| /* | 
 |  * Copyright (C) 2007 Oracle.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public | 
 |  * License v2 as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public | 
 |  * License along with this program; if not, write to the | 
 |  * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
 |  * Boston, MA 021110-1307, USA. | 
 |  */ | 
 | #include <linux/sched.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/random.h> | 
 | #include <linux/iocontext.h> | 
 | #include <linux/capability.h> | 
 | #include <linux/ratelimit.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/raid/pq.h> | 
 | #include <asm/div64.h> | 
 | #include "compat.h" | 
 | #include "ctree.h" | 
 | #include "extent_map.h" | 
 | #include "disk-io.h" | 
 | #include "transaction.h" | 
 | #include "print-tree.h" | 
 | #include "volumes.h" | 
 | #include "raid56.h" | 
 | #include "async-thread.h" | 
 | #include "check-integrity.h" | 
 | #include "rcu-string.h" | 
 | #include "math.h" | 
 | #include "dev-replace.h" | 
 |  | 
 | static int init_first_rw_device(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root, | 
 | 				struct btrfs_device *device); | 
 | static int btrfs_relocate_sys_chunks(struct btrfs_root *root); | 
 | static void __btrfs_reset_dev_stats(struct btrfs_device *dev); | 
 | static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); | 
 |  | 
 | static DEFINE_MUTEX(uuid_mutex); | 
 | static LIST_HEAD(fs_uuids); | 
 |  | 
 | static void lock_chunks(struct btrfs_root *root) | 
 | { | 
 | 	mutex_lock(&root->fs_info->chunk_mutex); | 
 | } | 
 |  | 
 | static void unlock_chunks(struct btrfs_root *root) | 
 | { | 
 | 	mutex_unlock(&root->fs_info->chunk_mutex); | 
 | } | 
 |  | 
 | static void free_fs_devices(struct btrfs_fs_devices *fs_devices) | 
 | { | 
 | 	struct btrfs_device *device; | 
 | 	WARN_ON(fs_devices->opened); | 
 | 	while (!list_empty(&fs_devices->devices)) { | 
 | 		device = list_entry(fs_devices->devices.next, | 
 | 				    struct btrfs_device, dev_list); | 
 | 		list_del(&device->dev_list); | 
 | 		rcu_string_free(device->name); | 
 | 		kfree(device); | 
 | 	} | 
 | 	kfree(fs_devices); | 
 | } | 
 |  | 
 | static void btrfs_kobject_uevent(struct block_device *bdev, | 
 | 				 enum kobject_action action) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); | 
 | 	if (ret) | 
 | 		pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n", | 
 | 			action, | 
 | 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), | 
 | 			&disk_to_dev(bdev->bd_disk)->kobj); | 
 | } | 
 |  | 
 | void btrfs_cleanup_fs_uuids(void) | 
 | { | 
 | 	struct btrfs_fs_devices *fs_devices; | 
 |  | 
 | 	while (!list_empty(&fs_uuids)) { | 
 | 		fs_devices = list_entry(fs_uuids.next, | 
 | 					struct btrfs_fs_devices, list); | 
 | 		list_del(&fs_devices->list); | 
 | 		free_fs_devices(fs_devices); | 
 | 	} | 
 | } | 
 |  | 
 | static noinline struct btrfs_device *__find_device(struct list_head *head, | 
 | 						   u64 devid, u8 *uuid) | 
 | { | 
 | 	struct btrfs_device *dev; | 
 |  | 
 | 	list_for_each_entry(dev, head, dev_list) { | 
 | 		if (dev->devid == devid && | 
 | 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { | 
 | 			return dev; | 
 | 		} | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) | 
 | { | 
 | 	struct btrfs_fs_devices *fs_devices; | 
 |  | 
 | 	list_for_each_entry(fs_devices, &fs_uuids, list) { | 
 | 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) | 
 | 			return fs_devices; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int | 
 | btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, | 
 | 		      int flush, struct block_device **bdev, | 
 | 		      struct buffer_head **bh) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	*bdev = blkdev_get_by_path(device_path, flags, holder); | 
 |  | 
 | 	if (IS_ERR(*bdev)) { | 
 | 		ret = PTR_ERR(*bdev); | 
 | 		printk(KERN_INFO "btrfs: open %s failed\n", device_path); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	if (flush) | 
 | 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping); | 
 | 	ret = set_blocksize(*bdev, 4096); | 
 | 	if (ret) { | 
 | 		blkdev_put(*bdev, flags); | 
 | 		goto error; | 
 | 	} | 
 | 	invalidate_bdev(*bdev); | 
 | 	*bh = btrfs_read_dev_super(*bdev); | 
 | 	if (!*bh) { | 
 | 		ret = -EINVAL; | 
 | 		blkdev_put(*bdev, flags); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | error: | 
 | 	*bdev = NULL; | 
 | 	*bh = NULL; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void requeue_list(struct btrfs_pending_bios *pending_bios, | 
 | 			struct bio *head, struct bio *tail) | 
 | { | 
 |  | 
 | 	struct bio *old_head; | 
 |  | 
 | 	old_head = pending_bios->head; | 
 | 	pending_bios->head = head; | 
 | 	if (pending_bios->tail) | 
 | 		tail->bi_next = old_head; | 
 | 	else | 
 | 		pending_bios->tail = tail; | 
 | } | 
 |  | 
 | /* | 
 |  * we try to collect pending bios for a device so we don't get a large | 
 |  * number of procs sending bios down to the same device.  This greatly | 
 |  * improves the schedulers ability to collect and merge the bios. | 
 |  * | 
 |  * But, it also turns into a long list of bios to process and that is sure | 
 |  * to eventually make the worker thread block.  The solution here is to | 
 |  * make some progress and then put this work struct back at the end of | 
 |  * the list if the block device is congested.  This way, multiple devices | 
 |  * can make progress from a single worker thread. | 
 |  */ | 
 | static noinline void run_scheduled_bios(struct btrfs_device *device) | 
 | { | 
 | 	struct bio *pending; | 
 | 	struct backing_dev_info *bdi; | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct btrfs_pending_bios *pending_bios; | 
 | 	struct bio *tail; | 
 | 	struct bio *cur; | 
 | 	int again = 0; | 
 | 	unsigned long num_run; | 
 | 	unsigned long batch_run = 0; | 
 | 	unsigned long limit; | 
 | 	unsigned long last_waited = 0; | 
 | 	int force_reg = 0; | 
 | 	int sync_pending = 0; | 
 | 	struct blk_plug plug; | 
 |  | 
 | 	/* | 
 | 	 * this function runs all the bios we've collected for | 
 | 	 * a particular device.  We don't want to wander off to | 
 | 	 * another device without first sending all of these down. | 
 | 	 * So, setup a plug here and finish it off before we return | 
 | 	 */ | 
 | 	blk_start_plug(&plug); | 
 |  | 
 | 	bdi = blk_get_backing_dev_info(device->bdev); | 
 | 	fs_info = device->dev_root->fs_info; | 
 | 	limit = btrfs_async_submit_limit(fs_info); | 
 | 	limit = limit * 2 / 3; | 
 |  | 
 | loop: | 
 | 	spin_lock(&device->io_lock); | 
 |  | 
 | loop_lock: | 
 | 	num_run = 0; | 
 |  | 
 | 	/* take all the bios off the list at once and process them | 
 | 	 * later on (without the lock held).  But, remember the | 
 | 	 * tail and other pointers so the bios can be properly reinserted | 
 | 	 * into the list if we hit congestion | 
 | 	 */ | 
 | 	if (!force_reg && device->pending_sync_bios.head) { | 
 | 		pending_bios = &device->pending_sync_bios; | 
 | 		force_reg = 1; | 
 | 	} else { | 
 | 		pending_bios = &device->pending_bios; | 
 | 		force_reg = 0; | 
 | 	} | 
 |  | 
 | 	pending = pending_bios->head; | 
 | 	tail = pending_bios->tail; | 
 | 	WARN_ON(pending && !tail); | 
 |  | 
 | 	/* | 
 | 	 * if pending was null this time around, no bios need processing | 
 | 	 * at all and we can stop.  Otherwise it'll loop back up again | 
 | 	 * and do an additional check so no bios are missed. | 
 | 	 * | 
 | 	 * device->running_pending is used to synchronize with the | 
 | 	 * schedule_bio code. | 
 | 	 */ | 
 | 	if (device->pending_sync_bios.head == NULL && | 
 | 	    device->pending_bios.head == NULL) { | 
 | 		again = 0; | 
 | 		device->running_pending = 0; | 
 | 	} else { | 
 | 		again = 1; | 
 | 		device->running_pending = 1; | 
 | 	} | 
 |  | 
 | 	pending_bios->head = NULL; | 
 | 	pending_bios->tail = NULL; | 
 |  | 
 | 	spin_unlock(&device->io_lock); | 
 |  | 
 | 	while (pending) { | 
 |  | 
 | 		rmb(); | 
 | 		/* we want to work on both lists, but do more bios on the | 
 | 		 * sync list than the regular list | 
 | 		 */ | 
 | 		if ((num_run > 32 && | 
 | 		    pending_bios != &device->pending_sync_bios && | 
 | 		    device->pending_sync_bios.head) || | 
 | 		   (num_run > 64 && pending_bios == &device->pending_sync_bios && | 
 | 		    device->pending_bios.head)) { | 
 | 			spin_lock(&device->io_lock); | 
 | 			requeue_list(pending_bios, pending, tail); | 
 | 			goto loop_lock; | 
 | 		} | 
 |  | 
 | 		cur = pending; | 
 | 		pending = pending->bi_next; | 
 | 		cur->bi_next = NULL; | 
 |  | 
 | 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit && | 
 | 		    waitqueue_active(&fs_info->async_submit_wait)) | 
 | 			wake_up(&fs_info->async_submit_wait); | 
 |  | 
 | 		BUG_ON(atomic_read(&cur->bi_cnt) == 0); | 
 |  | 
 | 		/* | 
 | 		 * if we're doing the sync list, record that our | 
 | 		 * plug has some sync requests on it | 
 | 		 * | 
 | 		 * If we're doing the regular list and there are | 
 | 		 * sync requests sitting around, unplug before | 
 | 		 * we add more | 
 | 		 */ | 
 | 		if (pending_bios == &device->pending_sync_bios) { | 
 | 			sync_pending = 1; | 
 | 		} else if (sync_pending) { | 
 | 			blk_finish_plug(&plug); | 
 | 			blk_start_plug(&plug); | 
 | 			sync_pending = 0; | 
 | 		} | 
 |  | 
 | 		btrfsic_submit_bio(cur->bi_rw, cur); | 
 | 		num_run++; | 
 | 		batch_run++; | 
 | 		if (need_resched()) | 
 | 			cond_resched(); | 
 |  | 
 | 		/* | 
 | 		 * we made progress, there is more work to do and the bdi | 
 | 		 * is now congested.  Back off and let other work structs | 
 | 		 * run instead | 
 | 		 */ | 
 | 		if (pending && bdi_write_congested(bdi) && batch_run > 8 && | 
 | 		    fs_info->fs_devices->open_devices > 1) { | 
 | 			struct io_context *ioc; | 
 |  | 
 | 			ioc = current->io_context; | 
 |  | 
 | 			/* | 
 | 			 * the main goal here is that we don't want to | 
 | 			 * block if we're going to be able to submit | 
 | 			 * more requests without blocking. | 
 | 			 * | 
 | 			 * This code does two great things, it pokes into | 
 | 			 * the elevator code from a filesystem _and_ | 
 | 			 * it makes assumptions about how batching works. | 
 | 			 */ | 
 | 			if (ioc && ioc->nr_batch_requests > 0 && | 
 | 			    time_before(jiffies, ioc->last_waited + HZ/50UL) && | 
 | 			    (last_waited == 0 || | 
 | 			     ioc->last_waited == last_waited)) { | 
 | 				/* | 
 | 				 * we want to go through our batch of | 
 | 				 * requests and stop.  So, we copy out | 
 | 				 * the ioc->last_waited time and test | 
 | 				 * against it before looping | 
 | 				 */ | 
 | 				last_waited = ioc->last_waited; | 
 | 				if (need_resched()) | 
 | 					cond_resched(); | 
 | 				continue; | 
 | 			} | 
 | 			spin_lock(&device->io_lock); | 
 | 			requeue_list(pending_bios, pending, tail); | 
 | 			device->running_pending = 1; | 
 |  | 
 | 			spin_unlock(&device->io_lock); | 
 | 			btrfs_requeue_work(&device->work); | 
 | 			goto done; | 
 | 		} | 
 | 		/* unplug every 64 requests just for good measure */ | 
 | 		if (batch_run % 64 == 0) { | 
 | 			blk_finish_plug(&plug); | 
 | 			blk_start_plug(&plug); | 
 | 			sync_pending = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cond_resched(); | 
 | 	if (again) | 
 | 		goto loop; | 
 |  | 
 | 	spin_lock(&device->io_lock); | 
 | 	if (device->pending_bios.head || device->pending_sync_bios.head) | 
 | 		goto loop_lock; | 
 | 	spin_unlock(&device->io_lock); | 
 |  | 
 | done: | 
 | 	blk_finish_plug(&plug); | 
 | } | 
 |  | 
 | static void pending_bios_fn(struct btrfs_work *work) | 
 | { | 
 | 	struct btrfs_device *device; | 
 |  | 
 | 	device = container_of(work, struct btrfs_device, work); | 
 | 	run_scheduled_bios(device); | 
 | } | 
 |  | 
 | static noinline int device_list_add(const char *path, | 
 | 			   struct btrfs_super_block *disk_super, | 
 | 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret) | 
 | { | 
 | 	struct btrfs_device *device; | 
 | 	struct btrfs_fs_devices *fs_devices; | 
 | 	struct rcu_string *name; | 
 | 	u64 found_transid = btrfs_super_generation(disk_super); | 
 |  | 
 | 	fs_devices = find_fsid(disk_super->fsid); | 
 | 	if (!fs_devices) { | 
 | 		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | 
 | 		if (!fs_devices) | 
 | 			return -ENOMEM; | 
 | 		INIT_LIST_HEAD(&fs_devices->devices); | 
 | 		INIT_LIST_HEAD(&fs_devices->alloc_list); | 
 | 		list_add(&fs_devices->list, &fs_uuids); | 
 | 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); | 
 | 		fs_devices->latest_devid = devid; | 
 | 		fs_devices->latest_trans = found_transid; | 
 | 		mutex_init(&fs_devices->device_list_mutex); | 
 | 		device = NULL; | 
 | 	} else { | 
 | 		device = __find_device(&fs_devices->devices, devid, | 
 | 				       disk_super->dev_item.uuid); | 
 | 	} | 
 | 	if (!device) { | 
 | 		if (fs_devices->opened) | 
 | 			return -EBUSY; | 
 |  | 
 | 		device = kzalloc(sizeof(*device), GFP_NOFS); | 
 | 		if (!device) { | 
 | 			/* we can safely leave the fs_devices entry around */ | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		device->devid = devid; | 
 | 		device->dev_stats_valid = 0; | 
 | 		device->work.func = pending_bios_fn; | 
 | 		memcpy(device->uuid, disk_super->dev_item.uuid, | 
 | 		       BTRFS_UUID_SIZE); | 
 | 		spin_lock_init(&device->io_lock); | 
 |  | 
 | 		name = rcu_string_strdup(path, GFP_NOFS); | 
 | 		if (!name) { | 
 | 			kfree(device); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		rcu_assign_pointer(device->name, name); | 
 | 		INIT_LIST_HEAD(&device->dev_alloc_list); | 
 |  | 
 | 		/* init readahead state */ | 
 | 		spin_lock_init(&device->reada_lock); | 
 | 		device->reada_curr_zone = NULL; | 
 | 		atomic_set(&device->reada_in_flight, 0); | 
 | 		device->reada_next = 0; | 
 | 		INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT); | 
 | 		INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT); | 
 |  | 
 | 		mutex_lock(&fs_devices->device_list_mutex); | 
 | 		list_add_rcu(&device->dev_list, &fs_devices->devices); | 
 | 		mutex_unlock(&fs_devices->device_list_mutex); | 
 |  | 
 | 		device->fs_devices = fs_devices; | 
 | 		fs_devices->num_devices++; | 
 | 	} else if (!device->name || strcmp(device->name->str, path)) { | 
 | 		name = rcu_string_strdup(path, GFP_NOFS); | 
 | 		if (!name) | 
 | 			return -ENOMEM; | 
 | 		rcu_string_free(device->name); | 
 | 		rcu_assign_pointer(device->name, name); | 
 | 		if (device->missing) { | 
 | 			fs_devices->missing_devices--; | 
 | 			device->missing = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (found_transid > fs_devices->latest_trans) { | 
 | 		fs_devices->latest_devid = devid; | 
 | 		fs_devices->latest_trans = found_transid; | 
 | 	} | 
 | 	*fs_devices_ret = fs_devices; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) | 
 | { | 
 | 	struct btrfs_fs_devices *fs_devices; | 
 | 	struct btrfs_device *device; | 
 | 	struct btrfs_device *orig_dev; | 
 |  | 
 | 	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | 
 | 	if (!fs_devices) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	INIT_LIST_HEAD(&fs_devices->devices); | 
 | 	INIT_LIST_HEAD(&fs_devices->alloc_list); | 
 | 	INIT_LIST_HEAD(&fs_devices->list); | 
 | 	mutex_init(&fs_devices->device_list_mutex); | 
 | 	fs_devices->latest_devid = orig->latest_devid; | 
 | 	fs_devices->latest_trans = orig->latest_trans; | 
 | 	fs_devices->total_devices = orig->total_devices; | 
 | 	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid)); | 
 |  | 
 | 	/* We have held the volume lock, it is safe to get the devices. */ | 
 | 	list_for_each_entry(orig_dev, &orig->devices, dev_list) { | 
 | 		struct rcu_string *name; | 
 |  | 
 | 		device = kzalloc(sizeof(*device), GFP_NOFS); | 
 | 		if (!device) | 
 | 			goto error; | 
 |  | 
 | 		/* | 
 | 		 * This is ok to do without rcu read locked because we hold the | 
 | 		 * uuid mutex so nothing we touch in here is going to disappear. | 
 | 		 */ | 
 | 		name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); | 
 | 		if (!name) { | 
 | 			kfree(device); | 
 | 			goto error; | 
 | 		} | 
 | 		rcu_assign_pointer(device->name, name); | 
 |  | 
 | 		device->devid = orig_dev->devid; | 
 | 		device->work.func = pending_bios_fn; | 
 | 		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid)); | 
 | 		spin_lock_init(&device->io_lock); | 
 | 		INIT_LIST_HEAD(&device->dev_list); | 
 | 		INIT_LIST_HEAD(&device->dev_alloc_list); | 
 |  | 
 | 		list_add(&device->dev_list, &fs_devices->devices); | 
 | 		device->fs_devices = fs_devices; | 
 | 		fs_devices->num_devices++; | 
 | 	} | 
 | 	return fs_devices; | 
 | error: | 
 | 	free_fs_devices(fs_devices); | 
 | 	return ERR_PTR(-ENOMEM); | 
 | } | 
 |  | 
 | void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info, | 
 | 			       struct btrfs_fs_devices *fs_devices, int step) | 
 | { | 
 | 	struct btrfs_device *device, *next; | 
 |  | 
 | 	struct block_device *latest_bdev = NULL; | 
 | 	u64 latest_devid = 0; | 
 | 	u64 latest_transid = 0; | 
 |  | 
 | 	mutex_lock(&uuid_mutex); | 
 | again: | 
 | 	/* This is the initialized path, it is safe to release the devices. */ | 
 | 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { | 
 | 		if (device->in_fs_metadata) { | 
 | 			if (!device->is_tgtdev_for_dev_replace && | 
 | 			    (!latest_transid || | 
 | 			     device->generation > latest_transid)) { | 
 | 				latest_devid = device->devid; | 
 | 				latest_transid = device->generation; | 
 | 				latest_bdev = device->bdev; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) { | 
 | 			/* | 
 | 			 * In the first step, keep the device which has | 
 | 			 * the correct fsid and the devid that is used | 
 | 			 * for the dev_replace procedure. | 
 | 			 * In the second step, the dev_replace state is | 
 | 			 * read from the device tree and it is known | 
 | 			 * whether the procedure is really active or | 
 | 			 * not, which means whether this device is | 
 | 			 * used or whether it should be removed. | 
 | 			 */ | 
 | 			if (step == 0 || device->is_tgtdev_for_dev_replace) { | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 | 		if (device->bdev) { | 
 | 			blkdev_put(device->bdev, device->mode); | 
 | 			device->bdev = NULL; | 
 | 			fs_devices->open_devices--; | 
 | 		} | 
 | 		if (device->writeable) { | 
 | 			list_del_init(&device->dev_alloc_list); | 
 | 			device->writeable = 0; | 
 | 			if (!device->is_tgtdev_for_dev_replace) | 
 | 				fs_devices->rw_devices--; | 
 | 		} | 
 | 		list_del_init(&device->dev_list); | 
 | 		fs_devices->num_devices--; | 
 | 		rcu_string_free(device->name); | 
 | 		kfree(device); | 
 | 	} | 
 |  | 
 | 	if (fs_devices->seed) { | 
 | 		fs_devices = fs_devices->seed; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	fs_devices->latest_bdev = latest_bdev; | 
 | 	fs_devices->latest_devid = latest_devid; | 
 | 	fs_devices->latest_trans = latest_transid; | 
 |  | 
 | 	mutex_unlock(&uuid_mutex); | 
 | } | 
 |  | 
 | static void __free_device(struct work_struct *work) | 
 | { | 
 | 	struct btrfs_device *device; | 
 |  | 
 | 	device = container_of(work, struct btrfs_device, rcu_work); | 
 |  | 
 | 	if (device->bdev) | 
 | 		blkdev_put(device->bdev, device->mode); | 
 |  | 
 | 	rcu_string_free(device->name); | 
 | 	kfree(device); | 
 | } | 
 |  | 
 | static void free_device(struct rcu_head *head) | 
 | { | 
 | 	struct btrfs_device *device; | 
 |  | 
 | 	device = container_of(head, struct btrfs_device, rcu); | 
 |  | 
 | 	INIT_WORK(&device->rcu_work, __free_device); | 
 | 	schedule_work(&device->rcu_work); | 
 | } | 
 |  | 
 | static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) | 
 | { | 
 | 	struct btrfs_device *device; | 
 |  | 
 | 	if (--fs_devices->opened > 0) | 
 | 		return 0; | 
 |  | 
 | 	mutex_lock(&fs_devices->device_list_mutex); | 
 | 	list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
 | 		struct btrfs_device *new_device; | 
 | 		struct rcu_string *name; | 
 |  | 
 | 		if (device->bdev) | 
 | 			fs_devices->open_devices--; | 
 |  | 
 | 		if (device->writeable && !device->is_tgtdev_for_dev_replace) { | 
 | 			list_del_init(&device->dev_alloc_list); | 
 | 			fs_devices->rw_devices--; | 
 | 		} | 
 |  | 
 | 		if (device->can_discard) | 
 | 			fs_devices->num_can_discard--; | 
 |  | 
 | 		new_device = kmalloc(sizeof(*new_device), GFP_NOFS); | 
 | 		BUG_ON(!new_device); /* -ENOMEM */ | 
 | 		memcpy(new_device, device, sizeof(*new_device)); | 
 |  | 
 | 		/* Safe because we are under uuid_mutex */ | 
 | 		if (device->name) { | 
 | 			name = rcu_string_strdup(device->name->str, GFP_NOFS); | 
 | 			BUG_ON(device->name && !name); /* -ENOMEM */ | 
 | 			rcu_assign_pointer(new_device->name, name); | 
 | 		} | 
 | 		new_device->bdev = NULL; | 
 | 		new_device->writeable = 0; | 
 | 		new_device->in_fs_metadata = 0; | 
 | 		new_device->can_discard = 0; | 
 | 		spin_lock_init(&new_device->io_lock); | 
 | 		list_replace_rcu(&device->dev_list, &new_device->dev_list); | 
 |  | 
 | 		call_rcu(&device->rcu, free_device); | 
 | 	} | 
 | 	mutex_unlock(&fs_devices->device_list_mutex); | 
 |  | 
 | 	WARN_ON(fs_devices->open_devices); | 
 | 	WARN_ON(fs_devices->rw_devices); | 
 | 	fs_devices->opened = 0; | 
 | 	fs_devices->seeding = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) | 
 | { | 
 | 	struct btrfs_fs_devices *seed_devices = NULL; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&uuid_mutex); | 
 | 	ret = __btrfs_close_devices(fs_devices); | 
 | 	if (!fs_devices->opened) { | 
 | 		seed_devices = fs_devices->seed; | 
 | 		fs_devices->seed = NULL; | 
 | 	} | 
 | 	mutex_unlock(&uuid_mutex); | 
 |  | 
 | 	while (seed_devices) { | 
 | 		fs_devices = seed_devices; | 
 | 		seed_devices = fs_devices->seed; | 
 | 		__btrfs_close_devices(fs_devices); | 
 | 		free_fs_devices(fs_devices); | 
 | 	} | 
 | 	/* | 
 | 	 * Wait for rcu kworkers under __btrfs_close_devices | 
 | 	 * to finish all blkdev_puts so device is really | 
 | 	 * free when umount is done. | 
 | 	 */ | 
 | 	rcu_barrier(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, | 
 | 				fmode_t flags, void *holder) | 
 | { | 
 | 	struct request_queue *q; | 
 | 	struct block_device *bdev; | 
 | 	struct list_head *head = &fs_devices->devices; | 
 | 	struct btrfs_device *device; | 
 | 	struct block_device *latest_bdev = NULL; | 
 | 	struct buffer_head *bh; | 
 | 	struct btrfs_super_block *disk_super; | 
 | 	u64 latest_devid = 0; | 
 | 	u64 latest_transid = 0; | 
 | 	u64 devid; | 
 | 	int seeding = 1; | 
 | 	int ret = 0; | 
 |  | 
 | 	flags |= FMODE_EXCL; | 
 |  | 
 | 	list_for_each_entry(device, head, dev_list) { | 
 | 		if (device->bdev) | 
 | 			continue; | 
 | 		if (!device->name) | 
 | 			continue; | 
 |  | 
 | 		ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, | 
 | 					    &bdev, &bh); | 
 | 		if (ret) | 
 | 			continue; | 
 |  | 
 | 		disk_super = (struct btrfs_super_block *)bh->b_data; | 
 | 		devid = btrfs_stack_device_id(&disk_super->dev_item); | 
 | 		if (devid != device->devid) | 
 | 			goto error_brelse; | 
 |  | 
 | 		if (memcmp(device->uuid, disk_super->dev_item.uuid, | 
 | 			   BTRFS_UUID_SIZE)) | 
 | 			goto error_brelse; | 
 |  | 
 | 		device->generation = btrfs_super_generation(disk_super); | 
 | 		if (!latest_transid || device->generation > latest_transid) { | 
 | 			latest_devid = devid; | 
 | 			latest_transid = device->generation; | 
 | 			latest_bdev = bdev; | 
 | 		} | 
 |  | 
 | 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { | 
 | 			device->writeable = 0; | 
 | 		} else { | 
 | 			device->writeable = !bdev_read_only(bdev); | 
 | 			seeding = 0; | 
 | 		} | 
 |  | 
 | 		q = bdev_get_queue(bdev); | 
 | 		if (blk_queue_discard(q)) { | 
 | 			device->can_discard = 1; | 
 | 			fs_devices->num_can_discard++; | 
 | 		} | 
 |  | 
 | 		device->bdev = bdev; | 
 | 		device->in_fs_metadata = 0; | 
 | 		device->mode = flags; | 
 |  | 
 | 		if (!blk_queue_nonrot(bdev_get_queue(bdev))) | 
 | 			fs_devices->rotating = 1; | 
 |  | 
 | 		fs_devices->open_devices++; | 
 | 		if (device->writeable && !device->is_tgtdev_for_dev_replace) { | 
 | 			fs_devices->rw_devices++; | 
 | 			list_add(&device->dev_alloc_list, | 
 | 				 &fs_devices->alloc_list); | 
 | 		} | 
 | 		brelse(bh); | 
 | 		continue; | 
 |  | 
 | error_brelse: | 
 | 		brelse(bh); | 
 | 		blkdev_put(bdev, flags); | 
 | 		continue; | 
 | 	} | 
 | 	if (fs_devices->open_devices == 0) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	fs_devices->seeding = seeding; | 
 | 	fs_devices->opened = 1; | 
 | 	fs_devices->latest_bdev = latest_bdev; | 
 | 	fs_devices->latest_devid = latest_devid; | 
 | 	fs_devices->latest_trans = latest_transid; | 
 | 	fs_devices->total_rw_bytes = 0; | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, | 
 | 		       fmode_t flags, void *holder) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&uuid_mutex); | 
 | 	if (fs_devices->opened) { | 
 | 		fs_devices->opened++; | 
 | 		ret = 0; | 
 | 	} else { | 
 | 		ret = __btrfs_open_devices(fs_devices, flags, holder); | 
 | 	} | 
 | 	mutex_unlock(&uuid_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Look for a btrfs signature on a device. This may be called out of the mount path | 
 |  * and we are not allowed to call set_blocksize during the scan. The superblock | 
 |  * is read via pagecache | 
 |  */ | 
 | int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, | 
 | 			  struct btrfs_fs_devices **fs_devices_ret) | 
 | { | 
 | 	struct btrfs_super_block *disk_super; | 
 | 	struct block_device *bdev; | 
 | 	struct page *page; | 
 | 	void *p; | 
 | 	int ret = -EINVAL; | 
 | 	u64 devid; | 
 | 	u64 transid; | 
 | 	u64 total_devices; | 
 | 	u64 bytenr; | 
 | 	pgoff_t index; | 
 |  | 
 | 	/* | 
 | 	 * we would like to check all the supers, but that would make | 
 | 	 * a btrfs mount succeed after a mkfs from a different FS. | 
 | 	 * So, we need to add a special mount option to scan for | 
 | 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead | 
 | 	 */ | 
 | 	bytenr = btrfs_sb_offset(0); | 
 | 	flags |= FMODE_EXCL; | 
 | 	mutex_lock(&uuid_mutex); | 
 |  | 
 | 	bdev = blkdev_get_by_path(path, flags, holder); | 
 |  | 
 | 	if (IS_ERR(bdev)) { | 
 | 		ret = PTR_ERR(bdev); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	/* make sure our super fits in the device */ | 
 | 	if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode)) | 
 | 		goto error_bdev_put; | 
 |  | 
 | 	/* make sure our super fits in the page */ | 
 | 	if (sizeof(*disk_super) > PAGE_CACHE_SIZE) | 
 | 		goto error_bdev_put; | 
 |  | 
 | 	/* make sure our super doesn't straddle pages on disk */ | 
 | 	index = bytenr >> PAGE_CACHE_SHIFT; | 
 | 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index) | 
 | 		goto error_bdev_put; | 
 |  | 
 | 	/* pull in the page with our super */ | 
 | 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, | 
 | 				   index, GFP_NOFS); | 
 |  | 
 | 	if (IS_ERR_OR_NULL(page)) | 
 | 		goto error_bdev_put; | 
 |  | 
 | 	p = kmap(page); | 
 |  | 
 | 	/* align our pointer to the offset of the super block */ | 
 | 	disk_super = p + (bytenr & ~PAGE_CACHE_MASK); | 
 |  | 
 | 	if (btrfs_super_bytenr(disk_super) != bytenr || | 
 | 	    disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) | 
 | 		goto error_unmap; | 
 |  | 
 | 	devid = btrfs_stack_device_id(&disk_super->dev_item); | 
 | 	transid = btrfs_super_generation(disk_super); | 
 | 	total_devices = btrfs_super_num_devices(disk_super); | 
 |  | 
 | 	if (disk_super->label[0]) { | 
 | 		if (disk_super->label[BTRFS_LABEL_SIZE - 1]) | 
 | 			disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0'; | 
 | 		printk(KERN_INFO "device label %s ", disk_super->label); | 
 | 	} else { | 
 | 		printk(KERN_INFO "device fsid %pU ", disk_super->fsid); | 
 | 	} | 
 |  | 
 | 	printk(KERN_CONT "devid %llu transid %llu %s\n", | 
 | 	       (unsigned long long)devid, (unsigned long long)transid, path); | 
 |  | 
 | 	ret = device_list_add(path, disk_super, devid, fs_devices_ret); | 
 | 	if (!ret && fs_devices_ret) | 
 | 		(*fs_devices_ret)->total_devices = total_devices; | 
 |  | 
 | error_unmap: | 
 | 	kunmap(page); | 
 | 	page_cache_release(page); | 
 |  | 
 | error_bdev_put: | 
 | 	blkdev_put(bdev, flags); | 
 | error: | 
 | 	mutex_unlock(&uuid_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* helper to account the used device space in the range */ | 
 | int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, | 
 | 				   u64 end, u64 *length) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_root *root = device->dev_root; | 
 | 	struct btrfs_dev_extent *dev_extent; | 
 | 	struct btrfs_path *path; | 
 | 	u64 extent_end; | 
 | 	int ret; | 
 | 	int slot; | 
 | 	struct extent_buffer *l; | 
 |  | 
 | 	*length = 0; | 
 |  | 
 | 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) | 
 | 		return 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	path->reada = 2; | 
 |  | 
 | 	key.objectid = device->devid; | 
 | 	key.offset = start; | 
 | 	key.type = BTRFS_DEV_EXTENT_KEY; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret > 0) { | 
 | 		ret = btrfs_previous_item(root, path, key.objectid, key.type); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		l = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		if (slot >= btrfs_header_nritems(l)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret == 0) | 
 | 				continue; | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 |  | 
 | 			break; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(l, &key, slot); | 
 |  | 
 | 		if (key.objectid < device->devid) | 
 | 			goto next; | 
 |  | 
 | 		if (key.objectid > device->devid) | 
 | 			break; | 
 |  | 
 | 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) | 
 | 			goto next; | 
 |  | 
 | 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | 
 | 		extent_end = key.offset + btrfs_dev_extent_length(l, | 
 | 								  dev_extent); | 
 | 		if (key.offset <= start && extent_end > end) { | 
 | 			*length = end - start + 1; | 
 | 			break; | 
 | 		} else if (key.offset <= start && extent_end > start) | 
 | 			*length += extent_end - start; | 
 | 		else if (key.offset > start && extent_end <= end) | 
 | 			*length += extent_end - key.offset; | 
 | 		else if (key.offset > start && key.offset <= end) { | 
 | 			*length += end - key.offset + 1; | 
 | 			break; | 
 | 		} else if (key.offset > end) | 
 | 			break; | 
 |  | 
 | next: | 
 | 		path->slots[0]++; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * find_free_dev_extent - find free space in the specified device | 
 |  * @device:	the device which we search the free space in | 
 |  * @num_bytes:	the size of the free space that we need | 
 |  * @start:	store the start of the free space. | 
 |  * @len:	the size of the free space. that we find, or the size of the max | 
 |  * 		free space if we don't find suitable free space | 
 |  * | 
 |  * this uses a pretty simple search, the expectation is that it is | 
 |  * called very infrequently and that a given device has a small number | 
 |  * of extents | 
 |  * | 
 |  * @start is used to store the start of the free space if we find. But if we | 
 |  * don't find suitable free space, it will be used to store the start position | 
 |  * of the max free space. | 
 |  * | 
 |  * @len is used to store the size of the free space that we find. | 
 |  * But if we don't find suitable free space, it is used to store the size of | 
 |  * the max free space. | 
 |  */ | 
 | int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, | 
 | 			 u64 *start, u64 *len) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_root *root = device->dev_root; | 
 | 	struct btrfs_dev_extent *dev_extent; | 
 | 	struct btrfs_path *path; | 
 | 	u64 hole_size; | 
 | 	u64 max_hole_start; | 
 | 	u64 max_hole_size; | 
 | 	u64 extent_end; | 
 | 	u64 search_start; | 
 | 	u64 search_end = device->total_bytes; | 
 | 	int ret; | 
 | 	int slot; | 
 | 	struct extent_buffer *l; | 
 |  | 
 | 	/* FIXME use last free of some kind */ | 
 |  | 
 | 	/* we don't want to overwrite the superblock on the drive, | 
 | 	 * so we make sure to start at an offset of at least 1MB | 
 | 	 */ | 
 | 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024); | 
 |  | 
 | 	max_hole_start = search_start; | 
 | 	max_hole_size = 0; | 
 | 	hole_size = 0; | 
 |  | 
 | 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { | 
 | 		ret = -ENOSPC; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 | 	path->reada = 2; | 
 |  | 
 | 	key.objectid = device->devid; | 
 | 	key.offset = search_start; | 
 | 	key.type = BTRFS_DEV_EXTENT_KEY; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret > 0) { | 
 | 		ret = btrfs_previous_item(root, path, key.objectid, key.type); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		l = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		if (slot >= btrfs_header_nritems(l)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret == 0) | 
 | 				continue; | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 |  | 
 | 			break; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(l, &key, slot); | 
 |  | 
 | 		if (key.objectid < device->devid) | 
 | 			goto next; | 
 |  | 
 | 		if (key.objectid > device->devid) | 
 | 			break; | 
 |  | 
 | 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) | 
 | 			goto next; | 
 |  | 
 | 		if (key.offset > search_start) { | 
 | 			hole_size = key.offset - search_start; | 
 |  | 
 | 			if (hole_size > max_hole_size) { | 
 | 				max_hole_start = search_start; | 
 | 				max_hole_size = hole_size; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * If this free space is greater than which we need, | 
 | 			 * it must be the max free space that we have found | 
 | 			 * until now, so max_hole_start must point to the start | 
 | 			 * of this free space and the length of this free space | 
 | 			 * is stored in max_hole_size. Thus, we return | 
 | 			 * max_hole_start and max_hole_size and go back to the | 
 | 			 * caller. | 
 | 			 */ | 
 | 			if (hole_size >= num_bytes) { | 
 | 				ret = 0; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | 
 | 		extent_end = key.offset + btrfs_dev_extent_length(l, | 
 | 								  dev_extent); | 
 | 		if (extent_end > search_start) | 
 | 			search_start = extent_end; | 
 | next: | 
 | 		path->slots[0]++; | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * At this point, search_start should be the end of | 
 | 	 * allocated dev extents, and when shrinking the device, | 
 | 	 * search_end may be smaller than search_start. | 
 | 	 */ | 
 | 	if (search_end > search_start) | 
 | 		hole_size = search_end - search_start; | 
 |  | 
 | 	if (hole_size > max_hole_size) { | 
 | 		max_hole_start = search_start; | 
 | 		max_hole_size = hole_size; | 
 | 	} | 
 |  | 
 | 	/* See above. */ | 
 | 	if (hole_size < num_bytes) | 
 | 		ret = -ENOSPC; | 
 | 	else | 
 | 		ret = 0; | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | error: | 
 | 	*start = max_hole_start; | 
 | 	if (len) | 
 | 		*len = max_hole_size; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_device *device, | 
 | 			  u64 start) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *root = device->dev_root; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_buffer *leaf = NULL; | 
 | 	struct btrfs_dev_extent *extent = NULL; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = device->devid; | 
 | 	key.offset = start; | 
 | 	key.type = BTRFS_DEV_EXTENT_KEY; | 
 | again: | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 	if (ret > 0) { | 
 | 		ret = btrfs_previous_item(root, path, key.objectid, | 
 | 					  BTRFS_DEV_EXTENT_KEY); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		leaf = path->nodes[0]; | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
 | 		extent = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					struct btrfs_dev_extent); | 
 | 		BUG_ON(found_key.offset > start || found_key.offset + | 
 | 		       btrfs_dev_extent_length(leaf, extent) < start); | 
 | 		key = found_key; | 
 | 		btrfs_release_path(path); | 
 | 		goto again; | 
 | 	} else if (ret == 0) { | 
 | 		leaf = path->nodes[0]; | 
 | 		extent = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					struct btrfs_dev_extent); | 
 | 	} else { | 
 | 		btrfs_error(root->fs_info, ret, "Slot search failed"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (device->bytes_used > 0) { | 
 | 		u64 len = btrfs_dev_extent_length(leaf, extent); | 
 | 		device->bytes_used -= len; | 
 | 		spin_lock(&root->fs_info->free_chunk_lock); | 
 | 		root->fs_info->free_chunk_space += len; | 
 | 		spin_unlock(&root->fs_info->free_chunk_lock); | 
 | 	} | 
 | 	ret = btrfs_del_item(trans, root, path); | 
 | 	if (ret) { | 
 | 		btrfs_error(root->fs_info, ret, | 
 | 			    "Failed to remove dev extent item"); | 
 | 	} | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_device *device, | 
 | 			   u64 chunk_tree, u64 chunk_objectid, | 
 | 			   u64 chunk_offset, u64 start, u64 num_bytes) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *root = device->dev_root; | 
 | 	struct btrfs_dev_extent *extent; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	WARN_ON(!device->in_fs_metadata); | 
 | 	WARN_ON(device->is_tgtdev_for_dev_replace); | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = device->devid; | 
 | 	key.offset = start; | 
 | 	key.type = BTRFS_DEV_EXTENT_KEY; | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, &key, | 
 | 				      sizeof(*extent)); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	extent = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				struct btrfs_dev_extent); | 
 | 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); | 
 | 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); | 
 | 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); | 
 |  | 
 | 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, | 
 | 		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), | 
 | 		    BTRFS_UUID_SIZE); | 
 |  | 
 | 	btrfs_set_dev_extent_length(leaf, extent, num_bytes); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline int find_next_chunk(struct btrfs_root *root, | 
 | 				    u64 objectid, u64 *offset) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_chunk *chunk; | 
 | 	struct btrfs_key found_key; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = objectid; | 
 | 	key.offset = (u64)-1; | 
 | 	key.type = BTRFS_CHUNK_ITEM_KEY; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto error; | 
 |  | 
 | 	BUG_ON(ret == 0); /* Corruption */ | 
 |  | 
 | 	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY); | 
 | 	if (ret) { | 
 | 		*offset = 0; | 
 | 	} else { | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
 | 				      path->slots[0]); | 
 | 		if (found_key.objectid != objectid) | 
 | 			*offset = 0; | 
 | 		else { | 
 | 			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 					       struct btrfs_chunk); | 
 | 			*offset = found_key.offset + | 
 | 				btrfs_chunk_length(path->nodes[0], chunk); | 
 | 		} | 
 | 	} | 
 | 	ret = 0; | 
 | error: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_path *path; | 
 |  | 
 | 	root = root->fs_info->chunk_root; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
 | 	key.type = BTRFS_DEV_ITEM_KEY; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto error; | 
 |  | 
 | 	BUG_ON(ret == 0); /* Corruption */ | 
 |  | 
 | 	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID, | 
 | 				  BTRFS_DEV_ITEM_KEY); | 
 | 	if (ret) { | 
 | 		*objectid = 1; | 
 | 	} else { | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
 | 				      path->slots[0]); | 
 | 		*objectid = found_key.offset + 1; | 
 | 	} | 
 | 	ret = 0; | 
 | error: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * the device information is stored in the chunk root | 
 |  * the btrfs_device struct should be fully filled in | 
 |  */ | 
 | int btrfs_add_device(struct btrfs_trans_handle *trans, | 
 | 		     struct btrfs_root *root, | 
 | 		     struct btrfs_device *device) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_dev_item *dev_item; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 | 	unsigned long ptr; | 
 |  | 
 | 	root = root->fs_info->chunk_root; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
 | 	key.type = BTRFS_DEV_ITEM_KEY; | 
 | 	key.offset = device->devid; | 
 |  | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, &key, | 
 | 				      sizeof(*dev_item)); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | 
 |  | 
 | 	btrfs_set_device_id(leaf, dev_item, device->devid); | 
 | 	btrfs_set_device_generation(leaf, dev_item, 0); | 
 | 	btrfs_set_device_type(leaf, dev_item, device->type); | 
 | 	btrfs_set_device_io_align(leaf, dev_item, device->io_align); | 
 | 	btrfs_set_device_io_width(leaf, dev_item, device->io_width); | 
 | 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | 
 | 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); | 
 | 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); | 
 | 	btrfs_set_device_group(leaf, dev_item, 0); | 
 | 	btrfs_set_device_seek_speed(leaf, dev_item, 0); | 
 | 	btrfs_set_device_bandwidth(leaf, dev_item, 0); | 
 | 	btrfs_set_device_start_offset(leaf, dev_item, 0); | 
 |  | 
 | 	ptr = (unsigned long)btrfs_device_uuid(dev_item); | 
 | 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | 
 | 	ptr = (unsigned long)btrfs_device_fsid(dev_item); | 
 | 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 |  | 
 | 	ret = 0; | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_rm_dev_item(struct btrfs_root *root, | 
 | 			     struct btrfs_device *device) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_trans_handle *trans; | 
 |  | 
 | 	root = root->fs_info->chunk_root; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	trans = btrfs_start_transaction(root, 0); | 
 | 	if (IS_ERR(trans)) { | 
 | 		btrfs_free_path(path); | 
 | 		return PTR_ERR(trans); | 
 | 	} | 
 | 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
 | 	key.type = BTRFS_DEV_ITEM_KEY; | 
 | 	key.offset = device->devid; | 
 | 	lock_chunks(root); | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (ret > 0) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_del_item(trans, root, path); | 
 | 	if (ret) | 
 | 		goto out; | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	unlock_chunks(root); | 
 | 	btrfs_commit_transaction(trans, root); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_rm_device(struct btrfs_root *root, char *device_path) | 
 | { | 
 | 	struct btrfs_device *device; | 
 | 	struct btrfs_device *next_device; | 
 | 	struct block_device *bdev; | 
 | 	struct buffer_head *bh = NULL; | 
 | 	struct btrfs_super_block *disk_super; | 
 | 	struct btrfs_fs_devices *cur_devices; | 
 | 	u64 all_avail; | 
 | 	u64 devid; | 
 | 	u64 num_devices; | 
 | 	u8 *dev_uuid; | 
 | 	unsigned seq; | 
 | 	int ret = 0; | 
 | 	bool clear_super = false; | 
 |  | 
 | 	mutex_lock(&uuid_mutex); | 
 |  | 
 | 	do { | 
 | 		seq = read_seqbegin(&root->fs_info->profiles_lock); | 
 |  | 
 | 		all_avail = root->fs_info->avail_data_alloc_bits | | 
 | 			    root->fs_info->avail_system_alloc_bits | | 
 | 			    root->fs_info->avail_metadata_alloc_bits; | 
 | 	} while (read_seqretry(&root->fs_info->profiles_lock, seq)); | 
 |  | 
 | 	num_devices = root->fs_info->fs_devices->num_devices; | 
 | 	btrfs_dev_replace_lock(&root->fs_info->dev_replace); | 
 | 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) { | 
 | 		WARN_ON(num_devices < 1); | 
 | 		num_devices--; | 
 | 	} | 
 | 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace); | 
 |  | 
 | 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) { | 
 | 		printk(KERN_ERR "btrfs: unable to go below four devices " | 
 | 		       "on raid10\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) { | 
 | 		printk(KERN_ERR "btrfs: unable to go below two " | 
 | 		       "devices on raid1\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) && | 
 | 	    root->fs_info->fs_devices->rw_devices <= 2) { | 
 | 		printk(KERN_ERR "btrfs: unable to go below two " | 
 | 		       "devices on raid5\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) && | 
 | 	    root->fs_info->fs_devices->rw_devices <= 3) { | 
 | 		printk(KERN_ERR "btrfs: unable to go below three " | 
 | 		       "devices on raid6\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (strcmp(device_path, "missing") == 0) { | 
 | 		struct list_head *devices; | 
 | 		struct btrfs_device *tmp; | 
 |  | 
 | 		device = NULL; | 
 | 		devices = &root->fs_info->fs_devices->devices; | 
 | 		/* | 
 | 		 * It is safe to read the devices since the volume_mutex | 
 | 		 * is held. | 
 | 		 */ | 
 | 		list_for_each_entry(tmp, devices, dev_list) { | 
 | 			if (tmp->in_fs_metadata && | 
 | 			    !tmp->is_tgtdev_for_dev_replace && | 
 | 			    !tmp->bdev) { | 
 | 				device = tmp; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		bdev = NULL; | 
 | 		bh = NULL; | 
 | 		disk_super = NULL; | 
 | 		if (!device) { | 
 | 			printk(KERN_ERR "btrfs: no missing devices found to " | 
 | 			       "remove\n"); | 
 | 			goto out; | 
 | 		} | 
 | 	} else { | 
 | 		ret = btrfs_get_bdev_and_sb(device_path, | 
 | 					    FMODE_WRITE | FMODE_EXCL, | 
 | 					    root->fs_info->bdev_holder, 0, | 
 | 					    &bdev, &bh); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		disk_super = (struct btrfs_super_block *)bh->b_data; | 
 | 		devid = btrfs_stack_device_id(&disk_super->dev_item); | 
 | 		dev_uuid = disk_super->dev_item.uuid; | 
 | 		device = btrfs_find_device(root->fs_info, devid, dev_uuid, | 
 | 					   disk_super->fsid); | 
 | 		if (!device) { | 
 | 			ret = -ENOENT; | 
 | 			goto error_brelse; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (device->is_tgtdev_for_dev_replace) { | 
 | 		pr_err("btrfs: unable to remove the dev_replace target dev\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto error_brelse; | 
 | 	} | 
 |  | 
 | 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { | 
 | 		printk(KERN_ERR "btrfs: unable to remove the only writeable " | 
 | 		       "device\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto error_brelse; | 
 | 	} | 
 |  | 
 | 	if (device->writeable) { | 
 | 		lock_chunks(root); | 
 | 		list_del_init(&device->dev_alloc_list); | 
 | 		unlock_chunks(root); | 
 | 		root->fs_info->fs_devices->rw_devices--; | 
 | 		clear_super = true; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_shrink_device(device, 0); | 
 | 	if (ret) | 
 | 		goto error_undo; | 
 |  | 
 | 	/* | 
 | 	 * TODO: the superblock still includes this device in its num_devices | 
 | 	 * counter although write_all_supers() is not locked out. This | 
 | 	 * could give a filesystem state which requires a degraded mount. | 
 | 	 */ | 
 | 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); | 
 | 	if (ret) | 
 | 		goto error_undo; | 
 |  | 
 | 	spin_lock(&root->fs_info->free_chunk_lock); | 
 | 	root->fs_info->free_chunk_space = device->total_bytes - | 
 | 		device->bytes_used; | 
 | 	spin_unlock(&root->fs_info->free_chunk_lock); | 
 |  | 
 | 	device->in_fs_metadata = 0; | 
 | 	btrfs_scrub_cancel_dev(root->fs_info, device); | 
 |  | 
 | 	/* | 
 | 	 * the device list mutex makes sure that we don't change | 
 | 	 * the device list while someone else is writing out all | 
 | 	 * the device supers. | 
 | 	 */ | 
 |  | 
 | 	cur_devices = device->fs_devices; | 
 | 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 	list_del_rcu(&device->dev_list); | 
 |  | 
 | 	device->fs_devices->num_devices--; | 
 | 	device->fs_devices->total_devices--; | 
 |  | 
 | 	if (device->missing) | 
 | 		root->fs_info->fs_devices->missing_devices--; | 
 |  | 
 | 	next_device = list_entry(root->fs_info->fs_devices->devices.next, | 
 | 				 struct btrfs_device, dev_list); | 
 | 	if (device->bdev == root->fs_info->sb->s_bdev) | 
 | 		root->fs_info->sb->s_bdev = next_device->bdev; | 
 | 	if (device->bdev == root->fs_info->fs_devices->latest_bdev) | 
 | 		root->fs_info->fs_devices->latest_bdev = next_device->bdev; | 
 |  | 
 | 	if (device->bdev) | 
 | 		device->fs_devices->open_devices--; | 
 |  | 
 | 	call_rcu(&device->rcu, free_device); | 
 | 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
 |  | 
 | 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; | 
 | 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); | 
 |  | 
 | 	if (cur_devices->open_devices == 0) { | 
 | 		struct btrfs_fs_devices *fs_devices; | 
 | 		fs_devices = root->fs_info->fs_devices; | 
 | 		while (fs_devices) { | 
 | 			if (fs_devices->seed == cur_devices) | 
 | 				break; | 
 | 			fs_devices = fs_devices->seed; | 
 | 		} | 
 | 		fs_devices->seed = cur_devices->seed; | 
 | 		cur_devices->seed = NULL; | 
 | 		lock_chunks(root); | 
 | 		__btrfs_close_devices(cur_devices); | 
 | 		unlock_chunks(root); | 
 | 		free_fs_devices(cur_devices); | 
 | 	} | 
 |  | 
 | 	root->fs_info->num_tolerated_disk_barrier_failures = | 
 | 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); | 
 |  | 
 | 	/* | 
 | 	 * at this point, the device is zero sized.  We want to | 
 | 	 * remove it from the devices list and zero out the old super | 
 | 	 */ | 
 | 	if (clear_super && disk_super) { | 
 | 		/* make sure this device isn't detected as part of | 
 | 		 * the FS anymore | 
 | 		 */ | 
 | 		memset(&disk_super->magic, 0, sizeof(disk_super->magic)); | 
 | 		set_buffer_dirty(bh); | 
 | 		sync_dirty_buffer(bh); | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | 	/* Notify udev that device has changed */ | 
 | 	if (bdev) | 
 | 		btrfs_kobject_uevent(bdev, KOBJ_CHANGE); | 
 |  | 
 | error_brelse: | 
 | 	brelse(bh); | 
 | 	if (bdev) | 
 | 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL); | 
 | out: | 
 | 	mutex_unlock(&uuid_mutex); | 
 | 	return ret; | 
 | error_undo: | 
 | 	if (device->writeable) { | 
 | 		lock_chunks(root); | 
 | 		list_add(&device->dev_alloc_list, | 
 | 			 &root->fs_info->fs_devices->alloc_list); | 
 | 		unlock_chunks(root); | 
 | 		root->fs_info->fs_devices->rw_devices++; | 
 | 	} | 
 | 	goto error_brelse; | 
 | } | 
 |  | 
 | void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info, | 
 | 				 struct btrfs_device *srcdev) | 
 | { | 
 | 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); | 
 | 	list_del_rcu(&srcdev->dev_list); | 
 | 	list_del_rcu(&srcdev->dev_alloc_list); | 
 | 	fs_info->fs_devices->num_devices--; | 
 | 	if (srcdev->missing) { | 
 | 		fs_info->fs_devices->missing_devices--; | 
 | 		fs_info->fs_devices->rw_devices++; | 
 | 	} | 
 | 	if (srcdev->can_discard) | 
 | 		fs_info->fs_devices->num_can_discard--; | 
 | 	if (srcdev->bdev) | 
 | 		fs_info->fs_devices->open_devices--; | 
 |  | 
 | 	call_rcu(&srcdev->rcu, free_device); | 
 | } | 
 |  | 
 | void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, | 
 | 				      struct btrfs_device *tgtdev) | 
 | { | 
 | 	struct btrfs_device *next_device; | 
 |  | 
 | 	WARN_ON(!tgtdev); | 
 | 	mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
 | 	if (tgtdev->bdev) { | 
 | 		btrfs_scratch_superblock(tgtdev); | 
 | 		fs_info->fs_devices->open_devices--; | 
 | 	} | 
 | 	fs_info->fs_devices->num_devices--; | 
 | 	if (tgtdev->can_discard) | 
 | 		fs_info->fs_devices->num_can_discard++; | 
 |  | 
 | 	next_device = list_entry(fs_info->fs_devices->devices.next, | 
 | 				 struct btrfs_device, dev_list); | 
 | 	if (tgtdev->bdev == fs_info->sb->s_bdev) | 
 | 		fs_info->sb->s_bdev = next_device->bdev; | 
 | 	if (tgtdev->bdev == fs_info->fs_devices->latest_bdev) | 
 | 		fs_info->fs_devices->latest_bdev = next_device->bdev; | 
 | 	list_del_rcu(&tgtdev->dev_list); | 
 |  | 
 | 	call_rcu(&tgtdev->rcu, free_device); | 
 |  | 
 | 	mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
 | } | 
 |  | 
 | int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path, | 
 | 			      struct btrfs_device **device) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_super_block *disk_super; | 
 | 	u64 devid; | 
 | 	u8 *dev_uuid; | 
 | 	struct block_device *bdev; | 
 | 	struct buffer_head *bh; | 
 |  | 
 | 	*device = NULL; | 
 | 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, | 
 | 				    root->fs_info->bdev_holder, 0, &bdev, &bh); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	disk_super = (struct btrfs_super_block *)bh->b_data; | 
 | 	devid = btrfs_stack_device_id(&disk_super->dev_item); | 
 | 	dev_uuid = disk_super->dev_item.uuid; | 
 | 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid, | 
 | 				    disk_super->fsid); | 
 | 	brelse(bh); | 
 | 	if (!*device) | 
 | 		ret = -ENOENT; | 
 | 	blkdev_put(bdev, FMODE_READ); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_find_device_missing_or_by_path(struct btrfs_root *root, | 
 | 					 char *device_path, | 
 | 					 struct btrfs_device **device) | 
 | { | 
 | 	*device = NULL; | 
 | 	if (strcmp(device_path, "missing") == 0) { | 
 | 		struct list_head *devices; | 
 | 		struct btrfs_device *tmp; | 
 |  | 
 | 		devices = &root->fs_info->fs_devices->devices; | 
 | 		/* | 
 | 		 * It is safe to read the devices since the volume_mutex | 
 | 		 * is held by the caller. | 
 | 		 */ | 
 | 		list_for_each_entry(tmp, devices, dev_list) { | 
 | 			if (tmp->in_fs_metadata && !tmp->bdev) { | 
 | 				*device = tmp; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!*device) { | 
 | 			pr_err("btrfs: no missing device found\n"); | 
 | 			return -ENOENT; | 
 | 		} | 
 |  | 
 | 		return 0; | 
 | 	} else { | 
 | 		return btrfs_find_device_by_path(root, device_path, device); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * does all the dirty work required for changing file system's UUID. | 
 |  */ | 
 | static int btrfs_prepare_sprout(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | 
 | 	struct btrfs_fs_devices *old_devices; | 
 | 	struct btrfs_fs_devices *seed_devices; | 
 | 	struct btrfs_super_block *disk_super = root->fs_info->super_copy; | 
 | 	struct btrfs_device *device; | 
 | 	u64 super_flags; | 
 |  | 
 | 	BUG_ON(!mutex_is_locked(&uuid_mutex)); | 
 | 	if (!fs_devices->seeding) | 
 | 		return -EINVAL; | 
 |  | 
 | 	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | 
 | 	if (!seed_devices) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	old_devices = clone_fs_devices(fs_devices); | 
 | 	if (IS_ERR(old_devices)) { | 
 | 		kfree(seed_devices); | 
 | 		return PTR_ERR(old_devices); | 
 | 	} | 
 |  | 
 | 	list_add(&old_devices->list, &fs_uuids); | 
 |  | 
 | 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); | 
 | 	seed_devices->opened = 1; | 
 | 	INIT_LIST_HEAD(&seed_devices->devices); | 
 | 	INIT_LIST_HEAD(&seed_devices->alloc_list); | 
 | 	mutex_init(&seed_devices->device_list_mutex); | 
 |  | 
 | 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, | 
 | 			      synchronize_rcu); | 
 | 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
 |  | 
 | 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); | 
 | 	list_for_each_entry(device, &seed_devices->devices, dev_list) { | 
 | 		device->fs_devices = seed_devices; | 
 | 	} | 
 |  | 
 | 	fs_devices->seeding = 0; | 
 | 	fs_devices->num_devices = 0; | 
 | 	fs_devices->open_devices = 0; | 
 | 	fs_devices->total_devices = 0; | 
 | 	fs_devices->seed = seed_devices; | 
 |  | 
 | 	generate_random_uuid(fs_devices->fsid); | 
 | 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | 
 | 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | 
 | 	super_flags = btrfs_super_flags(disk_super) & | 
 | 		      ~BTRFS_SUPER_FLAG_SEEDING; | 
 | 	btrfs_set_super_flags(disk_super, super_flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * strore the expected generation for seed devices in device items. | 
 |  */ | 
 | static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_dev_item *dev_item; | 
 | 	struct btrfs_device *device; | 
 | 	struct btrfs_key key; | 
 | 	u8 fs_uuid[BTRFS_UUID_SIZE]; | 
 | 	u8 dev_uuid[BTRFS_UUID_SIZE]; | 
 | 	u64 devid; | 
 | 	int ret; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	root = root->fs_info->chunk_root; | 
 | 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
 | 	key.offset = 0; | 
 | 	key.type = BTRFS_DEV_ITEM_KEY; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
 | 		if (ret < 0) | 
 | 			goto error; | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 | next_slot: | 
 | 		if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret > 0) | 
 | 				break; | 
 | 			if (ret < 0) | 
 | 				goto error; | 
 | 			leaf = path->nodes[0]; | 
 | 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 | 			btrfs_release_path(path); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 | 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || | 
 | 		    key.type != BTRFS_DEV_ITEM_KEY) | 
 | 			break; | 
 |  | 
 | 		dev_item = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					  struct btrfs_dev_item); | 
 | 		devid = btrfs_device_id(leaf, dev_item); | 
 | 		read_extent_buffer(leaf, dev_uuid, | 
 | 				   (unsigned long)btrfs_device_uuid(dev_item), | 
 | 				   BTRFS_UUID_SIZE); | 
 | 		read_extent_buffer(leaf, fs_uuid, | 
 | 				   (unsigned long)btrfs_device_fsid(dev_item), | 
 | 				   BTRFS_UUID_SIZE); | 
 | 		device = btrfs_find_device(root->fs_info, devid, dev_uuid, | 
 | 					   fs_uuid); | 
 | 		BUG_ON(!device); /* Logic error */ | 
 |  | 
 | 		if (device->fs_devices->seeding) { | 
 | 			btrfs_set_device_generation(leaf, dev_item, | 
 | 						    device->generation); | 
 | 			btrfs_mark_buffer_dirty(leaf); | 
 | 		} | 
 |  | 
 | 		path->slots[0]++; | 
 | 		goto next_slot; | 
 | 	} | 
 | 	ret = 0; | 
 | error: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_init_new_device(struct btrfs_root *root, char *device_path) | 
 | { | 
 | 	struct request_queue *q; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_device *device; | 
 | 	struct block_device *bdev; | 
 | 	struct list_head *devices; | 
 | 	struct super_block *sb = root->fs_info->sb; | 
 | 	struct rcu_string *name; | 
 | 	u64 total_bytes; | 
 | 	int seeding_dev = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) | 
 | 		return -EROFS; | 
 |  | 
 | 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, | 
 | 				  root->fs_info->bdev_holder); | 
 | 	if (IS_ERR(bdev)) | 
 | 		return PTR_ERR(bdev); | 
 |  | 
 | 	if (root->fs_info->fs_devices->seeding) { | 
 | 		seeding_dev = 1; | 
 | 		down_write(&sb->s_umount); | 
 | 		mutex_lock(&uuid_mutex); | 
 | 	} | 
 |  | 
 | 	filemap_write_and_wait(bdev->bd_inode->i_mapping); | 
 |  | 
 | 	devices = &root->fs_info->fs_devices->devices; | 
 |  | 
 | 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 	list_for_each_entry(device, devices, dev_list) { | 
 | 		if (device->bdev == bdev) { | 
 | 			ret = -EEXIST; | 
 | 			mutex_unlock( | 
 | 				&root->fs_info->fs_devices->device_list_mutex); | 
 | 			goto error; | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
 |  | 
 | 	device = kzalloc(sizeof(*device), GFP_NOFS); | 
 | 	if (!device) { | 
 | 		/* we can safely leave the fs_devices entry around */ | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	name = rcu_string_strdup(device_path, GFP_NOFS); | 
 | 	if (!name) { | 
 | 		kfree(device); | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 | 	rcu_assign_pointer(device->name, name); | 
 |  | 
 | 	ret = find_next_devid(root, &device->devid); | 
 | 	if (ret) { | 
 | 		rcu_string_free(device->name); | 
 | 		kfree(device); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	trans = btrfs_start_transaction(root, 0); | 
 | 	if (IS_ERR(trans)) { | 
 | 		rcu_string_free(device->name); | 
 | 		kfree(device); | 
 | 		ret = PTR_ERR(trans); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	lock_chunks(root); | 
 |  | 
 | 	q = bdev_get_queue(bdev); | 
 | 	if (blk_queue_discard(q)) | 
 | 		device->can_discard = 1; | 
 | 	device->writeable = 1; | 
 | 	device->work.func = pending_bios_fn; | 
 | 	generate_random_uuid(device->uuid); | 
 | 	spin_lock_init(&device->io_lock); | 
 | 	device->generation = trans->transid; | 
 | 	device->io_width = root->sectorsize; | 
 | 	device->io_align = root->sectorsize; | 
 | 	device->sector_size = root->sectorsize; | 
 | 	device->total_bytes = i_size_read(bdev->bd_inode); | 
 | 	device->disk_total_bytes = device->total_bytes; | 
 | 	device->dev_root = root->fs_info->dev_root; | 
 | 	device->bdev = bdev; | 
 | 	device->in_fs_metadata = 1; | 
 | 	device->is_tgtdev_for_dev_replace = 0; | 
 | 	device->mode = FMODE_EXCL; | 
 | 	set_blocksize(device->bdev, 4096); | 
 |  | 
 | 	if (seeding_dev) { | 
 | 		sb->s_flags &= ~MS_RDONLY; | 
 | 		ret = btrfs_prepare_sprout(root); | 
 | 		BUG_ON(ret); /* -ENOMEM */ | 
 | 	} | 
 |  | 
 | 	device->fs_devices = root->fs_info->fs_devices; | 
 |  | 
 | 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); | 
 | 	list_add(&device->dev_alloc_list, | 
 | 		 &root->fs_info->fs_devices->alloc_list); | 
 | 	root->fs_info->fs_devices->num_devices++; | 
 | 	root->fs_info->fs_devices->open_devices++; | 
 | 	root->fs_info->fs_devices->rw_devices++; | 
 | 	root->fs_info->fs_devices->total_devices++; | 
 | 	if (device->can_discard) | 
 | 		root->fs_info->fs_devices->num_can_discard++; | 
 | 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; | 
 |  | 
 | 	spin_lock(&root->fs_info->free_chunk_lock); | 
 | 	root->fs_info->free_chunk_space += device->total_bytes; | 
 | 	spin_unlock(&root->fs_info->free_chunk_lock); | 
 |  | 
 | 	if (!blk_queue_nonrot(bdev_get_queue(bdev))) | 
 | 		root->fs_info->fs_devices->rotating = 1; | 
 |  | 
 | 	total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy); | 
 | 	btrfs_set_super_total_bytes(root->fs_info->super_copy, | 
 | 				    total_bytes + device->total_bytes); | 
 |  | 
 | 	total_bytes = btrfs_super_num_devices(root->fs_info->super_copy); | 
 | 	btrfs_set_super_num_devices(root->fs_info->super_copy, | 
 | 				    total_bytes + 1); | 
 | 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
 |  | 
 | 	if (seeding_dev) { | 
 | 		ret = init_first_rw_device(trans, root, device); | 
 | 		if (ret) { | 
 | 			btrfs_abort_transaction(trans, root, ret); | 
 | 			goto error_trans; | 
 | 		} | 
 | 		ret = btrfs_finish_sprout(trans, root); | 
 | 		if (ret) { | 
 | 			btrfs_abort_transaction(trans, root, ret); | 
 | 			goto error_trans; | 
 | 		} | 
 | 	} else { | 
 | 		ret = btrfs_add_device(trans, root, device); | 
 | 		if (ret) { | 
 | 			btrfs_abort_transaction(trans, root, ret); | 
 | 			goto error_trans; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * we've got more storage, clear any full flags on the space | 
 | 	 * infos | 
 | 	 */ | 
 | 	btrfs_clear_space_info_full(root->fs_info); | 
 |  | 
 | 	unlock_chunks(root); | 
 | 	root->fs_info->num_tolerated_disk_barrier_failures = | 
 | 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); | 
 | 	ret = btrfs_commit_transaction(trans, root); | 
 |  | 
 | 	if (seeding_dev) { | 
 | 		mutex_unlock(&uuid_mutex); | 
 | 		up_write(&sb->s_umount); | 
 |  | 
 | 		if (ret) /* transaction commit */ | 
 | 			return ret; | 
 |  | 
 | 		ret = btrfs_relocate_sys_chunks(root); | 
 | 		if (ret < 0) | 
 | 			btrfs_error(root->fs_info, ret, | 
 | 				    "Failed to relocate sys chunks after " | 
 | 				    "device initialization. This can be fixed " | 
 | 				    "using the \"btrfs balance\" command."); | 
 | 		trans = btrfs_attach_transaction(root); | 
 | 		if (IS_ERR(trans)) { | 
 | 			if (PTR_ERR(trans) == -ENOENT) | 
 | 				return 0; | 
 | 			return PTR_ERR(trans); | 
 | 		} | 
 | 		ret = btrfs_commit_transaction(trans, root); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 |  | 
 | error_trans: | 
 | 	unlock_chunks(root); | 
 | 	btrfs_end_transaction(trans, root); | 
 | 	rcu_string_free(device->name); | 
 | 	kfree(device); | 
 | error: | 
 | 	blkdev_put(bdev, FMODE_EXCL); | 
 | 	if (seeding_dev) { | 
 | 		mutex_unlock(&uuid_mutex); | 
 | 		up_write(&sb->s_umount); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path, | 
 | 				  struct btrfs_device **device_out) | 
 | { | 
 | 	struct request_queue *q; | 
 | 	struct btrfs_device *device; | 
 | 	struct block_device *bdev; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct list_head *devices; | 
 | 	struct rcu_string *name; | 
 | 	int ret = 0; | 
 |  | 
 | 	*device_out = NULL; | 
 | 	if (fs_info->fs_devices->seeding) | 
 | 		return -EINVAL; | 
 |  | 
 | 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, | 
 | 				  fs_info->bdev_holder); | 
 | 	if (IS_ERR(bdev)) | 
 | 		return PTR_ERR(bdev); | 
 |  | 
 | 	filemap_write_and_wait(bdev->bd_inode->i_mapping); | 
 |  | 
 | 	devices = &fs_info->fs_devices->devices; | 
 | 	list_for_each_entry(device, devices, dev_list) { | 
 | 		if (device->bdev == bdev) { | 
 | 			ret = -EEXIST; | 
 | 			goto error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	device = kzalloc(sizeof(*device), GFP_NOFS); | 
 | 	if (!device) { | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	name = rcu_string_strdup(device_path, GFP_NOFS); | 
 | 	if (!name) { | 
 | 		kfree(device); | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 | 	rcu_assign_pointer(device->name, name); | 
 |  | 
 | 	q = bdev_get_queue(bdev); | 
 | 	if (blk_queue_discard(q)) | 
 | 		device->can_discard = 1; | 
 | 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 	device->writeable = 1; | 
 | 	device->work.func = pending_bios_fn; | 
 | 	generate_random_uuid(device->uuid); | 
 | 	device->devid = BTRFS_DEV_REPLACE_DEVID; | 
 | 	spin_lock_init(&device->io_lock); | 
 | 	device->generation = 0; | 
 | 	device->io_width = root->sectorsize; | 
 | 	device->io_align = root->sectorsize; | 
 | 	device->sector_size = root->sectorsize; | 
 | 	device->total_bytes = i_size_read(bdev->bd_inode); | 
 | 	device->disk_total_bytes = device->total_bytes; | 
 | 	device->dev_root = fs_info->dev_root; | 
 | 	device->bdev = bdev; | 
 | 	device->in_fs_metadata = 1; | 
 | 	device->is_tgtdev_for_dev_replace = 1; | 
 | 	device->mode = FMODE_EXCL; | 
 | 	set_blocksize(device->bdev, 4096); | 
 | 	device->fs_devices = fs_info->fs_devices; | 
 | 	list_add(&device->dev_list, &fs_info->fs_devices->devices); | 
 | 	fs_info->fs_devices->num_devices++; | 
 | 	fs_info->fs_devices->open_devices++; | 
 | 	if (device->can_discard) | 
 | 		fs_info->fs_devices->num_can_discard++; | 
 | 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
 |  | 
 | 	*device_out = device; | 
 | 	return ret; | 
 |  | 
 | error: | 
 | 	blkdev_put(bdev, FMODE_EXCL); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, | 
 | 					      struct btrfs_device *tgtdev) | 
 | { | 
 | 	WARN_ON(fs_info->fs_devices->rw_devices == 0); | 
 | 	tgtdev->io_width = fs_info->dev_root->sectorsize; | 
 | 	tgtdev->io_align = fs_info->dev_root->sectorsize; | 
 | 	tgtdev->sector_size = fs_info->dev_root->sectorsize; | 
 | 	tgtdev->dev_root = fs_info->dev_root; | 
 | 	tgtdev->in_fs_metadata = 1; | 
 | } | 
 |  | 
 | static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, | 
 | 					struct btrfs_device *device) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *root; | 
 | 	struct btrfs_dev_item *dev_item; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	root = device->dev_root->fs_info->chunk_root; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
 | 	key.type = BTRFS_DEV_ITEM_KEY; | 
 | 	key.offset = device->devid; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (ret > 0) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | 
 |  | 
 | 	btrfs_set_device_id(leaf, dev_item, device->devid); | 
 | 	btrfs_set_device_type(leaf, dev_item, device->type); | 
 | 	btrfs_set_device_io_align(leaf, dev_item, device->io_align); | 
 | 	btrfs_set_device_io_width(leaf, dev_item, device->io_width); | 
 | 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | 
 | 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes); | 
 | 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __btrfs_grow_device(struct btrfs_trans_handle *trans, | 
 | 		      struct btrfs_device *device, u64 new_size) | 
 | { | 
 | 	struct btrfs_super_block *super_copy = | 
 | 		device->dev_root->fs_info->super_copy; | 
 | 	u64 old_total = btrfs_super_total_bytes(super_copy); | 
 | 	u64 diff = new_size - device->total_bytes; | 
 |  | 
 | 	if (!device->writeable) | 
 | 		return -EACCES; | 
 | 	if (new_size <= device->total_bytes || | 
 | 	    device->is_tgtdev_for_dev_replace) | 
 | 		return -EINVAL; | 
 |  | 
 | 	btrfs_set_super_total_bytes(super_copy, old_total + diff); | 
 | 	device->fs_devices->total_rw_bytes += diff; | 
 |  | 
 | 	device->total_bytes = new_size; | 
 | 	device->disk_total_bytes = new_size; | 
 | 	btrfs_clear_space_info_full(device->dev_root->fs_info); | 
 |  | 
 | 	return btrfs_update_device(trans, device); | 
 | } | 
 |  | 
 | int btrfs_grow_device(struct btrfs_trans_handle *trans, | 
 | 		      struct btrfs_device *device, u64 new_size) | 
 | { | 
 | 	int ret; | 
 | 	lock_chunks(device->dev_root); | 
 | 	ret = __btrfs_grow_device(trans, device, new_size); | 
 | 	unlock_chunks(device->dev_root); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_free_chunk(struct btrfs_trans_handle *trans, | 
 | 			    struct btrfs_root *root, | 
 | 			    u64 chunk_tree, u64 chunk_objectid, | 
 | 			    u64 chunk_offset) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	root = root->fs_info->chunk_root; | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = chunk_objectid; | 
 | 	key.offset = chunk_offset; | 
 | 	key.type = BTRFS_CHUNK_ITEM_KEY; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	else if (ret > 0) { /* Logic error or corruption */ | 
 | 		btrfs_error(root->fs_info, -ENOENT, | 
 | 			    "Failed lookup while freeing chunk."); | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_del_item(trans, root, path); | 
 | 	if (ret < 0) | 
 | 		btrfs_error(root->fs_info, ret, | 
 | 			    "Failed to delete chunk item."); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 | 
 | 			chunk_offset) | 
 | { | 
 | 	struct btrfs_super_block *super_copy = root->fs_info->super_copy; | 
 | 	struct btrfs_disk_key *disk_key; | 
 | 	struct btrfs_chunk *chunk; | 
 | 	u8 *ptr; | 
 | 	int ret = 0; | 
 | 	u32 num_stripes; | 
 | 	u32 array_size; | 
 | 	u32 len = 0; | 
 | 	u32 cur; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	array_size = btrfs_super_sys_array_size(super_copy); | 
 |  | 
 | 	ptr = super_copy->sys_chunk_array; | 
 | 	cur = 0; | 
 |  | 
 | 	while (cur < array_size) { | 
 | 		disk_key = (struct btrfs_disk_key *)ptr; | 
 | 		btrfs_disk_key_to_cpu(&key, disk_key); | 
 |  | 
 | 		len = sizeof(*disk_key); | 
 |  | 
 | 		if (key.type == BTRFS_CHUNK_ITEM_KEY) { | 
 | 			chunk = (struct btrfs_chunk *)(ptr + len); | 
 | 			num_stripes = btrfs_stack_chunk_num_stripes(chunk); | 
 | 			len += btrfs_chunk_item_size(num_stripes); | 
 | 		} else { | 
 | 			ret = -EIO; | 
 | 			break; | 
 | 		} | 
 | 		if (key.objectid == chunk_objectid && | 
 | 		    key.offset == chunk_offset) { | 
 | 			memmove(ptr, ptr + len, array_size - (cur + len)); | 
 | 			array_size -= len; | 
 | 			btrfs_set_super_sys_array_size(super_copy, array_size); | 
 | 		} else { | 
 | 			ptr += len; | 
 | 			cur += len; | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_relocate_chunk(struct btrfs_root *root, | 
 | 			 u64 chunk_tree, u64 chunk_objectid, | 
 | 			 u64 chunk_offset) | 
 | { | 
 | 	struct extent_map_tree *em_tree; | 
 | 	struct btrfs_root *extent_root; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct extent_map *em; | 
 | 	struct map_lookup *map; | 
 | 	int ret; | 
 | 	int i; | 
 |  | 
 | 	root = root->fs_info->chunk_root; | 
 | 	extent_root = root->fs_info->extent_root; | 
 | 	em_tree = &root->fs_info->mapping_tree.map_tree; | 
 |  | 
 | 	ret = btrfs_can_relocate(extent_root, chunk_offset); | 
 | 	if (ret) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	/* step one, relocate all the extents inside this chunk */ | 
 | 	ret = btrfs_relocate_block_group(extent_root, chunk_offset); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	trans = btrfs_start_transaction(root, 0); | 
 | 	if (IS_ERR(trans)) { | 
 | 		ret = PTR_ERR(trans); | 
 | 		btrfs_std_error(root->fs_info, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	lock_chunks(root); | 
 |  | 
 | 	/* | 
 | 	 * step two, delete the device extents and the | 
 | 	 * chunk tree entries | 
 | 	 */ | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, chunk_offset, 1); | 
 | 	read_unlock(&em_tree->lock); | 
 |  | 
 | 	BUG_ON(!em || em->start > chunk_offset || | 
 | 	       em->start + em->len < chunk_offset); | 
 | 	map = (struct map_lookup *)em->bdev; | 
 |  | 
 | 	for (i = 0; i < map->num_stripes; i++) { | 
 | 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, | 
 | 					    map->stripes[i].physical); | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		if (map->stripes[i].dev) { | 
 | 			ret = btrfs_update_device(trans, map->stripes[i].dev); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 	} | 
 | 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, | 
 | 			       chunk_offset); | 
 |  | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len); | 
 |  | 
 | 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
 | 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 |  | 
 | 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	write_lock(&em_tree->lock); | 
 | 	remove_extent_mapping(em_tree, em); | 
 | 	write_unlock(&em_tree->lock); | 
 |  | 
 | 	kfree(map); | 
 | 	em->bdev = NULL; | 
 |  | 
 | 	/* once for the tree */ | 
 | 	free_extent_map(em); | 
 | 	/* once for us */ | 
 | 	free_extent_map(em); | 
 |  | 
 | 	unlock_chunks(root); | 
 | 	btrfs_end_transaction(trans, root); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btrfs_relocate_sys_chunks(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_root *chunk_root = root->fs_info->chunk_root; | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_chunk *chunk; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	u64 chunk_tree = chunk_root->root_key.objectid; | 
 | 	u64 chunk_type; | 
 | 	bool retried = false; | 
 | 	int failed = 0; | 
 | 	int ret; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | again: | 
 | 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
 | 	key.offset = (u64)-1; | 
 | 	key.type = BTRFS_CHUNK_ITEM_KEY; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			goto error; | 
 | 		BUG_ON(ret == 0); /* Corruption */ | 
 |  | 
 | 		ret = btrfs_previous_item(chunk_root, path, key.objectid, | 
 | 					  key.type); | 
 | 		if (ret < 0) | 
 | 			goto error; | 
 | 		if (ret > 0) | 
 | 			break; | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
 |  | 
 | 		chunk = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				       struct btrfs_chunk); | 
 | 		chunk_type = btrfs_chunk_type(leaf, chunk); | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
 | 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree, | 
 | 						   found_key.objectid, | 
 | 						   found_key.offset); | 
 | 			if (ret == -ENOSPC) | 
 | 				failed++; | 
 | 			else if (ret) | 
 | 				BUG(); | 
 | 		} | 
 |  | 
 | 		if (found_key.offset == 0) | 
 | 			break; | 
 | 		key.offset = found_key.offset - 1; | 
 | 	} | 
 | 	ret = 0; | 
 | 	if (failed && !retried) { | 
 | 		failed = 0; | 
 | 		retried = true; | 
 | 		goto again; | 
 | 	} else if (failed && retried) { | 
 | 		WARN_ON(1); | 
 | 		ret = -ENOSPC; | 
 | 	} | 
 | error: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int insert_balance_item(struct btrfs_root *root, | 
 | 			       struct btrfs_balance_control *bctl) | 
 | { | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_balance_item *item; | 
 | 	struct btrfs_disk_balance_args disk_bargs; | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 | 	int ret, err; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	trans = btrfs_start_transaction(root, 0); | 
 | 	if (IS_ERR(trans)) { | 
 | 		btrfs_free_path(path); | 
 | 		return PTR_ERR(trans); | 
 | 	} | 
 |  | 
 | 	key.objectid = BTRFS_BALANCE_OBJECTID; | 
 | 	key.type = BTRFS_BALANCE_ITEM_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, &key, | 
 | 				      sizeof(*item)); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); | 
 |  | 
 | 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); | 
 |  | 
 | 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); | 
 | 	btrfs_set_balance_data(leaf, item, &disk_bargs); | 
 | 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); | 
 | 	btrfs_set_balance_meta(leaf, item, &disk_bargs); | 
 | 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); | 
 | 	btrfs_set_balance_sys(leaf, item, &disk_bargs); | 
 |  | 
 | 	btrfs_set_balance_flags(leaf, item, bctl->flags); | 
 |  | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	err = btrfs_commit_transaction(trans, root); | 
 | 	if (err && !ret) | 
 | 		ret = err; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int del_balance_item(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	int ret, err; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	trans = btrfs_start_transaction(root, 0); | 
 | 	if (IS_ERR(trans)) { | 
 | 		btrfs_free_path(path); | 
 | 		return PTR_ERR(trans); | 
 | 	} | 
 |  | 
 | 	key.objectid = BTRFS_BALANCE_OBJECTID; | 
 | 	key.type = BTRFS_BALANCE_ITEM_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret > 0) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_del_item(trans, root, path); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	err = btrfs_commit_transaction(trans, root); | 
 | 	if (err && !ret) | 
 | 		ret = err; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This is a heuristic used to reduce the number of chunks balanced on | 
 |  * resume after balance was interrupted. | 
 |  */ | 
 | static void update_balance_args(struct btrfs_balance_control *bctl) | 
 | { | 
 | 	/* | 
 | 	 * Turn on soft mode for chunk types that were being converted. | 
 | 	 */ | 
 | 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) | 
 | 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; | 
 | 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) | 
 | 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; | 
 | 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) | 
 | 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; | 
 |  | 
 | 	/* | 
 | 	 * Turn on usage filter if is not already used.  The idea is | 
 | 	 * that chunks that we have already balanced should be | 
 | 	 * reasonably full.  Don't do it for chunks that are being | 
 | 	 * converted - that will keep us from relocating unconverted | 
 | 	 * (albeit full) chunks. | 
 | 	 */ | 
 | 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && | 
 | 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { | 
 | 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; | 
 | 		bctl->data.usage = 90; | 
 | 	} | 
 | 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && | 
 | 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { | 
 | 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; | 
 | 		bctl->sys.usage = 90; | 
 | 	} | 
 | 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && | 
 | 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { | 
 | 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; | 
 | 		bctl->meta.usage = 90; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Should be called with both balance and volume mutexes held to | 
 |  * serialize other volume operations (add_dev/rm_dev/resize) with | 
 |  * restriper.  Same goes for unset_balance_control. | 
 |  */ | 
 | static void set_balance_control(struct btrfs_balance_control *bctl) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = bctl->fs_info; | 
 |  | 
 | 	BUG_ON(fs_info->balance_ctl); | 
 |  | 
 | 	spin_lock(&fs_info->balance_lock); | 
 | 	fs_info->balance_ctl = bctl; | 
 | 	spin_unlock(&fs_info->balance_lock); | 
 | } | 
 |  | 
 | static void unset_balance_control(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_balance_control *bctl = fs_info->balance_ctl; | 
 |  | 
 | 	BUG_ON(!fs_info->balance_ctl); | 
 |  | 
 | 	spin_lock(&fs_info->balance_lock); | 
 | 	fs_info->balance_ctl = NULL; | 
 | 	spin_unlock(&fs_info->balance_lock); | 
 |  | 
 | 	kfree(bctl); | 
 | } | 
 |  | 
 | /* | 
 |  * Balance filters.  Return 1 if chunk should be filtered out | 
 |  * (should not be balanced). | 
 |  */ | 
 | static int chunk_profiles_filter(u64 chunk_type, | 
 | 				 struct btrfs_balance_args *bargs) | 
 | { | 
 | 	chunk_type = chunk_to_extended(chunk_type) & | 
 | 				BTRFS_EXTENDED_PROFILE_MASK; | 
 |  | 
 | 	if (bargs->profiles & chunk_type) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, | 
 | 			      struct btrfs_balance_args *bargs) | 
 | { | 
 | 	struct btrfs_block_group_cache *cache; | 
 | 	u64 chunk_used, user_thresh; | 
 | 	int ret = 1; | 
 |  | 
 | 	cache = btrfs_lookup_block_group(fs_info, chunk_offset); | 
 | 	chunk_used = btrfs_block_group_used(&cache->item); | 
 |  | 
 | 	if (bargs->usage == 0) | 
 | 		user_thresh = 1; | 
 | 	else if (bargs->usage > 100) | 
 | 		user_thresh = cache->key.offset; | 
 | 	else | 
 | 		user_thresh = div_factor_fine(cache->key.offset, | 
 | 					      bargs->usage); | 
 |  | 
 | 	if (chunk_used < user_thresh) | 
 | 		ret = 0; | 
 |  | 
 | 	btrfs_put_block_group(cache); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int chunk_devid_filter(struct extent_buffer *leaf, | 
 | 			      struct btrfs_chunk *chunk, | 
 | 			      struct btrfs_balance_args *bargs) | 
 | { | 
 | 	struct btrfs_stripe *stripe; | 
 | 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < num_stripes; i++) { | 
 | 		stripe = btrfs_stripe_nr(chunk, i); | 
 | 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* [pstart, pend) */ | 
 | static int chunk_drange_filter(struct extent_buffer *leaf, | 
 | 			       struct btrfs_chunk *chunk, | 
 | 			       u64 chunk_offset, | 
 | 			       struct btrfs_balance_args *bargs) | 
 | { | 
 | 	struct btrfs_stripe *stripe; | 
 | 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | 
 | 	u64 stripe_offset; | 
 | 	u64 stripe_length; | 
 | 	int factor; | 
 | 	int i; | 
 |  | 
 | 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) | 
 | 		return 0; | 
 |  | 
 | 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | | 
 | 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { | 
 | 		factor = num_stripes / 2; | 
 | 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { | 
 | 		factor = num_stripes - 1; | 
 | 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { | 
 | 		factor = num_stripes - 2; | 
 | 	} else { | 
 | 		factor = num_stripes; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < num_stripes; i++) { | 
 | 		stripe = btrfs_stripe_nr(chunk, i); | 
 | 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) | 
 | 			continue; | 
 |  | 
 | 		stripe_offset = btrfs_stripe_offset(leaf, stripe); | 
 | 		stripe_length = btrfs_chunk_length(leaf, chunk); | 
 | 		do_div(stripe_length, factor); | 
 |  | 
 | 		if (stripe_offset < bargs->pend && | 
 | 		    stripe_offset + stripe_length > bargs->pstart) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* [vstart, vend) */ | 
 | static int chunk_vrange_filter(struct extent_buffer *leaf, | 
 | 			       struct btrfs_chunk *chunk, | 
 | 			       u64 chunk_offset, | 
 | 			       struct btrfs_balance_args *bargs) | 
 | { | 
 | 	if (chunk_offset < bargs->vend && | 
 | 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) | 
 | 		/* at least part of the chunk is inside this vrange */ | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int chunk_soft_convert_filter(u64 chunk_type, | 
 | 				     struct btrfs_balance_args *bargs) | 
 | { | 
 | 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) | 
 | 		return 0; | 
 |  | 
 | 	chunk_type = chunk_to_extended(chunk_type) & | 
 | 				BTRFS_EXTENDED_PROFILE_MASK; | 
 |  | 
 | 	if (bargs->target == chunk_type) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int should_balance_chunk(struct btrfs_root *root, | 
 | 				struct extent_buffer *leaf, | 
 | 				struct btrfs_chunk *chunk, u64 chunk_offset) | 
 | { | 
 | 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; | 
 | 	struct btrfs_balance_args *bargs = NULL; | 
 | 	u64 chunk_type = btrfs_chunk_type(leaf, chunk); | 
 |  | 
 | 	/* type filter */ | 
 | 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & | 
 | 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA) | 
 | 		bargs = &bctl->data; | 
 | 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) | 
 | 		bargs = &bctl->sys; | 
 | 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) | 
 | 		bargs = &bctl->meta; | 
 |  | 
 | 	/* profiles filter */ | 
 | 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && | 
 | 	    chunk_profiles_filter(chunk_type, bargs)) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* usage filter */ | 
 | 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && | 
 | 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* devid filter */ | 
 | 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && | 
 | 	    chunk_devid_filter(leaf, chunk, bargs)) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* drange filter, makes sense only with devid filter */ | 
 | 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && | 
 | 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* vrange filter */ | 
 | 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && | 
 | 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* soft profile changing mode */ | 
 | 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && | 
 | 	    chunk_soft_convert_filter(chunk_type, bargs)) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int __btrfs_balance(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_balance_control *bctl = fs_info->balance_ctl; | 
 | 	struct btrfs_root *chunk_root = fs_info->chunk_root; | 
 | 	struct btrfs_root *dev_root = fs_info->dev_root; | 
 | 	struct list_head *devices; | 
 | 	struct btrfs_device *device; | 
 | 	u64 old_size; | 
 | 	u64 size_to_free; | 
 | 	struct btrfs_chunk *chunk; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct extent_buffer *leaf; | 
 | 	int slot; | 
 | 	int ret; | 
 | 	int enospc_errors = 0; | 
 | 	bool counting = true; | 
 |  | 
 | 	/* step one make some room on all the devices */ | 
 | 	devices = &fs_info->fs_devices->devices; | 
 | 	list_for_each_entry(device, devices, dev_list) { | 
 | 		old_size = device->total_bytes; | 
 | 		size_to_free = div_factor(old_size, 1); | 
 | 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); | 
 | 		if (!device->writeable || | 
 | 		    device->total_bytes - device->bytes_used > size_to_free || | 
 | 		    device->is_tgtdev_for_dev_replace) | 
 | 			continue; | 
 |  | 
 | 		ret = btrfs_shrink_device(device, old_size - size_to_free); | 
 | 		if (ret == -ENOSPC) | 
 | 			break; | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		trans = btrfs_start_transaction(dev_root, 0); | 
 | 		BUG_ON(IS_ERR(trans)); | 
 |  | 
 | 		ret = btrfs_grow_device(trans, device, old_size); | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		btrfs_end_transaction(trans, dev_root); | 
 | 	} | 
 |  | 
 | 	/* step two, relocate all the chunks */ | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	/* zero out stat counters */ | 
 | 	spin_lock(&fs_info->balance_lock); | 
 | 	memset(&bctl->stat, 0, sizeof(bctl->stat)); | 
 | 	spin_unlock(&fs_info->balance_lock); | 
 | again: | 
 | 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
 | 	key.offset = (u64)-1; | 
 | 	key.type = BTRFS_CHUNK_ITEM_KEY; | 
 |  | 
 | 	while (1) { | 
 | 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) || | 
 | 		    atomic_read(&fs_info->balance_cancel_req)) { | 
 | 			ret = -ECANCELED; | 
 | 			goto error; | 
 | 		} | 
 |  | 
 | 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			goto error; | 
 |  | 
 | 		/* | 
 | 		 * this shouldn't happen, it means the last relocate | 
 | 		 * failed | 
 | 		 */ | 
 | 		if (ret == 0) | 
 | 			BUG(); /* FIXME break ? */ | 
 |  | 
 | 		ret = btrfs_previous_item(chunk_root, path, 0, | 
 | 					  BTRFS_CHUNK_ITEM_KEY); | 
 | 		if (ret) { | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
 |  | 
 | 		if (found_key.objectid != key.objectid) | 
 | 			break; | 
 |  | 
 | 		/* chunk zero is special */ | 
 | 		if (found_key.offset == 0) | 
 | 			break; | 
 |  | 
 | 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); | 
 |  | 
 | 		if (!counting) { | 
 | 			spin_lock(&fs_info->balance_lock); | 
 | 			bctl->stat.considered++; | 
 | 			spin_unlock(&fs_info->balance_lock); | 
 | 		} | 
 |  | 
 | 		ret = should_balance_chunk(chunk_root, leaf, chunk, | 
 | 					   found_key.offset); | 
 | 		btrfs_release_path(path); | 
 | 		if (!ret) | 
 | 			goto loop; | 
 |  | 
 | 		if (counting) { | 
 | 			spin_lock(&fs_info->balance_lock); | 
 | 			bctl->stat.expected++; | 
 | 			spin_unlock(&fs_info->balance_lock); | 
 | 			goto loop; | 
 | 		} | 
 |  | 
 | 		ret = btrfs_relocate_chunk(chunk_root, | 
 | 					   chunk_root->root_key.objectid, | 
 | 					   found_key.objectid, | 
 | 					   found_key.offset); | 
 | 		if (ret && ret != -ENOSPC) | 
 | 			goto error; | 
 | 		if (ret == -ENOSPC) { | 
 | 			enospc_errors++; | 
 | 		} else { | 
 | 			spin_lock(&fs_info->balance_lock); | 
 | 			bctl->stat.completed++; | 
 | 			spin_unlock(&fs_info->balance_lock); | 
 | 		} | 
 | loop: | 
 | 		key.offset = found_key.offset - 1; | 
 | 	} | 
 |  | 
 | 	if (counting) { | 
 | 		btrfs_release_path(path); | 
 | 		counting = false; | 
 | 		goto again; | 
 | 	} | 
 | error: | 
 | 	btrfs_free_path(path); | 
 | 	if (enospc_errors) { | 
 | 		printk(KERN_INFO "btrfs: %d enospc errors during balance\n", | 
 | 		       enospc_errors); | 
 | 		if (!ret) | 
 | 			ret = -ENOSPC; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * alloc_profile_is_valid - see if a given profile is valid and reduced | 
 |  * @flags: profile to validate | 
 |  * @extended: if true @flags is treated as an extended profile | 
 |  */ | 
 | static int alloc_profile_is_valid(u64 flags, int extended) | 
 | { | 
 | 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : | 
 | 			       BTRFS_BLOCK_GROUP_PROFILE_MASK); | 
 |  | 
 | 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; | 
 |  | 
 | 	/* 1) check that all other bits are zeroed */ | 
 | 	if (flags & ~mask) | 
 | 		return 0; | 
 |  | 
 | 	/* 2) see if profile is reduced */ | 
 | 	if (flags == 0) | 
 | 		return !extended; /* "0" is valid for usual profiles */ | 
 |  | 
 | 	/* true if exactly one bit set */ | 
 | 	return (flags & (flags - 1)) == 0; | 
 | } | 
 |  | 
 | static inline int balance_need_close(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	/* cancel requested || normal exit path */ | 
 | 	return atomic_read(&fs_info->balance_cancel_req) || | 
 | 		(atomic_read(&fs_info->balance_pause_req) == 0 && | 
 | 		 atomic_read(&fs_info->balance_cancel_req) == 0); | 
 | } | 
 |  | 
 | static void __cancel_balance(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	unset_balance_control(fs_info); | 
 | 	ret = del_balance_item(fs_info->tree_root); | 
 | 	if (ret) | 
 | 		btrfs_std_error(fs_info, ret); | 
 |  | 
 | 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0); | 
 | } | 
 |  | 
 | void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, | 
 | 			       struct btrfs_ioctl_balance_args *bargs); | 
 |  | 
 | /* | 
 |  * Should be called with both balance and volume mutexes held | 
 |  */ | 
 | int btrfs_balance(struct btrfs_balance_control *bctl, | 
 | 		  struct btrfs_ioctl_balance_args *bargs) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = bctl->fs_info; | 
 | 	u64 allowed; | 
 | 	int mixed = 0; | 
 | 	int ret; | 
 | 	u64 num_devices; | 
 | 	unsigned seq; | 
 |  | 
 | 	if (btrfs_fs_closing(fs_info) || | 
 | 	    atomic_read(&fs_info->balance_pause_req) || | 
 | 	    atomic_read(&fs_info->balance_cancel_req)) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	allowed = btrfs_super_incompat_flags(fs_info->super_copy); | 
 | 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) | 
 | 		mixed = 1; | 
 |  | 
 | 	/* | 
 | 	 * In case of mixed groups both data and meta should be picked, | 
 | 	 * and identical options should be given for both of them. | 
 | 	 */ | 
 | 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; | 
 | 	if (mixed && (bctl->flags & allowed)) { | 
 | 		if (!(bctl->flags & BTRFS_BALANCE_DATA) || | 
 | 		    !(bctl->flags & BTRFS_BALANCE_METADATA) || | 
 | 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { | 
 | 			printk(KERN_ERR "btrfs: with mixed groups data and " | 
 | 			       "metadata balance options must be the same\n"); | 
 | 			ret = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	num_devices = fs_info->fs_devices->num_devices; | 
 | 	btrfs_dev_replace_lock(&fs_info->dev_replace); | 
 | 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { | 
 | 		BUG_ON(num_devices < 1); | 
 | 		num_devices--; | 
 | 	} | 
 | 	btrfs_dev_replace_unlock(&fs_info->dev_replace); | 
 | 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; | 
 | 	if (num_devices == 1) | 
 | 		allowed |= BTRFS_BLOCK_GROUP_DUP; | 
 | 	else if (num_devices < 4) | 
 | 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); | 
 | 	else | 
 | 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | | 
 | 				BTRFS_BLOCK_GROUP_RAID10 | | 
 | 				BTRFS_BLOCK_GROUP_RAID5 | | 
 | 				BTRFS_BLOCK_GROUP_RAID6); | 
 |  | 
 | 	if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && | 
 | 	    (!alloc_profile_is_valid(bctl->data.target, 1) || | 
 | 	     (bctl->data.target & ~allowed))) { | 
 | 		printk(KERN_ERR "btrfs: unable to start balance with target " | 
 | 		       "data profile %llu\n", | 
 | 		       (unsigned long long)bctl->data.target); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && | 
 | 	    (!alloc_profile_is_valid(bctl->meta.target, 1) || | 
 | 	     (bctl->meta.target & ~allowed))) { | 
 | 		printk(KERN_ERR "btrfs: unable to start balance with target " | 
 | 		       "metadata profile %llu\n", | 
 | 		       (unsigned long long)bctl->meta.target); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && | 
 | 	    (!alloc_profile_is_valid(bctl->sys.target, 1) || | 
 | 	     (bctl->sys.target & ~allowed))) { | 
 | 		printk(KERN_ERR "btrfs: unable to start balance with target " | 
 | 		       "system profile %llu\n", | 
 | 		       (unsigned long long)bctl->sys.target); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* allow dup'ed data chunks only in mixed mode */ | 
 | 	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && | 
 | 	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { | 
 | 		printk(KERN_ERR "btrfs: dup for data is not allowed\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* allow to reduce meta or sys integrity only if force set */ | 
 | 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | | 
 | 			BTRFS_BLOCK_GROUP_RAID10 | | 
 | 			BTRFS_BLOCK_GROUP_RAID5 | | 
 | 			BTRFS_BLOCK_GROUP_RAID6; | 
 | 	do { | 
 | 		seq = read_seqbegin(&fs_info->profiles_lock); | 
 |  | 
 | 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && | 
 | 		     (fs_info->avail_system_alloc_bits & allowed) && | 
 | 		     !(bctl->sys.target & allowed)) || | 
 | 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && | 
 | 		     (fs_info->avail_metadata_alloc_bits & allowed) && | 
 | 		     !(bctl->meta.target & allowed))) { | 
 | 			if (bctl->flags & BTRFS_BALANCE_FORCE) { | 
 | 				printk(KERN_INFO "btrfs: force reducing metadata " | 
 | 				       "integrity\n"); | 
 | 			} else { | 
 | 				printk(KERN_ERR "btrfs: balance will reduce metadata " | 
 | 				       "integrity, use force if you want this\n"); | 
 | 				ret = -EINVAL; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 	} while (read_seqretry(&fs_info->profiles_lock, seq)); | 
 |  | 
 | 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { | 
 | 		int num_tolerated_disk_barrier_failures; | 
 | 		u64 target = bctl->sys.target; | 
 |  | 
 | 		num_tolerated_disk_barrier_failures = | 
 | 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); | 
 | 		if (num_tolerated_disk_barrier_failures > 0 && | 
 | 		    (target & | 
 | 		     (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | | 
 | 		      BTRFS_AVAIL_ALLOC_BIT_SINGLE))) | 
 | 			num_tolerated_disk_barrier_failures = 0; | 
 | 		else if (num_tolerated_disk_barrier_failures > 1 && | 
 | 			 (target & | 
 | 			  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))) | 
 | 			num_tolerated_disk_barrier_failures = 1; | 
 |  | 
 | 		fs_info->num_tolerated_disk_barrier_failures = | 
 | 			num_tolerated_disk_barrier_failures; | 
 | 	} | 
 |  | 
 | 	ret = insert_balance_item(fs_info->tree_root, bctl); | 
 | 	if (ret && ret != -EEXIST) | 
 | 		goto out; | 
 |  | 
 | 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { | 
 | 		BUG_ON(ret == -EEXIST); | 
 | 		set_balance_control(bctl); | 
 | 	} else { | 
 | 		BUG_ON(ret != -EEXIST); | 
 | 		spin_lock(&fs_info->balance_lock); | 
 | 		update_balance_args(bctl); | 
 | 		spin_unlock(&fs_info->balance_lock); | 
 | 	} | 
 |  | 
 | 	atomic_inc(&fs_info->balance_running); | 
 | 	mutex_unlock(&fs_info->balance_mutex); | 
 |  | 
 | 	ret = __btrfs_balance(fs_info); | 
 |  | 
 | 	mutex_lock(&fs_info->balance_mutex); | 
 | 	atomic_dec(&fs_info->balance_running); | 
 |  | 
 | 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { | 
 | 		fs_info->num_tolerated_disk_barrier_failures = | 
 | 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); | 
 | 	} | 
 |  | 
 | 	if (bargs) { | 
 | 		memset(bargs, 0, sizeof(*bargs)); | 
 | 		update_ioctl_balance_args(fs_info, 0, bargs); | 
 | 	} | 
 |  | 
 | 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) || | 
 | 	    balance_need_close(fs_info)) { | 
 | 		__cancel_balance(fs_info); | 
 | 	} | 
 |  | 
 | 	wake_up(&fs_info->balance_wait_q); | 
 |  | 
 | 	return ret; | 
 | out: | 
 | 	if (bctl->flags & BTRFS_BALANCE_RESUME) | 
 | 		__cancel_balance(fs_info); | 
 | 	else { | 
 | 		kfree(bctl); | 
 | 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int balance_kthread(void *data) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = data; | 
 | 	int ret = 0; | 
 |  | 
 | 	mutex_lock(&fs_info->volume_mutex); | 
 | 	mutex_lock(&fs_info->balance_mutex); | 
 |  | 
 | 	if (fs_info->balance_ctl) { | 
 | 		printk(KERN_INFO "btrfs: continuing balance\n"); | 
 | 		ret = btrfs_balance(fs_info->balance_ctl, NULL); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&fs_info->balance_mutex); | 
 | 	mutex_unlock(&fs_info->volume_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct task_struct *tsk; | 
 |  | 
 | 	spin_lock(&fs_info->balance_lock); | 
 | 	if (!fs_info->balance_ctl) { | 
 | 		spin_unlock(&fs_info->balance_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	spin_unlock(&fs_info->balance_lock); | 
 |  | 
 | 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { | 
 | 		printk(KERN_INFO "btrfs: force skipping balance\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); | 
 | 	if (IS_ERR(tsk)) | 
 | 		return PTR_ERR(tsk); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_recover_balance(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_balance_control *bctl; | 
 | 	struct btrfs_balance_item *item; | 
 | 	struct btrfs_disk_balance_args disk_bargs; | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 | 	int ret; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = BTRFS_BALANCE_OBJECTID; | 
 | 	key.type = BTRFS_BALANCE_ITEM_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret > 0) { /* ret = -ENOENT; */ | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS); | 
 | 	if (!bctl) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); | 
 |  | 
 | 	bctl->fs_info = fs_info; | 
 | 	bctl->flags = btrfs_balance_flags(leaf, item); | 
 | 	bctl->flags |= BTRFS_BALANCE_RESUME; | 
 |  | 
 | 	btrfs_balance_data(leaf, item, &disk_bargs); | 
 | 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); | 
 | 	btrfs_balance_meta(leaf, item, &disk_bargs); | 
 | 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); | 
 | 	btrfs_balance_sys(leaf, item, &disk_bargs); | 
 | 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); | 
 |  | 
 | 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); | 
 |  | 
 | 	mutex_lock(&fs_info->volume_mutex); | 
 | 	mutex_lock(&fs_info->balance_mutex); | 
 |  | 
 | 	set_balance_control(bctl); | 
 |  | 
 | 	mutex_unlock(&fs_info->balance_mutex); | 
 | 	mutex_unlock(&fs_info->volume_mutex); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_pause_balance(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	mutex_lock(&fs_info->balance_mutex); | 
 | 	if (!fs_info->balance_ctl) { | 
 | 		mutex_unlock(&fs_info->balance_mutex); | 
 | 		return -ENOTCONN; | 
 | 	} | 
 |  | 
 | 	if (atomic_read(&fs_info->balance_running)) { | 
 | 		atomic_inc(&fs_info->balance_pause_req); | 
 | 		mutex_unlock(&fs_info->balance_mutex); | 
 |  | 
 | 		wait_event(fs_info->balance_wait_q, | 
 | 			   atomic_read(&fs_info->balance_running) == 0); | 
 |  | 
 | 		mutex_lock(&fs_info->balance_mutex); | 
 | 		/* we are good with balance_ctl ripped off from under us */ | 
 | 		BUG_ON(atomic_read(&fs_info->balance_running)); | 
 | 		atomic_dec(&fs_info->balance_pause_req); | 
 | 	} else { | 
 | 		ret = -ENOTCONN; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&fs_info->balance_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	mutex_lock(&fs_info->balance_mutex); | 
 | 	if (!fs_info->balance_ctl) { | 
 | 		mutex_unlock(&fs_info->balance_mutex); | 
 | 		return -ENOTCONN; | 
 | 	} | 
 |  | 
 | 	atomic_inc(&fs_info->balance_cancel_req); | 
 | 	/* | 
 | 	 * if we are running just wait and return, balance item is | 
 | 	 * deleted in btrfs_balance in this case | 
 | 	 */ | 
 | 	if (atomic_read(&fs_info->balance_running)) { | 
 | 		mutex_unlock(&fs_info->balance_mutex); | 
 | 		wait_event(fs_info->balance_wait_q, | 
 | 			   atomic_read(&fs_info->balance_running) == 0); | 
 | 		mutex_lock(&fs_info->balance_mutex); | 
 | 	} else { | 
 | 		/* __cancel_balance needs volume_mutex */ | 
 | 		mutex_unlock(&fs_info->balance_mutex); | 
 | 		mutex_lock(&fs_info->volume_mutex); | 
 | 		mutex_lock(&fs_info->balance_mutex); | 
 |  | 
 | 		if (fs_info->balance_ctl) | 
 | 			__cancel_balance(fs_info); | 
 |  | 
 | 		mutex_unlock(&fs_info->volume_mutex); | 
 | 	} | 
 |  | 
 | 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); | 
 | 	atomic_dec(&fs_info->balance_cancel_req); | 
 | 	mutex_unlock(&fs_info->balance_mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * shrinking a device means finding all of the device extents past | 
 |  * the new size, and then following the back refs to the chunks. | 
 |  * The chunk relocation code actually frees the device extent | 
 |  */ | 
 | int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) | 
 | { | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_root *root = device->dev_root; | 
 | 	struct btrfs_dev_extent *dev_extent = NULL; | 
 | 	struct btrfs_path *path; | 
 | 	u64 length; | 
 | 	u64 chunk_tree; | 
 | 	u64 chunk_objectid; | 
 | 	u64 chunk_offset; | 
 | 	int ret; | 
 | 	int slot; | 
 | 	int failed = 0; | 
 | 	bool retried = false; | 
 | 	struct extent_buffer *l; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_super_block *super_copy = root->fs_info->super_copy; | 
 | 	u64 old_total = btrfs_super_total_bytes(super_copy); | 
 | 	u64 old_size = device->total_bytes; | 
 | 	u64 diff = device->total_bytes - new_size; | 
 |  | 
 | 	if (device->is_tgtdev_for_dev_replace) | 
 | 		return -EINVAL; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	path->reada = 2; | 
 |  | 
 | 	lock_chunks(root); | 
 |  | 
 | 	device->total_bytes = new_size; | 
 | 	if (device->writeable) { | 
 | 		device->fs_devices->total_rw_bytes -= diff; | 
 | 		spin_lock(&root->fs_info->free_chunk_lock); | 
 | 		root->fs_info->free_chunk_space -= diff; | 
 | 		spin_unlock(&root->fs_info->free_chunk_lock); | 
 | 	} | 
 | 	unlock_chunks(root); | 
 |  | 
 | again: | 
 | 	key.objectid = device->devid; | 
 | 	key.offset = (u64)-1; | 
 | 	key.type = BTRFS_DEV_EXTENT_KEY; | 
 |  | 
 | 	do { | 
 | 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			goto done; | 
 |  | 
 | 		ret = btrfs_previous_item(root, path, 0, key.type); | 
 | 		if (ret < 0) | 
 | 			goto done; | 
 | 		if (ret) { | 
 | 			ret = 0; | 
 | 			btrfs_release_path(path); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		l = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		btrfs_item_key_to_cpu(l, &key, path->slots[0]); | 
 |  | 
 | 		if (key.objectid != device->devid) { | 
 | 			btrfs_release_path(path); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | 
 | 		length = btrfs_dev_extent_length(l, dev_extent); | 
 |  | 
 | 		if (key.offset + length <= new_size) { | 
 | 			btrfs_release_path(path); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); | 
 | 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); | 
 | 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, | 
 | 					   chunk_offset); | 
 | 		if (ret && ret != -ENOSPC) | 
 | 			goto done; | 
 | 		if (ret == -ENOSPC) | 
 | 			failed++; | 
 | 	} while (key.offset-- > 0); | 
 |  | 
 | 	if (failed && !retried) { | 
 | 		failed = 0; | 
 | 		retried = true; | 
 | 		goto again; | 
 | 	} else if (failed && retried) { | 
 | 		ret = -ENOSPC; | 
 | 		lock_chunks(root); | 
 |  | 
 | 		device->total_bytes = old_size; | 
 | 		if (device->writeable) | 
 | 			device->fs_devices->total_rw_bytes += diff; | 
 | 		spin_lock(&root->fs_info->free_chunk_lock); | 
 | 		root->fs_info->free_chunk_space += diff; | 
 | 		spin_unlock(&root->fs_info->free_chunk_lock); | 
 | 		unlock_chunks(root); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* Shrinking succeeded, else we would be at "done". */ | 
 | 	trans = btrfs_start_transaction(root, 0); | 
 | 	if (IS_ERR(trans)) { | 
 | 		ret = PTR_ERR(trans); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	lock_chunks(root); | 
 |  | 
 | 	device->disk_total_bytes = new_size; | 
 | 	/* Now btrfs_update_device() will change the on-disk size. */ | 
 | 	ret = btrfs_update_device(trans, device); | 
 | 	if (ret) { | 
 | 		unlock_chunks(root); | 
 | 		btrfs_end_transaction(trans, root); | 
 | 		goto done; | 
 | 	} | 
 | 	WARN_ON(diff > old_total); | 
 | 	btrfs_set_super_total_bytes(super_copy, old_total - diff); | 
 | 	unlock_chunks(root); | 
 | 	btrfs_end_transaction(trans, root); | 
 | done: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_add_system_chunk(struct btrfs_root *root, | 
 | 			   struct btrfs_key *key, | 
 | 			   struct btrfs_chunk *chunk, int item_size) | 
 | { | 
 | 	struct btrfs_super_block *super_copy = root->fs_info->super_copy; | 
 | 	struct btrfs_disk_key disk_key; | 
 | 	u32 array_size; | 
 | 	u8 *ptr; | 
 |  | 
 | 	array_size = btrfs_super_sys_array_size(super_copy); | 
 | 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) | 
 | 		return -EFBIG; | 
 |  | 
 | 	ptr = super_copy->sys_chunk_array + array_size; | 
 | 	btrfs_cpu_key_to_disk(&disk_key, key); | 
 | 	memcpy(ptr, &disk_key, sizeof(disk_key)); | 
 | 	ptr += sizeof(disk_key); | 
 | 	memcpy(ptr, chunk, item_size); | 
 | 	item_size += sizeof(disk_key); | 
 | 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * sort the devices in descending order by max_avail, total_avail | 
 |  */ | 
 | static int btrfs_cmp_device_info(const void *a, const void *b) | 
 | { | 
 | 	const struct btrfs_device_info *di_a = a; | 
 | 	const struct btrfs_device_info *di_b = b; | 
 |  | 
 | 	if (di_a->max_avail > di_b->max_avail) | 
 | 		return -1; | 
 | 	if (di_a->max_avail < di_b->max_avail) | 
 | 		return 1; | 
 | 	if (di_a->total_avail > di_b->total_avail) | 
 | 		return -1; | 
 | 	if (di_a->total_avail < di_b->total_avail) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { | 
 | 	[BTRFS_RAID_RAID10] = { | 
 | 		.sub_stripes	= 2, | 
 | 		.dev_stripes	= 1, | 
 | 		.devs_max	= 0,	/* 0 == as many as possible */ | 
 | 		.devs_min	= 4, | 
 | 		.devs_increment	= 2, | 
 | 		.ncopies	= 2, | 
 | 	}, | 
 | 	[BTRFS_RAID_RAID1] = { | 
 | 		.sub_stripes	= 1, | 
 | 		.dev_stripes	= 1, | 
 | 		.devs_max	= 2, | 
 | 		.devs_min	= 2, | 
 | 		.devs_increment	= 2, | 
 | 		.ncopies	= 2, | 
 | 	}, | 
 | 	[BTRFS_RAID_DUP] = { | 
 | 		.sub_stripes	= 1, | 
 | 		.dev_stripes	= 2, | 
 | 		.devs_max	= 1, | 
 | 		.devs_min	= 1, | 
 | 		.devs_increment	= 1, | 
 | 		.ncopies	= 2, | 
 | 	}, | 
 | 	[BTRFS_RAID_RAID0] = { | 
 | 		.sub_stripes	= 1, | 
 | 		.dev_stripes	= 1, | 
 | 		.devs_max	= 0, | 
 | 		.devs_min	= 2, | 
 | 		.devs_increment	= 1, | 
 | 		.ncopies	= 1, | 
 | 	}, | 
 | 	[BTRFS_RAID_SINGLE] = { | 
 | 		.sub_stripes	= 1, | 
 | 		.dev_stripes	= 1, | 
 | 		.devs_max	= 1, | 
 | 		.devs_min	= 1, | 
 | 		.devs_increment	= 1, | 
 | 		.ncopies	= 1, | 
 | 	}, | 
 | 	[BTRFS_RAID_RAID5] = { | 
 | 		.sub_stripes	= 1, | 
 | 		.dev_stripes	= 1, | 
 | 		.devs_max	= 0, | 
 | 		.devs_min	= 2, | 
 | 		.devs_increment	= 1, | 
 | 		.ncopies	= 2, | 
 | 	}, | 
 | 	[BTRFS_RAID_RAID6] = { | 
 | 		.sub_stripes	= 1, | 
 | 		.dev_stripes	= 1, | 
 | 		.devs_max	= 0, | 
 | 		.devs_min	= 3, | 
 | 		.devs_increment	= 1, | 
 | 		.ncopies	= 3, | 
 | 	}, | 
 | }; | 
 |  | 
 | static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) | 
 | { | 
 | 	/* TODO allow them to set a preferred stripe size */ | 
 | 	return 64 * 1024; | 
 | } | 
 |  | 
 | static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) | 
 | { | 
 | 	u64 features; | 
 |  | 
 | 	if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))) | 
 | 		return; | 
 |  | 
 | 	features = btrfs_super_incompat_flags(info->super_copy); | 
 | 	if (features & BTRFS_FEATURE_INCOMPAT_RAID56) | 
 | 		return; | 
 |  | 
 | 	features |= BTRFS_FEATURE_INCOMPAT_RAID56; | 
 | 	btrfs_set_super_incompat_flags(info->super_copy, features); | 
 | 	printk(KERN_INFO "btrfs: setting RAID5/6 feature flag\n"); | 
 | } | 
 |  | 
 | static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *extent_root, | 
 | 			       struct map_lookup **map_ret, | 
 | 			       u64 *num_bytes_out, u64 *stripe_size_out, | 
 | 			       u64 start, u64 type) | 
 | { | 
 | 	struct btrfs_fs_info *info = extent_root->fs_info; | 
 | 	struct btrfs_fs_devices *fs_devices = info->fs_devices; | 
 | 	struct list_head *cur; | 
 | 	struct map_lookup *map = NULL; | 
 | 	struct extent_map_tree *em_tree; | 
 | 	struct extent_map *em; | 
 | 	struct btrfs_device_info *devices_info = NULL; | 
 | 	u64 total_avail; | 
 | 	int num_stripes;	/* total number of stripes to allocate */ | 
 | 	int data_stripes;	/* number of stripes that count for | 
 | 				   block group size */ | 
 | 	int sub_stripes;	/* sub_stripes info for map */ | 
 | 	int dev_stripes;	/* stripes per dev */ | 
 | 	int devs_max;		/* max devs to use */ | 
 | 	int devs_min;		/* min devs needed */ | 
 | 	int devs_increment;	/* ndevs has to be a multiple of this */ | 
 | 	int ncopies;		/* how many copies to data has */ | 
 | 	int ret; | 
 | 	u64 max_stripe_size; | 
 | 	u64 max_chunk_size; | 
 | 	u64 stripe_size; | 
 | 	u64 num_bytes; | 
 | 	u64 raid_stripe_len = BTRFS_STRIPE_LEN; | 
 | 	int ndevs; | 
 | 	int i; | 
 | 	int j; | 
 | 	int index; | 
 |  | 
 | 	BUG_ON(!alloc_profile_is_valid(type, 0)); | 
 |  | 
 | 	if (list_empty(&fs_devices->alloc_list)) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	index = __get_raid_index(type); | 
 |  | 
 | 	sub_stripes = btrfs_raid_array[index].sub_stripes; | 
 | 	dev_stripes = btrfs_raid_array[index].dev_stripes; | 
 | 	devs_max = btrfs_raid_array[index].devs_max; | 
 | 	devs_min = btrfs_raid_array[index].devs_min; | 
 | 	devs_increment = btrfs_raid_array[index].devs_increment; | 
 | 	ncopies = btrfs_raid_array[index].ncopies; | 
 |  | 
 | 	if (type & BTRFS_BLOCK_GROUP_DATA) { | 
 | 		max_stripe_size = 1024 * 1024 * 1024; | 
 | 		max_chunk_size = 10 * max_stripe_size; | 
 | 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) { | 
 | 		/* for larger filesystems, use larger metadata chunks */ | 
 | 		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) | 
 | 			max_stripe_size = 1024 * 1024 * 1024; | 
 | 		else | 
 | 			max_stripe_size = 256 * 1024 * 1024; | 
 | 		max_chunk_size = max_stripe_size; | 
 | 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
 | 		max_stripe_size = 32 * 1024 * 1024; | 
 | 		max_chunk_size = 2 * max_stripe_size; | 
 | 	} else { | 
 | 		printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n", | 
 | 		       type); | 
 | 		BUG_ON(1); | 
 | 	} | 
 |  | 
 | 	/* we don't want a chunk larger than 10% of writeable space */ | 
 | 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), | 
 | 			     max_chunk_size); | 
 |  | 
 | 	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices, | 
 | 			       GFP_NOFS); | 
 | 	if (!devices_info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	cur = fs_devices->alloc_list.next; | 
 |  | 
 | 	/* | 
 | 	 * in the first pass through the devices list, we gather information | 
 | 	 * about the available holes on each device. | 
 | 	 */ | 
 | 	ndevs = 0; | 
 | 	while (cur != &fs_devices->alloc_list) { | 
 | 		struct btrfs_device *device; | 
 | 		u64 max_avail; | 
 | 		u64 dev_offset; | 
 |  | 
 | 		device = list_entry(cur, struct btrfs_device, dev_alloc_list); | 
 |  | 
 | 		cur = cur->next; | 
 |  | 
 | 		if (!device->writeable) { | 
 | 			WARN(1, KERN_ERR | 
 | 			       "btrfs: read-only device in alloc_list\n"); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!device->in_fs_metadata || | 
 | 		    device->is_tgtdev_for_dev_replace) | 
 | 			continue; | 
 |  | 
 | 		if (device->total_bytes > device->bytes_used) | 
 | 			total_avail = device->total_bytes - device->bytes_used; | 
 | 		else | 
 | 			total_avail = 0; | 
 |  | 
 | 		/* If there is no space on this device, skip it. */ | 
 | 		if (total_avail == 0) | 
 | 			continue; | 
 |  | 
 | 		ret = find_free_dev_extent(device, | 
 | 					   max_stripe_size * dev_stripes, | 
 | 					   &dev_offset, &max_avail); | 
 | 		if (ret && ret != -ENOSPC) | 
 | 			goto error; | 
 |  | 
 | 		if (ret == 0) | 
 | 			max_avail = max_stripe_size * dev_stripes; | 
 |  | 
 | 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) | 
 | 			continue; | 
 |  | 
 | 		if (ndevs == fs_devices->rw_devices) { | 
 | 			WARN(1, "%s: found more than %llu devices\n", | 
 | 			     __func__, fs_devices->rw_devices); | 
 | 			break; | 
 | 		} | 
 | 		devices_info[ndevs].dev_offset = dev_offset; | 
 | 		devices_info[ndevs].max_avail = max_avail; | 
 | 		devices_info[ndevs].total_avail = total_avail; | 
 | 		devices_info[ndevs].dev = device; | 
 | 		++ndevs; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * now sort the devices by hole size / available space | 
 | 	 */ | 
 | 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info), | 
 | 	     btrfs_cmp_device_info, NULL); | 
 |  | 
 | 	/* round down to number of usable stripes */ | 
 | 	ndevs -= ndevs % devs_increment; | 
 |  | 
 | 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { | 
 | 		ret = -ENOSPC; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	if (devs_max && ndevs > devs_max) | 
 | 		ndevs = devs_max; | 
 | 	/* | 
 | 	 * the primary goal is to maximize the number of stripes, so use as many | 
 | 	 * devices as possible, even if the stripes are not maximum sized. | 
 | 	 */ | 
 | 	stripe_size = devices_info[ndevs-1].max_avail; | 
 | 	num_stripes = ndevs * dev_stripes; | 
 |  | 
 | 	/* | 
 | 	 * this will have to be fixed for RAID1 and RAID10 over | 
 | 	 * more drives | 
 | 	 */ | 
 | 	data_stripes = num_stripes / ncopies; | 
 |  | 
 | 	if (type & BTRFS_BLOCK_GROUP_RAID5) { | 
 | 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1, | 
 | 				 btrfs_super_stripesize(info->super_copy)); | 
 | 		data_stripes = num_stripes - 1; | 
 | 	} | 
 | 	if (type & BTRFS_BLOCK_GROUP_RAID6) { | 
 | 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2, | 
 | 				 btrfs_super_stripesize(info->super_copy)); | 
 | 		data_stripes = num_stripes - 2; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Use the number of data stripes to figure out how big this chunk | 
 | 	 * is really going to be in terms of logical address space, | 
 | 	 * and compare that answer with the max chunk size | 
 | 	 */ | 
 | 	if (stripe_size * data_stripes > max_chunk_size) { | 
 | 		u64 mask = (1ULL << 24) - 1; | 
 | 		stripe_size = max_chunk_size; | 
 | 		do_div(stripe_size, data_stripes); | 
 |  | 
 | 		/* bump the answer up to a 16MB boundary */ | 
 | 		stripe_size = (stripe_size + mask) & ~mask; | 
 |  | 
 | 		/* but don't go higher than the limits we found | 
 | 		 * while searching for free extents | 
 | 		 */ | 
 | 		if (stripe_size > devices_info[ndevs-1].max_avail) | 
 | 			stripe_size = devices_info[ndevs-1].max_avail; | 
 | 	} | 
 |  | 
 | 	do_div(stripe_size, dev_stripes); | 
 |  | 
 | 	/* align to BTRFS_STRIPE_LEN */ | 
 | 	do_div(stripe_size, raid_stripe_len); | 
 | 	stripe_size *= raid_stripe_len; | 
 |  | 
 | 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | 
 | 	if (!map) { | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 | 	map->num_stripes = num_stripes; | 
 |  | 
 | 	for (i = 0; i < ndevs; ++i) { | 
 | 		for (j = 0; j < dev_stripes; ++j) { | 
 | 			int s = i * dev_stripes + j; | 
 | 			map->stripes[s].dev = devices_info[i].dev; | 
 | 			map->stripes[s].physical = devices_info[i].dev_offset + | 
 | 						   j * stripe_size; | 
 | 		} | 
 | 	} | 
 | 	map->sector_size = extent_root->sectorsize; | 
 | 	map->stripe_len = raid_stripe_len; | 
 | 	map->io_align = raid_stripe_len; | 
 | 	map->io_width = raid_stripe_len; | 
 | 	map->type = type; | 
 | 	map->sub_stripes = sub_stripes; | 
 |  | 
 | 	*map_ret = map; | 
 | 	num_bytes = stripe_size * data_stripes; | 
 |  | 
 | 	*stripe_size_out = stripe_size; | 
 | 	*num_bytes_out = num_bytes; | 
 |  | 
 | 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); | 
 |  | 
 | 	em = alloc_extent_map(); | 
 | 	if (!em) { | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 | 	em->bdev = (struct block_device *)map; | 
 | 	em->start = start; | 
 | 	em->len = num_bytes; | 
 | 	em->block_start = 0; | 
 | 	em->block_len = em->len; | 
 |  | 
 | 	em_tree = &extent_root->fs_info->mapping_tree.map_tree; | 
 | 	write_lock(&em_tree->lock); | 
 | 	ret = add_extent_mapping(em_tree, em); | 
 | 	write_unlock(&em_tree->lock); | 
 | 	if (ret) { | 
 | 		free_extent_map(em); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < map->num_stripes; ++i) { | 
 | 		struct btrfs_device *device; | 
 | 		u64 dev_offset; | 
 |  | 
 | 		device = map->stripes[i].dev; | 
 | 		dev_offset = map->stripes[i].physical; | 
 |  | 
 | 		ret = btrfs_alloc_dev_extent(trans, device, | 
 | 				info->chunk_root->root_key.objectid, | 
 | 				BTRFS_FIRST_CHUNK_TREE_OBJECTID, | 
 | 				start, dev_offset, stripe_size); | 
 | 		if (ret) | 
 | 			goto error_dev_extent; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_make_block_group(trans, extent_root, 0, type, | 
 | 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID, | 
 | 				     start, num_bytes); | 
 | 	if (ret) { | 
 | 		i = map->num_stripes - 1; | 
 | 		goto error_dev_extent; | 
 | 	} | 
 |  | 
 | 	free_extent_map(em); | 
 | 	check_raid56_incompat_flag(extent_root->fs_info, type); | 
 |  | 
 | 	kfree(devices_info); | 
 | 	return 0; | 
 |  | 
 | error_dev_extent: | 
 | 	for (; i >= 0; i--) { | 
 | 		struct btrfs_device *device; | 
 | 		int err; | 
 |  | 
 | 		device = map->stripes[i].dev; | 
 | 		err = btrfs_free_dev_extent(trans, device, start); | 
 | 		if (err) { | 
 | 			btrfs_abort_transaction(trans, extent_root, err); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	write_lock(&em_tree->lock); | 
 | 	remove_extent_mapping(em_tree, em); | 
 | 	write_unlock(&em_tree->lock); | 
 |  | 
 | 	/* One for our allocation */ | 
 | 	free_extent_map(em); | 
 | 	/* One for the tree reference */ | 
 | 	free_extent_map(em); | 
 | error: | 
 | 	kfree(map); | 
 | 	kfree(devices_info); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __finish_chunk_alloc(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *extent_root, | 
 | 				struct map_lookup *map, u64 chunk_offset, | 
 | 				u64 chunk_size, u64 stripe_size) | 
 | { | 
 | 	u64 dev_offset; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; | 
 | 	struct btrfs_device *device; | 
 | 	struct btrfs_chunk *chunk; | 
 | 	struct btrfs_stripe *stripe; | 
 | 	size_t item_size = btrfs_chunk_item_size(map->num_stripes); | 
 | 	int index = 0; | 
 | 	int ret; | 
 |  | 
 | 	chunk = kzalloc(item_size, GFP_NOFS); | 
 | 	if (!chunk) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	index = 0; | 
 | 	while (index < map->num_stripes) { | 
 | 		device = map->stripes[index].dev; | 
 | 		device->bytes_used += stripe_size; | 
 | 		ret = btrfs_update_device(trans, device); | 
 | 		if (ret) | 
 | 			goto out_free; | 
 | 		index++; | 
 | 	} | 
 |  | 
 | 	spin_lock(&extent_root->fs_info->free_chunk_lock); | 
 | 	extent_root->fs_info->free_chunk_space -= (stripe_size * | 
 | 						   map->num_stripes); | 
 | 	spin_unlock(&extent_root->fs_info->free_chunk_lock); | 
 |  | 
 | 	index = 0; | 
 | 	stripe = &chunk->stripe; | 
 | 	while (index < map->num_stripes) { | 
 | 		device = map->stripes[index].dev; | 
 | 		dev_offset = map->stripes[index].physical; | 
 |  | 
 | 		btrfs_set_stack_stripe_devid(stripe, device->devid); | 
 | 		btrfs_set_stack_stripe_offset(stripe, dev_offset); | 
 | 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); | 
 | 		stripe++; | 
 | 		index++; | 
 | 	} | 
 |  | 
 | 	btrfs_set_stack_chunk_length(chunk, chunk_size); | 
 | 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); | 
 | 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); | 
 | 	btrfs_set_stack_chunk_type(chunk, map->type); | 
 | 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); | 
 | 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); | 
 | 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); | 
 | 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); | 
 | 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); | 
 |  | 
 | 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | 
 | 	key.type = BTRFS_CHUNK_ITEM_KEY; | 
 | 	key.offset = chunk_offset; | 
 |  | 
 | 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); | 
 |  | 
 | 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | 
 | 		/* | 
 | 		 * TODO: Cleanup of inserted chunk root in case of | 
 | 		 * failure. | 
 | 		 */ | 
 | 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk, | 
 | 					     item_size); | 
 | 	} | 
 |  | 
 | out_free: | 
 | 	kfree(chunk); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Chunk allocation falls into two parts. The first part does works | 
 |  * that make the new allocated chunk useable, but not do any operation | 
 |  * that modifies the chunk tree. The second part does the works that | 
 |  * require modifying the chunk tree. This division is important for the | 
 |  * bootstrap process of adding storage to a seed btrfs. | 
 |  */ | 
 | int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, | 
 | 		      struct btrfs_root *extent_root, u64 type) | 
 | { | 
 | 	u64 chunk_offset; | 
 | 	u64 chunk_size; | 
 | 	u64 stripe_size; | 
 | 	struct map_lookup *map; | 
 | 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; | 
 | 	int ret; | 
 |  | 
 | 	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, | 
 | 			      &chunk_offset); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, | 
 | 				  &stripe_size, chunk_offset, type); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, | 
 | 				   chunk_size, stripe_size); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, | 
 | 					 struct btrfs_root *root, | 
 | 					 struct btrfs_device *device) | 
 | { | 
 | 	u64 chunk_offset; | 
 | 	u64 sys_chunk_offset; | 
 | 	u64 chunk_size; | 
 | 	u64 sys_chunk_size; | 
 | 	u64 stripe_size; | 
 | 	u64 sys_stripe_size; | 
 | 	u64 alloc_profile; | 
 | 	struct map_lookup *map; | 
 | 	struct map_lookup *sys_map; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_root *extent_root = fs_info->extent_root; | 
 | 	int ret; | 
 |  | 
 | 	ret = find_next_chunk(fs_info->chunk_root, | 
 | 			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0); | 
 | 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, | 
 | 				  &stripe_size, chunk_offset, alloc_profile); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	sys_chunk_offset = chunk_offset + chunk_size; | 
 |  | 
 | 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); | 
 | 	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map, | 
 | 				  &sys_chunk_size, &sys_stripe_size, | 
 | 				  sys_chunk_offset, alloc_profile); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, root, ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_add_device(trans, fs_info->chunk_root, device); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, root, ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Modifying chunk tree needs allocating new blocks from both | 
 | 	 * system block group and metadata block group. So we only can | 
 | 	 * do operations require modifying the chunk tree after both | 
 | 	 * block groups were created. | 
 | 	 */ | 
 | 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, | 
 | 				   chunk_size, stripe_size); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, root, ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = __finish_chunk_alloc(trans, extent_root, sys_map, | 
 | 				   sys_chunk_offset, sys_chunk_size, | 
 | 				   sys_stripe_size); | 
 | 	if (ret) | 
 | 		btrfs_abort_transaction(trans, root, ret); | 
 |  | 
 | out: | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) | 
 | { | 
 | 	struct extent_map *em; | 
 | 	struct map_lookup *map; | 
 | 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; | 
 | 	int readonly = 0; | 
 | 	int i; | 
 |  | 
 | 	read_lock(&map_tree->map_tree.lock); | 
 | 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); | 
 | 	read_unlock(&map_tree->map_tree.lock); | 
 | 	if (!em) | 
 | 		return 1; | 
 |  | 
 | 	if (btrfs_test_opt(root, DEGRADED)) { | 
 | 		free_extent_map(em); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	map = (struct map_lookup *)em->bdev; | 
 | 	for (i = 0; i < map->num_stripes; i++) { | 
 | 		if (!map->stripes[i].dev->writeable) { | 
 | 			readonly = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	free_extent_map(em); | 
 | 	return readonly; | 
 | } | 
 |  | 
 | void btrfs_mapping_init(struct btrfs_mapping_tree *tree) | 
 | { | 
 | 	extent_map_tree_init(&tree->map_tree); | 
 | } | 
 |  | 
 | void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) | 
 | { | 
 | 	struct extent_map *em; | 
 |  | 
 | 	while (1) { | 
 | 		write_lock(&tree->map_tree.lock); | 
 | 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); | 
 | 		if (em) | 
 | 			remove_extent_mapping(&tree->map_tree, em); | 
 | 		write_unlock(&tree->map_tree.lock); | 
 | 		if (!em) | 
 | 			break; | 
 | 		kfree(em->bdev); | 
 | 		/* once for us */ | 
 | 		free_extent_map(em); | 
 | 		/* once for the tree */ | 
 | 		free_extent_map(em); | 
 | 	} | 
 | } | 
 |  | 
 | int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) | 
 | { | 
 | 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; | 
 | 	struct extent_map *em; | 
 | 	struct map_lookup *map; | 
 | 	struct extent_map_tree *em_tree = &map_tree->map_tree; | 
 | 	int ret; | 
 |  | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, logical, len); | 
 | 	read_unlock(&em_tree->lock); | 
 | 	BUG_ON(!em); | 
 |  | 
 | 	BUG_ON(em->start > logical || em->start + em->len < logical); | 
 | 	map = (struct map_lookup *)em->bdev; | 
 | 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) | 
 | 		ret = map->num_stripes; | 
 | 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10) | 
 | 		ret = map->sub_stripes; | 
 | 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5) | 
 | 		ret = 2; | 
 | 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6) | 
 | 		ret = 3; | 
 | 	else | 
 | 		ret = 1; | 
 | 	free_extent_map(em); | 
 |  | 
 | 	btrfs_dev_replace_lock(&fs_info->dev_replace); | 
 | 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) | 
 | 		ret++; | 
 | 	btrfs_dev_replace_unlock(&fs_info->dev_replace); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | unsigned long btrfs_full_stripe_len(struct btrfs_root *root, | 
 | 				    struct btrfs_mapping_tree *map_tree, | 
 | 				    u64 logical) | 
 | { | 
 | 	struct extent_map *em; | 
 | 	struct map_lookup *map; | 
 | 	struct extent_map_tree *em_tree = &map_tree->map_tree; | 
 | 	unsigned long len = root->sectorsize; | 
 |  | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, logical, len); | 
 | 	read_unlock(&em_tree->lock); | 
 | 	BUG_ON(!em); | 
 |  | 
 | 	BUG_ON(em->start > logical || em->start + em->len < logical); | 
 | 	map = (struct map_lookup *)em->bdev; | 
 | 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | | 
 | 			 BTRFS_BLOCK_GROUP_RAID6)) { | 
 | 		len = map->stripe_len * nr_data_stripes(map); | 
 | 	} | 
 | 	free_extent_map(em); | 
 | 	return len; | 
 | } | 
 |  | 
 | int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, | 
 | 			   u64 logical, u64 len, int mirror_num) | 
 | { | 
 | 	struct extent_map *em; | 
 | 	struct map_lookup *map; | 
 | 	struct extent_map_tree *em_tree = &map_tree->map_tree; | 
 | 	int ret = 0; | 
 |  | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, logical, len); | 
 | 	read_unlock(&em_tree->lock); | 
 | 	BUG_ON(!em); | 
 |  | 
 | 	BUG_ON(em->start > logical || em->start + em->len < logical); | 
 | 	map = (struct map_lookup *)em->bdev; | 
 | 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | | 
 | 			 BTRFS_BLOCK_GROUP_RAID6)) | 
 | 		ret = 1; | 
 | 	free_extent_map(em); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int find_live_mirror(struct btrfs_fs_info *fs_info, | 
 | 			    struct map_lookup *map, int first, int num, | 
 | 			    int optimal, int dev_replace_is_ongoing) | 
 | { | 
 | 	int i; | 
 | 	int tolerance; | 
 | 	struct btrfs_device *srcdev; | 
 |  | 
 | 	if (dev_replace_is_ongoing && | 
 | 	    fs_info->dev_replace.cont_reading_from_srcdev_mode == | 
 | 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) | 
 | 		srcdev = fs_info->dev_replace.srcdev; | 
 | 	else | 
 | 		srcdev = NULL; | 
 |  | 
 | 	/* | 
 | 	 * try to avoid the drive that is the source drive for a | 
 | 	 * dev-replace procedure, only choose it if no other non-missing | 
 | 	 * mirror is available | 
 | 	 */ | 
 | 	for (tolerance = 0; tolerance < 2; tolerance++) { | 
 | 		if (map->stripes[optimal].dev->bdev && | 
 | 		    (tolerance || map->stripes[optimal].dev != srcdev)) | 
 | 			return optimal; | 
 | 		for (i = first; i < first + num; i++) { | 
 | 			if (map->stripes[i].dev->bdev && | 
 | 			    (tolerance || map->stripes[i].dev != srcdev)) | 
 | 				return i; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* we couldn't find one that doesn't fail.  Just return something | 
 | 	 * and the io error handling code will clean up eventually | 
 | 	 */ | 
 | 	return optimal; | 
 | } | 
 |  | 
 | static inline int parity_smaller(u64 a, u64 b) | 
 | { | 
 | 	return a > b; | 
 | } | 
 |  | 
 | /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ | 
 | static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map) | 
 | { | 
 | 	struct btrfs_bio_stripe s; | 
 | 	int i; | 
 | 	u64 l; | 
 | 	int again = 1; | 
 |  | 
 | 	while (again) { | 
 | 		again = 0; | 
 | 		for (i = 0; i < bbio->num_stripes - 1; i++) { | 
 | 			if (parity_smaller(raid_map[i], raid_map[i+1])) { | 
 | 				s = bbio->stripes[i]; | 
 | 				l = raid_map[i]; | 
 | 				bbio->stripes[i] = bbio->stripes[i+1]; | 
 | 				raid_map[i] = raid_map[i+1]; | 
 | 				bbio->stripes[i+1] = s; | 
 | 				raid_map[i+1] = l; | 
 | 				again = 1; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, | 
 | 			     u64 logical, u64 *length, | 
 | 			     struct btrfs_bio **bbio_ret, | 
 | 			     int mirror_num, u64 **raid_map_ret) | 
 | { | 
 | 	struct extent_map *em; | 
 | 	struct map_lookup *map; | 
 | 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; | 
 | 	struct extent_map_tree *em_tree = &map_tree->map_tree; | 
 | 	u64 offset; | 
 | 	u64 stripe_offset; | 
 | 	u64 stripe_end_offset; | 
 | 	u64 stripe_nr; | 
 | 	u64 stripe_nr_orig; | 
 | 	u64 stripe_nr_end; | 
 | 	u64 stripe_len; | 
 | 	u64 *raid_map = NULL; | 
 | 	int stripe_index; | 
 | 	int i; | 
 | 	int ret = 0; | 
 | 	int num_stripes; | 
 | 	int max_errors = 0; | 
 | 	struct btrfs_bio *bbio = NULL; | 
 | 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; | 
 | 	int dev_replace_is_ongoing = 0; | 
 | 	int num_alloc_stripes; | 
 | 	int patch_the_first_stripe_for_dev_replace = 0; | 
 | 	u64 physical_to_patch_in_first_stripe = 0; | 
 | 	u64 raid56_full_stripe_start = (u64)-1; | 
 |  | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, logical, *length); | 
 | 	read_unlock(&em_tree->lock); | 
 |  | 
 | 	if (!em) { | 
 | 		printk(KERN_CRIT "btrfs: unable to find logical %llu len %llu\n", | 
 | 		       (unsigned long long)logical, | 
 | 		       (unsigned long long)*length); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	BUG_ON(em->start > logical || em->start + em->len < logical); | 
 | 	map = (struct map_lookup *)em->bdev; | 
 | 	offset = logical - em->start; | 
 |  | 
 | 	if (mirror_num > map->num_stripes) | 
 | 		mirror_num = 0; | 
 |  | 
 | 	stripe_len = map->stripe_len; | 
 | 	stripe_nr = offset; | 
 | 	/* | 
 | 	 * stripe_nr counts the total number of stripes we have to stride | 
 | 	 * to get to this block | 
 | 	 */ | 
 | 	do_div(stripe_nr, stripe_len); | 
 |  | 
 | 	stripe_offset = stripe_nr * stripe_len; | 
 | 	BUG_ON(offset < stripe_offset); | 
 |  | 
 | 	/* stripe_offset is the offset of this block in its stripe*/ | 
 | 	stripe_offset = offset - stripe_offset; | 
 |  | 
 | 	/* if we're here for raid56, we need to know the stripe aligned start */ | 
 | 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { | 
 | 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); | 
 | 		raid56_full_stripe_start = offset; | 
 |  | 
 | 		/* allow a write of a full stripe, but make sure we don't | 
 | 		 * allow straddling of stripes | 
 | 		 */ | 
 | 		do_div(raid56_full_stripe_start, full_stripe_len); | 
 | 		raid56_full_stripe_start *= full_stripe_len; | 
 | 	} | 
 |  | 
 | 	if (rw & REQ_DISCARD) { | 
 | 		/* we don't discard raid56 yet */ | 
 | 		if (map->type & | 
 | 		    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { | 
 | 			ret = -EOPNOTSUPP; | 
 | 			goto out; | 
 | 		} | 
 | 		*length = min_t(u64, em->len - offset, *length); | 
 | 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { | 
 | 		u64 max_len; | 
 | 		/* For writes to RAID[56], allow a full stripeset across all disks. | 
 | 		   For other RAID types and for RAID[56] reads, just allow a single | 
 | 		   stripe (on a single disk). */ | 
 | 		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) && | 
 | 		    (rw & REQ_WRITE)) { | 
 | 			max_len = stripe_len * nr_data_stripes(map) - | 
 | 				(offset - raid56_full_stripe_start); | 
 | 		} else { | 
 | 			/* we limit the length of each bio to what fits in a stripe */ | 
 | 			max_len = stripe_len - stripe_offset; | 
 | 		} | 
 | 		*length = min_t(u64, em->len - offset, max_len); | 
 | 	} else { | 
 | 		*length = em->len - offset; | 
 | 	} | 
 |  | 
 | 	/* This is for when we're called from btrfs_merge_bio_hook() and all | 
 | 	   it cares about is the length */ | 
 | 	if (!bbio_ret) | 
 | 		goto out; | 
 |  | 
 | 	btrfs_dev_replace_lock(dev_replace); | 
 | 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); | 
 | 	if (!dev_replace_is_ongoing) | 
 | 		btrfs_dev_replace_unlock(dev_replace); | 
 |  | 
 | 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && | 
 | 	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) && | 
 | 	    dev_replace->tgtdev != NULL) { | 
 | 		/* | 
 | 		 * in dev-replace case, for repair case (that's the only | 
 | 		 * case where the mirror is selected explicitly when | 
 | 		 * calling btrfs_map_block), blocks left of the left cursor | 
 | 		 * can also be read from the target drive. | 
 | 		 * For REQ_GET_READ_MIRRORS, the target drive is added as | 
 | 		 * the last one to the array of stripes. For READ, it also | 
 | 		 * needs to be supported using the same mirror number. | 
 | 		 * If the requested block is not left of the left cursor, | 
 | 		 * EIO is returned. This can happen because btrfs_num_copies() | 
 | 		 * returns one more in the dev-replace case. | 
 | 		 */ | 
 | 		u64 tmp_length = *length; | 
 | 		struct btrfs_bio *tmp_bbio = NULL; | 
 | 		int tmp_num_stripes; | 
 | 		u64 srcdev_devid = dev_replace->srcdev->devid; | 
 | 		int index_srcdev = 0; | 
 | 		int found = 0; | 
 | 		u64 physical_of_found = 0; | 
 |  | 
 | 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, | 
 | 			     logical, &tmp_length, &tmp_bbio, 0, NULL); | 
 | 		if (ret) { | 
 | 			WARN_ON(tmp_bbio != NULL); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		tmp_num_stripes = tmp_bbio->num_stripes; | 
 | 		if (mirror_num > tmp_num_stripes) { | 
 | 			/* | 
 | 			 * REQ_GET_READ_MIRRORS does not contain this | 
 | 			 * mirror, that means that the requested area | 
 | 			 * is not left of the left cursor | 
 | 			 */ | 
 | 			ret = -EIO; | 
 | 			kfree(tmp_bbio); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * process the rest of the function using the mirror_num | 
 | 		 * of the source drive. Therefore look it up first. | 
 | 		 * At the end, patch the device pointer to the one of the | 
 | 		 * target drive. | 
 | 		 */ | 
 | 		for (i = 0; i < tmp_num_stripes; i++) { | 
 | 			if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) { | 
 | 				/* | 
 | 				 * In case of DUP, in order to keep it | 
 | 				 * simple, only add the mirror with the | 
 | 				 * lowest physical address | 
 | 				 */ | 
 | 				if (found && | 
 | 				    physical_of_found <= | 
 | 				     tmp_bbio->stripes[i].physical) | 
 | 					continue; | 
 | 				index_srcdev = i; | 
 | 				found = 1; | 
 | 				physical_of_found = | 
 | 					tmp_bbio->stripes[i].physical; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (found) { | 
 | 			mirror_num = index_srcdev + 1; | 
 | 			patch_the_first_stripe_for_dev_replace = 1; | 
 | 			physical_to_patch_in_first_stripe = physical_of_found; | 
 | 		} else { | 
 | 			WARN_ON(1); | 
 | 			ret = -EIO; | 
 | 			kfree(tmp_bbio); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		kfree(tmp_bbio); | 
 | 	} else if (mirror_num > map->num_stripes) { | 
 | 		mirror_num = 0; | 
 | 	} | 
 |  | 
 | 	num_stripes = 1; | 
 | 	stripe_index = 0; | 
 | 	stripe_nr_orig = stripe_nr; | 
 | 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len); | 
 | 	do_div(stripe_nr_end, map->stripe_len); | 
 | 	stripe_end_offset = stripe_nr_end * map->stripe_len - | 
 | 			    (offset + *length); | 
 |  | 
 | 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) { | 
 | 		if (rw & REQ_DISCARD) | 
 | 			num_stripes = min_t(u64, map->num_stripes, | 
 | 					    stripe_nr_end - stripe_nr_orig); | 
 | 		stripe_index = do_div(stripe_nr, map->num_stripes); | 
 | 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { | 
 | 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) | 
 | 			num_stripes = map->num_stripes; | 
 | 		else if (mirror_num) | 
 | 			stripe_index = mirror_num - 1; | 
 | 		else { | 
 | 			stripe_index = find_live_mirror(fs_info, map, 0, | 
 | 					    map->num_stripes, | 
 | 					    current->pid % map->num_stripes, | 
 | 					    dev_replace_is_ongoing); | 
 | 			mirror_num = stripe_index + 1; | 
 | 		} | 
 |  | 
 | 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) { | 
 | 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) { | 
 | 			num_stripes = map->num_stripes; | 
 | 		} else if (mirror_num) { | 
 | 			stripe_index = mirror_num - 1; | 
 | 		} else { | 
 | 			mirror_num = 1; | 
 | 		} | 
 |  | 
 | 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | 
 | 		int factor = map->num_stripes / map->sub_stripes; | 
 |  | 
 | 		stripe_index = do_div(stripe_nr, factor); | 
 | 		stripe_index *= map->sub_stripes; | 
 |  | 
 | 		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) | 
 | 			num_stripes = map->sub_stripes; | 
 | 		else if (rw & REQ_DISCARD) | 
 | 			num_stripes = min_t(u64, map->sub_stripes * | 
 | 					    (stripe_nr_end - stripe_nr_orig), | 
 | 					    map->num_stripes); | 
 | 		else if (mirror_num) | 
 | 			stripe_index += mirror_num - 1; | 
 | 		else { | 
 | 			int old_stripe_index = stripe_index; | 
 | 			stripe_index = find_live_mirror(fs_info, map, | 
 | 					      stripe_index, | 
 | 					      map->sub_stripes, stripe_index + | 
 | 					      current->pid % map->sub_stripes, | 
 | 					      dev_replace_is_ongoing); | 
 | 			mirror_num = stripe_index - old_stripe_index + 1; | 
 | 		} | 
 |  | 
 | 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | | 
 | 				BTRFS_BLOCK_GROUP_RAID6)) { | 
 | 		u64 tmp; | 
 |  | 
 | 		if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1) | 
 | 		    && raid_map_ret) { | 
 | 			int i, rot; | 
 |  | 
 | 			/* push stripe_nr back to the start of the full stripe */ | 
 | 			stripe_nr = raid56_full_stripe_start; | 
 | 			do_div(stripe_nr, stripe_len); | 
 |  | 
 | 			stripe_index = do_div(stripe_nr, nr_data_stripes(map)); | 
 |  | 
 | 			/* RAID[56] write or recovery. Return all stripes */ | 
 | 			num_stripes = map->num_stripes; | 
 | 			max_errors = nr_parity_stripes(map); | 
 |  | 
 | 			raid_map = kmalloc(sizeof(u64) * num_stripes, | 
 | 					   GFP_NOFS); | 
 | 			if (!raid_map) { | 
 | 				ret = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			/* Work out the disk rotation on this stripe-set */ | 
 | 			tmp = stripe_nr; | 
 | 			rot = do_div(tmp, num_stripes); | 
 |  | 
 | 			/* Fill in the logical address of each stripe */ | 
 | 			tmp = stripe_nr * nr_data_stripes(map); | 
 | 			for (i = 0; i < nr_data_stripes(map); i++) | 
 | 				raid_map[(i+rot) % num_stripes] = | 
 | 					em->start + (tmp + i) * map->stripe_len; | 
 |  | 
 | 			raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; | 
 | 			if (map->type & BTRFS_BLOCK_GROUP_RAID6) | 
 | 				raid_map[(i+rot+1) % num_stripes] = | 
 | 					RAID6_Q_STRIPE; | 
 |  | 
 | 			*length = map->stripe_len; | 
 | 			stripe_index = 0; | 
 | 			stripe_offset = 0; | 
 | 		} else { | 
 | 			/* | 
 | 			 * Mirror #0 or #1 means the original data block. | 
 | 			 * Mirror #2 is RAID5 parity block. | 
 | 			 * Mirror #3 is RAID6 Q block. | 
 | 			 */ | 
 | 			stripe_index = do_div(stripe_nr, nr_data_stripes(map)); | 
 | 			if (mirror_num > 1) | 
 | 				stripe_index = nr_data_stripes(map) + | 
 | 						mirror_num - 2; | 
 |  | 
 | 			/* We distribute the parity blocks across stripes */ | 
 | 			tmp = stripe_nr + stripe_index; | 
 | 			stripe_index = do_div(tmp, map->num_stripes); | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * after this do_div call, stripe_nr is the number of stripes | 
 | 		 * on this device we have to walk to find the data, and | 
 | 		 * stripe_index is the number of our device in the stripe array | 
 | 		 */ | 
 | 		stripe_index = do_div(stripe_nr, map->num_stripes); | 
 | 		mirror_num = stripe_index + 1; | 
 | 	} | 
 | 	BUG_ON(stripe_index >= map->num_stripes); | 
 |  | 
 | 	num_alloc_stripes = num_stripes; | 
 | 	if (dev_replace_is_ongoing) { | 
 | 		if (rw & (REQ_WRITE | REQ_DISCARD)) | 
 | 			num_alloc_stripes <<= 1; | 
 | 		if (rw & REQ_GET_READ_MIRRORS) | 
 | 			num_alloc_stripes++; | 
 | 	} | 
 | 	bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS); | 
 | 	if (!bbio) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 | 	atomic_set(&bbio->error, 0); | 
 |  | 
 | 	if (rw & REQ_DISCARD) { | 
 | 		int factor = 0; | 
 | 		int sub_stripes = 0; | 
 | 		u64 stripes_per_dev = 0; | 
 | 		u32 remaining_stripes = 0; | 
 | 		u32 last_stripe = 0; | 
 |  | 
 | 		if (map->type & | 
 | 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { | 
 | 			if (map->type & BTRFS_BLOCK_GROUP_RAID0) | 
 | 				sub_stripes = 1; | 
 | 			else | 
 | 				sub_stripes = map->sub_stripes; | 
 |  | 
 | 			factor = map->num_stripes / sub_stripes; | 
 | 			stripes_per_dev = div_u64_rem(stripe_nr_end - | 
 | 						      stripe_nr_orig, | 
 | 						      factor, | 
 | 						      &remaining_stripes); | 
 | 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); | 
 | 			last_stripe *= sub_stripes; | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < num_stripes; i++) { | 
 | 			bbio->stripes[i].physical = | 
 | 				map->stripes[stripe_index].physical + | 
 | 				stripe_offset + stripe_nr * map->stripe_len; | 
 | 			bbio->stripes[i].dev = map->stripes[stripe_index].dev; | 
 |  | 
 | 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | | 
 | 					 BTRFS_BLOCK_GROUP_RAID10)) { | 
 | 				bbio->stripes[i].length = stripes_per_dev * | 
 | 							  map->stripe_len; | 
 |  | 
 | 				if (i / sub_stripes < remaining_stripes) | 
 | 					bbio->stripes[i].length += | 
 | 						map->stripe_len; | 
 |  | 
 | 				/* | 
 | 				 * Special for the first stripe and | 
 | 				 * the last stripe: | 
 | 				 * | 
 | 				 * |-------|...|-------| | 
 | 				 *     |----------| | 
 | 				 *    off     end_off | 
 | 				 */ | 
 | 				if (i < sub_stripes) | 
 | 					bbio->stripes[i].length -= | 
 | 						stripe_offset; | 
 |  | 
 | 				if (stripe_index >= last_stripe && | 
 | 				    stripe_index <= (last_stripe + | 
 | 						     sub_stripes - 1)) | 
 | 					bbio->stripes[i].length -= | 
 | 						stripe_end_offset; | 
 |  | 
 | 				if (i == sub_stripes - 1) | 
 | 					stripe_offset = 0; | 
 | 			} else | 
 | 				bbio->stripes[i].length = *length; | 
 |  | 
 | 			stripe_index++; | 
 | 			if (stripe_index == map->num_stripes) { | 
 | 				/* This could only happen for RAID0/10 */ | 
 | 				stripe_index = 0; | 
 | 				stripe_nr++; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		for (i = 0; i < num_stripes; i++) { | 
 | 			bbio->stripes[i].physical = | 
 | 				map->stripes[stripe_index].physical + | 
 | 				stripe_offset + | 
 | 				stripe_nr * map->stripe_len; | 
 | 			bbio->stripes[i].dev = | 
 | 				map->stripes[stripe_index].dev; | 
 | 			stripe_index++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) { | 
 | 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | | 
 | 				 BTRFS_BLOCK_GROUP_RAID10 | | 
 | 				 BTRFS_BLOCK_GROUP_RAID5 | | 
 | 				 BTRFS_BLOCK_GROUP_DUP)) { | 
 | 			max_errors = 1; | 
 | 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { | 
 | 			max_errors = 2; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) && | 
 | 	    dev_replace->tgtdev != NULL) { | 
 | 		int index_where_to_add; | 
 | 		u64 srcdev_devid = dev_replace->srcdev->devid; | 
 |  | 
 | 		/* | 
 | 		 * duplicate the write operations while the dev replace | 
 | 		 * procedure is running. Since the copying of the old disk | 
 | 		 * to the new disk takes place at run time while the | 
 | 		 * filesystem is mounted writable, the regular write | 
 | 		 * operations to the old disk have to be duplicated to go | 
 | 		 * to the new disk as well. | 
 | 		 * Note that device->missing is handled by the caller, and | 
 | 		 * that the write to the old disk is already set up in the | 
 | 		 * stripes array. | 
 | 		 */ | 
 | 		index_where_to_add = num_stripes; | 
 | 		for (i = 0; i < num_stripes; i++) { | 
 | 			if (bbio->stripes[i].dev->devid == srcdev_devid) { | 
 | 				/* write to new disk, too */ | 
 | 				struct btrfs_bio_stripe *new = | 
 | 					bbio->stripes + index_where_to_add; | 
 | 				struct btrfs_bio_stripe *old = | 
 | 					bbio->stripes + i; | 
 |  | 
 | 				new->physical = old->physical; | 
 | 				new->length = old->length; | 
 | 				new->dev = dev_replace->tgtdev; | 
 | 				index_where_to_add++; | 
 | 				max_errors++; | 
 | 			} | 
 | 		} | 
 | 		num_stripes = index_where_to_add; | 
 | 	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) && | 
 | 		   dev_replace->tgtdev != NULL) { | 
 | 		u64 srcdev_devid = dev_replace->srcdev->devid; | 
 | 		int index_srcdev = 0; | 
 | 		int found = 0; | 
 | 		u64 physical_of_found = 0; | 
 |  | 
 | 		/* | 
 | 		 * During the dev-replace procedure, the target drive can | 
 | 		 * also be used to read data in case it is needed to repair | 
 | 		 * a corrupt block elsewhere. This is possible if the | 
 | 		 * requested area is left of the left cursor. In this area, | 
 | 		 * the target drive is a full copy of the source drive. | 
 | 		 */ | 
 | 		for (i = 0; i < num_stripes; i++) { | 
 | 			if (bbio->stripes[i].dev->devid == srcdev_devid) { | 
 | 				/* | 
 | 				 * In case of DUP, in order to keep it | 
 | 				 * simple, only add the mirror with the | 
 | 				 * lowest physical address | 
 | 				 */ | 
 | 				if (found && | 
 | 				    physical_of_found <= | 
 | 				     bbio->stripes[i].physical) | 
 | 					continue; | 
 | 				index_srcdev = i; | 
 | 				found = 1; | 
 | 				physical_of_found = bbio->stripes[i].physical; | 
 | 			} | 
 | 		} | 
 | 		if (found) { | 
 | 			u64 length = map->stripe_len; | 
 |  | 
 | 			if (physical_of_found + length <= | 
 | 			    dev_replace->cursor_left) { | 
 | 				struct btrfs_bio_stripe *tgtdev_stripe = | 
 | 					bbio->stripes + num_stripes; | 
 |  | 
 | 				tgtdev_stripe->physical = physical_of_found; | 
 | 				tgtdev_stripe->length = | 
 | 					bbio->stripes[index_srcdev].length; | 
 | 				tgtdev_stripe->dev = dev_replace->tgtdev; | 
 |  | 
 | 				num_stripes++; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	*bbio_ret = bbio; | 
 | 	bbio->num_stripes = num_stripes; | 
 | 	bbio->max_errors = max_errors; | 
 | 	bbio->mirror_num = mirror_num; | 
 |  | 
 | 	/* | 
 | 	 * this is the case that REQ_READ && dev_replace_is_ongoing && | 
 | 	 * mirror_num == num_stripes + 1 && dev_replace target drive is | 
 | 	 * available as a mirror | 
 | 	 */ | 
 | 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { | 
 | 		WARN_ON(num_stripes > 1); | 
 | 		bbio->stripes[0].dev = dev_replace->tgtdev; | 
 | 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe; | 
 | 		bbio->mirror_num = map->num_stripes + 1; | 
 | 	} | 
 | 	if (raid_map) { | 
 | 		sort_parity_stripes(bbio, raid_map); | 
 | 		*raid_map_ret = raid_map; | 
 | 	} | 
 | out: | 
 | 	if (dev_replace_is_ongoing) | 
 | 		btrfs_dev_replace_unlock(dev_replace); | 
 | 	free_extent_map(em); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, | 
 | 		      u64 logical, u64 *length, | 
 | 		      struct btrfs_bio **bbio_ret, int mirror_num) | 
 | { | 
 | 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, | 
 | 				 mirror_num, NULL); | 
 | } | 
 |  | 
 | int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, | 
 | 		     u64 chunk_start, u64 physical, u64 devid, | 
 | 		     u64 **logical, int *naddrs, int *stripe_len) | 
 | { | 
 | 	struct extent_map_tree *em_tree = &map_tree->map_tree; | 
 | 	struct extent_map *em; | 
 | 	struct map_lookup *map; | 
 | 	u64 *buf; | 
 | 	u64 bytenr; | 
 | 	u64 length; | 
 | 	u64 stripe_nr; | 
 | 	u64 rmap_len; | 
 | 	int i, j, nr = 0; | 
 |  | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, chunk_start, 1); | 
 | 	read_unlock(&em_tree->lock); | 
 |  | 
 | 	if (!em) { | 
 | 		printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n", | 
 | 		       chunk_start); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (em->start != chunk_start) { | 
 | 		printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n", | 
 | 		       em->start, chunk_start); | 
 | 		free_extent_map(em); | 
 | 		return -EIO; | 
 | 	} | 
 | 	map = (struct map_lookup *)em->bdev; | 
 |  | 
 | 	length = em->len; | 
 | 	rmap_len = map->stripe_len; | 
 |  | 
 | 	if (map->type & BTRFS_BLOCK_GROUP_RAID10) | 
 | 		do_div(length, map->num_stripes / map->sub_stripes); | 
 | 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0) | 
 | 		do_div(length, map->num_stripes); | 
 | 	else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | | 
 | 			      BTRFS_BLOCK_GROUP_RAID6)) { | 
 | 		do_div(length, nr_data_stripes(map)); | 
 | 		rmap_len = map->stripe_len * nr_data_stripes(map); | 
 | 	} | 
 |  | 
 | 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); | 
 | 	BUG_ON(!buf); /* -ENOMEM */ | 
 |  | 
 | 	for (i = 0; i < map->num_stripes; i++) { | 
 | 		if (devid && map->stripes[i].dev->devid != devid) | 
 | 			continue; | 
 | 		if (map->stripes[i].physical > physical || | 
 | 		    map->stripes[i].physical + length <= physical) | 
 | 			continue; | 
 |  | 
 | 		stripe_nr = physical - map->stripes[i].physical; | 
 | 		do_div(stripe_nr, map->stripe_len); | 
 |  | 
 | 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | 
 | 			stripe_nr = stripe_nr * map->num_stripes + i; | 
 | 			do_div(stripe_nr, map->sub_stripes); | 
 | 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { | 
 | 			stripe_nr = stripe_nr * map->num_stripes + i; | 
 | 		} /* else if RAID[56], multiply by nr_data_stripes(). | 
 | 		   * Alternatively, just use rmap_len below instead of | 
 | 		   * map->stripe_len */ | 
 |  | 
 | 		bytenr = chunk_start + stripe_nr * rmap_len; | 
 | 		WARN_ON(nr >= map->num_stripes); | 
 | 		for (j = 0; j < nr; j++) { | 
 | 			if (buf[j] == bytenr) | 
 | 				break; | 
 | 		} | 
 | 		if (j == nr) { | 
 | 			WARN_ON(nr >= map->num_stripes); | 
 | 			buf[nr++] = bytenr; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	*logical = buf; | 
 | 	*naddrs = nr; | 
 | 	*stripe_len = rmap_len; | 
 |  | 
 | 	free_extent_map(em); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void *merge_stripe_index_into_bio_private(void *bi_private, | 
 | 						 unsigned int stripe_index) | 
 | { | 
 | 	/* | 
 | 	 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is | 
 | 	 * at most 1. | 
 | 	 * The alternative solution (instead of stealing bits from the | 
 | 	 * pointer) would be to allocate an intermediate structure | 
 | 	 * that contains the old private pointer plus the stripe_index. | 
 | 	 */ | 
 | 	BUG_ON((((uintptr_t)bi_private) & 3) != 0); | 
 | 	BUG_ON(stripe_index > 3); | 
 | 	return (void *)(((uintptr_t)bi_private) | stripe_index); | 
 | } | 
 |  | 
 | static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private) | 
 | { | 
 | 	return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3)); | 
 | } | 
 |  | 
 | static unsigned int extract_stripe_index_from_bio_private(void *bi_private) | 
 | { | 
 | 	return (unsigned int)((uintptr_t)bi_private) & 3; | 
 | } | 
 |  | 
 | static void btrfs_end_bio(struct bio *bio, int err) | 
 | { | 
 | 	struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private); | 
 | 	int is_orig_bio = 0; | 
 |  | 
 | 	if (err) { | 
 | 		atomic_inc(&bbio->error); | 
 | 		if (err == -EIO || err == -EREMOTEIO) { | 
 | 			unsigned int stripe_index = | 
 | 				extract_stripe_index_from_bio_private( | 
 | 					bio->bi_private); | 
 | 			struct btrfs_device *dev; | 
 |  | 
 | 			BUG_ON(stripe_index >= bbio->num_stripes); | 
 | 			dev = bbio->stripes[stripe_index].dev; | 
 | 			if (dev->bdev) { | 
 | 				if (bio->bi_rw & WRITE) | 
 | 					btrfs_dev_stat_inc(dev, | 
 | 						BTRFS_DEV_STAT_WRITE_ERRS); | 
 | 				else | 
 | 					btrfs_dev_stat_inc(dev, | 
 | 						BTRFS_DEV_STAT_READ_ERRS); | 
 | 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) | 
 | 					btrfs_dev_stat_inc(dev, | 
 | 						BTRFS_DEV_STAT_FLUSH_ERRS); | 
 | 				btrfs_dev_stat_print_on_error(dev); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (bio == bbio->orig_bio) | 
 | 		is_orig_bio = 1; | 
 |  | 
 | 	if (atomic_dec_and_test(&bbio->stripes_pending)) { | 
 | 		if (!is_orig_bio) { | 
 | 			bio_put(bio); | 
 | 			bio = bbio->orig_bio; | 
 | 		} | 
 | 		bio->bi_private = bbio->private; | 
 | 		bio->bi_end_io = bbio->end_io; | 
 | 		bio->bi_bdev = (struct block_device *) | 
 | 					(unsigned long)bbio->mirror_num; | 
 | 		/* only send an error to the higher layers if it is | 
 | 		 * beyond the tolerance of the btrfs bio | 
 | 		 */ | 
 | 		if (atomic_read(&bbio->error) > bbio->max_errors) { | 
 | 			err = -EIO; | 
 | 		} else { | 
 | 			/* | 
 | 			 * this bio is actually up to date, we didn't | 
 | 			 * go over the max number of errors | 
 | 			 */ | 
 | 			set_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 			err = 0; | 
 | 		} | 
 | 		kfree(bbio); | 
 |  | 
 | 		bio_endio(bio, err); | 
 | 	} else if (!is_orig_bio) { | 
 | 		bio_put(bio); | 
 | 	} | 
 | } | 
 |  | 
 | struct async_sched { | 
 | 	struct bio *bio; | 
 | 	int rw; | 
 | 	struct btrfs_fs_info *info; | 
 | 	struct btrfs_work work; | 
 | }; | 
 |  | 
 | /* | 
 |  * see run_scheduled_bios for a description of why bios are collected for | 
 |  * async submit. | 
 |  * | 
 |  * This will add one bio to the pending list for a device and make sure | 
 |  * the work struct is scheduled. | 
 |  */ | 
 | noinline void btrfs_schedule_bio(struct btrfs_root *root, | 
 | 				 struct btrfs_device *device, | 
 | 				 int rw, struct bio *bio) | 
 | { | 
 | 	int should_queue = 1; | 
 | 	struct btrfs_pending_bios *pending_bios; | 
 |  | 
 | 	if (device->missing || !device->bdev) { | 
 | 		bio_endio(bio, -EIO); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* don't bother with additional async steps for reads, right now */ | 
 | 	if (!(rw & REQ_WRITE)) { | 
 | 		bio_get(bio); | 
 | 		btrfsic_submit_bio(rw, bio); | 
 | 		bio_put(bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * nr_async_bios allows us to reliably return congestion to the | 
 | 	 * higher layers.  Otherwise, the async bio makes it appear we have | 
 | 	 * made progress against dirty pages when we've really just put it | 
 | 	 * on a queue for later | 
 | 	 */ | 
 | 	atomic_inc(&root->fs_info->nr_async_bios); | 
 | 	WARN_ON(bio->bi_next); | 
 | 	bio->bi_next = NULL; | 
 | 	bio->bi_rw |= rw; | 
 |  | 
 | 	spin_lock(&device->io_lock); | 
 | 	if (bio->bi_rw & REQ_SYNC) | 
 | 		pending_bios = &device->pending_sync_bios; | 
 | 	else | 
 | 		pending_bios = &device->pending_bios; | 
 |  | 
 | 	if (pending_bios->tail) | 
 | 		pending_bios->tail->bi_next = bio; | 
 |  | 
 | 	pending_bios->tail = bio; | 
 | 	if (!pending_bios->head) | 
 | 		pending_bios->head = bio; | 
 | 	if (device->running_pending) | 
 | 		should_queue = 0; | 
 |  | 
 | 	spin_unlock(&device->io_lock); | 
 |  | 
 | 	if (should_queue) | 
 | 		btrfs_queue_worker(&root->fs_info->submit_workers, | 
 | 				   &device->work); | 
 | } | 
 |  | 
 | static int bio_size_ok(struct block_device *bdev, struct bio *bio, | 
 | 		       sector_t sector) | 
 | { | 
 | 	struct bio_vec *prev; | 
 | 	struct request_queue *q = bdev_get_queue(bdev); | 
 | 	unsigned short max_sectors = queue_max_sectors(q); | 
 | 	struct bvec_merge_data bvm = { | 
 | 		.bi_bdev = bdev, | 
 | 		.bi_sector = sector, | 
 | 		.bi_rw = bio->bi_rw, | 
 | 	}; | 
 |  | 
 | 	if (bio->bi_vcnt == 0) { | 
 | 		WARN_ON(1); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; | 
 | 	if ((bio->bi_size >> 9) > max_sectors) | 
 | 		return 0; | 
 |  | 
 | 	if (!q->merge_bvec_fn) | 
 | 		return 1; | 
 |  | 
 | 	bvm.bi_size = bio->bi_size - prev->bv_len; | 
 | 	if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, | 
 | 			      struct bio *bio, u64 physical, int dev_nr, | 
 | 			      int rw, int async) | 
 | { | 
 | 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev; | 
 |  | 
 | 	bio->bi_private = bbio; | 
 | 	bio->bi_private = merge_stripe_index_into_bio_private( | 
 | 			bio->bi_private, (unsigned int)dev_nr); | 
 | 	bio->bi_end_io = btrfs_end_bio; | 
 | 	bio->bi_sector = physical >> 9; | 
 | #ifdef DEBUG | 
 | 	{ | 
 | 		struct rcu_string *name; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		name = rcu_dereference(dev->name); | 
 | 		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu " | 
 | 			 "(%s id %llu), size=%u\n", rw, | 
 | 			 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev, | 
 | 			 name->str, dev->devid, bio->bi_size); | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 | #endif | 
 | 	bio->bi_bdev = dev->bdev; | 
 | 	if (async) | 
 | 		btrfs_schedule_bio(root, dev, rw, bio); | 
 | 	else | 
 | 		btrfsic_submit_bio(rw, bio); | 
 | } | 
 |  | 
 | static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, | 
 | 			      struct bio *first_bio, struct btrfs_device *dev, | 
 | 			      int dev_nr, int rw, int async) | 
 | { | 
 | 	struct bio_vec *bvec = first_bio->bi_io_vec; | 
 | 	struct bio *bio; | 
 | 	int nr_vecs = bio_get_nr_vecs(dev->bdev); | 
 | 	u64 physical = bbio->stripes[dev_nr].physical; | 
 |  | 
 | again: | 
 | 	bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS); | 
 | 	if (!bio) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) { | 
 | 		if (bio_add_page(bio, bvec->bv_page, bvec->bv_len, | 
 | 				 bvec->bv_offset) < bvec->bv_len) { | 
 | 			u64 len = bio->bi_size; | 
 |  | 
 | 			atomic_inc(&bbio->stripes_pending); | 
 | 			submit_stripe_bio(root, bbio, bio, physical, dev_nr, | 
 | 					  rw, async); | 
 | 			physical += len; | 
 | 			goto again; | 
 | 		} | 
 | 		bvec++; | 
 | 	} | 
 |  | 
 | 	submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) | 
 | { | 
 | 	atomic_inc(&bbio->error); | 
 | 	if (atomic_dec_and_test(&bbio->stripes_pending)) { | 
 | 		bio->bi_private = bbio->private; | 
 | 		bio->bi_end_io = bbio->end_io; | 
 | 		bio->bi_bdev = (struct block_device *) | 
 | 			(unsigned long)bbio->mirror_num; | 
 | 		bio->bi_sector = logical >> 9; | 
 | 		kfree(bbio); | 
 | 		bio_endio(bio, -EIO); | 
 | 	} | 
 | } | 
 |  | 
 | int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, | 
 | 		  int mirror_num, int async_submit) | 
 | { | 
 | 	struct btrfs_device *dev; | 
 | 	struct bio *first_bio = bio; | 
 | 	u64 logical = (u64)bio->bi_sector << 9; | 
 | 	u64 length = 0; | 
 | 	u64 map_length; | 
 | 	u64 *raid_map = NULL; | 
 | 	int ret; | 
 | 	int dev_nr = 0; | 
 | 	int total_devs = 1; | 
 | 	struct btrfs_bio *bbio = NULL; | 
 |  | 
 | 	length = bio->bi_size; | 
 | 	map_length = length; | 
 |  | 
 | 	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio, | 
 | 			      mirror_num, &raid_map); | 
 | 	if (ret) /* -ENOMEM */ | 
 | 		return ret; | 
 |  | 
 | 	total_devs = bbio->num_stripes; | 
 | 	bbio->orig_bio = first_bio; | 
 | 	bbio->private = first_bio->bi_private; | 
 | 	bbio->end_io = first_bio->bi_end_io; | 
 | 	atomic_set(&bbio->stripes_pending, bbio->num_stripes); | 
 |  | 
 | 	if (raid_map) { | 
 | 		/* In this case, map_length has been set to the length of | 
 | 		   a single stripe; not the whole write */ | 
 | 		if (rw & WRITE) { | 
 | 			return raid56_parity_write(root, bio, bbio, | 
 | 						   raid_map, map_length); | 
 | 		} else { | 
 | 			return raid56_parity_recover(root, bio, bbio, | 
 | 						     raid_map, map_length, | 
 | 						     mirror_num); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (map_length < length) { | 
 | 		printk(KERN_CRIT "btrfs: mapping failed logical %llu bio len %llu " | 
 | 		       "len %llu\n", (unsigned long long)logical, | 
 | 		       (unsigned long long)length, | 
 | 		       (unsigned long long)map_length); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	while (dev_nr < total_devs) { | 
 | 		dev = bbio->stripes[dev_nr].dev; | 
 | 		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) { | 
 | 			bbio_error(bbio, first_bio, logical); | 
 | 			dev_nr++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Check and see if we're ok with this bio based on it's size | 
 | 		 * and offset with the given device. | 
 | 		 */ | 
 | 		if (!bio_size_ok(dev->bdev, first_bio, | 
 | 				 bbio->stripes[dev_nr].physical >> 9)) { | 
 | 			ret = breakup_stripe_bio(root, bbio, first_bio, dev, | 
 | 						 dev_nr, rw, async_submit); | 
 | 			BUG_ON(ret); | 
 | 			dev_nr++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (dev_nr < total_devs - 1) { | 
 | 			bio = bio_clone(first_bio, GFP_NOFS); | 
 | 			BUG_ON(!bio); /* -ENOMEM */ | 
 | 		} else { | 
 | 			bio = first_bio; | 
 | 		} | 
 |  | 
 | 		submit_stripe_bio(root, bbio, bio, | 
 | 				  bbio->stripes[dev_nr].physical, dev_nr, rw, | 
 | 				  async_submit); | 
 | 		dev_nr++; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, | 
 | 				       u8 *uuid, u8 *fsid) | 
 | { | 
 | 	struct btrfs_device *device; | 
 | 	struct btrfs_fs_devices *cur_devices; | 
 |  | 
 | 	cur_devices = fs_info->fs_devices; | 
 | 	while (cur_devices) { | 
 | 		if (!fsid || | 
 | 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { | 
 | 			device = __find_device(&cur_devices->devices, | 
 | 					       devid, uuid); | 
 | 			if (device) | 
 | 				return device; | 
 | 		} | 
 | 		cur_devices = cur_devices->seed; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct btrfs_device *add_missing_dev(struct btrfs_root *root, | 
 | 					    u64 devid, u8 *dev_uuid) | 
 | { | 
 | 	struct btrfs_device *device; | 
 | 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | 
 |  | 
 | 	device = kzalloc(sizeof(*device), GFP_NOFS); | 
 | 	if (!device) | 
 | 		return NULL; | 
 | 	list_add(&device->dev_list, | 
 | 		 &fs_devices->devices); | 
 | 	device->dev_root = root->fs_info->dev_root; | 
 | 	device->devid = devid; | 
 | 	device->work.func = pending_bios_fn; | 
 | 	device->fs_devices = fs_devices; | 
 | 	device->missing = 1; | 
 | 	fs_devices->num_devices++; | 
 | 	fs_devices->missing_devices++; | 
 | 	spin_lock_init(&device->io_lock); | 
 | 	INIT_LIST_HEAD(&device->dev_alloc_list); | 
 | 	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE); | 
 | 	return device; | 
 | } | 
 |  | 
 | static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, | 
 | 			  struct extent_buffer *leaf, | 
 | 			  struct btrfs_chunk *chunk) | 
 | { | 
 | 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; | 
 | 	struct map_lookup *map; | 
 | 	struct extent_map *em; | 
 | 	u64 logical; | 
 | 	u64 length; | 
 | 	u64 devid; | 
 | 	u8 uuid[BTRFS_UUID_SIZE]; | 
 | 	int num_stripes; | 
 | 	int ret; | 
 | 	int i; | 
 |  | 
 | 	logical = key->offset; | 
 | 	length = btrfs_chunk_length(leaf, chunk); | 
 |  | 
 | 	read_lock(&map_tree->map_tree.lock); | 
 | 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); | 
 | 	read_unlock(&map_tree->map_tree.lock); | 
 |  | 
 | 	/* already mapped? */ | 
 | 	if (em && em->start <= logical && em->start + em->len > logical) { | 
 | 		free_extent_map(em); | 
 | 		return 0; | 
 | 	} else if (em) { | 
 | 		free_extent_map(em); | 
 | 	} | 
 |  | 
 | 	em = alloc_extent_map(); | 
 | 	if (!em) | 
 | 		return -ENOMEM; | 
 | 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | 
 | 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | 
 | 	if (!map) { | 
 | 		free_extent_map(em); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	em->bdev = (struct block_device *)map; | 
 | 	em->start = logical; | 
 | 	em->len = length; | 
 | 	em->orig_start = 0; | 
 | 	em->block_start = 0; | 
 | 	em->block_len = em->len; | 
 |  | 
 | 	map->num_stripes = num_stripes; | 
 | 	map->io_width = btrfs_chunk_io_width(leaf, chunk); | 
 | 	map->io_align = btrfs_chunk_io_align(leaf, chunk); | 
 | 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk); | 
 | 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); | 
 | 	map->type = btrfs_chunk_type(leaf, chunk); | 
 | 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); | 
 | 	for (i = 0; i < num_stripes; i++) { | 
 | 		map->stripes[i].physical = | 
 | 			btrfs_stripe_offset_nr(leaf, chunk, i); | 
 | 		devid = btrfs_stripe_devid_nr(leaf, chunk, i); | 
 | 		read_extent_buffer(leaf, uuid, (unsigned long) | 
 | 				   btrfs_stripe_dev_uuid_nr(chunk, i), | 
 | 				   BTRFS_UUID_SIZE); | 
 | 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid, | 
 | 							uuid, NULL); | 
 | 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { | 
 | 			kfree(map); | 
 | 			free_extent_map(em); | 
 | 			return -EIO; | 
 | 		} | 
 | 		if (!map->stripes[i].dev) { | 
 | 			map->stripes[i].dev = | 
 | 				add_missing_dev(root, devid, uuid); | 
 | 			if (!map->stripes[i].dev) { | 
 | 				kfree(map); | 
 | 				free_extent_map(em); | 
 | 				return -EIO; | 
 | 			} | 
 | 		} | 
 | 		map->stripes[i].dev->in_fs_metadata = 1; | 
 | 	} | 
 |  | 
 | 	write_lock(&map_tree->map_tree.lock); | 
 | 	ret = add_extent_mapping(&map_tree->map_tree, em); | 
 | 	write_unlock(&map_tree->map_tree.lock); | 
 | 	BUG_ON(ret); /* Tree corruption */ | 
 | 	free_extent_map(em); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void fill_device_from_item(struct extent_buffer *leaf, | 
 | 				 struct btrfs_dev_item *dev_item, | 
 | 				 struct btrfs_device *device) | 
 | { | 
 | 	unsigned long ptr; | 
 |  | 
 | 	device->devid = btrfs_device_id(leaf, dev_item); | 
 | 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); | 
 | 	device->total_bytes = device->disk_total_bytes; | 
 | 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); | 
 | 	device->type = btrfs_device_type(leaf, dev_item); | 
 | 	device->io_align = btrfs_device_io_align(leaf, dev_item); | 
 | 	device->io_width = btrfs_device_io_width(leaf, dev_item); | 
 | 	device->sector_size = btrfs_device_sector_size(leaf, dev_item); | 
 | 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); | 
 | 	device->is_tgtdev_for_dev_replace = 0; | 
 |  | 
 | 	ptr = (unsigned long)btrfs_device_uuid(dev_item); | 
 | 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | 
 | } | 
 |  | 
 | static int open_seed_devices(struct btrfs_root *root, u8 *fsid) | 
 | { | 
 | 	struct btrfs_fs_devices *fs_devices; | 
 | 	int ret; | 
 |  | 
 | 	BUG_ON(!mutex_is_locked(&uuid_mutex)); | 
 |  | 
 | 	fs_devices = root->fs_info->fs_devices->seed; | 
 | 	while (fs_devices) { | 
 | 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		fs_devices = fs_devices->seed; | 
 | 	} | 
 |  | 
 | 	fs_devices = find_fsid(fsid); | 
 | 	if (!fs_devices) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	fs_devices = clone_fs_devices(fs_devices); | 
 | 	if (IS_ERR(fs_devices)) { | 
 | 		ret = PTR_ERR(fs_devices); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = __btrfs_open_devices(fs_devices, FMODE_READ, | 
 | 				   root->fs_info->bdev_holder); | 
 | 	if (ret) { | 
 | 		free_fs_devices(fs_devices); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!fs_devices->seeding) { | 
 | 		__btrfs_close_devices(fs_devices); | 
 | 		free_fs_devices(fs_devices); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	fs_devices->seed = root->fs_info->fs_devices->seed; | 
 | 	root->fs_info->fs_devices->seed = fs_devices; | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int read_one_dev(struct btrfs_root *root, | 
 | 			struct extent_buffer *leaf, | 
 | 			struct btrfs_dev_item *dev_item) | 
 | { | 
 | 	struct btrfs_device *device; | 
 | 	u64 devid; | 
 | 	int ret; | 
 | 	u8 fs_uuid[BTRFS_UUID_SIZE]; | 
 | 	u8 dev_uuid[BTRFS_UUID_SIZE]; | 
 |  | 
 | 	devid = btrfs_device_id(leaf, dev_item); | 
 | 	read_extent_buffer(leaf, dev_uuid, | 
 | 			   (unsigned long)btrfs_device_uuid(dev_item), | 
 | 			   BTRFS_UUID_SIZE); | 
 | 	read_extent_buffer(leaf, fs_uuid, | 
 | 			   (unsigned long)btrfs_device_fsid(dev_item), | 
 | 			   BTRFS_UUID_SIZE); | 
 |  | 
 | 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { | 
 | 		ret = open_seed_devices(root, fs_uuid); | 
 | 		if (ret && !btrfs_test_opt(root, DEGRADED)) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); | 
 | 	if (!device || !device->bdev) { | 
 | 		if (!btrfs_test_opt(root, DEGRADED)) | 
 | 			return -EIO; | 
 |  | 
 | 		if (!device) { | 
 | 			printk(KERN_WARNING "warning devid %llu missing\n", | 
 | 			       (unsigned long long)devid); | 
 | 			device = add_missing_dev(root, devid, dev_uuid); | 
 | 			if (!device) | 
 | 				return -ENOMEM; | 
 | 		} else if (!device->missing) { | 
 | 			/* | 
 | 			 * this happens when a device that was properly setup | 
 | 			 * in the device info lists suddenly goes bad. | 
 | 			 * device->bdev is NULL, and so we have to set | 
 | 			 * device->missing to one here | 
 | 			 */ | 
 | 			root->fs_info->fs_devices->missing_devices++; | 
 | 			device->missing = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (device->fs_devices != root->fs_info->fs_devices) { | 
 | 		BUG_ON(device->writeable); | 
 | 		if (device->generation != | 
 | 		    btrfs_device_generation(leaf, dev_item)) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	fill_device_from_item(leaf, dev_item, device); | 
 | 	device->dev_root = root->fs_info->dev_root; | 
 | 	device->in_fs_metadata = 1; | 
 | 	if (device->writeable && !device->is_tgtdev_for_dev_replace) { | 
 | 		device->fs_devices->total_rw_bytes += device->total_bytes; | 
 | 		spin_lock(&root->fs_info->free_chunk_lock); | 
 | 		root->fs_info->free_chunk_space += device->total_bytes - | 
 | 			device->bytes_used; | 
 | 		spin_unlock(&root->fs_info->free_chunk_lock); | 
 | 	} | 
 | 	ret = 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_read_sys_array(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_super_block *super_copy = root->fs_info->super_copy; | 
 | 	struct extent_buffer *sb; | 
 | 	struct btrfs_disk_key *disk_key; | 
 | 	struct btrfs_chunk *chunk; | 
 | 	u8 *ptr; | 
 | 	unsigned long sb_ptr; | 
 | 	int ret = 0; | 
 | 	u32 num_stripes; | 
 | 	u32 array_size; | 
 | 	u32 len = 0; | 
 | 	u32 cur; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, | 
 | 					  BTRFS_SUPER_INFO_SIZE); | 
 | 	if (!sb) | 
 | 		return -ENOMEM; | 
 | 	btrfs_set_buffer_uptodate(sb); | 
 | 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); | 
 | 	/* | 
 | 	 * The sb extent buffer is artifical and just used to read the system array. | 
 | 	 * btrfs_set_buffer_uptodate() call does not properly mark all it's | 
 | 	 * pages up-to-date when the page is larger: extent does not cover the | 
 | 	 * whole page and consequently check_page_uptodate does not find all | 
 | 	 * the page's extents up-to-date (the hole beyond sb), | 
 | 	 * write_extent_buffer then triggers a WARN_ON. | 
 | 	 * | 
 | 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, | 
 | 	 * but sb spans only this function. Add an explicit SetPageUptodate call | 
 | 	 * to silence the warning eg. on PowerPC 64. | 
 | 	 */ | 
 | 	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) | 
 | 		SetPageUptodate(sb->pages[0]); | 
 |  | 
 | 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); | 
 | 	array_size = btrfs_super_sys_array_size(super_copy); | 
 |  | 
 | 	ptr = super_copy->sys_chunk_array; | 
 | 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); | 
 | 	cur = 0; | 
 |  | 
 | 	while (cur < array_size) { | 
 | 		disk_key = (struct btrfs_disk_key *)ptr; | 
 | 		btrfs_disk_key_to_cpu(&key, disk_key); | 
 |  | 
 | 		len = sizeof(*disk_key); ptr += len; | 
 | 		sb_ptr += len; | 
 | 		cur += len; | 
 |  | 
 | 		if (key.type == BTRFS_CHUNK_ITEM_KEY) { | 
 | 			chunk = (struct btrfs_chunk *)sb_ptr; | 
 | 			ret = read_one_chunk(root, &key, sb, chunk); | 
 | 			if (ret) | 
 | 				break; | 
 | 			num_stripes = btrfs_chunk_num_stripes(sb, chunk); | 
 | 			len = btrfs_chunk_item_size(num_stripes); | 
 | 		} else { | 
 | 			ret = -EIO; | 
 | 			break; | 
 | 		} | 
 | 		ptr += len; | 
 | 		sb_ptr += len; | 
 | 		cur += len; | 
 | 	} | 
 | 	free_extent_buffer(sb); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_read_chunk_tree(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	int ret; | 
 | 	int slot; | 
 |  | 
 | 	root = root->fs_info->chunk_root; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	mutex_lock(&uuid_mutex); | 
 | 	lock_chunks(root); | 
 |  | 
 | 	/* first we search for all of the device items, and then we | 
 | 	 * read in all of the chunk items.  This way we can create chunk | 
 | 	 * mappings that reference all of the devices that are afound | 
 | 	 */ | 
 | 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | 
 | 	key.offset = 0; | 
 | 	key.type = 0; | 
 | again: | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto error; | 
 | 	while (1) { | 
 | 		leaf = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		if (slot >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret == 0) | 
 | 				continue; | 
 | 			if (ret < 0) | 
 | 				goto error; | 
 | 			break; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
 | 		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { | 
 | 			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID) | 
 | 				break; | 
 | 			if (found_key.type == BTRFS_DEV_ITEM_KEY) { | 
 | 				struct btrfs_dev_item *dev_item; | 
 | 				dev_item = btrfs_item_ptr(leaf, slot, | 
 | 						  struct btrfs_dev_item); | 
 | 				ret = read_one_dev(root, leaf, dev_item); | 
 | 				if (ret) | 
 | 					goto error; | 
 | 			} | 
 | 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { | 
 | 			struct btrfs_chunk *chunk; | 
 | 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); | 
 | 			ret = read_one_chunk(root, &found_key, leaf, chunk); | 
 | 			if (ret) | 
 | 				goto error; | 
 | 		} | 
 | 		path->slots[0]++; | 
 | 	} | 
 | 	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { | 
 | 		key.objectid = 0; | 
 | 		btrfs_release_path(path); | 
 | 		goto again; | 
 | 	} | 
 | 	ret = 0; | 
 | error: | 
 | 	unlock_chunks(root); | 
 | 	mutex_unlock(&uuid_mutex); | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __btrfs_reset_dev_stats(struct btrfs_device *dev) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) | 
 | 		btrfs_dev_stat_reset(dev, i); | 
 | } | 
 |  | 
 | int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_root *dev_root = fs_info->dev_root; | 
 | 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
 | 	struct extent_buffer *eb; | 
 | 	int slot; | 
 | 	int ret = 0; | 
 | 	struct btrfs_device *device; | 
 | 	struct btrfs_path *path = NULL; | 
 | 	int i; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&fs_devices->device_list_mutex); | 
 | 	list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
 | 		int item_size; | 
 | 		struct btrfs_dev_stats_item *ptr; | 
 |  | 
 | 		key.objectid = 0; | 
 | 		key.type = BTRFS_DEV_STATS_KEY; | 
 | 		key.offset = device->devid; | 
 | 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); | 
 | 		if (ret) { | 
 | 			__btrfs_reset_dev_stats(device); | 
 | 			device->dev_stats_valid = 1; | 
 | 			btrfs_release_path(path); | 
 | 			continue; | 
 | 		} | 
 | 		slot = path->slots[0]; | 
 | 		eb = path->nodes[0]; | 
 | 		btrfs_item_key_to_cpu(eb, &found_key, slot); | 
 | 		item_size = btrfs_item_size_nr(eb, slot); | 
 |  | 
 | 		ptr = btrfs_item_ptr(eb, slot, | 
 | 				     struct btrfs_dev_stats_item); | 
 |  | 
 | 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { | 
 | 			if (item_size >= (1 + i) * sizeof(__le64)) | 
 | 				btrfs_dev_stat_set(device, i, | 
 | 					btrfs_dev_stats_value(eb, ptr, i)); | 
 | 			else | 
 | 				btrfs_dev_stat_reset(device, i); | 
 | 		} | 
 |  | 
 | 		device->dev_stats_valid = 1; | 
 | 		btrfs_dev_stat_print_on_load(device); | 
 | 		btrfs_release_path(path); | 
 | 	} | 
 | 	mutex_unlock(&fs_devices->device_list_mutex); | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret < 0 ? ret : 0; | 
 | } | 
 |  | 
 | static int update_dev_stat_item(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *dev_root, | 
 | 				struct btrfs_device *device) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct extent_buffer *eb; | 
 | 	struct btrfs_dev_stats_item *ptr; | 
 | 	int ret; | 
 | 	int i; | 
 |  | 
 | 	key.objectid = 0; | 
 | 	key.type = BTRFS_DEV_STATS_KEY; | 
 | 	key.offset = device->devid; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	BUG_ON(!path); | 
 | 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); | 
 | 	if (ret < 0) { | 
 | 		printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n", | 
 | 			      ret, rcu_str_deref(device->name)); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (ret == 0 && | 
 | 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { | 
 | 		/* need to delete old one and insert a new one */ | 
 | 		ret = btrfs_del_item(trans, dev_root, path); | 
 | 		if (ret != 0) { | 
 | 			printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n", | 
 | 				      rcu_str_deref(device->name), ret); | 
 | 			goto out; | 
 | 		} | 
 | 		ret = 1; | 
 | 	} | 
 |  | 
 | 	if (ret == 1) { | 
 | 		/* need to insert a new item */ | 
 | 		btrfs_release_path(path); | 
 | 		ret = btrfs_insert_empty_item(trans, dev_root, path, | 
 | 					      &key, sizeof(*ptr)); | 
 | 		if (ret < 0) { | 
 | 			printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n", | 
 | 				      rcu_str_deref(device->name), ret); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	eb = path->nodes[0]; | 
 | 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); | 
 | 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) | 
 | 		btrfs_set_dev_stats_value(eb, ptr, i, | 
 | 					  btrfs_dev_stat_read(device, i)); | 
 | 	btrfs_mark_buffer_dirty(eb); | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * called from commit_transaction. Writes all changed device stats to disk. | 
 |  */ | 
 | int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, | 
 | 			struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_root *dev_root = fs_info->dev_root; | 
 | 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
 | 	struct btrfs_device *device; | 
 | 	int ret = 0; | 
 |  | 
 | 	mutex_lock(&fs_devices->device_list_mutex); | 
 | 	list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
 | 		if (!device->dev_stats_valid || !device->dev_stats_dirty) | 
 | 			continue; | 
 |  | 
 | 		ret = update_dev_stat_item(trans, dev_root, device); | 
 | 		if (!ret) | 
 | 			device->dev_stats_dirty = 0; | 
 | 	} | 
 | 	mutex_unlock(&fs_devices->device_list_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) | 
 | { | 
 | 	btrfs_dev_stat_inc(dev, index); | 
 | 	btrfs_dev_stat_print_on_error(dev); | 
 | } | 
 |  | 
 | void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) | 
 | { | 
 | 	if (!dev->dev_stats_valid) | 
 | 		return; | 
 | 	printk_ratelimited_in_rcu(KERN_ERR | 
 | 			   "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", | 
 | 			   rcu_str_deref(dev->name), | 
 | 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), | 
 | 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), | 
 | 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), | 
 | 			   btrfs_dev_stat_read(dev, | 
 | 					       BTRFS_DEV_STAT_CORRUPTION_ERRS), | 
 | 			   btrfs_dev_stat_read(dev, | 
 | 					       BTRFS_DEV_STAT_GENERATION_ERRS)); | 
 | } | 
 |  | 
 | static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) | 
 | 		if (btrfs_dev_stat_read(dev, i) != 0) | 
 | 			break; | 
 | 	if (i == BTRFS_DEV_STAT_VALUES_MAX) | 
 | 		return; /* all values == 0, suppress message */ | 
 |  | 
 | 	printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", | 
 | 	       rcu_str_deref(dev->name), | 
 | 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), | 
 | 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), | 
 | 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), | 
 | 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), | 
 | 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); | 
 | } | 
 |  | 
 | int btrfs_get_dev_stats(struct btrfs_root *root, | 
 | 			struct btrfs_ioctl_get_dev_stats *stats) | 
 | { | 
 | 	struct btrfs_device *dev; | 
 | 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | 
 | 	int i; | 
 |  | 
 | 	mutex_lock(&fs_devices->device_list_mutex); | 
 | 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL); | 
 | 	mutex_unlock(&fs_devices->device_list_mutex); | 
 |  | 
 | 	if (!dev) { | 
 | 		printk(KERN_WARNING | 
 | 		       "btrfs: get dev_stats failed, device not found\n"); | 
 | 		return -ENODEV; | 
 | 	} else if (!dev->dev_stats_valid) { | 
 | 		printk(KERN_WARNING | 
 | 		       "btrfs: get dev_stats failed, not yet valid\n"); | 
 | 		return -ENODEV; | 
 | 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) { | 
 | 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { | 
 | 			if (stats->nr_items > i) | 
 | 				stats->values[i] = | 
 | 					btrfs_dev_stat_read_and_reset(dev, i); | 
 | 			else | 
 | 				btrfs_dev_stat_reset(dev, i); | 
 | 		} | 
 | 	} else { | 
 | 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) | 
 | 			if (stats->nr_items > i) | 
 | 				stats->values[i] = btrfs_dev_stat_read(dev, i); | 
 | 	} | 
 | 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) | 
 | 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_scratch_superblock(struct btrfs_device *device) | 
 | { | 
 | 	struct buffer_head *bh; | 
 | 	struct btrfs_super_block *disk_super; | 
 |  | 
 | 	bh = btrfs_read_dev_super(device->bdev); | 
 | 	if (!bh) | 
 | 		return -EINVAL; | 
 | 	disk_super = (struct btrfs_super_block *)bh->b_data; | 
 |  | 
 | 	memset(&disk_super->magic, 0, sizeof(disk_super->magic)); | 
 | 	set_buffer_dirty(bh); | 
 | 	sync_dirty_buffer(bh); | 
 | 	brelse(bh); | 
 |  | 
 | 	return 0; | 
 | } |