| /* | 
 |  *	An async IO implementation for Linux | 
 |  *	Written by Benjamin LaHaise <bcrl@kvack.org> | 
 |  * | 
 |  *	Implements an efficient asynchronous io interface. | 
 |  * | 
 |  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved. | 
 |  * | 
 |  *	See ../COPYING for licensing terms. | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/time.h> | 
 | #include <linux/aio_abi.h> | 
 | #include <linux/export.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/uio.h> | 
 |  | 
 | #define DEBUG 0 | 
 |  | 
 | #include <linux/sched.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/file.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/mmu_context.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/aio.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/security.h> | 
 | #include <linux/eventfd.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/compat.h> | 
 |  | 
 | #include <asm/kmap_types.h> | 
 | #include <asm/uaccess.h> | 
 |  | 
 | #if DEBUG > 1 | 
 | #define dprintk		printk | 
 | #else | 
 | #define dprintk(x...)	do { ; } while (0) | 
 | #endif | 
 |  | 
 | /*------ sysctl variables----*/ | 
 | static DEFINE_SPINLOCK(aio_nr_lock); | 
 | unsigned long aio_nr;		/* current system wide number of aio requests */ | 
 | unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ | 
 | /*----end sysctl variables---*/ | 
 |  | 
 | static struct kmem_cache	*kiocb_cachep; | 
 | static struct kmem_cache	*kioctx_cachep; | 
 |  | 
 | static struct workqueue_struct *aio_wq; | 
 |  | 
 | static void aio_kick_handler(struct work_struct *); | 
 | static void aio_queue_work(struct kioctx *); | 
 |  | 
 | /* aio_setup | 
 |  *	Creates the slab caches used by the aio routines, panic on | 
 |  *	failure as this is done early during the boot sequence. | 
 |  */ | 
 | static int __init aio_setup(void) | 
 | { | 
 | 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); | 
 | 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); | 
 |  | 
 | 	aio_wq = alloc_workqueue("aio", 0, 1);	/* used to limit concurrency */ | 
 | 	BUG_ON(!aio_wq); | 
 |  | 
 | 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); | 
 |  | 
 | 	return 0; | 
 | } | 
 | __initcall(aio_setup); | 
 |  | 
 | static void aio_free_ring(struct kioctx *ctx) | 
 | { | 
 | 	struct aio_ring_info *info = &ctx->ring_info; | 
 | 	long i; | 
 |  | 
 | 	for (i=0; i<info->nr_pages; i++) | 
 | 		put_page(info->ring_pages[i]); | 
 |  | 
 | 	if (info->mmap_size) { | 
 | 		BUG_ON(ctx->mm != current->mm); | 
 | 		vm_munmap(info->mmap_base, info->mmap_size); | 
 | 	} | 
 |  | 
 | 	if (info->ring_pages && info->ring_pages != info->internal_pages) | 
 | 		kfree(info->ring_pages); | 
 | 	info->ring_pages = NULL; | 
 | 	info->nr = 0; | 
 | } | 
 |  | 
 | static int aio_setup_ring(struct kioctx *ctx) | 
 | { | 
 | 	struct aio_ring *ring; | 
 | 	struct aio_ring_info *info = &ctx->ring_info; | 
 | 	unsigned nr_events = ctx->max_reqs; | 
 | 	unsigned long size, populate; | 
 | 	int nr_pages; | 
 |  | 
 | 	/* Compensate for the ring buffer's head/tail overlap entry */ | 
 | 	nr_events += 2;	/* 1 is required, 2 for good luck */ | 
 |  | 
 | 	size = sizeof(struct aio_ring); | 
 | 	size += sizeof(struct io_event) * nr_events; | 
 | 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; | 
 |  | 
 | 	if (nr_pages < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); | 
 |  | 
 | 	info->nr = 0; | 
 | 	info->ring_pages = info->internal_pages; | 
 | 	if (nr_pages > AIO_RING_PAGES) { | 
 | 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); | 
 | 		if (!info->ring_pages) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	info->mmap_size = nr_pages * PAGE_SIZE; | 
 | 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size); | 
 | 	down_write(&ctx->mm->mmap_sem); | 
 | 	info->mmap_base = do_mmap_pgoff(NULL, 0, info->mmap_size,  | 
 | 					PROT_READ|PROT_WRITE, | 
 | 					MAP_ANONYMOUS|MAP_PRIVATE, 0, | 
 | 					&populate); | 
 | 	if (IS_ERR((void *)info->mmap_base)) { | 
 | 		up_write(&ctx->mm->mmap_sem); | 
 | 		info->mmap_size = 0; | 
 | 		aio_free_ring(ctx); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	dprintk("mmap address: 0x%08lx\n", info->mmap_base); | 
 | 	info->nr_pages = get_user_pages(current, ctx->mm, | 
 | 					info->mmap_base, nr_pages,  | 
 | 					1, 0, info->ring_pages, NULL); | 
 | 	up_write(&ctx->mm->mmap_sem); | 
 |  | 
 | 	if (unlikely(info->nr_pages != nr_pages)) { | 
 | 		aio_free_ring(ctx); | 
 | 		return -EAGAIN; | 
 | 	} | 
 | 	if (populate) | 
 | 		mm_populate(info->mmap_base, populate); | 
 |  | 
 | 	ctx->user_id = info->mmap_base; | 
 |  | 
 | 	info->nr = nr_events;		/* trusted copy */ | 
 |  | 
 | 	ring = kmap_atomic(info->ring_pages[0]); | 
 | 	ring->nr = nr_events;	/* user copy */ | 
 | 	ring->id = ctx->user_id; | 
 | 	ring->head = ring->tail = 0; | 
 | 	ring->magic = AIO_RING_MAGIC; | 
 | 	ring->compat_features = AIO_RING_COMPAT_FEATURES; | 
 | 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; | 
 | 	ring->header_length = sizeof(struct aio_ring); | 
 | 	kunmap_atomic(ring); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* aio_ring_event: returns a pointer to the event at the given index from | 
 |  * kmap_atomic().  Release the pointer with put_aio_ring_event(); | 
 |  */ | 
 | #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event)) | 
 | #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) | 
 | #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) | 
 |  | 
 | #define aio_ring_event(info, nr) ({					\ | 
 | 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\ | 
 | 	struct io_event *__event;					\ | 
 | 	__event = kmap_atomic(						\ | 
 | 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE]); \ | 
 | 	__event += pos % AIO_EVENTS_PER_PAGE;				\ | 
 | 	__event;							\ | 
 | }) | 
 |  | 
 | #define put_aio_ring_event(event) do {		\ | 
 | 	struct io_event *__event = (event);	\ | 
 | 	(void)__event;				\ | 
 | 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK)); \ | 
 | } while(0) | 
 |  | 
 | static void ctx_rcu_free(struct rcu_head *head) | 
 | { | 
 | 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); | 
 | 	kmem_cache_free(kioctx_cachep, ctx); | 
 | } | 
 |  | 
 | /* __put_ioctx | 
 |  *	Called when the last user of an aio context has gone away, | 
 |  *	and the struct needs to be freed. | 
 |  */ | 
 | static void __put_ioctx(struct kioctx *ctx) | 
 | { | 
 | 	unsigned nr_events = ctx->max_reqs; | 
 | 	BUG_ON(ctx->reqs_active); | 
 |  | 
 | 	cancel_delayed_work_sync(&ctx->wq); | 
 | 	aio_free_ring(ctx); | 
 | 	mmdrop(ctx->mm); | 
 | 	ctx->mm = NULL; | 
 | 	if (nr_events) { | 
 | 		spin_lock(&aio_nr_lock); | 
 | 		BUG_ON(aio_nr - nr_events > aio_nr); | 
 | 		aio_nr -= nr_events; | 
 | 		spin_unlock(&aio_nr_lock); | 
 | 	} | 
 | 	pr_debug("__put_ioctx: freeing %p\n", ctx); | 
 | 	call_rcu(&ctx->rcu_head, ctx_rcu_free); | 
 | } | 
 |  | 
 | static inline int try_get_ioctx(struct kioctx *kioctx) | 
 | { | 
 | 	return atomic_inc_not_zero(&kioctx->users); | 
 | } | 
 |  | 
 | static inline void put_ioctx(struct kioctx *kioctx) | 
 | { | 
 | 	BUG_ON(atomic_read(&kioctx->users) <= 0); | 
 | 	if (unlikely(atomic_dec_and_test(&kioctx->users))) | 
 | 		__put_ioctx(kioctx); | 
 | } | 
 |  | 
 | /* ioctx_alloc | 
 |  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed. | 
 |  */ | 
 | static struct kioctx *ioctx_alloc(unsigned nr_events) | 
 | { | 
 | 	struct mm_struct *mm; | 
 | 	struct kioctx *ctx; | 
 | 	int err = -ENOMEM; | 
 |  | 
 | 	/* Prevent overflows */ | 
 | 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) || | 
 | 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) { | 
 | 		pr_debug("ENOMEM: nr_events too high\n"); | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	if (!nr_events || (unsigned long)nr_events > aio_max_nr) | 
 | 		return ERR_PTR(-EAGAIN); | 
 |  | 
 | 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); | 
 | 	if (!ctx) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	ctx->max_reqs = nr_events; | 
 | 	mm = ctx->mm = current->mm; | 
 | 	atomic_inc(&mm->mm_count); | 
 |  | 
 | 	atomic_set(&ctx->users, 2); | 
 | 	spin_lock_init(&ctx->ctx_lock); | 
 | 	spin_lock_init(&ctx->ring_info.ring_lock); | 
 | 	init_waitqueue_head(&ctx->wait); | 
 |  | 
 | 	INIT_LIST_HEAD(&ctx->active_reqs); | 
 | 	INIT_LIST_HEAD(&ctx->run_list); | 
 | 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); | 
 |  | 
 | 	if (aio_setup_ring(ctx) < 0) | 
 | 		goto out_freectx; | 
 |  | 
 | 	/* limit the number of system wide aios */ | 
 | 	spin_lock(&aio_nr_lock); | 
 | 	if (aio_nr + nr_events > aio_max_nr || | 
 | 	    aio_nr + nr_events < aio_nr) { | 
 | 		spin_unlock(&aio_nr_lock); | 
 | 		goto out_cleanup; | 
 | 	} | 
 | 	aio_nr += ctx->max_reqs; | 
 | 	spin_unlock(&aio_nr_lock); | 
 |  | 
 | 	/* now link into global list. */ | 
 | 	spin_lock(&mm->ioctx_lock); | 
 | 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); | 
 | 	spin_unlock(&mm->ioctx_lock); | 
 |  | 
 | 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", | 
 | 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr); | 
 | 	return ctx; | 
 |  | 
 | out_cleanup: | 
 | 	err = -EAGAIN; | 
 | 	aio_free_ring(ctx); | 
 | out_freectx: | 
 | 	mmdrop(mm); | 
 | 	kmem_cache_free(kioctx_cachep, ctx); | 
 | 	dprintk("aio: error allocating ioctx %d\n", err); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | /* kill_ctx | 
 |  *	Cancels all outstanding aio requests on an aio context.  Used  | 
 |  *	when the processes owning a context have all exited to encourage  | 
 |  *	the rapid destruction of the kioctx. | 
 |  */ | 
 | static void kill_ctx(struct kioctx *ctx) | 
 | { | 
 | 	int (*cancel)(struct kiocb *, struct io_event *); | 
 | 	struct task_struct *tsk = current; | 
 | 	DECLARE_WAITQUEUE(wait, tsk); | 
 | 	struct io_event res; | 
 |  | 
 | 	spin_lock_irq(&ctx->ctx_lock); | 
 | 	ctx->dead = 1; | 
 | 	while (!list_empty(&ctx->active_reqs)) { | 
 | 		struct list_head *pos = ctx->active_reqs.next; | 
 | 		struct kiocb *iocb = list_kiocb(pos); | 
 | 		list_del_init(&iocb->ki_list); | 
 | 		cancel = iocb->ki_cancel; | 
 | 		kiocbSetCancelled(iocb); | 
 | 		if (cancel) { | 
 | 			iocb->ki_users++; | 
 | 			spin_unlock_irq(&ctx->ctx_lock); | 
 | 			cancel(iocb, &res); | 
 | 			spin_lock_irq(&ctx->ctx_lock); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!ctx->reqs_active) | 
 | 		goto out; | 
 |  | 
 | 	add_wait_queue(&ctx->wait, &wait); | 
 | 	set_task_state(tsk, TASK_UNINTERRUPTIBLE); | 
 | 	while (ctx->reqs_active) { | 
 | 		spin_unlock_irq(&ctx->ctx_lock); | 
 | 		io_schedule(); | 
 | 		set_task_state(tsk, TASK_UNINTERRUPTIBLE); | 
 | 		spin_lock_irq(&ctx->ctx_lock); | 
 | 	} | 
 | 	__set_task_state(tsk, TASK_RUNNING); | 
 | 	remove_wait_queue(&ctx->wait, &wait); | 
 |  | 
 | out: | 
 | 	spin_unlock_irq(&ctx->ctx_lock); | 
 | } | 
 |  | 
 | /* wait_on_sync_kiocb: | 
 |  *	Waits on the given sync kiocb to complete. | 
 |  */ | 
 | ssize_t wait_on_sync_kiocb(struct kiocb *iocb) | 
 | { | 
 | 	while (iocb->ki_users) { | 
 | 		set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 		if (!iocb->ki_users) | 
 | 			break; | 
 | 		io_schedule(); | 
 | 	} | 
 | 	__set_current_state(TASK_RUNNING); | 
 | 	return iocb->ki_user_data; | 
 | } | 
 | EXPORT_SYMBOL(wait_on_sync_kiocb); | 
 |  | 
 | /* exit_aio: called when the last user of mm goes away.  At this point,  | 
 |  * there is no way for any new requests to be submited or any of the  | 
 |  * io_* syscalls to be called on the context.  However, there may be  | 
 |  * outstanding requests which hold references to the context; as they  | 
 |  * go away, they will call put_ioctx and release any pinned memory | 
 |  * associated with the request (held via struct page * references). | 
 |  */ | 
 | void exit_aio(struct mm_struct *mm) | 
 | { | 
 | 	struct kioctx *ctx; | 
 |  | 
 | 	while (!hlist_empty(&mm->ioctx_list)) { | 
 | 		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list); | 
 | 		hlist_del_rcu(&ctx->list); | 
 |  | 
 | 		kill_ctx(ctx); | 
 |  | 
 | 		if (1 != atomic_read(&ctx->users)) | 
 | 			printk(KERN_DEBUG | 
 | 				"exit_aio:ioctx still alive: %d %d %d\n", | 
 | 				atomic_read(&ctx->users), ctx->dead, | 
 | 				ctx->reqs_active); | 
 | 		/* | 
 | 		 * We don't need to bother with munmap() here - | 
 | 		 * exit_mmap(mm) is coming and it'll unmap everything. | 
 | 		 * Since aio_free_ring() uses non-zero ->mmap_size | 
 | 		 * as indicator that it needs to unmap the area, | 
 | 		 * just set it to 0; aio_free_ring() is the only | 
 | 		 * place that uses ->mmap_size, so it's safe. | 
 | 		 * That way we get all munmap done to current->mm - | 
 | 		 * all other callers have ctx->mm == current->mm. | 
 | 		 */ | 
 | 		ctx->ring_info.mmap_size = 0; | 
 | 		put_ioctx(ctx); | 
 | 	} | 
 | } | 
 |  | 
 | /* aio_get_req | 
 |  *	Allocate a slot for an aio request.  Increments the users count | 
 |  * of the kioctx so that the kioctx stays around until all requests are | 
 |  * complete.  Returns NULL if no requests are free. | 
 |  * | 
 |  * Returns with kiocb->users set to 2.  The io submit code path holds | 
 |  * an extra reference while submitting the i/o. | 
 |  * This prevents races between the aio code path referencing the | 
 |  * req (after submitting it) and aio_complete() freeing the req. | 
 |  */ | 
 | static struct kiocb *__aio_get_req(struct kioctx *ctx) | 
 | { | 
 | 	struct kiocb *req = NULL; | 
 |  | 
 | 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); | 
 | 	if (unlikely(!req)) | 
 | 		return NULL; | 
 |  | 
 | 	req->ki_flags = 0; | 
 | 	req->ki_users = 2; | 
 | 	req->ki_key = 0; | 
 | 	req->ki_ctx = ctx; | 
 | 	req->ki_cancel = NULL; | 
 | 	req->ki_retry = NULL; | 
 | 	req->ki_dtor = NULL; | 
 | 	req->private = NULL; | 
 | 	req->ki_iovec = NULL; | 
 | 	INIT_LIST_HEAD(&req->ki_run_list); | 
 | 	req->ki_eventfd = NULL; | 
 |  | 
 | 	return req; | 
 | } | 
 |  | 
 | /* | 
 |  * struct kiocb's are allocated in batches to reduce the number of | 
 |  * times the ctx lock is acquired and released. | 
 |  */ | 
 | #define KIOCB_BATCH_SIZE	32L | 
 | struct kiocb_batch { | 
 | 	struct list_head head; | 
 | 	long count; /* number of requests left to allocate */ | 
 | }; | 
 |  | 
 | static void kiocb_batch_init(struct kiocb_batch *batch, long total) | 
 | { | 
 | 	INIT_LIST_HEAD(&batch->head); | 
 | 	batch->count = total; | 
 | } | 
 |  | 
 | static void kiocb_batch_free(struct kioctx *ctx, struct kiocb_batch *batch) | 
 | { | 
 | 	struct kiocb *req, *n; | 
 |  | 
 | 	if (list_empty(&batch->head)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irq(&ctx->ctx_lock); | 
 | 	list_for_each_entry_safe(req, n, &batch->head, ki_batch) { | 
 | 		list_del(&req->ki_batch); | 
 | 		list_del(&req->ki_list); | 
 | 		kmem_cache_free(kiocb_cachep, req); | 
 | 		ctx->reqs_active--; | 
 | 	} | 
 | 	if (unlikely(!ctx->reqs_active && ctx->dead)) | 
 | 		wake_up_all(&ctx->wait); | 
 | 	spin_unlock_irq(&ctx->ctx_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a batch of kiocbs.  This avoids taking and dropping the | 
 |  * context lock a lot during setup. | 
 |  */ | 
 | static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch) | 
 | { | 
 | 	unsigned short allocated, to_alloc; | 
 | 	long avail; | 
 | 	struct kiocb *req, *n; | 
 | 	struct aio_ring *ring; | 
 |  | 
 | 	to_alloc = min(batch->count, KIOCB_BATCH_SIZE); | 
 | 	for (allocated = 0; allocated < to_alloc; allocated++) { | 
 | 		req = __aio_get_req(ctx); | 
 | 		if (!req) | 
 | 			/* allocation failed, go with what we've got */ | 
 | 			break; | 
 | 		list_add(&req->ki_batch, &batch->head); | 
 | 	} | 
 |  | 
 | 	if (allocated == 0) | 
 | 		goto out; | 
 |  | 
 | 	spin_lock_irq(&ctx->ctx_lock); | 
 | 	ring = kmap_atomic(ctx->ring_info.ring_pages[0]); | 
 |  | 
 | 	avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active; | 
 | 	BUG_ON(avail < 0); | 
 | 	if (avail < allocated) { | 
 | 		/* Trim back the number of requests. */ | 
 | 		list_for_each_entry_safe(req, n, &batch->head, ki_batch) { | 
 | 			list_del(&req->ki_batch); | 
 | 			kmem_cache_free(kiocb_cachep, req); | 
 | 			if (--allocated <= avail) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	batch->count -= allocated; | 
 | 	list_for_each_entry(req, &batch->head, ki_batch) { | 
 | 		list_add(&req->ki_list, &ctx->active_reqs); | 
 | 		ctx->reqs_active++; | 
 | 	} | 
 |  | 
 | 	kunmap_atomic(ring); | 
 | 	spin_unlock_irq(&ctx->ctx_lock); | 
 |  | 
 | out: | 
 | 	return allocated; | 
 | } | 
 |  | 
 | static inline struct kiocb *aio_get_req(struct kioctx *ctx, | 
 | 					struct kiocb_batch *batch) | 
 | { | 
 | 	struct kiocb *req; | 
 |  | 
 | 	if (list_empty(&batch->head)) | 
 | 		if (kiocb_batch_refill(ctx, batch) == 0) | 
 | 			return NULL; | 
 | 	req = list_first_entry(&batch->head, struct kiocb, ki_batch); | 
 | 	list_del(&req->ki_batch); | 
 | 	return req; | 
 | } | 
 |  | 
 | static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) | 
 | { | 
 | 	assert_spin_locked(&ctx->ctx_lock); | 
 |  | 
 | 	if (req->ki_eventfd != NULL) | 
 | 		eventfd_ctx_put(req->ki_eventfd); | 
 | 	if (req->ki_dtor) | 
 | 		req->ki_dtor(req); | 
 | 	if (req->ki_iovec != &req->ki_inline_vec) | 
 | 		kfree(req->ki_iovec); | 
 | 	kmem_cache_free(kiocb_cachep, req); | 
 | 	ctx->reqs_active--; | 
 |  | 
 | 	if (unlikely(!ctx->reqs_active && ctx->dead)) | 
 | 		wake_up_all(&ctx->wait); | 
 | } | 
 |  | 
 | /* __aio_put_req | 
 |  *	Returns true if this put was the last user of the request. | 
 |  */ | 
 | static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) | 
 | { | 
 | 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n", | 
 | 		req, atomic_long_read(&req->ki_filp->f_count)); | 
 |  | 
 | 	assert_spin_locked(&ctx->ctx_lock); | 
 |  | 
 | 	req->ki_users--; | 
 | 	BUG_ON(req->ki_users < 0); | 
 | 	if (likely(req->ki_users)) | 
 | 		return 0; | 
 | 	list_del(&req->ki_list);		/* remove from active_reqs */ | 
 | 	req->ki_cancel = NULL; | 
 | 	req->ki_retry = NULL; | 
 |  | 
 | 	fput(req->ki_filp); | 
 | 	req->ki_filp = NULL; | 
 | 	really_put_req(ctx, req); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* aio_put_req | 
 |  *	Returns true if this put was the last user of the kiocb, | 
 |  *	false if the request is still in use. | 
 |  */ | 
 | int aio_put_req(struct kiocb *req) | 
 | { | 
 | 	struct kioctx *ctx = req->ki_ctx; | 
 | 	int ret; | 
 | 	spin_lock_irq(&ctx->ctx_lock); | 
 | 	ret = __aio_put_req(ctx, req); | 
 | 	spin_unlock_irq(&ctx->ctx_lock); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(aio_put_req); | 
 |  | 
 | static struct kioctx *lookup_ioctx(unsigned long ctx_id) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	struct kioctx *ctx, *ret = NULL; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	hlist_for_each_entry_rcu(ctx, &mm->ioctx_list, list) { | 
 | 		/* | 
 | 		 * RCU protects us against accessing freed memory but | 
 | 		 * we have to be careful not to get a reference when the | 
 | 		 * reference count already dropped to 0 (ctx->dead test | 
 | 		 * is unreliable because of races). | 
 | 		 */ | 
 | 		if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){ | 
 | 			ret = ctx; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Queue up a kiocb to be retried. Assumes that the kiocb | 
 |  * has already been marked as kicked, and places it on | 
 |  * the retry run list for the corresponding ioctx, if it | 
 |  * isn't already queued. Returns 1 if it actually queued | 
 |  * the kiocb (to tell the caller to activate the work | 
 |  * queue to process it), or 0, if it found that it was | 
 |  * already queued. | 
 |  */ | 
 | static inline int __queue_kicked_iocb(struct kiocb *iocb) | 
 | { | 
 | 	struct kioctx *ctx = iocb->ki_ctx; | 
 |  | 
 | 	assert_spin_locked(&ctx->ctx_lock); | 
 |  | 
 | 	if (list_empty(&iocb->ki_run_list)) { | 
 | 		list_add_tail(&iocb->ki_run_list, | 
 | 			&ctx->run_list); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* aio_run_iocb | 
 |  *	This is the core aio execution routine. It is | 
 |  *	invoked both for initial i/o submission and | 
 |  *	subsequent retries via the aio_kick_handler. | 
 |  *	Expects to be invoked with iocb->ki_ctx->lock | 
 |  *	already held. The lock is released and reacquired | 
 |  *	as needed during processing. | 
 |  * | 
 |  * Calls the iocb retry method (already setup for the | 
 |  * iocb on initial submission) for operation specific | 
 |  * handling, but takes care of most of common retry | 
 |  * execution details for a given iocb. The retry method | 
 |  * needs to be non-blocking as far as possible, to avoid | 
 |  * holding up other iocbs waiting to be serviced by the | 
 |  * retry kernel thread. | 
 |  * | 
 |  * The trickier parts in this code have to do with | 
 |  * ensuring that only one retry instance is in progress | 
 |  * for a given iocb at any time. Providing that guarantee | 
 |  * simplifies the coding of individual aio operations as | 
 |  * it avoids various potential races. | 
 |  */ | 
 | static ssize_t aio_run_iocb(struct kiocb *iocb) | 
 | { | 
 | 	struct kioctx	*ctx = iocb->ki_ctx; | 
 | 	ssize_t (*retry)(struct kiocb *); | 
 | 	ssize_t ret; | 
 |  | 
 | 	if (!(retry = iocb->ki_retry)) { | 
 | 		printk("aio_run_iocb: iocb->ki_retry = NULL\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We don't want the next retry iteration for this | 
 | 	 * operation to start until this one has returned and | 
 | 	 * updated the iocb state. However, wait_queue functions | 
 | 	 * can trigger a kick_iocb from interrupt context in the | 
 | 	 * meantime, indicating that data is available for the next | 
 | 	 * iteration. We want to remember that and enable the | 
 | 	 * next retry iteration _after_ we are through with | 
 | 	 * this one. | 
 | 	 * | 
 | 	 * So, in order to be able to register a "kick", but | 
 | 	 * prevent it from being queued now, we clear the kick | 
 | 	 * flag, but make the kick code *think* that the iocb is | 
 | 	 * still on the run list until we are actually done. | 
 | 	 * When we are done with this iteration, we check if | 
 | 	 * the iocb was kicked in the meantime and if so, queue | 
 | 	 * it up afresh. | 
 | 	 */ | 
 |  | 
 | 	kiocbClearKicked(iocb); | 
 |  | 
 | 	/* | 
 | 	 * This is so that aio_complete knows it doesn't need to | 
 | 	 * pull the iocb off the run list (We can't just call | 
 | 	 * INIT_LIST_HEAD because we don't want a kick_iocb to | 
 | 	 * queue this on the run list yet) | 
 | 	 */ | 
 | 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; | 
 | 	spin_unlock_irq(&ctx->ctx_lock); | 
 |  | 
 | 	/* Quit retrying if the i/o has been cancelled */ | 
 | 	if (kiocbIsCancelled(iocb)) { | 
 | 		ret = -EINTR; | 
 | 		aio_complete(iocb, ret, 0); | 
 | 		/* must not access the iocb after this */ | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now we are all set to call the retry method in async | 
 | 	 * context. | 
 | 	 */ | 
 | 	ret = retry(iocb); | 
 |  | 
 | 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { | 
 | 		/* | 
 | 		 * There's no easy way to restart the syscall since other AIO's | 
 | 		 * may be already running. Just fail this IO with EINTR. | 
 | 		 */ | 
 | 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || | 
 | 			     ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK)) | 
 | 			ret = -EINTR; | 
 | 		aio_complete(iocb, ret, 0); | 
 | 	} | 
 | out: | 
 | 	spin_lock_irq(&ctx->ctx_lock); | 
 |  | 
 | 	if (-EIOCBRETRY == ret) { | 
 | 		/* | 
 | 		 * OK, now that we are done with this iteration | 
 | 		 * and know that there is more left to go, | 
 | 		 * this is where we let go so that a subsequent | 
 | 		 * "kick" can start the next iteration | 
 | 		 */ | 
 |  | 
 | 		/* will make __queue_kicked_iocb succeed from here on */ | 
 | 		INIT_LIST_HEAD(&iocb->ki_run_list); | 
 | 		/* we must queue the next iteration ourselves, if it | 
 | 		 * has already been kicked */ | 
 | 		if (kiocbIsKicked(iocb)) { | 
 | 			__queue_kicked_iocb(iocb); | 
 |  | 
 | 			/* | 
 | 			 * __queue_kicked_iocb will always return 1 here, because | 
 | 			 * iocb->ki_run_list is empty at this point so it should | 
 | 			 * be safe to unconditionally queue the context into the | 
 | 			 * work queue. | 
 | 			 */ | 
 | 			aio_queue_work(ctx); | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * __aio_run_iocbs: | 
 |  * 	Process all pending retries queued on the ioctx | 
 |  * 	run list. | 
 |  * Assumes it is operating within the aio issuer's mm | 
 |  * context. | 
 |  */ | 
 | static int __aio_run_iocbs(struct kioctx *ctx) | 
 | { | 
 | 	struct kiocb *iocb; | 
 | 	struct list_head run_list; | 
 |  | 
 | 	assert_spin_locked(&ctx->ctx_lock); | 
 |  | 
 | 	list_replace_init(&ctx->run_list, &run_list); | 
 | 	while (!list_empty(&run_list)) { | 
 | 		iocb = list_entry(run_list.next, struct kiocb, | 
 | 			ki_run_list); | 
 | 		list_del(&iocb->ki_run_list); | 
 | 		/* | 
 | 		 * Hold an extra reference while retrying i/o. | 
 | 		 */ | 
 | 		iocb->ki_users++;       /* grab extra reference */ | 
 | 		aio_run_iocb(iocb); | 
 | 		__aio_put_req(ctx, iocb); | 
 |  	} | 
 | 	if (!list_empty(&ctx->run_list)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void aio_queue_work(struct kioctx * ctx) | 
 | { | 
 | 	unsigned long timeout; | 
 | 	/* | 
 | 	 * if someone is waiting, get the work started right | 
 | 	 * away, otherwise, use a longer delay | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	if (waitqueue_active(&ctx->wait)) | 
 | 		timeout = 1; | 
 | 	else | 
 | 		timeout = HZ/10; | 
 | 	queue_delayed_work(aio_wq, &ctx->wq, timeout); | 
 | } | 
 |  | 
 | /* | 
 |  * aio_run_all_iocbs: | 
 |  *	Process all pending retries queued on the ioctx | 
 |  *	run list, and keep running them until the list | 
 |  *	stays empty. | 
 |  * Assumes it is operating within the aio issuer's mm context. | 
 |  */ | 
 | static inline void aio_run_all_iocbs(struct kioctx *ctx) | 
 | { | 
 | 	spin_lock_irq(&ctx->ctx_lock); | 
 | 	while (__aio_run_iocbs(ctx)) | 
 | 		; | 
 | 	spin_unlock_irq(&ctx->ctx_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * aio_kick_handler: | 
 |  * 	Work queue handler triggered to process pending | 
 |  * 	retries on an ioctx. Takes on the aio issuer's | 
 |  *	mm context before running the iocbs, so that | 
 |  *	copy_xxx_user operates on the issuer's address | 
 |  *      space. | 
 |  * Run on aiod's context. | 
 |  */ | 
 | static void aio_kick_handler(struct work_struct *work) | 
 | { | 
 | 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work); | 
 | 	mm_segment_t oldfs = get_fs(); | 
 | 	struct mm_struct *mm; | 
 | 	int requeue; | 
 |  | 
 | 	set_fs(USER_DS); | 
 | 	use_mm(ctx->mm); | 
 | 	spin_lock_irq(&ctx->ctx_lock); | 
 | 	requeue =__aio_run_iocbs(ctx); | 
 | 	mm = ctx->mm; | 
 | 	spin_unlock_irq(&ctx->ctx_lock); | 
 |  	unuse_mm(mm); | 
 | 	set_fs(oldfs); | 
 | 	/* | 
 | 	 * we're in a worker thread already; no point using non-zero delay | 
 | 	 */ | 
 | 	if (requeue) | 
 | 		queue_delayed_work(aio_wq, &ctx->wq, 0); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Called by kick_iocb to queue the kiocb for retry | 
 |  * and if required activate the aio work queue to process | 
 |  * it | 
 |  */ | 
 | static void try_queue_kicked_iocb(struct kiocb *iocb) | 
 | { | 
 |  	struct kioctx	*ctx = iocb->ki_ctx; | 
 | 	unsigned long flags; | 
 | 	int run = 0; | 
 |  | 
 | 	spin_lock_irqsave(&ctx->ctx_lock, flags); | 
 | 	/* set this inside the lock so that we can't race with aio_run_iocb() | 
 | 	 * testing it and putting the iocb on the run list under the lock */ | 
 | 	if (!kiocbTryKick(iocb)) | 
 | 		run = __queue_kicked_iocb(iocb); | 
 | 	spin_unlock_irqrestore(&ctx->ctx_lock, flags); | 
 | 	if (run) | 
 | 		aio_queue_work(ctx); | 
 | } | 
 |  | 
 | /* | 
 |  * kick_iocb: | 
 |  *      Called typically from a wait queue callback context | 
 |  *      to trigger a retry of the iocb. | 
 |  *      The retry is usually executed by aio workqueue | 
 |  *      threads (See aio_kick_handler). | 
 |  */ | 
 | void kick_iocb(struct kiocb *iocb) | 
 | { | 
 | 	/* sync iocbs are easy: they can only ever be executing from a  | 
 | 	 * single context. */ | 
 | 	if (is_sync_kiocb(iocb)) { | 
 | 		kiocbSetKicked(iocb); | 
 | 	        wake_up_process(iocb->ki_obj.tsk); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	try_queue_kicked_iocb(iocb); | 
 | } | 
 | EXPORT_SYMBOL(kick_iocb); | 
 |  | 
 | /* aio_complete | 
 |  *	Called when the io request on the given iocb is complete. | 
 |  *	Returns true if this is the last user of the request.  The  | 
 |  *	only other user of the request can be the cancellation code. | 
 |  */ | 
 | int aio_complete(struct kiocb *iocb, long res, long res2) | 
 | { | 
 | 	struct kioctx	*ctx = iocb->ki_ctx; | 
 | 	struct aio_ring_info	*info; | 
 | 	struct aio_ring	*ring; | 
 | 	struct io_event	*event; | 
 | 	unsigned long	flags; | 
 | 	unsigned long	tail; | 
 | 	int		ret; | 
 |  | 
 | 	/* | 
 | 	 * Special case handling for sync iocbs: | 
 | 	 *  - events go directly into the iocb for fast handling | 
 | 	 *  - the sync task with the iocb in its stack holds the single iocb | 
 | 	 *    ref, no other paths have a way to get another ref | 
 | 	 *  - the sync task helpfully left a reference to itself in the iocb | 
 | 	 */ | 
 | 	if (is_sync_kiocb(iocb)) { | 
 | 		BUG_ON(iocb->ki_users != 1); | 
 | 		iocb->ki_user_data = res; | 
 | 		iocb->ki_users = 0; | 
 | 		wake_up_process(iocb->ki_obj.tsk); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	info = &ctx->ring_info; | 
 |  | 
 | 	/* add a completion event to the ring buffer. | 
 | 	 * must be done holding ctx->ctx_lock to prevent | 
 | 	 * other code from messing with the tail | 
 | 	 * pointer since we might be called from irq | 
 | 	 * context. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&ctx->ctx_lock, flags); | 
 |  | 
 | 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) | 
 | 		list_del_init(&iocb->ki_run_list); | 
 |  | 
 | 	/* | 
 | 	 * cancelled requests don't get events, userland was given one | 
 | 	 * when the event got cancelled. | 
 | 	 */ | 
 | 	if (kiocbIsCancelled(iocb)) | 
 | 		goto put_rq; | 
 |  | 
 | 	ring = kmap_atomic(info->ring_pages[0]); | 
 |  | 
 | 	tail = info->tail; | 
 | 	event = aio_ring_event(info, tail); | 
 | 	if (++tail >= info->nr) | 
 | 		tail = 0; | 
 |  | 
 | 	event->obj = (u64)(unsigned long)iocb->ki_obj.user; | 
 | 	event->data = iocb->ki_user_data; | 
 | 	event->res = res; | 
 | 	event->res2 = res2; | 
 |  | 
 | 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", | 
 | 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, | 
 | 		res, res2); | 
 |  | 
 | 	/* after flagging the request as done, we | 
 | 	 * must never even look at it again | 
 | 	 */ | 
 | 	smp_wmb();	/* make event visible before updating tail */ | 
 |  | 
 | 	info->tail = tail; | 
 | 	ring->tail = tail; | 
 |  | 
 | 	put_aio_ring_event(event); | 
 | 	kunmap_atomic(ring); | 
 |  | 
 | 	pr_debug("added to ring %p at [%lu]\n", iocb, tail); | 
 |  | 
 | 	/* | 
 | 	 * Check if the user asked us to deliver the result through an | 
 | 	 * eventfd. The eventfd_signal() function is safe to be called | 
 | 	 * from IRQ context. | 
 | 	 */ | 
 | 	if (iocb->ki_eventfd != NULL) | 
 | 		eventfd_signal(iocb->ki_eventfd, 1); | 
 |  | 
 | put_rq: | 
 | 	/* everything turned out well, dispose of the aiocb. */ | 
 | 	ret = __aio_put_req(ctx, iocb); | 
 |  | 
 | 	/* | 
 | 	 * We have to order our ring_info tail store above and test | 
 | 	 * of the wait list below outside the wait lock.  This is | 
 | 	 * like in wake_up_bit() where clearing a bit has to be | 
 | 	 * ordered with the unlocked test. | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	if (waitqueue_active(&ctx->wait)) | 
 | 		wake_up(&ctx->wait); | 
 |  | 
 | 	spin_unlock_irqrestore(&ctx->ctx_lock, flags); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(aio_complete); | 
 |  | 
 | /* aio_read_evt | 
 |  *	Pull an event off of the ioctx's event ring.  Returns the number of  | 
 |  *	events fetched (0 or 1 ;-) | 
 |  *	FIXME: make this use cmpxchg. | 
 |  *	TODO: make the ringbuffer user mmap()able (requires FIXME). | 
 |  */ | 
 | static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) | 
 | { | 
 | 	struct aio_ring_info *info = &ioctx->ring_info; | 
 | 	struct aio_ring *ring; | 
 | 	unsigned long head; | 
 | 	int ret = 0; | 
 |  | 
 | 	ring = kmap_atomic(info->ring_pages[0]); | 
 | 	dprintk("in aio_read_evt h%lu t%lu m%lu\n", | 
 | 		 (unsigned long)ring->head, (unsigned long)ring->tail, | 
 | 		 (unsigned long)ring->nr); | 
 |  | 
 | 	if (ring->head == ring->tail) | 
 | 		goto out; | 
 |  | 
 | 	spin_lock(&info->ring_lock); | 
 |  | 
 | 	head = ring->head % info->nr; | 
 | 	if (head != ring->tail) { | 
 | 		struct io_event *evp = aio_ring_event(info, head); | 
 | 		*ent = *evp; | 
 | 		head = (head + 1) % info->nr; | 
 | 		smp_mb(); /* finish reading the event before updatng the head */ | 
 | 		ring->head = head; | 
 | 		ret = 1; | 
 | 		put_aio_ring_event(evp); | 
 | 	} | 
 | 	spin_unlock(&info->ring_lock); | 
 |  | 
 | out: | 
 | 	kunmap_atomic(ring); | 
 | 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret, | 
 | 		 (unsigned long)ring->head, (unsigned long)ring->tail); | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct aio_timeout { | 
 | 	struct timer_list	timer; | 
 | 	int			timed_out; | 
 | 	struct task_struct	*p; | 
 | }; | 
 |  | 
 | static void timeout_func(unsigned long data) | 
 | { | 
 | 	struct aio_timeout *to = (struct aio_timeout *)data; | 
 |  | 
 | 	to->timed_out = 1; | 
 | 	wake_up_process(to->p); | 
 | } | 
 |  | 
 | static inline void init_timeout(struct aio_timeout *to) | 
 | { | 
 | 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); | 
 | 	to->timed_out = 0; | 
 | 	to->p = current; | 
 | } | 
 |  | 
 | static inline void set_timeout(long start_jiffies, struct aio_timeout *to, | 
 | 			       const struct timespec *ts) | 
 | { | 
 | 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts); | 
 | 	if (time_after(to->timer.expires, jiffies)) | 
 | 		add_timer(&to->timer); | 
 | 	else | 
 | 		to->timed_out = 1; | 
 | } | 
 |  | 
 | static inline void clear_timeout(struct aio_timeout *to) | 
 | { | 
 | 	del_singleshot_timer_sync(&to->timer); | 
 | } | 
 |  | 
 | static int read_events(struct kioctx *ctx, | 
 | 			long min_nr, long nr, | 
 | 			struct io_event __user *event, | 
 | 			struct timespec __user *timeout) | 
 | { | 
 | 	long			start_jiffies = jiffies; | 
 | 	struct task_struct	*tsk = current; | 
 | 	DECLARE_WAITQUEUE(wait, tsk); | 
 | 	int			ret; | 
 | 	int			i = 0; | 
 | 	struct io_event		ent; | 
 | 	struct aio_timeout	to; | 
 | 	int			retry = 0; | 
 |  | 
 | 	/* needed to zero any padding within an entry (there shouldn't be  | 
 | 	 * any, but C is fun! | 
 | 	 */ | 
 | 	memset(&ent, 0, sizeof(ent)); | 
 | retry: | 
 | 	ret = 0; | 
 | 	while (likely(i < nr)) { | 
 | 		ret = aio_read_evt(ctx, &ent); | 
 | 		if (unlikely(ret <= 0)) | 
 | 			break; | 
 |  | 
 | 		dprintk("read event: %Lx %Lx %Lx %Lx\n", | 
 | 			ent.data, ent.obj, ent.res, ent.res2); | 
 |  | 
 | 		/* Could we split the check in two? */ | 
 | 		ret = -EFAULT; | 
 | 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { | 
 | 			dprintk("aio: lost an event due to EFAULT.\n"); | 
 | 			break; | 
 | 		} | 
 | 		ret = 0; | 
 |  | 
 | 		/* Good, event copied to userland, update counts. */ | 
 | 		event ++; | 
 | 		i ++; | 
 | 	} | 
 |  | 
 | 	if (min_nr <= i) | 
 | 		return i; | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* End fast path */ | 
 |  | 
 | 	/* racey check, but it gets redone */ | 
 | 	if (!retry && unlikely(!list_empty(&ctx->run_list))) { | 
 | 		retry = 1; | 
 | 		aio_run_all_iocbs(ctx); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	init_timeout(&to); | 
 | 	if (timeout) { | 
 | 		struct timespec	ts; | 
 | 		ret = -EFAULT; | 
 | 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) | 
 | 			goto out; | 
 |  | 
 | 		set_timeout(start_jiffies, &to, &ts); | 
 | 	} | 
 |  | 
 | 	while (likely(i < nr)) { | 
 | 		add_wait_queue_exclusive(&ctx->wait, &wait); | 
 | 		do { | 
 | 			set_task_state(tsk, TASK_INTERRUPTIBLE); | 
 | 			ret = aio_read_evt(ctx, &ent); | 
 | 			if (ret) | 
 | 				break; | 
 | 			if (min_nr <= i) | 
 | 				break; | 
 | 			if (unlikely(ctx->dead)) { | 
 | 				ret = -EINVAL; | 
 | 				break; | 
 | 			} | 
 | 			if (to.timed_out)	/* Only check after read evt */ | 
 | 				break; | 
 | 			/* Try to only show up in io wait if there are ops | 
 | 			 *  in flight */ | 
 | 			if (ctx->reqs_active) | 
 | 				io_schedule(); | 
 | 			else | 
 | 				schedule(); | 
 | 			if (signal_pending(tsk)) { | 
 | 				ret = -EINTR; | 
 | 				break; | 
 | 			} | 
 | 			/*ret = aio_read_evt(ctx, &ent);*/ | 
 | 		} while (1) ; | 
 |  | 
 | 		set_task_state(tsk, TASK_RUNNING); | 
 | 		remove_wait_queue(&ctx->wait, &wait); | 
 |  | 
 | 		if (unlikely(ret <= 0)) | 
 | 			break; | 
 |  | 
 | 		ret = -EFAULT; | 
 | 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { | 
 | 			dprintk("aio: lost an event due to EFAULT.\n"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Good, event copied to userland, update counts. */ | 
 | 		event ++; | 
 | 		i ++; | 
 | 	} | 
 |  | 
 | 	if (timeout) | 
 | 		clear_timeout(&to); | 
 | out: | 
 | 	destroy_timer_on_stack(&to.timer); | 
 | 	return i ? i : ret; | 
 | } | 
 |  | 
 | /* Take an ioctx and remove it from the list of ioctx's.  Protects  | 
 |  * against races with itself via ->dead. | 
 |  */ | 
 | static void io_destroy(struct kioctx *ioctx) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	int was_dead; | 
 |  | 
 | 	/* delete the entry from the list is someone else hasn't already */ | 
 | 	spin_lock(&mm->ioctx_lock); | 
 | 	was_dead = ioctx->dead; | 
 | 	ioctx->dead = 1; | 
 | 	hlist_del_rcu(&ioctx->list); | 
 | 	spin_unlock(&mm->ioctx_lock); | 
 |  | 
 | 	dprintk("aio_release(%p)\n", ioctx); | 
 | 	if (likely(!was_dead)) | 
 | 		put_ioctx(ioctx);	/* twice for the list */ | 
 |  | 
 | 	kill_ctx(ioctx); | 
 |  | 
 | 	/* | 
 | 	 * Wake up any waiters.  The setting of ctx->dead must be seen | 
 | 	 * by other CPUs at this point.  Right now, we rely on the | 
 | 	 * locking done by the above calls to ensure this consistency. | 
 | 	 */ | 
 | 	wake_up_all(&ioctx->wait); | 
 | } | 
 |  | 
 | /* sys_io_setup: | 
 |  *	Create an aio_context capable of receiving at least nr_events. | 
 |  *	ctxp must not point to an aio_context that already exists, and | 
 |  *	must be initialized to 0 prior to the call.  On successful | 
 |  *	creation of the aio_context, *ctxp is filled in with the resulting  | 
 |  *	handle.  May fail with -EINVAL if *ctxp is not initialized, | 
 |  *	if the specified nr_events exceeds internal limits.  May fail  | 
 |  *	with -EAGAIN if the specified nr_events exceeds the user's limit  | 
 |  *	of available events.  May fail with -ENOMEM if insufficient kernel | 
 |  *	resources are available.  May fail with -EFAULT if an invalid | 
 |  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not | 
 |  *	implemented. | 
 |  */ | 
 | SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) | 
 | { | 
 | 	struct kioctx *ioctx = NULL; | 
 | 	unsigned long ctx; | 
 | 	long ret; | 
 |  | 
 | 	ret = get_user(ctx, ctxp); | 
 | 	if (unlikely(ret)) | 
 | 		goto out; | 
 |  | 
 | 	ret = -EINVAL; | 
 | 	if (unlikely(ctx || nr_events == 0)) { | 
 | 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", | 
 | 		         ctx, nr_events); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ioctx = ioctx_alloc(nr_events); | 
 | 	ret = PTR_ERR(ioctx); | 
 | 	if (!IS_ERR(ioctx)) { | 
 | 		ret = put_user(ioctx->user_id, ctxp); | 
 | 		if (ret) | 
 | 			io_destroy(ioctx); | 
 | 		put_ioctx(ioctx); | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* sys_io_destroy: | 
 |  *	Destroy the aio_context specified.  May cancel any outstanding  | 
 |  *	AIOs and block on completion.  Will fail with -ENOSYS if not | 
 |  *	implemented.  May fail with -EINVAL if the context pointed to | 
 |  *	is invalid. | 
 |  */ | 
 | SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) | 
 | { | 
 | 	struct kioctx *ioctx = lookup_ioctx(ctx); | 
 | 	if (likely(NULL != ioctx)) { | 
 | 		io_destroy(ioctx); | 
 | 		put_ioctx(ioctx); | 
 | 		return 0; | 
 | 	} | 
 | 	pr_debug("EINVAL: io_destroy: invalid context id\n"); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) | 
 | { | 
 | 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; | 
 |  | 
 | 	BUG_ON(ret <= 0); | 
 |  | 
 | 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { | 
 | 		ssize_t this = min((ssize_t)iov->iov_len, ret); | 
 | 		iov->iov_base += this; | 
 | 		iov->iov_len -= this; | 
 | 		iocb->ki_left -= this; | 
 | 		ret -= this; | 
 | 		if (iov->iov_len == 0) { | 
 | 			iocb->ki_cur_seg++; | 
 | 			iov++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* the caller should not have done more io than what fit in | 
 | 	 * the remaining iovecs */ | 
 | 	BUG_ON(ret > 0 && iocb->ki_left == 0); | 
 | } | 
 |  | 
 | static ssize_t aio_rw_vect_retry(struct kiocb *iocb) | 
 | { | 
 | 	struct file *file = iocb->ki_filp; | 
 | 	struct address_space *mapping = file->f_mapping; | 
 | 	struct inode *inode = mapping->host; | 
 | 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *, | 
 | 			 unsigned long, loff_t); | 
 | 	ssize_t ret = 0; | 
 | 	unsigned short opcode; | 
 |  | 
 | 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) || | 
 | 		(iocb->ki_opcode == IOCB_CMD_PREAD)) { | 
 | 		rw_op = file->f_op->aio_read; | 
 | 		opcode = IOCB_CMD_PREADV; | 
 | 	} else { | 
 | 		rw_op = file->f_op->aio_write; | 
 | 		opcode = IOCB_CMD_PWRITEV; | 
 | 	} | 
 |  | 
 | 	/* This matches the pread()/pwrite() logic */ | 
 | 	if (iocb->ki_pos < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	do { | 
 | 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], | 
 | 			    iocb->ki_nr_segs - iocb->ki_cur_seg, | 
 | 			    iocb->ki_pos); | 
 | 		if (ret > 0) | 
 | 			aio_advance_iovec(iocb, ret); | 
 |  | 
 | 	/* retry all partial writes.  retry partial reads as long as its a | 
 | 	 * regular file. */ | 
 | 	} while (ret > 0 && iocb->ki_left > 0 && | 
 | 		 (opcode == IOCB_CMD_PWRITEV || | 
 | 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); | 
 |  | 
 | 	/* This means we must have transferred all that we could */ | 
 | 	/* No need to retry anymore */ | 
 | 	if ((ret == 0) || (iocb->ki_left == 0)) | 
 | 		ret = iocb->ki_nbytes - iocb->ki_left; | 
 |  | 
 | 	/* If we managed to write some out we return that, rather than | 
 | 	 * the eventual error. */ | 
 | 	if (opcode == IOCB_CMD_PWRITEV | 
 | 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY | 
 | 	    && iocb->ki_nbytes - iocb->ki_left) | 
 | 		ret = iocb->ki_nbytes - iocb->ki_left; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t aio_fdsync(struct kiocb *iocb) | 
 | { | 
 | 	struct file *file = iocb->ki_filp; | 
 | 	ssize_t ret = -EINVAL; | 
 |  | 
 | 	if (file->f_op->aio_fsync) | 
 | 		ret = file->f_op->aio_fsync(iocb, 1); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t aio_fsync(struct kiocb *iocb) | 
 | { | 
 | 	struct file *file = iocb->ki_filp; | 
 | 	ssize_t ret = -EINVAL; | 
 |  | 
 | 	if (file->f_op->aio_fsync) | 
 | 		ret = file->f_op->aio_fsync(iocb, 0); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat) | 
 | { | 
 | 	ssize_t ret; | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 | 	if (compat) | 
 | 		ret = compat_rw_copy_check_uvector(type, | 
 | 				(struct compat_iovec __user *)kiocb->ki_buf, | 
 | 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, | 
 | 				&kiocb->ki_iovec); | 
 | 	else | 
 | #endif | 
 | 		ret = rw_copy_check_uvector(type, | 
 | 				(struct iovec __user *)kiocb->ki_buf, | 
 | 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, | 
 | 				&kiocb->ki_iovec); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = rw_verify_area(type, kiocb->ki_filp, &kiocb->ki_pos, ret); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	kiocb->ki_nr_segs = kiocb->ki_nbytes; | 
 | 	kiocb->ki_cur_seg = 0; | 
 | 	/* ki_nbytes/left now reflect bytes instead of segs */ | 
 | 	kiocb->ki_nbytes = ret; | 
 | 	kiocb->ki_left = ret; | 
 |  | 
 | 	ret = 0; | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t aio_setup_single_vector(int type, struct file * file, struct kiocb *kiocb) | 
 | { | 
 | 	int bytes; | 
 |  | 
 | 	bytes = rw_verify_area(type, file, &kiocb->ki_pos, kiocb->ki_left); | 
 | 	if (bytes < 0) | 
 | 		return bytes; | 
 |  | 
 | 	kiocb->ki_iovec = &kiocb->ki_inline_vec; | 
 | 	kiocb->ki_iovec->iov_base = kiocb->ki_buf; | 
 | 	kiocb->ki_iovec->iov_len = bytes; | 
 | 	kiocb->ki_nr_segs = 1; | 
 | 	kiocb->ki_cur_seg = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * aio_setup_iocb: | 
 |  *	Performs the initial checks and aio retry method | 
 |  *	setup for the kiocb at the time of io submission. | 
 |  */ | 
 | static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat) | 
 | { | 
 | 	struct file *file = kiocb->ki_filp; | 
 | 	ssize_t ret = 0; | 
 |  | 
 | 	switch (kiocb->ki_opcode) { | 
 | 	case IOCB_CMD_PREAD: | 
 | 		ret = -EBADF; | 
 | 		if (unlikely(!(file->f_mode & FMODE_READ))) | 
 | 			break; | 
 | 		ret = -EFAULT; | 
 | 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, | 
 | 			kiocb->ki_left))) | 
 | 			break; | 
 | 		ret = aio_setup_single_vector(READ, file, kiocb); | 
 | 		if (ret) | 
 | 			break; | 
 | 		ret = -EINVAL; | 
 | 		if (file->f_op->aio_read) | 
 | 			kiocb->ki_retry = aio_rw_vect_retry; | 
 | 		break; | 
 | 	case IOCB_CMD_PWRITE: | 
 | 		ret = -EBADF; | 
 | 		if (unlikely(!(file->f_mode & FMODE_WRITE))) | 
 | 			break; | 
 | 		ret = -EFAULT; | 
 | 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, | 
 | 			kiocb->ki_left))) | 
 | 			break; | 
 | 		ret = aio_setup_single_vector(WRITE, file, kiocb); | 
 | 		if (ret) | 
 | 			break; | 
 | 		ret = -EINVAL; | 
 | 		if (file->f_op->aio_write) | 
 | 			kiocb->ki_retry = aio_rw_vect_retry; | 
 | 		break; | 
 | 	case IOCB_CMD_PREADV: | 
 | 		ret = -EBADF; | 
 | 		if (unlikely(!(file->f_mode & FMODE_READ))) | 
 | 			break; | 
 | 		ret = aio_setup_vectored_rw(READ, kiocb, compat); | 
 | 		if (ret) | 
 | 			break; | 
 | 		ret = -EINVAL; | 
 | 		if (file->f_op->aio_read) | 
 | 			kiocb->ki_retry = aio_rw_vect_retry; | 
 | 		break; | 
 | 	case IOCB_CMD_PWRITEV: | 
 | 		ret = -EBADF; | 
 | 		if (unlikely(!(file->f_mode & FMODE_WRITE))) | 
 | 			break; | 
 | 		ret = aio_setup_vectored_rw(WRITE, kiocb, compat); | 
 | 		if (ret) | 
 | 			break; | 
 | 		ret = -EINVAL; | 
 | 		if (file->f_op->aio_write) | 
 | 			kiocb->ki_retry = aio_rw_vect_retry; | 
 | 		break; | 
 | 	case IOCB_CMD_FDSYNC: | 
 | 		ret = -EINVAL; | 
 | 		if (file->f_op->aio_fsync) | 
 | 			kiocb->ki_retry = aio_fdsync; | 
 | 		break; | 
 | 	case IOCB_CMD_FSYNC: | 
 | 		ret = -EINVAL; | 
 | 		if (file->f_op->aio_fsync) | 
 | 			kiocb->ki_retry = aio_fsync; | 
 | 		break; | 
 | 	default: | 
 | 		dprintk("EINVAL: io_submit: no operation provided\n"); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!kiocb->ki_retry) | 
 | 		return ret; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, | 
 | 			 struct iocb *iocb, struct kiocb_batch *batch, | 
 | 			 bool compat) | 
 | { | 
 | 	struct kiocb *req; | 
 | 	struct file *file; | 
 | 	ssize_t ret; | 
 |  | 
 | 	/* enforce forwards compatibility on users */ | 
 | 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { | 
 | 		pr_debug("EINVAL: io_submit: reserve field set\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* prevent overflows */ | 
 | 	if (unlikely( | 
 | 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) || | 
 | 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || | 
 | 	    ((ssize_t)iocb->aio_nbytes < 0) | 
 | 	   )) { | 
 | 		pr_debug("EINVAL: io_submit: overflow check\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	file = fget(iocb->aio_fildes); | 
 | 	if (unlikely(!file)) | 
 | 		return -EBADF; | 
 |  | 
 | 	req = aio_get_req(ctx, batch);  /* returns with 2 references to req */ | 
 | 	if (unlikely(!req)) { | 
 | 		fput(file); | 
 | 		return -EAGAIN; | 
 | 	} | 
 | 	req->ki_filp = file; | 
 | 	if (iocb->aio_flags & IOCB_FLAG_RESFD) { | 
 | 		/* | 
 | 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an | 
 | 		 * instance of the file* now. The file descriptor must be | 
 | 		 * an eventfd() fd, and will be signaled for each completed | 
 | 		 * event using the eventfd_signal() function. | 
 | 		 */ | 
 | 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); | 
 | 		if (IS_ERR(req->ki_eventfd)) { | 
 | 			ret = PTR_ERR(req->ki_eventfd); | 
 | 			req->ki_eventfd = NULL; | 
 | 			goto out_put_req; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = put_user(req->ki_key, &user_iocb->aio_key); | 
 | 	if (unlikely(ret)) { | 
 | 		dprintk("EFAULT: aio_key\n"); | 
 | 		goto out_put_req; | 
 | 	} | 
 |  | 
 | 	req->ki_obj.user = user_iocb; | 
 | 	req->ki_user_data = iocb->aio_data; | 
 | 	req->ki_pos = iocb->aio_offset; | 
 |  | 
 | 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; | 
 | 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes; | 
 | 	req->ki_opcode = iocb->aio_lio_opcode; | 
 |  | 
 | 	ret = aio_setup_iocb(req, compat); | 
 |  | 
 | 	if (ret) | 
 | 		goto out_put_req; | 
 |  | 
 | 	spin_lock_irq(&ctx->ctx_lock); | 
 | 	/* | 
 | 	 * We could have raced with io_destroy() and are currently holding a | 
 | 	 * reference to ctx which should be destroyed. We cannot submit IO | 
 | 	 * since ctx gets freed as soon as io_submit() puts its reference.  The | 
 | 	 * check here is reliable: io_destroy() sets ctx->dead before waiting | 
 | 	 * for outstanding IO and the barrier between these two is realized by | 
 | 	 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock.  Analogously we | 
 | 	 * increment ctx->reqs_active before checking for ctx->dead and the | 
 | 	 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we | 
 | 	 * don't see ctx->dead set here, io_destroy() waits for our IO to | 
 | 	 * finish. | 
 | 	 */ | 
 | 	if (ctx->dead) { | 
 | 		spin_unlock_irq(&ctx->ctx_lock); | 
 | 		ret = -EINVAL; | 
 | 		goto out_put_req; | 
 | 	} | 
 | 	aio_run_iocb(req); | 
 | 	if (!list_empty(&ctx->run_list)) { | 
 | 		/* drain the run list */ | 
 | 		while (__aio_run_iocbs(ctx)) | 
 | 			; | 
 | 	} | 
 | 	spin_unlock_irq(&ctx->ctx_lock); | 
 |  | 
 | 	aio_put_req(req);	/* drop extra ref to req */ | 
 | 	return 0; | 
 |  | 
 | out_put_req: | 
 | 	aio_put_req(req);	/* drop extra ref to req */ | 
 | 	aio_put_req(req);	/* drop i/o ref to req */ | 
 | 	return ret; | 
 | } | 
 |  | 
 | long do_io_submit(aio_context_t ctx_id, long nr, | 
 | 		  struct iocb __user *__user *iocbpp, bool compat) | 
 | { | 
 | 	struct kioctx *ctx; | 
 | 	long ret = 0; | 
 | 	int i = 0; | 
 | 	struct blk_plug plug; | 
 | 	struct kiocb_batch batch; | 
 |  | 
 | 	if (unlikely(nr < 0)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) | 
 | 		nr = LONG_MAX/sizeof(*iocbpp); | 
 |  | 
 | 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	ctx = lookup_ioctx(ctx_id); | 
 | 	if (unlikely(!ctx)) { | 
 | 		pr_debug("EINVAL: io_submit: invalid context id\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	kiocb_batch_init(&batch, nr); | 
 |  | 
 | 	blk_start_plug(&plug); | 
 |  | 
 | 	/* | 
 | 	 * AKPM: should this return a partial result if some of the IOs were | 
 | 	 * successfully submitted? | 
 | 	 */ | 
 | 	for (i=0; i<nr; i++) { | 
 | 		struct iocb __user *user_iocb; | 
 | 		struct iocb tmp; | 
 |  | 
 | 		if (unlikely(__get_user(user_iocb, iocbpp + i))) { | 
 | 			ret = -EFAULT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { | 
 | 			ret = -EFAULT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 | 	blk_finish_plug(&plug); | 
 |  | 
 | 	kiocb_batch_free(ctx, &batch); | 
 | 	put_ioctx(ctx); | 
 | 	return i ? i : ret; | 
 | } | 
 |  | 
 | /* sys_io_submit: | 
 |  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns | 
 |  *	the number of iocbs queued.  May return -EINVAL if the aio_context | 
 |  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at | 
 |  *	*iocbpp[0] is not properly initialized, if the operation specified | 
 |  *	is invalid for the file descriptor in the iocb.  May fail with | 
 |  *	-EFAULT if any of the data structures point to invalid data.  May | 
 |  *	fail with -EBADF if the file descriptor specified in the first | 
 |  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources | 
 |  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will | 
 |  *	fail with -ENOSYS if not implemented. | 
 |  */ | 
 | SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, | 
 | 		struct iocb __user * __user *, iocbpp) | 
 | { | 
 | 	return do_io_submit(ctx_id, nr, iocbpp, 0); | 
 | } | 
 |  | 
 | /* lookup_kiocb | 
 |  *	Finds a given iocb for cancellation. | 
 |  */ | 
 | static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, | 
 | 				  u32 key) | 
 | { | 
 | 	struct list_head *pos; | 
 |  | 
 | 	assert_spin_locked(&ctx->ctx_lock); | 
 |  | 
 | 	/* TODO: use a hash or array, this sucks. */ | 
 | 	list_for_each(pos, &ctx->active_reqs) { | 
 | 		struct kiocb *kiocb = list_kiocb(pos); | 
 | 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) | 
 | 			return kiocb; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* sys_io_cancel: | 
 |  *	Attempts to cancel an iocb previously passed to io_submit.  If | 
 |  *	the operation is successfully cancelled, the resulting event is | 
 |  *	copied into the memory pointed to by result without being placed | 
 |  *	into the completion queue and 0 is returned.  May fail with | 
 |  *	-EFAULT if any of the data structures pointed to are invalid. | 
 |  *	May fail with -EINVAL if aio_context specified by ctx_id is | 
 |  *	invalid.  May fail with -EAGAIN if the iocb specified was not | 
 |  *	cancelled.  Will fail with -ENOSYS if not implemented. | 
 |  */ | 
 | SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, | 
 | 		struct io_event __user *, result) | 
 | { | 
 | 	int (*cancel)(struct kiocb *iocb, struct io_event *res); | 
 | 	struct kioctx *ctx; | 
 | 	struct kiocb *kiocb; | 
 | 	u32 key; | 
 | 	int ret; | 
 |  | 
 | 	ret = get_user(key, &iocb->aio_key); | 
 | 	if (unlikely(ret)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	ctx = lookup_ioctx(ctx_id); | 
 | 	if (unlikely(!ctx)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock_irq(&ctx->ctx_lock); | 
 | 	ret = -EAGAIN; | 
 | 	kiocb = lookup_kiocb(ctx, iocb, key); | 
 | 	if (kiocb && kiocb->ki_cancel) { | 
 | 		cancel = kiocb->ki_cancel; | 
 | 		kiocb->ki_users ++; | 
 | 		kiocbSetCancelled(kiocb); | 
 | 	} else | 
 | 		cancel = NULL; | 
 | 	spin_unlock_irq(&ctx->ctx_lock); | 
 |  | 
 | 	if (NULL != cancel) { | 
 | 		struct io_event tmp; | 
 | 		pr_debug("calling cancel\n"); | 
 | 		memset(&tmp, 0, sizeof(tmp)); | 
 | 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; | 
 | 		tmp.data = kiocb->ki_user_data; | 
 | 		ret = cancel(kiocb, &tmp); | 
 | 		if (!ret) { | 
 | 			/* Cancellation succeeded -- copy the result | 
 | 			 * into the user's buffer. | 
 | 			 */ | 
 | 			if (copy_to_user(result, &tmp, sizeof(tmp))) | 
 | 				ret = -EFAULT; | 
 | 		} | 
 | 	} else | 
 | 		ret = -EINVAL; | 
 |  | 
 | 	put_ioctx(ctx); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* io_getevents: | 
 |  *	Attempts to read at least min_nr events and up to nr events from | 
 |  *	the completion queue for the aio_context specified by ctx_id. If | 
 |  *	it succeeds, the number of read events is returned. May fail with | 
 |  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is | 
 |  *	out of range, if timeout is out of range.  May fail with -EFAULT | 
 |  *	if any of the memory specified is invalid.  May return 0 or | 
 |  *	< min_nr if the timeout specified by timeout has elapsed | 
 |  *	before sufficient events are available, where timeout == NULL | 
 |  *	specifies an infinite timeout. Note that the timeout pointed to by | 
 |  *	timeout is relative and will be updated if not NULL and the | 
 |  *	operation blocks. Will fail with -ENOSYS if not implemented. | 
 |  */ | 
 | SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, | 
 | 		long, min_nr, | 
 | 		long, nr, | 
 | 		struct io_event __user *, events, | 
 | 		struct timespec __user *, timeout) | 
 | { | 
 | 	struct kioctx *ioctx = lookup_ioctx(ctx_id); | 
 | 	long ret = -EINVAL; | 
 |  | 
 | 	if (likely(ioctx)) { | 
 | 		if (likely(min_nr <= nr && min_nr >= 0)) | 
 | 			ret = read_events(ioctx, min_nr, nr, events, timeout); | 
 | 		put_ioctx(ioctx); | 
 | 	} | 
 |  | 
 | 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); | 
 | 	return ret; | 
 | } |