| /* | 
 |  *  fs/eventpoll.c (Efficient event retrieval implementation) | 
 |  *  Copyright (C) 2001,...,2009	 Davide Libenzi | 
 |  * | 
 |  *  This program is free software; you can redistribute it and/or modify | 
 |  *  it under the terms of the GNU General Public License as published by | 
 |  *  the Free Software Foundation; either version 2 of the License, or | 
 |  *  (at your option) any later version. | 
 |  * | 
 |  *  Davide Libenzi <davidel@xmailserver.org> | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/file.h> | 
 | #include <linux/signal.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/poll.h> | 
 | #include <linux/string.h> | 
 | #include <linux/list.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/wait.h> | 
 | #include <linux/eventpoll.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/anon_inodes.h> | 
 | #include <linux/device.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/io.h> | 
 | #include <asm/mman.h> | 
 | #include <linux/atomic.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/seq_file.h> | 
 |  | 
 | /* | 
 |  * LOCKING: | 
 |  * There are three level of locking required by epoll : | 
 |  * | 
 |  * 1) epmutex (mutex) | 
 |  * 2) ep->mtx (mutex) | 
 |  * 3) ep->lock (spinlock) | 
 |  * | 
 |  * The acquire order is the one listed above, from 1 to 3. | 
 |  * We need a spinlock (ep->lock) because we manipulate objects | 
 |  * from inside the poll callback, that might be triggered from | 
 |  * a wake_up() that in turn might be called from IRQ context. | 
 |  * So we can't sleep inside the poll callback and hence we need | 
 |  * a spinlock. During the event transfer loop (from kernel to | 
 |  * user space) we could end up sleeping due a copy_to_user(), so | 
 |  * we need a lock that will allow us to sleep. This lock is a | 
 |  * mutex (ep->mtx). It is acquired during the event transfer loop, | 
 |  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). | 
 |  * Then we also need a global mutex to serialize eventpoll_release_file() | 
 |  * and ep_free(). | 
 |  * This mutex is acquired by ep_free() during the epoll file | 
 |  * cleanup path and it is also acquired by eventpoll_release_file() | 
 |  * if a file has been pushed inside an epoll set and it is then | 
 |  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). | 
 |  * It is also acquired when inserting an epoll fd onto another epoll | 
 |  * fd. We do this so that we walk the epoll tree and ensure that this | 
 |  * insertion does not create a cycle of epoll file descriptors, which | 
 |  * could lead to deadlock. We need a global mutex to prevent two | 
 |  * simultaneous inserts (A into B and B into A) from racing and | 
 |  * constructing a cycle without either insert observing that it is | 
 |  * going to. | 
 |  * It is necessary to acquire multiple "ep->mtx"es at once in the | 
 |  * case when one epoll fd is added to another. In this case, we | 
 |  * always acquire the locks in the order of nesting (i.e. after | 
 |  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired | 
 |  * before e2->mtx). Since we disallow cycles of epoll file | 
 |  * descriptors, this ensures that the mutexes are well-ordered. In | 
 |  * order to communicate this nesting to lockdep, when walking a tree | 
 |  * of epoll file descriptors, we use the current recursion depth as | 
 |  * the lockdep subkey. | 
 |  * It is possible to drop the "ep->mtx" and to use the global | 
 |  * mutex "epmutex" (together with "ep->lock") to have it working, | 
 |  * but having "ep->mtx" will make the interface more scalable. | 
 |  * Events that require holding "epmutex" are very rare, while for | 
 |  * normal operations the epoll private "ep->mtx" will guarantee | 
 |  * a better scalability. | 
 |  */ | 
 |  | 
 | /* Epoll private bits inside the event mask */ | 
 | #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET) | 
 |  | 
 | /* Maximum number of nesting allowed inside epoll sets */ | 
 | #define EP_MAX_NESTS 4 | 
 |  | 
 | #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) | 
 |  | 
 | #define EP_UNACTIVE_PTR ((void *) -1L) | 
 |  | 
 | #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) | 
 |  | 
 | struct epoll_filefd { | 
 | 	struct file *file; | 
 | 	int fd; | 
 | }; | 
 |  | 
 | /* | 
 |  * Structure used to track possible nested calls, for too deep recursions | 
 |  * and loop cycles. | 
 |  */ | 
 | struct nested_call_node { | 
 | 	struct list_head llink; | 
 | 	void *cookie; | 
 | 	void *ctx; | 
 | }; | 
 |  | 
 | /* | 
 |  * This structure is used as collector for nested calls, to check for | 
 |  * maximum recursion dept and loop cycles. | 
 |  */ | 
 | struct nested_calls { | 
 | 	struct list_head tasks_call_list; | 
 | 	spinlock_t lock; | 
 | }; | 
 |  | 
 | /* | 
 |  * Each file descriptor added to the eventpoll interface will | 
 |  * have an entry of this type linked to the "rbr" RB tree. | 
 |  */ | 
 | struct epitem { | 
 | 	/* RB tree node used to link this structure to the eventpoll RB tree */ | 
 | 	struct rb_node rbn; | 
 |  | 
 | 	/* List header used to link this structure to the eventpoll ready list */ | 
 | 	struct list_head rdllink; | 
 |  | 
 | 	/* | 
 | 	 * Works together "struct eventpoll"->ovflist in keeping the | 
 | 	 * single linked chain of items. | 
 | 	 */ | 
 | 	struct epitem *next; | 
 |  | 
 | 	/* The file descriptor information this item refers to */ | 
 | 	struct epoll_filefd ffd; | 
 |  | 
 | 	/* Number of active wait queue attached to poll operations */ | 
 | 	int nwait; | 
 |  | 
 | 	/* List containing poll wait queues */ | 
 | 	struct list_head pwqlist; | 
 |  | 
 | 	/* The "container" of this item */ | 
 | 	struct eventpoll *ep; | 
 |  | 
 | 	/* List header used to link this item to the "struct file" items list */ | 
 | 	struct list_head fllink; | 
 |  | 
 | 	/* wakeup_source used when EPOLLWAKEUP is set */ | 
 | 	struct wakeup_source *ws; | 
 |  | 
 | 	/* The structure that describe the interested events and the source fd */ | 
 | 	struct epoll_event event; | 
 | }; | 
 |  | 
 | /* | 
 |  * This structure is stored inside the "private_data" member of the file | 
 |  * structure and represents the main data structure for the eventpoll | 
 |  * interface. | 
 |  */ | 
 | struct eventpoll { | 
 | 	/* Protect the access to this structure */ | 
 | 	spinlock_t lock; | 
 |  | 
 | 	/* | 
 | 	 * This mutex is used to ensure that files are not removed | 
 | 	 * while epoll is using them. This is held during the event | 
 | 	 * collection loop, the file cleanup path, the epoll file exit | 
 | 	 * code and the ctl operations. | 
 | 	 */ | 
 | 	struct mutex mtx; | 
 |  | 
 | 	/* Wait queue used by sys_epoll_wait() */ | 
 | 	wait_queue_head_t wq; | 
 |  | 
 | 	/* Wait queue used by file->poll() */ | 
 | 	wait_queue_head_t poll_wait; | 
 |  | 
 | 	/* List of ready file descriptors */ | 
 | 	struct list_head rdllist; | 
 |  | 
 | 	/* RB tree root used to store monitored fd structs */ | 
 | 	struct rb_root rbr; | 
 |  | 
 | 	/* | 
 | 	 * This is a single linked list that chains all the "struct epitem" that | 
 | 	 * happened while transferring ready events to userspace w/out | 
 | 	 * holding ->lock. | 
 | 	 */ | 
 | 	struct epitem *ovflist; | 
 |  | 
 | 	/* wakeup_source used when ep_scan_ready_list is running */ | 
 | 	struct wakeup_source *ws; | 
 |  | 
 | 	/* The user that created the eventpoll descriptor */ | 
 | 	struct user_struct *user; | 
 |  | 
 | 	struct file *file; | 
 |  | 
 | 	/* used to optimize loop detection check */ | 
 | 	int visited; | 
 | 	struct list_head visited_list_link; | 
 | }; | 
 |  | 
 | /* Wait structure used by the poll hooks */ | 
 | struct eppoll_entry { | 
 | 	/* List header used to link this structure to the "struct epitem" */ | 
 | 	struct list_head llink; | 
 |  | 
 | 	/* The "base" pointer is set to the container "struct epitem" */ | 
 | 	struct epitem *base; | 
 |  | 
 | 	/* | 
 | 	 * Wait queue item that will be linked to the target file wait | 
 | 	 * queue head. | 
 | 	 */ | 
 | 	wait_queue_t wait; | 
 |  | 
 | 	/* The wait queue head that linked the "wait" wait queue item */ | 
 | 	wait_queue_head_t *whead; | 
 | }; | 
 |  | 
 | /* Wrapper struct used by poll queueing */ | 
 | struct ep_pqueue { | 
 | 	poll_table pt; | 
 | 	struct epitem *epi; | 
 | }; | 
 |  | 
 | /* Used by the ep_send_events() function as callback private data */ | 
 | struct ep_send_events_data { | 
 | 	int maxevents; | 
 | 	struct epoll_event __user *events; | 
 | }; | 
 |  | 
 | /* | 
 |  * Configuration options available inside /proc/sys/fs/epoll/ | 
 |  */ | 
 | /* Maximum number of epoll watched descriptors, per user */ | 
 | static long max_user_watches __read_mostly; | 
 |  | 
 | /* | 
 |  * This mutex is used to serialize ep_free() and eventpoll_release_file(). | 
 |  */ | 
 | static DEFINE_MUTEX(epmutex); | 
 |  | 
 | /* Used to check for epoll file descriptor inclusion loops */ | 
 | static struct nested_calls poll_loop_ncalls; | 
 |  | 
 | /* Used for safe wake up implementation */ | 
 | static struct nested_calls poll_safewake_ncalls; | 
 |  | 
 | /* Used to call file's f_op->poll() under the nested calls boundaries */ | 
 | static struct nested_calls poll_readywalk_ncalls; | 
 |  | 
 | /* Slab cache used to allocate "struct epitem" */ | 
 | static struct kmem_cache *epi_cache __read_mostly; | 
 |  | 
 | /* Slab cache used to allocate "struct eppoll_entry" */ | 
 | static struct kmem_cache *pwq_cache __read_mostly; | 
 |  | 
 | /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ | 
 | static LIST_HEAD(visited_list); | 
 |  | 
 | /* | 
 |  * List of files with newly added links, where we may need to limit the number | 
 |  * of emanating paths. Protected by the epmutex. | 
 |  */ | 
 | static LIST_HEAD(tfile_check_list); | 
 |  | 
 | #ifdef CONFIG_SYSCTL | 
 |  | 
 | #include <linux/sysctl.h> | 
 |  | 
 | static long zero; | 
 | static long long_max = LONG_MAX; | 
 |  | 
 | ctl_table epoll_table[] = { | 
 | 	{ | 
 | 		.procname	= "max_user_watches", | 
 | 		.data		= &max_user_watches, | 
 | 		.maxlen		= sizeof(max_user_watches), | 
 | 		.mode		= 0644, | 
 | 		.proc_handler	= proc_doulongvec_minmax, | 
 | 		.extra1		= &zero, | 
 | 		.extra2		= &long_max, | 
 | 	}, | 
 | 	{ } | 
 | }; | 
 | #endif /* CONFIG_SYSCTL */ | 
 |  | 
 | static const struct file_operations eventpoll_fops; | 
 |  | 
 | static inline int is_file_epoll(struct file *f) | 
 | { | 
 | 	return f->f_op == &eventpoll_fops; | 
 | } | 
 |  | 
 | /* Setup the structure that is used as key for the RB tree */ | 
 | static inline void ep_set_ffd(struct epoll_filefd *ffd, | 
 | 			      struct file *file, int fd) | 
 | { | 
 | 	ffd->file = file; | 
 | 	ffd->fd = fd; | 
 | } | 
 |  | 
 | /* Compare RB tree keys */ | 
 | static inline int ep_cmp_ffd(struct epoll_filefd *p1, | 
 | 			     struct epoll_filefd *p2) | 
 | { | 
 | 	return (p1->file > p2->file ? +1: | 
 | 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd)); | 
 | } | 
 |  | 
 | /* Tells us if the item is currently linked */ | 
 | static inline int ep_is_linked(struct list_head *p) | 
 | { | 
 | 	return !list_empty(p); | 
 | } | 
 |  | 
 | static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p) | 
 | { | 
 | 	return container_of(p, struct eppoll_entry, wait); | 
 | } | 
 |  | 
 | /* Get the "struct epitem" from a wait queue pointer */ | 
 | static inline struct epitem *ep_item_from_wait(wait_queue_t *p) | 
 | { | 
 | 	return container_of(p, struct eppoll_entry, wait)->base; | 
 | } | 
 |  | 
 | /* Get the "struct epitem" from an epoll queue wrapper */ | 
 | static inline struct epitem *ep_item_from_epqueue(poll_table *p) | 
 | { | 
 | 	return container_of(p, struct ep_pqueue, pt)->epi; | 
 | } | 
 |  | 
 | /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ | 
 | static inline int ep_op_has_event(int op) | 
 | { | 
 | 	return op != EPOLL_CTL_DEL; | 
 | } | 
 |  | 
 | /* Initialize the poll safe wake up structure */ | 
 | static void ep_nested_calls_init(struct nested_calls *ncalls) | 
 | { | 
 | 	INIT_LIST_HEAD(&ncalls->tasks_call_list); | 
 | 	spin_lock_init(&ncalls->lock); | 
 | } | 
 |  | 
 | /** | 
 |  * ep_events_available - Checks if ready events might be available. | 
 |  * | 
 |  * @ep: Pointer to the eventpoll context. | 
 |  * | 
 |  * Returns: Returns a value different than zero if ready events are available, | 
 |  *          or zero otherwise. | 
 |  */ | 
 | static inline int ep_events_available(struct eventpoll *ep) | 
 | { | 
 | 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; | 
 | } | 
 |  | 
 | /** | 
 |  * ep_call_nested - Perform a bound (possibly) nested call, by checking | 
 |  *                  that the recursion limit is not exceeded, and that | 
 |  *                  the same nested call (by the meaning of same cookie) is | 
 |  *                  no re-entered. | 
 |  * | 
 |  * @ncalls: Pointer to the nested_calls structure to be used for this call. | 
 |  * @max_nests: Maximum number of allowed nesting calls. | 
 |  * @nproc: Nested call core function pointer. | 
 |  * @priv: Opaque data to be passed to the @nproc callback. | 
 |  * @cookie: Cookie to be used to identify this nested call. | 
 |  * @ctx: This instance context. | 
 |  * | 
 |  * Returns: Returns the code returned by the @nproc callback, or -1 if | 
 |  *          the maximum recursion limit has been exceeded. | 
 |  */ | 
 | static int ep_call_nested(struct nested_calls *ncalls, int max_nests, | 
 | 			  int (*nproc)(void *, void *, int), void *priv, | 
 | 			  void *cookie, void *ctx) | 
 | { | 
 | 	int error, call_nests = 0; | 
 | 	unsigned long flags; | 
 | 	struct list_head *lsthead = &ncalls->tasks_call_list; | 
 | 	struct nested_call_node *tncur; | 
 | 	struct nested_call_node tnode; | 
 |  | 
 | 	spin_lock_irqsave(&ncalls->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Try to see if the current task is already inside this wakeup call. | 
 | 	 * We use a list here, since the population inside this set is always | 
 | 	 * very much limited. | 
 | 	 */ | 
 | 	list_for_each_entry(tncur, lsthead, llink) { | 
 | 		if (tncur->ctx == ctx && | 
 | 		    (tncur->cookie == cookie || ++call_nests > max_nests)) { | 
 | 			/* | 
 | 			 * Ops ... loop detected or maximum nest level reached. | 
 | 			 * We abort this wake by breaking the cycle itself. | 
 | 			 */ | 
 | 			error = -1; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Add the current task and cookie to the list */ | 
 | 	tnode.ctx = ctx; | 
 | 	tnode.cookie = cookie; | 
 | 	list_add(&tnode.llink, lsthead); | 
 |  | 
 | 	spin_unlock_irqrestore(&ncalls->lock, flags); | 
 |  | 
 | 	/* Call the nested function */ | 
 | 	error = (*nproc)(priv, cookie, call_nests); | 
 |  | 
 | 	/* Remove the current task from the list */ | 
 | 	spin_lock_irqsave(&ncalls->lock, flags); | 
 | 	list_del(&tnode.llink); | 
 | out_unlock: | 
 | 	spin_unlock_irqrestore(&ncalls->lock, flags); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * As described in commit 0ccf831cb lockdep: annotate epoll | 
 |  * the use of wait queues used by epoll is done in a very controlled | 
 |  * manner. Wake ups can nest inside each other, but are never done | 
 |  * with the same locking. For example: | 
 |  * | 
 |  *   dfd = socket(...); | 
 |  *   efd1 = epoll_create(); | 
 |  *   efd2 = epoll_create(); | 
 |  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); | 
 |  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); | 
 |  * | 
 |  * When a packet arrives to the device underneath "dfd", the net code will | 
 |  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a | 
 |  * callback wakeup entry on that queue, and the wake_up() performed by the | 
 |  * "dfd" net code will end up in ep_poll_callback(). At this point epoll | 
 |  * (efd1) notices that it may have some event ready, so it needs to wake up | 
 |  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() | 
 |  * that ends up in another wake_up(), after having checked about the | 
 |  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to | 
 |  * avoid stack blasting. | 
 |  * | 
 |  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle | 
 |  * this special case of epoll. | 
 |  */ | 
 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
 | static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, | 
 | 				     unsigned long events, int subclass) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); | 
 | 	wake_up_locked_poll(wqueue, events); | 
 | 	spin_unlock_irqrestore(&wqueue->lock, flags); | 
 | } | 
 | #else | 
 | static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, | 
 | 				     unsigned long events, int subclass) | 
 | { | 
 | 	wake_up_poll(wqueue, events); | 
 | } | 
 | #endif | 
 |  | 
 | static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) | 
 | { | 
 | 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, | 
 | 			  1 + call_nests); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Perform a safe wake up of the poll wait list. The problem is that | 
 |  * with the new callback'd wake up system, it is possible that the | 
 |  * poll callback is reentered from inside the call to wake_up() done | 
 |  * on the poll wait queue head. The rule is that we cannot reenter the | 
 |  * wake up code from the same task more than EP_MAX_NESTS times, | 
 |  * and we cannot reenter the same wait queue head at all. This will | 
 |  * enable to have a hierarchy of epoll file descriptor of no more than | 
 |  * EP_MAX_NESTS deep. | 
 |  */ | 
 | static void ep_poll_safewake(wait_queue_head_t *wq) | 
 | { | 
 | 	int this_cpu = get_cpu(); | 
 |  | 
 | 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, | 
 | 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); | 
 |  | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | static void ep_remove_wait_queue(struct eppoll_entry *pwq) | 
 | { | 
 | 	wait_queue_head_t *whead; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	/* If it is cleared by POLLFREE, it should be rcu-safe */ | 
 | 	whead = rcu_dereference(pwq->whead); | 
 | 	if (whead) | 
 | 		remove_wait_queue(whead, &pwq->wait); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * This function unregisters poll callbacks from the associated file | 
 |  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from | 
 |  * ep_free). | 
 |  */ | 
 | static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) | 
 | { | 
 | 	struct list_head *lsthead = &epi->pwqlist; | 
 | 	struct eppoll_entry *pwq; | 
 |  | 
 | 	while (!list_empty(lsthead)) { | 
 | 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink); | 
 |  | 
 | 		list_del(&pwq->llink); | 
 | 		ep_remove_wait_queue(pwq); | 
 | 		kmem_cache_free(pwq_cache, pwq); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ep_scan_ready_list - Scans the ready list in a way that makes possible for | 
 |  *                      the scan code, to call f_op->poll(). Also allows for | 
 |  *                      O(NumReady) performance. | 
 |  * | 
 |  * @ep: Pointer to the epoll private data structure. | 
 |  * @sproc: Pointer to the scan callback. | 
 |  * @priv: Private opaque data passed to the @sproc callback. | 
 |  * @depth: The current depth of recursive f_op->poll calls. | 
 |  * | 
 |  * Returns: The same integer error code returned by the @sproc callback. | 
 |  */ | 
 | static int ep_scan_ready_list(struct eventpoll *ep, | 
 | 			      int (*sproc)(struct eventpoll *, | 
 | 					   struct list_head *, void *), | 
 | 			      void *priv, | 
 | 			      int depth) | 
 | { | 
 | 	int error, pwake = 0; | 
 | 	unsigned long flags; | 
 | 	struct epitem *epi, *nepi; | 
 | 	LIST_HEAD(txlist); | 
 |  | 
 | 	/* | 
 | 	 * We need to lock this because we could be hit by | 
 | 	 * eventpoll_release_file() and epoll_ctl(). | 
 | 	 */ | 
 | 	mutex_lock_nested(&ep->mtx, depth); | 
 |  | 
 | 	/* | 
 | 	 * Steal the ready list, and re-init the original one to the | 
 | 	 * empty list. Also, set ep->ovflist to NULL so that events | 
 | 	 * happening while looping w/out locks, are not lost. We cannot | 
 | 	 * have the poll callback to queue directly on ep->rdllist, | 
 | 	 * because we want the "sproc" callback to be able to do it | 
 | 	 * in a lockless way. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&ep->lock, flags); | 
 | 	list_splice_init(&ep->rdllist, &txlist); | 
 | 	ep->ovflist = NULL; | 
 | 	spin_unlock_irqrestore(&ep->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Now call the callback function. | 
 | 	 */ | 
 | 	error = (*sproc)(ep, &txlist, priv); | 
 |  | 
 | 	spin_lock_irqsave(&ep->lock, flags); | 
 | 	/* | 
 | 	 * During the time we spent inside the "sproc" callback, some | 
 | 	 * other events might have been queued by the poll callback. | 
 | 	 * We re-insert them inside the main ready-list here. | 
 | 	 */ | 
 | 	for (nepi = ep->ovflist; (epi = nepi) != NULL; | 
 | 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { | 
 | 		/* | 
 | 		 * We need to check if the item is already in the list. | 
 | 		 * During the "sproc" callback execution time, items are | 
 | 		 * queued into ->ovflist but the "txlist" might already | 
 | 		 * contain them, and the list_splice() below takes care of them. | 
 | 		 */ | 
 | 		if (!ep_is_linked(&epi->rdllink)) { | 
 | 			list_add_tail(&epi->rdllink, &ep->rdllist); | 
 | 			__pm_stay_awake(epi->ws); | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after | 
 | 	 * releasing the lock, events will be queued in the normal way inside | 
 | 	 * ep->rdllist. | 
 | 	 */ | 
 | 	ep->ovflist = EP_UNACTIVE_PTR; | 
 |  | 
 | 	/* | 
 | 	 * Quickly re-inject items left on "txlist". | 
 | 	 */ | 
 | 	list_splice(&txlist, &ep->rdllist); | 
 | 	__pm_relax(ep->ws); | 
 |  | 
 | 	if (!list_empty(&ep->rdllist)) { | 
 | 		/* | 
 | 		 * Wake up (if active) both the eventpoll wait list and | 
 | 		 * the ->poll() wait list (delayed after we release the lock). | 
 | 		 */ | 
 | 		if (waitqueue_active(&ep->wq)) | 
 | 			wake_up_locked(&ep->wq); | 
 | 		if (waitqueue_active(&ep->poll_wait)) | 
 | 			pwake++; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&ep->lock, flags); | 
 |  | 
 | 	mutex_unlock(&ep->mtx); | 
 |  | 
 | 	/* We have to call this outside the lock */ | 
 | 	if (pwake) | 
 | 		ep_poll_safewake(&ep->poll_wait); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Removes a "struct epitem" from the eventpoll RB tree and deallocates | 
 |  * all the associated resources. Must be called with "mtx" held. | 
 |  */ | 
 | static int ep_remove(struct eventpoll *ep, struct epitem *epi) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct file *file = epi->ffd.file; | 
 |  | 
 | 	/* | 
 | 	 * Removes poll wait queue hooks. We _have_ to do this without holding | 
 | 	 * the "ep->lock" otherwise a deadlock might occur. This because of the | 
 | 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait | 
 | 	 * queue head lock when unregistering the wait queue. The wakeup callback | 
 | 	 * will run by holding the wait queue head lock and will call our callback | 
 | 	 * that will try to get "ep->lock". | 
 | 	 */ | 
 | 	ep_unregister_pollwait(ep, epi); | 
 |  | 
 | 	/* Remove the current item from the list of epoll hooks */ | 
 | 	spin_lock(&file->f_lock); | 
 | 	if (ep_is_linked(&epi->fllink)) | 
 | 		list_del_init(&epi->fllink); | 
 | 	spin_unlock(&file->f_lock); | 
 |  | 
 | 	rb_erase(&epi->rbn, &ep->rbr); | 
 |  | 
 | 	spin_lock_irqsave(&ep->lock, flags); | 
 | 	if (ep_is_linked(&epi->rdllink)) | 
 | 		list_del_init(&epi->rdllink); | 
 | 	spin_unlock_irqrestore(&ep->lock, flags); | 
 |  | 
 | 	wakeup_source_unregister(epi->ws); | 
 |  | 
 | 	/* At this point it is safe to free the eventpoll item */ | 
 | 	kmem_cache_free(epi_cache, epi); | 
 |  | 
 | 	atomic_long_dec(&ep->user->epoll_watches); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void ep_free(struct eventpoll *ep) | 
 | { | 
 | 	struct rb_node *rbp; | 
 | 	struct epitem *epi; | 
 |  | 
 | 	/* We need to release all tasks waiting for these file */ | 
 | 	if (waitqueue_active(&ep->poll_wait)) | 
 | 		ep_poll_safewake(&ep->poll_wait); | 
 |  | 
 | 	/* | 
 | 	 * We need to lock this because we could be hit by | 
 | 	 * eventpoll_release_file() while we're freeing the "struct eventpoll". | 
 | 	 * We do not need to hold "ep->mtx" here because the epoll file | 
 | 	 * is on the way to be removed and no one has references to it | 
 | 	 * anymore. The only hit might come from eventpoll_release_file() but | 
 | 	 * holding "epmutex" is sufficient here. | 
 | 	 */ | 
 | 	mutex_lock(&epmutex); | 
 |  | 
 | 	/* | 
 | 	 * Walks through the whole tree by unregistering poll callbacks. | 
 | 	 */ | 
 | 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { | 
 | 		epi = rb_entry(rbp, struct epitem, rbn); | 
 |  | 
 | 		ep_unregister_pollwait(ep, epi); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Walks through the whole tree by freeing each "struct epitem". At this | 
 | 	 * point we are sure no poll callbacks will be lingering around, and also by | 
 | 	 * holding "epmutex" we can be sure that no file cleanup code will hit | 
 | 	 * us during this operation. So we can avoid the lock on "ep->lock". | 
 | 	 */ | 
 | 	while ((rbp = rb_first(&ep->rbr)) != NULL) { | 
 | 		epi = rb_entry(rbp, struct epitem, rbn); | 
 | 		ep_remove(ep, epi); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&epmutex); | 
 | 	mutex_destroy(&ep->mtx); | 
 | 	free_uid(ep->user); | 
 | 	wakeup_source_unregister(ep->ws); | 
 | 	kfree(ep); | 
 | } | 
 |  | 
 | static int ep_eventpoll_release(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct eventpoll *ep = file->private_data; | 
 |  | 
 | 	if (ep) | 
 | 		ep_free(ep); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, | 
 | 			       void *priv) | 
 | { | 
 | 	struct epitem *epi, *tmp; | 
 | 	poll_table pt; | 
 |  | 
 | 	init_poll_funcptr(&pt, NULL); | 
 | 	list_for_each_entry_safe(epi, tmp, head, rdllink) { | 
 | 		pt._key = epi->event.events; | 
 | 		if (epi->ffd.file->f_op->poll(epi->ffd.file, &pt) & | 
 | 		    epi->event.events) | 
 | 			return POLLIN | POLLRDNORM; | 
 | 		else { | 
 | 			/* | 
 | 			 * Item has been dropped into the ready list by the poll | 
 | 			 * callback, but it's not actually ready, as far as | 
 | 			 * caller requested events goes. We can remove it here. | 
 | 			 */ | 
 | 			__pm_relax(epi->ws); | 
 | 			list_del_init(&epi->rdllink); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) | 
 | { | 
 | 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1); | 
 | } | 
 |  | 
 | static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) | 
 | { | 
 | 	int pollflags; | 
 | 	struct eventpoll *ep = file->private_data; | 
 |  | 
 | 	/* Insert inside our poll wait queue */ | 
 | 	poll_wait(file, &ep->poll_wait, wait); | 
 |  | 
 | 	/* | 
 | 	 * Proceed to find out if wanted events are really available inside | 
 | 	 * the ready list. This need to be done under ep_call_nested() | 
 | 	 * supervision, since the call to f_op->poll() done on listed files | 
 | 	 * could re-enter here. | 
 | 	 */ | 
 | 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, | 
 | 				   ep_poll_readyevents_proc, ep, ep, current); | 
 |  | 
 | 	return pollflags != -1 ? pollflags : 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | static int ep_show_fdinfo(struct seq_file *m, struct file *f) | 
 | { | 
 | 	struct eventpoll *ep = f->private_data; | 
 | 	struct rb_node *rbp; | 
 | 	int ret = 0; | 
 |  | 
 | 	mutex_lock(&ep->mtx); | 
 | 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { | 
 | 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn); | 
 |  | 
 | 		ret = seq_printf(m, "tfd: %8d events: %8x data: %16llx\n", | 
 | 				 epi->ffd.fd, epi->event.events, | 
 | 				 (long long)epi->event.data); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 | 	mutex_unlock(&ep->mtx); | 
 |  | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | /* File callbacks that implement the eventpoll file behaviour */ | 
 | static const struct file_operations eventpoll_fops = { | 
 | #ifdef CONFIG_PROC_FS | 
 | 	.show_fdinfo	= ep_show_fdinfo, | 
 | #endif | 
 | 	.release	= ep_eventpoll_release, | 
 | 	.poll		= ep_eventpoll_poll, | 
 | 	.llseek		= noop_llseek, | 
 | }; | 
 |  | 
 | /* | 
 |  * This is called from eventpoll_release() to unlink files from the eventpoll | 
 |  * interface. We need to have this facility to cleanup correctly files that are | 
 |  * closed without being removed from the eventpoll interface. | 
 |  */ | 
 | void eventpoll_release_file(struct file *file) | 
 | { | 
 | 	struct list_head *lsthead = &file->f_ep_links; | 
 | 	struct eventpoll *ep; | 
 | 	struct epitem *epi; | 
 |  | 
 | 	/* | 
 | 	 * We don't want to get "file->f_lock" because it is not | 
 | 	 * necessary. It is not necessary because we're in the "struct file" | 
 | 	 * cleanup path, and this means that no one is using this file anymore. | 
 | 	 * So, for example, epoll_ctl() cannot hit here since if we reach this | 
 | 	 * point, the file counter already went to zero and fget() would fail. | 
 | 	 * The only hit might come from ep_free() but by holding the mutex | 
 | 	 * will correctly serialize the operation. We do need to acquire | 
 | 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called | 
 | 	 * from anywhere but ep_free(). | 
 | 	 * | 
 | 	 * Besides, ep_remove() acquires the lock, so we can't hold it here. | 
 | 	 */ | 
 | 	mutex_lock(&epmutex); | 
 |  | 
 | 	while (!list_empty(lsthead)) { | 
 | 		epi = list_first_entry(lsthead, struct epitem, fllink); | 
 |  | 
 | 		ep = epi->ep; | 
 | 		list_del_init(&epi->fllink); | 
 | 		mutex_lock_nested(&ep->mtx, 0); | 
 | 		ep_remove(ep, epi); | 
 | 		mutex_unlock(&ep->mtx); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&epmutex); | 
 | } | 
 |  | 
 | static int ep_alloc(struct eventpoll **pep) | 
 | { | 
 | 	int error; | 
 | 	struct user_struct *user; | 
 | 	struct eventpoll *ep; | 
 |  | 
 | 	user = get_current_user(); | 
 | 	error = -ENOMEM; | 
 | 	ep = kzalloc(sizeof(*ep), GFP_KERNEL); | 
 | 	if (unlikely(!ep)) | 
 | 		goto free_uid; | 
 |  | 
 | 	spin_lock_init(&ep->lock); | 
 | 	mutex_init(&ep->mtx); | 
 | 	init_waitqueue_head(&ep->wq); | 
 | 	init_waitqueue_head(&ep->poll_wait); | 
 | 	INIT_LIST_HEAD(&ep->rdllist); | 
 | 	ep->rbr = RB_ROOT; | 
 | 	ep->ovflist = EP_UNACTIVE_PTR; | 
 | 	ep->user = user; | 
 |  | 
 | 	*pep = ep; | 
 |  | 
 | 	return 0; | 
 |  | 
 | free_uid: | 
 | 	free_uid(user); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Search the file inside the eventpoll tree. The RB tree operations | 
 |  * are protected by the "mtx" mutex, and ep_find() must be called with | 
 |  * "mtx" held. | 
 |  */ | 
 | static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) | 
 | { | 
 | 	int kcmp; | 
 | 	struct rb_node *rbp; | 
 | 	struct epitem *epi, *epir = NULL; | 
 | 	struct epoll_filefd ffd; | 
 |  | 
 | 	ep_set_ffd(&ffd, file, fd); | 
 | 	for (rbp = ep->rbr.rb_node; rbp; ) { | 
 | 		epi = rb_entry(rbp, struct epitem, rbn); | 
 | 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd); | 
 | 		if (kcmp > 0) | 
 | 			rbp = rbp->rb_right; | 
 | 		else if (kcmp < 0) | 
 | 			rbp = rbp->rb_left; | 
 | 		else { | 
 | 			epir = epi; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return epir; | 
 | } | 
 |  | 
 | /* | 
 |  * This is the callback that is passed to the wait queue wakeup | 
 |  * mechanism. It is called by the stored file descriptors when they | 
 |  * have events to report. | 
 |  */ | 
 | static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) | 
 | { | 
 | 	int pwake = 0; | 
 | 	unsigned long flags; | 
 | 	struct epitem *epi = ep_item_from_wait(wait); | 
 | 	struct eventpoll *ep = epi->ep; | 
 |  | 
 | 	if ((unsigned long)key & POLLFREE) { | 
 | 		ep_pwq_from_wait(wait)->whead = NULL; | 
 | 		/* | 
 | 		 * whead = NULL above can race with ep_remove_wait_queue() | 
 | 		 * which can do another remove_wait_queue() after us, so we | 
 | 		 * can't use __remove_wait_queue(). whead->lock is held by | 
 | 		 * the caller. | 
 | 		 */ | 
 | 		list_del_init(&wait->task_list); | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&ep->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * If the event mask does not contain any poll(2) event, we consider the | 
 | 	 * descriptor to be disabled. This condition is likely the effect of the | 
 | 	 * EPOLLONESHOT bit that disables the descriptor when an event is received, | 
 | 	 * until the next EPOLL_CTL_MOD will be issued. | 
 | 	 */ | 
 | 	if (!(epi->event.events & ~EP_PRIVATE_BITS)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * Check the events coming with the callback. At this stage, not | 
 | 	 * every device reports the events in the "key" parameter of the | 
 | 	 * callback. We need to be able to handle both cases here, hence the | 
 | 	 * test for "key" != NULL before the event match test. | 
 | 	 */ | 
 | 	if (key && !((unsigned long) key & epi->event.events)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * If we are transferring events to userspace, we can hold no locks | 
 | 	 * (because we're accessing user memory, and because of linux f_op->poll() | 
 | 	 * semantics). All the events that happen during that period of time are | 
 | 	 * chained in ep->ovflist and requeued later on. | 
 | 	 */ | 
 | 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { | 
 | 		if (epi->next == EP_UNACTIVE_PTR) { | 
 | 			epi->next = ep->ovflist; | 
 | 			ep->ovflist = epi; | 
 | 			if (epi->ws) { | 
 | 				/* | 
 | 				 * Activate ep->ws since epi->ws may get | 
 | 				 * deactivated at any time. | 
 | 				 */ | 
 | 				__pm_stay_awake(ep->ws); | 
 | 			} | 
 |  | 
 | 		} | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* If this file is already in the ready list we exit soon */ | 
 | 	if (!ep_is_linked(&epi->rdllink)) { | 
 | 		list_add_tail(&epi->rdllink, &ep->rdllist); | 
 | 		__pm_stay_awake(epi->ws); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll() | 
 | 	 * wait list. | 
 | 	 */ | 
 | 	if (waitqueue_active(&ep->wq)) | 
 | 		wake_up_locked(&ep->wq); | 
 | 	if (waitqueue_active(&ep->poll_wait)) | 
 | 		pwake++; | 
 |  | 
 | out_unlock: | 
 | 	spin_unlock_irqrestore(&ep->lock, flags); | 
 |  | 
 | 	/* We have to call this outside the lock */ | 
 | 	if (pwake) | 
 | 		ep_poll_safewake(&ep->poll_wait); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * This is the callback that is used to add our wait queue to the | 
 |  * target file wakeup lists. | 
 |  */ | 
 | static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, | 
 | 				 poll_table *pt) | 
 | { | 
 | 	struct epitem *epi = ep_item_from_epqueue(pt); | 
 | 	struct eppoll_entry *pwq; | 
 |  | 
 | 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { | 
 | 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); | 
 | 		pwq->whead = whead; | 
 | 		pwq->base = epi; | 
 | 		add_wait_queue(whead, &pwq->wait); | 
 | 		list_add_tail(&pwq->llink, &epi->pwqlist); | 
 | 		epi->nwait++; | 
 | 	} else { | 
 | 		/* We have to signal that an error occurred */ | 
 | 		epi->nwait = -1; | 
 | 	} | 
 | } | 
 |  | 
 | static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) | 
 | { | 
 | 	int kcmp; | 
 | 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; | 
 | 	struct epitem *epic; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		epic = rb_entry(parent, struct epitem, rbn); | 
 | 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); | 
 | 		if (kcmp > 0) | 
 | 			p = &parent->rb_right; | 
 | 		else | 
 | 			p = &parent->rb_left; | 
 | 	} | 
 | 	rb_link_node(&epi->rbn, parent, p); | 
 | 	rb_insert_color(&epi->rbn, &ep->rbr); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | #define PATH_ARR_SIZE 5 | 
 | /* | 
 |  * These are the number paths of length 1 to 5, that we are allowing to emanate | 
 |  * from a single file of interest. For example, we allow 1000 paths of length | 
 |  * 1, to emanate from each file of interest. This essentially represents the | 
 |  * potential wakeup paths, which need to be limited in order to avoid massive | 
 |  * uncontrolled wakeup storms. The common use case should be a single ep which | 
 |  * is connected to n file sources. In this case each file source has 1 path | 
 |  * of length 1. Thus, the numbers below should be more than sufficient. These | 
 |  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify | 
 |  * and delete can't add additional paths. Protected by the epmutex. | 
 |  */ | 
 | static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; | 
 | static int path_count[PATH_ARR_SIZE]; | 
 |  | 
 | static int path_count_inc(int nests) | 
 | { | 
 | 	/* Allow an arbitrary number of depth 1 paths */ | 
 | 	if (nests == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (++path_count[nests] > path_limits[nests]) | 
 | 		return -1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void path_count_init(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < PATH_ARR_SIZE; i++) | 
 | 		path_count[i] = 0; | 
 | } | 
 |  | 
 | static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) | 
 | { | 
 | 	int error = 0; | 
 | 	struct file *file = priv; | 
 | 	struct file *child_file; | 
 | 	struct epitem *epi; | 
 |  | 
 | 	list_for_each_entry(epi, &file->f_ep_links, fllink) { | 
 | 		child_file = epi->ep->file; | 
 | 		if (is_file_epoll(child_file)) { | 
 | 			if (list_empty(&child_file->f_ep_links)) { | 
 | 				if (path_count_inc(call_nests)) { | 
 | 					error = -1; | 
 | 					break; | 
 | 				} | 
 | 			} else { | 
 | 				error = ep_call_nested(&poll_loop_ncalls, | 
 | 							EP_MAX_NESTS, | 
 | 							reverse_path_check_proc, | 
 | 							child_file, child_file, | 
 | 							current); | 
 | 			} | 
 | 			if (error != 0) | 
 | 				break; | 
 | 		} else { | 
 | 			printk(KERN_ERR "reverse_path_check_proc: " | 
 | 				"file is not an ep!\n"); | 
 | 		} | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | /** | 
 |  * reverse_path_check - The tfile_check_list is list of file *, which have | 
 |  *                      links that are proposed to be newly added. We need to | 
 |  *                      make sure that those added links don't add too many | 
 |  *                      paths such that we will spend all our time waking up | 
 |  *                      eventpoll objects. | 
 |  * | 
 |  * Returns: Returns zero if the proposed links don't create too many paths, | 
 |  *	    -1 otherwise. | 
 |  */ | 
 | static int reverse_path_check(void) | 
 | { | 
 | 	int error = 0; | 
 | 	struct file *current_file; | 
 |  | 
 | 	/* let's call this for all tfiles */ | 
 | 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { | 
 | 		path_count_init(); | 
 | 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, | 
 | 					reverse_path_check_proc, current_file, | 
 | 					current_file, current); | 
 | 		if (error) | 
 | 			break; | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | static int ep_create_wakeup_source(struct epitem *epi) | 
 | { | 
 | 	const char *name; | 
 |  | 
 | 	if (!epi->ep->ws) { | 
 | 		epi->ep->ws = wakeup_source_register("eventpoll"); | 
 | 		if (!epi->ep->ws) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	name = epi->ffd.file->f_path.dentry->d_name.name; | 
 | 	epi->ws = wakeup_source_register(name); | 
 | 	if (!epi->ws) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void ep_destroy_wakeup_source(struct epitem *epi) | 
 | { | 
 | 	wakeup_source_unregister(epi->ws); | 
 | 	epi->ws = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Must be called with "mtx" held. | 
 |  */ | 
 | static int ep_insert(struct eventpoll *ep, struct epoll_event *event, | 
 | 		     struct file *tfile, int fd) | 
 | { | 
 | 	int error, revents, pwake = 0; | 
 | 	unsigned long flags; | 
 | 	long user_watches; | 
 | 	struct epitem *epi; | 
 | 	struct ep_pqueue epq; | 
 |  | 
 | 	user_watches = atomic_long_read(&ep->user->epoll_watches); | 
 | 	if (unlikely(user_watches >= max_user_watches)) | 
 | 		return -ENOSPC; | 
 | 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* Item initialization follow here ... */ | 
 | 	INIT_LIST_HEAD(&epi->rdllink); | 
 | 	INIT_LIST_HEAD(&epi->fllink); | 
 | 	INIT_LIST_HEAD(&epi->pwqlist); | 
 | 	epi->ep = ep; | 
 | 	ep_set_ffd(&epi->ffd, tfile, fd); | 
 | 	epi->event = *event; | 
 | 	epi->nwait = 0; | 
 | 	epi->next = EP_UNACTIVE_PTR; | 
 | 	if (epi->event.events & EPOLLWAKEUP) { | 
 | 		error = ep_create_wakeup_source(epi); | 
 | 		if (error) | 
 | 			goto error_create_wakeup_source; | 
 | 	} else { | 
 | 		epi->ws = NULL; | 
 | 	} | 
 |  | 
 | 	/* Initialize the poll table using the queue callback */ | 
 | 	epq.epi = epi; | 
 | 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); | 
 | 	epq.pt._key = event->events; | 
 |  | 
 | 	/* | 
 | 	 * Attach the item to the poll hooks and get current event bits. | 
 | 	 * We can safely use the file* here because its usage count has | 
 | 	 * been increased by the caller of this function. Note that after | 
 | 	 * this operation completes, the poll callback can start hitting | 
 | 	 * the new item. | 
 | 	 */ | 
 | 	revents = tfile->f_op->poll(tfile, &epq.pt); | 
 |  | 
 | 	/* | 
 | 	 * We have to check if something went wrong during the poll wait queue | 
 | 	 * install process. Namely an allocation for a wait queue failed due | 
 | 	 * high memory pressure. | 
 | 	 */ | 
 | 	error = -ENOMEM; | 
 | 	if (epi->nwait < 0) | 
 | 		goto error_unregister; | 
 |  | 
 | 	/* Add the current item to the list of active epoll hook for this file */ | 
 | 	spin_lock(&tfile->f_lock); | 
 | 	list_add_tail(&epi->fllink, &tfile->f_ep_links); | 
 | 	spin_unlock(&tfile->f_lock); | 
 |  | 
 | 	/* | 
 | 	 * Add the current item to the RB tree. All RB tree operations are | 
 | 	 * protected by "mtx", and ep_insert() is called with "mtx" held. | 
 | 	 */ | 
 | 	ep_rbtree_insert(ep, epi); | 
 |  | 
 | 	/* now check if we've created too many backpaths */ | 
 | 	error = -EINVAL; | 
 | 	if (reverse_path_check()) | 
 | 		goto error_remove_epi; | 
 |  | 
 | 	/* We have to drop the new item inside our item list to keep track of it */ | 
 | 	spin_lock_irqsave(&ep->lock, flags); | 
 |  | 
 | 	/* If the file is already "ready" we drop it inside the ready list */ | 
 | 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { | 
 | 		list_add_tail(&epi->rdllink, &ep->rdllist); | 
 | 		__pm_stay_awake(epi->ws); | 
 |  | 
 | 		/* Notify waiting tasks that events are available */ | 
 | 		if (waitqueue_active(&ep->wq)) | 
 | 			wake_up_locked(&ep->wq); | 
 | 		if (waitqueue_active(&ep->poll_wait)) | 
 | 			pwake++; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&ep->lock, flags); | 
 |  | 
 | 	atomic_long_inc(&ep->user->epoll_watches); | 
 |  | 
 | 	/* We have to call this outside the lock */ | 
 | 	if (pwake) | 
 | 		ep_poll_safewake(&ep->poll_wait); | 
 |  | 
 | 	return 0; | 
 |  | 
 | error_remove_epi: | 
 | 	spin_lock(&tfile->f_lock); | 
 | 	if (ep_is_linked(&epi->fllink)) | 
 | 		list_del_init(&epi->fllink); | 
 | 	spin_unlock(&tfile->f_lock); | 
 |  | 
 | 	rb_erase(&epi->rbn, &ep->rbr); | 
 |  | 
 | error_unregister: | 
 | 	ep_unregister_pollwait(ep, epi); | 
 |  | 
 | 	/* | 
 | 	 * We need to do this because an event could have been arrived on some | 
 | 	 * allocated wait queue. Note that we don't care about the ep->ovflist | 
 | 	 * list, since that is used/cleaned only inside a section bound by "mtx". | 
 | 	 * And ep_insert() is called with "mtx" held. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&ep->lock, flags); | 
 | 	if (ep_is_linked(&epi->rdllink)) | 
 | 		list_del_init(&epi->rdllink); | 
 | 	spin_unlock_irqrestore(&ep->lock, flags); | 
 |  | 
 | 	wakeup_source_unregister(epi->ws); | 
 |  | 
 | error_create_wakeup_source: | 
 | 	kmem_cache_free(epi_cache, epi); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Modify the interest event mask by dropping an event if the new mask | 
 |  * has a match in the current file status. Must be called with "mtx" held. | 
 |  */ | 
 | static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) | 
 | { | 
 | 	int pwake = 0; | 
 | 	unsigned int revents; | 
 | 	poll_table pt; | 
 |  | 
 | 	init_poll_funcptr(&pt, NULL); | 
 |  | 
 | 	/* | 
 | 	 * Set the new event interest mask before calling f_op->poll(); | 
 | 	 * otherwise we might miss an event that happens between the | 
 | 	 * f_op->poll() call and the new event set registering. | 
 | 	 */ | 
 | 	epi->event.events = event->events; /* need barrier below */ | 
 | 	pt._key = event->events; | 
 | 	epi->event.data = event->data; /* protected by mtx */ | 
 | 	if (epi->event.events & EPOLLWAKEUP) { | 
 | 		if (!epi->ws) | 
 | 			ep_create_wakeup_source(epi); | 
 | 	} else if (epi->ws) { | 
 | 		ep_destroy_wakeup_source(epi); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The following barrier has two effects: | 
 | 	 * | 
 | 	 * 1) Flush epi changes above to other CPUs.  This ensures | 
 | 	 *    we do not miss events from ep_poll_callback if an | 
 | 	 *    event occurs immediately after we call f_op->poll(). | 
 | 	 *    We need this because we did not take ep->lock while | 
 | 	 *    changing epi above (but ep_poll_callback does take | 
 | 	 *    ep->lock). | 
 | 	 * | 
 | 	 * 2) We also need to ensure we do not miss _past_ events | 
 | 	 *    when calling f_op->poll().  This barrier also | 
 | 	 *    pairs with the barrier in wq_has_sleeper (see | 
 | 	 *    comments for wq_has_sleeper). | 
 | 	 * | 
 | 	 * This barrier will now guarantee ep_poll_callback or f_op->poll | 
 | 	 * (or both) will notice the readiness of an item. | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	/* | 
 | 	 * Get current event bits. We can safely use the file* here because | 
 | 	 * its usage count has been increased by the caller of this function. | 
 | 	 */ | 
 | 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt); | 
 |  | 
 | 	/* | 
 | 	 * If the item is "hot" and it is not registered inside the ready | 
 | 	 * list, push it inside. | 
 | 	 */ | 
 | 	if (revents & event->events) { | 
 | 		spin_lock_irq(&ep->lock); | 
 | 		if (!ep_is_linked(&epi->rdllink)) { | 
 | 			list_add_tail(&epi->rdllink, &ep->rdllist); | 
 | 			__pm_stay_awake(epi->ws); | 
 |  | 
 | 			/* Notify waiting tasks that events are available */ | 
 | 			if (waitqueue_active(&ep->wq)) | 
 | 				wake_up_locked(&ep->wq); | 
 | 			if (waitqueue_active(&ep->poll_wait)) | 
 | 				pwake++; | 
 | 		} | 
 | 		spin_unlock_irq(&ep->lock); | 
 | 	} | 
 |  | 
 | 	/* We have to call this outside the lock */ | 
 | 	if (pwake) | 
 | 		ep_poll_safewake(&ep->poll_wait); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, | 
 | 			       void *priv) | 
 | { | 
 | 	struct ep_send_events_data *esed = priv; | 
 | 	int eventcnt; | 
 | 	unsigned int revents; | 
 | 	struct epitem *epi; | 
 | 	struct epoll_event __user *uevent; | 
 | 	poll_table pt; | 
 |  | 
 | 	init_poll_funcptr(&pt, NULL); | 
 |  | 
 | 	/* | 
 | 	 * We can loop without lock because we are passed a task private list. | 
 | 	 * Items cannot vanish during the loop because ep_scan_ready_list() is | 
 | 	 * holding "mtx" during this call. | 
 | 	 */ | 
 | 	for (eventcnt = 0, uevent = esed->events; | 
 | 	     !list_empty(head) && eventcnt < esed->maxevents;) { | 
 | 		epi = list_first_entry(head, struct epitem, rdllink); | 
 |  | 
 | 		/* | 
 | 		 * Activate ep->ws before deactivating epi->ws to prevent | 
 | 		 * triggering auto-suspend here (in case we reactive epi->ws | 
 | 		 * below). | 
 | 		 * | 
 | 		 * This could be rearranged to delay the deactivation of epi->ws | 
 | 		 * instead, but then epi->ws would temporarily be out of sync | 
 | 		 * with ep_is_linked(). | 
 | 		 */ | 
 | 		if (epi->ws && epi->ws->active) | 
 | 			__pm_stay_awake(ep->ws); | 
 | 		__pm_relax(epi->ws); | 
 | 		list_del_init(&epi->rdllink); | 
 |  | 
 | 		pt._key = epi->event.events; | 
 | 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt) & | 
 | 			epi->event.events; | 
 |  | 
 | 		/* | 
 | 		 * If the event mask intersect the caller-requested one, | 
 | 		 * deliver the event to userspace. Again, ep_scan_ready_list() | 
 | 		 * is holding "mtx", so no operations coming from userspace | 
 | 		 * can change the item. | 
 | 		 */ | 
 | 		if (revents) { | 
 | 			if (__put_user(revents, &uevent->events) || | 
 | 			    __put_user(epi->event.data, &uevent->data)) { | 
 | 				list_add(&epi->rdllink, head); | 
 | 				__pm_stay_awake(epi->ws); | 
 | 				return eventcnt ? eventcnt : -EFAULT; | 
 | 			} | 
 | 			eventcnt++; | 
 | 			uevent++; | 
 | 			if (epi->event.events & EPOLLONESHOT) | 
 | 				epi->event.events &= EP_PRIVATE_BITS; | 
 | 			else if (!(epi->event.events & EPOLLET)) { | 
 | 				/* | 
 | 				 * If this file has been added with Level | 
 | 				 * Trigger mode, we need to insert back inside | 
 | 				 * the ready list, so that the next call to | 
 | 				 * epoll_wait() will check again the events | 
 | 				 * availability. At this point, no one can insert | 
 | 				 * into ep->rdllist besides us. The epoll_ctl() | 
 | 				 * callers are locked out by | 
 | 				 * ep_scan_ready_list() holding "mtx" and the | 
 | 				 * poll callback will queue them in ep->ovflist. | 
 | 				 */ | 
 | 				list_add_tail(&epi->rdllink, &ep->rdllist); | 
 | 				__pm_stay_awake(epi->ws); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return eventcnt; | 
 | } | 
 |  | 
 | static int ep_send_events(struct eventpoll *ep, | 
 | 			  struct epoll_event __user *events, int maxevents) | 
 | { | 
 | 	struct ep_send_events_data esed; | 
 |  | 
 | 	esed.maxevents = maxevents; | 
 | 	esed.events = events; | 
 |  | 
 | 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0); | 
 | } | 
 |  | 
 | static inline struct timespec ep_set_mstimeout(long ms) | 
 | { | 
 | 	struct timespec now, ts = { | 
 | 		.tv_sec = ms / MSEC_PER_SEC, | 
 | 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), | 
 | 	}; | 
 |  | 
 | 	ktime_get_ts(&now); | 
 | 	return timespec_add_safe(now, ts); | 
 | } | 
 |  | 
 | /** | 
 |  * ep_poll - Retrieves ready events, and delivers them to the caller supplied | 
 |  *           event buffer. | 
 |  * | 
 |  * @ep: Pointer to the eventpoll context. | 
 |  * @events: Pointer to the userspace buffer where the ready events should be | 
 |  *          stored. | 
 |  * @maxevents: Size (in terms of number of events) of the caller event buffer. | 
 |  * @timeout: Maximum timeout for the ready events fetch operation, in | 
 |  *           milliseconds. If the @timeout is zero, the function will not block, | 
 |  *           while if the @timeout is less than zero, the function will block | 
 |  *           until at least one event has been retrieved (or an error | 
 |  *           occurred). | 
 |  * | 
 |  * Returns: Returns the number of ready events which have been fetched, or an | 
 |  *          error code, in case of error. | 
 |  */ | 
 | static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, | 
 | 		   int maxevents, long timeout) | 
 | { | 
 | 	int res = 0, eavail, timed_out = 0; | 
 | 	unsigned long flags; | 
 | 	long slack = 0; | 
 | 	wait_queue_t wait; | 
 | 	ktime_t expires, *to = NULL; | 
 |  | 
 | 	if (timeout > 0) { | 
 | 		struct timespec end_time = ep_set_mstimeout(timeout); | 
 |  | 
 | 		slack = select_estimate_accuracy(&end_time); | 
 | 		to = &expires; | 
 | 		*to = timespec_to_ktime(end_time); | 
 | 	} else if (timeout == 0) { | 
 | 		/* | 
 | 		 * Avoid the unnecessary trip to the wait queue loop, if the | 
 | 		 * caller specified a non blocking operation. | 
 | 		 */ | 
 | 		timed_out = 1; | 
 | 		spin_lock_irqsave(&ep->lock, flags); | 
 | 		goto check_events; | 
 | 	} | 
 |  | 
 | fetch_events: | 
 | 	spin_lock_irqsave(&ep->lock, flags); | 
 |  | 
 | 	if (!ep_events_available(ep)) { | 
 | 		/* | 
 | 		 * We don't have any available event to return to the caller. | 
 | 		 * We need to sleep here, and we will be wake up by | 
 | 		 * ep_poll_callback() when events will become available. | 
 | 		 */ | 
 | 		init_waitqueue_entry(&wait, current); | 
 | 		__add_wait_queue_exclusive(&ep->wq, &wait); | 
 |  | 
 | 		for (;;) { | 
 | 			/* | 
 | 			 * We don't want to sleep if the ep_poll_callback() sends us | 
 | 			 * a wakeup in between. That's why we set the task state | 
 | 			 * to TASK_INTERRUPTIBLE before doing the checks. | 
 | 			 */ | 
 | 			set_current_state(TASK_INTERRUPTIBLE); | 
 | 			if (ep_events_available(ep) || timed_out) | 
 | 				break; | 
 | 			if (signal_pending(current)) { | 
 | 				res = -EINTR; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			spin_unlock_irqrestore(&ep->lock, flags); | 
 | 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) | 
 | 				timed_out = 1; | 
 |  | 
 | 			spin_lock_irqsave(&ep->lock, flags); | 
 | 		} | 
 | 		__remove_wait_queue(&ep->wq, &wait); | 
 |  | 
 | 		set_current_state(TASK_RUNNING); | 
 | 	} | 
 | check_events: | 
 | 	/* Is it worth to try to dig for events ? */ | 
 | 	eavail = ep_events_available(ep); | 
 |  | 
 | 	spin_unlock_irqrestore(&ep->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Try to transfer events to user space. In case we get 0 events and | 
 | 	 * there's still timeout left over, we go trying again in search of | 
 | 	 * more luck. | 
 | 	 */ | 
 | 	if (!res && eavail && | 
 | 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out) | 
 | 		goto fetch_events; | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | /** | 
 |  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() | 
 |  *                      API, to verify that adding an epoll file inside another | 
 |  *                      epoll structure, does not violate the constraints, in | 
 |  *                      terms of closed loops, or too deep chains (which can | 
 |  *                      result in excessive stack usage). | 
 |  * | 
 |  * @priv: Pointer to the epoll file to be currently checked. | 
 |  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll | 
 |  *          data structure pointer. | 
 |  * @call_nests: Current dept of the @ep_call_nested() call stack. | 
 |  * | 
 |  * Returns: Returns zero if adding the epoll @file inside current epoll | 
 |  *          structure @ep does not violate the constraints, or -1 otherwise. | 
 |  */ | 
 | static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) | 
 | { | 
 | 	int error = 0; | 
 | 	struct file *file = priv; | 
 | 	struct eventpoll *ep = file->private_data; | 
 | 	struct eventpoll *ep_tovisit; | 
 | 	struct rb_node *rbp; | 
 | 	struct epitem *epi; | 
 |  | 
 | 	mutex_lock_nested(&ep->mtx, call_nests + 1); | 
 | 	ep->visited = 1; | 
 | 	list_add(&ep->visited_list_link, &visited_list); | 
 | 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { | 
 | 		epi = rb_entry(rbp, struct epitem, rbn); | 
 | 		if (unlikely(is_file_epoll(epi->ffd.file))) { | 
 | 			ep_tovisit = epi->ffd.file->private_data; | 
 | 			if (ep_tovisit->visited) | 
 | 				continue; | 
 | 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, | 
 | 					ep_loop_check_proc, epi->ffd.file, | 
 | 					ep_tovisit, current); | 
 | 			if (error != 0) | 
 | 				break; | 
 | 		} else { | 
 | 			/* | 
 | 			 * If we've reached a file that is not associated with | 
 | 			 * an ep, then we need to check if the newly added | 
 | 			 * links are going to add too many wakeup paths. We do | 
 | 			 * this by adding it to the tfile_check_list, if it's | 
 | 			 * not already there, and calling reverse_path_check() | 
 | 			 * during ep_insert(). | 
 | 			 */ | 
 | 			if (list_empty(&epi->ffd.file->f_tfile_llink)) | 
 | 				list_add(&epi->ffd.file->f_tfile_llink, | 
 | 					 &tfile_check_list); | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&ep->mtx); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | /** | 
 |  * ep_loop_check - Performs a check to verify that adding an epoll file (@file) | 
 |  *                 another epoll file (represented by @ep) does not create | 
 |  *                 closed loops or too deep chains. | 
 |  * | 
 |  * @ep: Pointer to the epoll private data structure. | 
 |  * @file: Pointer to the epoll file to be checked. | 
 |  * | 
 |  * Returns: Returns zero if adding the epoll @file inside current epoll | 
 |  *          structure @ep does not violate the constraints, or -1 otherwise. | 
 |  */ | 
 | static int ep_loop_check(struct eventpoll *ep, struct file *file) | 
 | { | 
 | 	int ret; | 
 | 	struct eventpoll *ep_cur, *ep_next; | 
 |  | 
 | 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, | 
 | 			      ep_loop_check_proc, file, ep, current); | 
 | 	/* clear visited list */ | 
 | 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list, | 
 | 							visited_list_link) { | 
 | 		ep_cur->visited = 0; | 
 | 		list_del(&ep_cur->visited_list_link); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void clear_tfile_check_list(void) | 
 | { | 
 | 	struct file *file; | 
 |  | 
 | 	/* first clear the tfile_check_list */ | 
 | 	while (!list_empty(&tfile_check_list)) { | 
 | 		file = list_first_entry(&tfile_check_list, struct file, | 
 | 					f_tfile_llink); | 
 | 		list_del_init(&file->f_tfile_llink); | 
 | 	} | 
 | 	INIT_LIST_HEAD(&tfile_check_list); | 
 | } | 
 |  | 
 | /* | 
 |  * Open an eventpoll file descriptor. | 
 |  */ | 
 | SYSCALL_DEFINE1(epoll_create1, int, flags) | 
 | { | 
 | 	int error, fd; | 
 | 	struct eventpoll *ep = NULL; | 
 | 	struct file *file; | 
 |  | 
 | 	/* Check the EPOLL_* constant for consistency.  */ | 
 | 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); | 
 |  | 
 | 	if (flags & ~EPOLL_CLOEXEC) | 
 | 		return -EINVAL; | 
 | 	/* | 
 | 	 * Create the internal data structure ("struct eventpoll"). | 
 | 	 */ | 
 | 	error = ep_alloc(&ep); | 
 | 	if (error < 0) | 
 | 		return error; | 
 | 	/* | 
 | 	 * Creates all the items needed to setup an eventpoll file. That is, | 
 | 	 * a file structure and a free file descriptor. | 
 | 	 */ | 
 | 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); | 
 | 	if (fd < 0) { | 
 | 		error = fd; | 
 | 		goto out_free_ep; | 
 | 	} | 
 | 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, | 
 | 				 O_RDWR | (flags & O_CLOEXEC)); | 
 | 	if (IS_ERR(file)) { | 
 | 		error = PTR_ERR(file); | 
 | 		goto out_free_fd; | 
 | 	} | 
 | 	ep->file = file; | 
 | 	fd_install(fd, file); | 
 | 	return fd; | 
 |  | 
 | out_free_fd: | 
 | 	put_unused_fd(fd); | 
 | out_free_ep: | 
 | 	ep_free(ep); | 
 | 	return error; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE1(epoll_create, int, size) | 
 | { | 
 | 	if (size <= 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return sys_epoll_create1(0); | 
 | } | 
 |  | 
 | /* | 
 |  * The following function implements the controller interface for | 
 |  * the eventpoll file that enables the insertion/removal/change of | 
 |  * file descriptors inside the interest set. | 
 |  */ | 
 | SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, | 
 | 		struct epoll_event __user *, event) | 
 | { | 
 | 	int error; | 
 | 	int did_lock_epmutex = 0; | 
 | 	struct file *file, *tfile; | 
 | 	struct eventpoll *ep; | 
 | 	struct epitem *epi; | 
 | 	struct epoll_event epds; | 
 |  | 
 | 	error = -EFAULT; | 
 | 	if (ep_op_has_event(op) && | 
 | 	    copy_from_user(&epds, event, sizeof(struct epoll_event))) | 
 | 		goto error_return; | 
 |  | 
 | 	/* Get the "struct file *" for the eventpoll file */ | 
 | 	error = -EBADF; | 
 | 	file = fget(epfd); | 
 | 	if (!file) | 
 | 		goto error_return; | 
 |  | 
 | 	/* Get the "struct file *" for the target file */ | 
 | 	tfile = fget(fd); | 
 | 	if (!tfile) | 
 | 		goto error_fput; | 
 |  | 
 | 	/* The target file descriptor must support poll */ | 
 | 	error = -EPERM; | 
 | 	if (!tfile->f_op || !tfile->f_op->poll) | 
 | 		goto error_tgt_fput; | 
 |  | 
 | 	/* Check if EPOLLWAKEUP is allowed */ | 
 | 	if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) | 
 | 		epds.events &= ~EPOLLWAKEUP; | 
 |  | 
 | 	/* | 
 | 	 * We have to check that the file structure underneath the file descriptor | 
 | 	 * the user passed to us _is_ an eventpoll file. And also we do not permit | 
 | 	 * adding an epoll file descriptor inside itself. | 
 | 	 */ | 
 | 	error = -EINVAL; | 
 | 	if (file == tfile || !is_file_epoll(file)) | 
 | 		goto error_tgt_fput; | 
 |  | 
 | 	/* | 
 | 	 * At this point it is safe to assume that the "private_data" contains | 
 | 	 * our own data structure. | 
 | 	 */ | 
 | 	ep = file->private_data; | 
 |  | 
 | 	/* | 
 | 	 * When we insert an epoll file descriptor, inside another epoll file | 
 | 	 * descriptor, there is the change of creating closed loops, which are | 
 | 	 * better be handled here, than in more critical paths. While we are | 
 | 	 * checking for loops we also determine the list of files reachable | 
 | 	 * and hang them on the tfile_check_list, so we can check that we | 
 | 	 * haven't created too many possible wakeup paths. | 
 | 	 * | 
 | 	 * We need to hold the epmutex across both ep_insert and ep_remove | 
 | 	 * b/c we want to make sure we are looking at a coherent view of | 
 | 	 * epoll network. | 
 | 	 */ | 
 | 	if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) { | 
 | 		mutex_lock(&epmutex); | 
 | 		did_lock_epmutex = 1; | 
 | 	} | 
 | 	if (op == EPOLL_CTL_ADD) { | 
 | 		if (is_file_epoll(tfile)) { | 
 | 			error = -ELOOP; | 
 | 			if (ep_loop_check(ep, tfile) != 0) { | 
 | 				clear_tfile_check_list(); | 
 | 				goto error_tgt_fput; | 
 | 			} | 
 | 		} else | 
 | 			list_add(&tfile->f_tfile_llink, &tfile_check_list); | 
 | 	} | 
 |  | 
 | 	mutex_lock_nested(&ep->mtx, 0); | 
 |  | 
 | 	/* | 
 | 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" | 
 | 	 * above, we can be sure to be able to use the item looked up by | 
 | 	 * ep_find() till we release the mutex. | 
 | 	 */ | 
 | 	epi = ep_find(ep, tfile, fd); | 
 |  | 
 | 	error = -EINVAL; | 
 | 	switch (op) { | 
 | 	case EPOLL_CTL_ADD: | 
 | 		if (!epi) { | 
 | 			epds.events |= POLLERR | POLLHUP; | 
 | 			error = ep_insert(ep, &epds, tfile, fd); | 
 | 		} else | 
 | 			error = -EEXIST; | 
 | 		clear_tfile_check_list(); | 
 | 		break; | 
 | 	case EPOLL_CTL_DEL: | 
 | 		if (epi) | 
 | 			error = ep_remove(ep, epi); | 
 | 		else | 
 | 			error = -ENOENT; | 
 | 		break; | 
 | 	case EPOLL_CTL_MOD: | 
 | 		if (epi) { | 
 | 			epds.events |= POLLERR | POLLHUP; | 
 | 			error = ep_modify(ep, epi, &epds); | 
 | 		} else | 
 | 			error = -ENOENT; | 
 | 		break; | 
 | 	} | 
 | 	mutex_unlock(&ep->mtx); | 
 |  | 
 | error_tgt_fput: | 
 | 	if (did_lock_epmutex) | 
 | 		mutex_unlock(&epmutex); | 
 |  | 
 | 	fput(tfile); | 
 | error_fput: | 
 | 	fput(file); | 
 | error_return: | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Implement the event wait interface for the eventpoll file. It is the kernel | 
 |  * part of the user space epoll_wait(2). | 
 |  */ | 
 | SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, | 
 | 		int, maxevents, int, timeout) | 
 | { | 
 | 	int error; | 
 | 	struct fd f; | 
 | 	struct eventpoll *ep; | 
 |  | 
 | 	/* The maximum number of event must be greater than zero */ | 
 | 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Verify that the area passed by the user is writeable */ | 
 | 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* Get the "struct file *" for the eventpoll file */ | 
 | 	f = fdget(epfd); | 
 | 	if (!f.file) | 
 | 		return -EBADF; | 
 |  | 
 | 	/* | 
 | 	 * We have to check that the file structure underneath the fd | 
 | 	 * the user passed to us _is_ an eventpoll file. | 
 | 	 */ | 
 | 	error = -EINVAL; | 
 | 	if (!is_file_epoll(f.file)) | 
 | 		goto error_fput; | 
 |  | 
 | 	/* | 
 | 	 * At this point it is safe to assume that the "private_data" contains | 
 | 	 * our own data structure. | 
 | 	 */ | 
 | 	ep = f.file->private_data; | 
 |  | 
 | 	/* Time to fish for events ... */ | 
 | 	error = ep_poll(ep, events, maxevents, timeout); | 
 |  | 
 | error_fput: | 
 | 	fdput(f); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Implement the event wait interface for the eventpoll file. It is the kernel | 
 |  * part of the user space epoll_pwait(2). | 
 |  */ | 
 | SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, | 
 | 		int, maxevents, int, timeout, const sigset_t __user *, sigmask, | 
 | 		size_t, sigsetsize) | 
 | { | 
 | 	int error; | 
 | 	sigset_t ksigmask, sigsaved; | 
 |  | 
 | 	/* | 
 | 	 * If the caller wants a certain signal mask to be set during the wait, | 
 | 	 * we apply it here. | 
 | 	 */ | 
 | 	if (sigmask) { | 
 | 		if (sigsetsize != sizeof(sigset_t)) | 
 | 			return -EINVAL; | 
 | 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) | 
 | 			return -EFAULT; | 
 | 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
 | 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); | 
 | 	} | 
 |  | 
 | 	error = sys_epoll_wait(epfd, events, maxevents, timeout); | 
 |  | 
 | 	/* | 
 | 	 * If we changed the signal mask, we need to restore the original one. | 
 | 	 * In case we've got a signal while waiting, we do not restore the | 
 | 	 * signal mask yet, and we allow do_signal() to deliver the signal on | 
 | 	 * the way back to userspace, before the signal mask is restored. | 
 | 	 */ | 
 | 	if (sigmask) { | 
 | 		if (error == -EINTR) { | 
 | 			memcpy(¤t->saved_sigmask, &sigsaved, | 
 | 			       sizeof(sigsaved)); | 
 | 			set_restore_sigmask(); | 
 | 		} else | 
 | 			sigprocmask(SIG_SETMASK, &sigsaved, NULL); | 
 | 	} | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | static int __init eventpoll_init(void) | 
 | { | 
 | 	struct sysinfo si; | 
 |  | 
 | 	si_meminfo(&si); | 
 | 	/* | 
 | 	 * Allows top 4% of lomem to be allocated for epoll watches (per user). | 
 | 	 */ | 
 | 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / | 
 | 		EP_ITEM_COST; | 
 | 	BUG_ON(max_user_watches < 0); | 
 |  | 
 | 	/* | 
 | 	 * Initialize the structure used to perform epoll file descriptor | 
 | 	 * inclusion loops checks. | 
 | 	 */ | 
 | 	ep_nested_calls_init(&poll_loop_ncalls); | 
 |  | 
 | 	/* Initialize the structure used to perform safe poll wait head wake ups */ | 
 | 	ep_nested_calls_init(&poll_safewake_ncalls); | 
 |  | 
 | 	/* Initialize the structure used to perform file's f_op->poll() calls */ | 
 | 	ep_nested_calls_init(&poll_readywalk_ncalls); | 
 |  | 
 | 	/* Allocates slab cache used to allocate "struct epitem" items */ | 
 | 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), | 
 | 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); | 
 |  | 
 | 	/* Allocates slab cache used to allocate "struct eppoll_entry" */ | 
 | 	pwq_cache = kmem_cache_create("eventpoll_pwq", | 
 | 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); | 
 |  | 
 | 	return 0; | 
 | } | 
 | fs_initcall(eventpoll_init); |