_isset(cpu, cpu_callin_map)) | 
|  | return -EINVAL; | 
|  |  | 
|  | per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; | 
|  | /* Processor goes to start_secondary(), sets online flag */ | 
|  | ret = do_boot_cpu(sapicid, cpu); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (cpu_data(cpu)->threads_per_core == 1 && | 
|  | cpu_data(cpu)->cores_per_socket == 1) { | 
|  | cpu_set(cpu, per_cpu(cpu_sibling_map, cpu)); | 
|  | cpu_set(cpu, cpu_core_map[cpu]); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | set_cpu_sibling_map(cpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Assume that CPUs have been discovered by some platform-dependent interface.  For | 
|  | * SoftSDV/Lion, that would be ACPI. | 
|  | * | 
|  | * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP(). | 
|  | */ | 
|  | void __init | 
|  | init_smp_config(void) | 
|  | { | 
|  | struct fptr { | 
|  | unsigned long fp; | 
|  | unsigned long gp; | 
|  | } *ap_startup; | 
|  | long sal_ret; | 
|  |  | 
|  | /* Tell SAL where to drop the APs.  */ | 
|  | ap_startup = (struct fptr *) start_ap; | 
|  | sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ, | 
|  | ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0); | 
|  | if (sal_ret < 0) | 
|  | printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n", | 
|  | ia64_sal_strerror(sal_ret)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * identify_siblings(cpu) gets called from identify_cpu. This populates the | 
|  | * information related to logical execution units in per_cpu_data structure. | 
|  | */ | 
|  | void __devinit | 
|  | identify_siblings(struct cpuinfo_ia64 *c) | 
|  | { | 
|  | s64 status; | 
|  | u16 pltid; | 
|  | pal_logical_to_physical_t info; | 
|  |  | 
|  | if (smp_num_cpucores == 1 && smp_num_siblings == 1) | 
|  | return; | 
|  |  | 
|  | if ((status = ia64_pal_logical_to_phys(-1, &info)) != PAL_STATUS_SUCCESS) { | 
|  | printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n", | 
|  | status); | 
|  | return; | 
|  | } | 
|  | if ((status = ia64_sal_physical_id_info(&pltid)) != PAL_STATUS_SUCCESS) { | 
|  | printk(KERN_ERR "ia64_sal_pltid failed with %ld\n", status); | 
|  | return; | 
|  | } | 
|  |  | 
|  | c->socket_id =  (pltid << 8) | info.overview_ppid; | 
|  | c->cores_per_socket = info.overview_cpp; | 
|  | c->threads_per_core = info.overview_tpc; | 
|  | c->num_log = info.overview_num_log; | 
|  |  | 
|  | c->core_id = info.log1_cid; | 
|  | c->thread_id = info.log1_tid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns non zero, if multi-threading is enabled | 
|  | * on at least one physical package. Due to hotplug cpu | 
|  | * and (maxcpus=), all threads may not necessarily be enabled | 
|  | * even though the processor supports multi-threading. | 
|  | */ | 
|  | int is_multithreading_enabled(void) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | for_each_present_cpu(i) { | 
|  | for_each_present_cpu(j) { | 
|  | if (j == i) | 
|  | continue; | 
|  | if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) { | 
|  | if (cpu_data(j)->core_id == cpu_data(i)->core_id) | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(is_multithreading_enabled); |