|  | /* | 
|  | * Generic VM initialization for x86-64 NUMA setups. | 
|  | * Copyright 2002,2003 Andi Kleen, SuSE Labs. | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/acpi.h> | 
|  |  | 
|  | #include <asm/e820.h> | 
|  | #include <asm/proto.h> | 
|  | #include <asm/dma.h> | 
|  | #include <asm/acpi.h> | 
|  | #include <asm/amd_nb.h> | 
|  |  | 
|  | #include "numa_internal.h" | 
|  |  | 
|  | struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; | 
|  | EXPORT_SYMBOL(node_data); | 
|  |  | 
|  | nodemask_t numa_nodes_parsed __initdata; | 
|  |  | 
|  | struct memnode memnode; | 
|  |  | 
|  | static unsigned long __initdata nodemap_addr; | 
|  | static unsigned long __initdata nodemap_size; | 
|  |  | 
|  | static struct numa_meminfo numa_meminfo __initdata; | 
|  |  | 
|  | static int numa_distance_cnt; | 
|  | static u8 *numa_distance; | 
|  |  | 
|  | /* | 
|  | * Given a shift value, try to populate memnodemap[] | 
|  | * Returns : | 
|  | * 1 if OK | 
|  | * 0 if memnodmap[] too small (of shift too small) | 
|  | * -1 if node overlap or lost ram (shift too big) | 
|  | */ | 
|  | static int __init populate_memnodemap(const struct numa_meminfo *mi, int shift) | 
|  | { | 
|  | unsigned long addr, end; | 
|  | int i, res = -1; | 
|  |  | 
|  | memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize); | 
|  | for (i = 0; i < mi->nr_blks; i++) { | 
|  | addr = mi->blk[i].start; | 
|  | end = mi->blk[i].end; | 
|  | if (addr >= end) | 
|  | continue; | 
|  | if ((end >> shift) >= memnodemapsize) | 
|  | return 0; | 
|  | do { | 
|  | if (memnodemap[addr >> shift] != NUMA_NO_NODE) | 
|  | return -1; | 
|  | memnodemap[addr >> shift] = mi->blk[i].nid; | 
|  | addr += (1UL << shift); | 
|  | } while (addr < end); | 
|  | res = 1; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static int __init allocate_cachealigned_memnodemap(void) | 
|  | { | 
|  | unsigned long addr; | 
|  |  | 
|  | memnodemap = memnode.embedded_map; | 
|  | if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map)) | 
|  | return 0; | 
|  |  | 
|  | addr = 0x8000; | 
|  | nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES); | 
|  | nodemap_addr = memblock_find_in_range(addr, get_max_mapped(), | 
|  | nodemap_size, L1_CACHE_BYTES); | 
|  | if (nodemap_addr == MEMBLOCK_ERROR) { | 
|  | printk(KERN_ERR | 
|  | "NUMA: Unable to allocate Memory to Node hash map\n"); | 
|  | nodemap_addr = nodemap_size = 0; | 
|  | return -1; | 
|  | } | 
|  | memnodemap = phys_to_virt(nodemap_addr); | 
|  | memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP"); | 
|  |  | 
|  | printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n", | 
|  | nodemap_addr, nodemap_addr + nodemap_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The LSB of all start and end addresses in the node map is the value of the | 
|  | * maximum possible shift. | 
|  | */ | 
|  | static int __init extract_lsb_from_nodes(const struct numa_meminfo *mi) | 
|  | { | 
|  | int i, nodes_used = 0; | 
|  | unsigned long start, end; | 
|  | unsigned long bitfield = 0, memtop = 0; | 
|  |  | 
|  | for (i = 0; i < mi->nr_blks; i++) { | 
|  | start = mi->blk[i].start; | 
|  | end = mi->blk[i].end; | 
|  | if (start >= end) | 
|  | continue; | 
|  | bitfield |= start; | 
|  | nodes_used++; | 
|  | if (end > memtop) | 
|  | memtop = end; | 
|  | } | 
|  | if (nodes_used <= 1) | 
|  | i = 63; | 
|  | else | 
|  | i = find_first_bit(&bitfield, sizeof(unsigned long)*8); | 
|  | memnodemapsize = (memtop >> i)+1; | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static int __init compute_hash_shift(const struct numa_meminfo *mi) | 
|  | { | 
|  | int shift; | 
|  |  | 
|  | shift = extract_lsb_from_nodes(mi); | 
|  | if (allocate_cachealigned_memnodemap()) | 
|  | return -1; | 
|  | printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n", | 
|  | shift); | 
|  |  | 
|  | if (populate_memnodemap(mi, shift) != 1) { | 
|  | printk(KERN_INFO "Your memory is not aligned you need to " | 
|  | "rebuild your kernel with a bigger NODEMAPSIZE " | 
|  | "shift=%d\n", shift); | 
|  | return -1; | 
|  | } | 
|  | return shift; | 
|  | } | 
|  |  | 
|  | int __meminit  __early_pfn_to_nid(unsigned long pfn) | 
|  | { | 
|  | return phys_to_nid(pfn << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static void * __init early_node_mem(int nodeid, unsigned long start, | 
|  | unsigned long end, unsigned long size, | 
|  | unsigned long align) | 
|  | { | 
|  | unsigned long mem; | 
|  |  | 
|  | /* | 
|  | * put it on high as possible | 
|  | * something will go with NODE_DATA | 
|  | */ | 
|  | if (start < (MAX_DMA_PFN<<PAGE_SHIFT)) | 
|  | start = MAX_DMA_PFN<<PAGE_SHIFT; | 
|  | if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) && | 
|  | end > (MAX_DMA32_PFN<<PAGE_SHIFT)) | 
|  | start = MAX_DMA32_PFN<<PAGE_SHIFT; | 
|  | mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align); | 
|  | if (mem != MEMBLOCK_ERROR) | 
|  | return __va(mem); | 
|  |  | 
|  | /* extend the search scope */ | 
|  | end = max_pfn_mapped << PAGE_SHIFT; | 
|  | start = MAX_DMA_PFN << PAGE_SHIFT; | 
|  | mem = memblock_find_in_range(start, end, size, align); | 
|  | if (mem != MEMBLOCK_ERROR) | 
|  | return __va(mem); | 
|  |  | 
|  | printk(KERN_ERR "Cannot find %lu bytes in node %d\n", | 
|  | size, nodeid); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int __init numa_add_memblk_to(int nid, u64 start, u64 end, | 
|  | struct numa_meminfo *mi) | 
|  | { | 
|  | /* ignore zero length blks */ | 
|  | if (start == end) | 
|  | return 0; | 
|  |  | 
|  | /* whine about and ignore invalid blks */ | 
|  | if (start > end || nid < 0 || nid >= MAX_NUMNODES) { | 
|  | pr_warning("NUMA: Warning: invalid memblk node %d (%Lx-%Lx)\n", | 
|  | nid, start, end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (mi->nr_blks >= NR_NODE_MEMBLKS) { | 
|  | pr_err("NUMA: too many memblk ranges\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | mi->blk[mi->nr_blks].start = start; | 
|  | mi->blk[mi->nr_blks].end = end; | 
|  | mi->blk[mi->nr_blks].nid = nid; | 
|  | mi->nr_blks++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo | 
|  | * @idx: Index of memblk to remove | 
|  | * @mi: numa_meminfo to remove memblk from | 
|  | * | 
|  | * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and | 
|  | * decrementing @mi->nr_blks. | 
|  | */ | 
|  | void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) | 
|  | { | 
|  | mi->nr_blks--; | 
|  | memmove(&mi->blk[idx], &mi->blk[idx + 1], | 
|  | (mi->nr_blks - idx) * sizeof(mi->blk[0])); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * numa_add_memblk - Add one numa_memblk to numa_meminfo | 
|  | * @nid: NUMA node ID of the new memblk | 
|  | * @start: Start address of the new memblk | 
|  | * @end: End address of the new memblk | 
|  | * | 
|  | * Add a new memblk to the default numa_meminfo. | 
|  | * | 
|  | * RETURNS: | 
|  | * 0 on success, -errno on failure. | 
|  | */ | 
|  | int __init numa_add_memblk(int nid, u64 start, u64 end) | 
|  | { | 
|  | return numa_add_memblk_to(nid, start, end, &numa_meminfo); | 
|  | } | 
|  |  | 
|  | /* Initialize bootmem allocator for a node */ | 
|  | void __init | 
|  | setup_node_bootmem(int nodeid, unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long start_pfn, last_pfn, nodedata_phys; | 
|  | const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE); | 
|  | int nid; | 
|  |  | 
|  | if (!end) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Don't confuse VM with a node that doesn't have the | 
|  | * minimum amount of memory: | 
|  | */ | 
|  | if (end && (end - start) < NODE_MIN_SIZE) | 
|  | return; | 
|  |  | 
|  | start = roundup(start, ZONE_ALIGN); | 
|  |  | 
|  | printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid, | 
|  | start, end); | 
|  |  | 
|  | start_pfn = start >> PAGE_SHIFT; | 
|  | last_pfn = end >> PAGE_SHIFT; | 
|  |  | 
|  | node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size, | 
|  | SMP_CACHE_BYTES); | 
|  | if (node_data[nodeid] == NULL) | 
|  | return; | 
|  | nodedata_phys = __pa(node_data[nodeid]); | 
|  | memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA"); | 
|  | printk(KERN_INFO "  NODE_DATA [%016lx - %016lx]\n", nodedata_phys, | 
|  | nodedata_phys + pgdat_size - 1); | 
|  | nid = phys_to_nid(nodedata_phys); | 
|  | if (nid != nodeid) | 
|  | printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nodeid, nid); | 
|  |  | 
|  | memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t)); | 
|  | NODE_DATA(nodeid)->node_id = nodeid; | 
|  | NODE_DATA(nodeid)->node_start_pfn = start_pfn; | 
|  | NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn; | 
|  |  | 
|  | node_set_online(nodeid); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * numa_cleanup_meminfo - Cleanup a numa_meminfo | 
|  | * @mi: numa_meminfo to clean up | 
|  | * | 
|  | * Sanitize @mi by merging and removing unncessary memblks.  Also check for | 
|  | * conflicts and clear unused memblks. | 
|  | * | 
|  | * RETURNS: | 
|  | * 0 on success, -errno on failure. | 
|  | */ | 
|  | int __init numa_cleanup_meminfo(struct numa_meminfo *mi) | 
|  | { | 
|  | const u64 low = 0; | 
|  | const u64 high = (u64)max_pfn << PAGE_SHIFT; | 
|  | int i, j, k; | 
|  |  | 
|  | for (i = 0; i < mi->nr_blks; i++) { | 
|  | struct numa_memblk *bi = &mi->blk[i]; | 
|  |  | 
|  | /* make sure all blocks are inside the limits */ | 
|  | bi->start = max(bi->start, low); | 
|  | bi->end = min(bi->end, high); | 
|  |  | 
|  | /* and there's no empty block */ | 
|  | if (bi->start == bi->end) { | 
|  | numa_remove_memblk_from(i--, mi); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (j = i + 1; j < mi->nr_blks; j++) { | 
|  | struct numa_memblk *bj = &mi->blk[j]; | 
|  | unsigned long start, end; | 
|  |  | 
|  | /* | 
|  | * See whether there are overlapping blocks.  Whine | 
|  | * about but allow overlaps of the same nid.  They | 
|  | * will be merged below. | 
|  | */ | 
|  | if (bi->end > bj->start && bi->start < bj->end) { | 
|  | if (bi->nid != bj->nid) { | 
|  | pr_err("NUMA: node %d (%Lx-%Lx) overlaps with node %d (%Lx-%Lx)\n", | 
|  | bi->nid, bi->start, bi->end, | 
|  | bj->nid, bj->start, bj->end); | 
|  | return -EINVAL; | 
|  | } | 
|  | pr_warning("NUMA: Warning: node %d (%Lx-%Lx) overlaps with itself (%Lx-%Lx)\n", | 
|  | bi->nid, bi->start, bi->end, | 
|  | bj->start, bj->end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Join together blocks on the same node, holes | 
|  | * between which don't overlap with memory on other | 
|  | * nodes. | 
|  | */ | 
|  | if (bi->nid != bj->nid) | 
|  | continue; | 
|  | start = max(min(bi->start, bj->start), low); | 
|  | end = min(max(bi->end, bj->end), high); | 
|  | for (k = 0; k < mi->nr_blks; k++) { | 
|  | struct numa_memblk *bk = &mi->blk[k]; | 
|  |  | 
|  | if (bi->nid == bk->nid) | 
|  | continue; | 
|  | if (start < bk->end && end > bk->start) | 
|  | break; | 
|  | } | 
|  | if (k < mi->nr_blks) | 
|  | continue; | 
|  | printk(KERN_INFO "NUMA: Node %d [%Lx,%Lx) + [%Lx,%Lx) -> [%lx,%lx)\n", | 
|  | bi->nid, bi->start, bi->end, bj->start, bj->end, | 
|  | start, end); | 
|  | bi->start = start; | 
|  | bi->end = end; | 
|  | numa_remove_memblk_from(j--, mi); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { | 
|  | mi->blk[i].start = mi->blk[i].end = 0; | 
|  | mi->blk[i].nid = NUMA_NO_NODE; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set nodes, which have memory in @mi, in *@nodemask. | 
|  | */ | 
|  | static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, | 
|  | const struct numa_meminfo *mi) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(mi->blk); i++) | 
|  | if (mi->blk[i].start != mi->blk[i].end && | 
|  | mi->blk[i].nid != NUMA_NO_NODE) | 
|  | node_set(mi->blk[i].nid, *nodemask); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * numa_reset_distance - Reset NUMA distance table | 
|  | * | 
|  | * The current table is freed.  The next numa_set_distance() call will | 
|  | * create a new one. | 
|  | */ | 
|  | void __init numa_reset_distance(void) | 
|  | { | 
|  | size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); | 
|  |  | 
|  | /* numa_distance could be 1LU marking allocation failure, test cnt */ | 
|  | if (numa_distance_cnt) | 
|  | memblock_x86_free_range(__pa(numa_distance), | 
|  | __pa(numa_distance) + size); | 
|  | numa_distance_cnt = 0; | 
|  | numa_distance = NULL;	/* enable table creation */ | 
|  | } | 
|  |  | 
|  | static int __init numa_alloc_distance(void) | 
|  | { | 
|  | nodemask_t nodes_parsed; | 
|  | size_t size; | 
|  | int i, j, cnt = 0; | 
|  | u64 phys; | 
|  |  | 
|  | /* size the new table and allocate it */ | 
|  | nodes_parsed = numa_nodes_parsed; | 
|  | numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); | 
|  |  | 
|  | for_each_node_mask(i, nodes_parsed) | 
|  | cnt = i; | 
|  | cnt++; | 
|  | size = cnt * cnt * sizeof(numa_distance[0]); | 
|  |  | 
|  | phys = memblock_find_in_range(0, (u64)max_pfn_mapped << PAGE_SHIFT, | 
|  | size, PAGE_SIZE); | 
|  | if (phys == MEMBLOCK_ERROR) { | 
|  | pr_warning("NUMA: Warning: can't allocate distance table!\n"); | 
|  | /* don't retry until explicitly reset */ | 
|  | numa_distance = (void *)1LU; | 
|  | return -ENOMEM; | 
|  | } | 
|  | memblock_x86_reserve_range(phys, phys + size, "NUMA DIST"); | 
|  |  | 
|  | numa_distance = __va(phys); | 
|  | numa_distance_cnt = cnt; | 
|  |  | 
|  | /* fill with the default distances */ | 
|  | for (i = 0; i < cnt; i++) | 
|  | for (j = 0; j < cnt; j++) | 
|  | numa_distance[i * cnt + j] = i == j ? | 
|  | LOCAL_DISTANCE : REMOTE_DISTANCE; | 
|  | printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * numa_set_distance - Set NUMA distance from one NUMA to another | 
|  | * @from: the 'from' node to set distance | 
|  | * @to: the 'to'  node to set distance | 
|  | * @distance: NUMA distance | 
|  | * | 
|  | * Set the distance from node @from to @to to @distance.  If distance table | 
|  | * doesn't exist, one which is large enough to accommodate all the currently | 
|  | * known nodes will be created. | 
|  | * | 
|  | * If such table cannot be allocated, a warning is printed and further | 
|  | * calls are ignored until the distance table is reset with | 
|  | * numa_reset_distance(). | 
|  | * | 
|  | * If @from or @to is higher than the highest known node at the time of | 
|  | * table creation or @distance doesn't make sense, the call is ignored. | 
|  | * This is to allow simplification of specific NUMA config implementations. | 
|  | */ | 
|  | void __init numa_set_distance(int from, int to, int distance) | 
|  | { | 
|  | if (!numa_distance && numa_alloc_distance() < 0) | 
|  | return; | 
|  |  | 
|  | if (from >= numa_distance_cnt || to >= numa_distance_cnt) { | 
|  | printk_once(KERN_DEBUG "NUMA: Debug: distance out of bound, from=%d to=%d distance=%d\n", | 
|  | from, to, distance); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((u8)distance != distance || | 
|  | (from == to && distance != LOCAL_DISTANCE)) { | 
|  | pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n", | 
|  | from, to, distance); | 
|  | return; | 
|  | } | 
|  |  | 
|  | numa_distance[from * numa_distance_cnt + to] = distance; | 
|  | } | 
|  |  | 
|  | int __node_distance(int from, int to) | 
|  | { | 
|  | if (from >= numa_distance_cnt || to >= numa_distance_cnt) | 
|  | return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; | 
|  | return numa_distance[from * numa_distance_cnt + to]; | 
|  | } | 
|  | EXPORT_SYMBOL(__node_distance); | 
|  |  | 
|  | /* | 
|  | * Sanity check to catch more bad NUMA configurations (they are amazingly | 
|  | * common).  Make sure the nodes cover all memory. | 
|  | */ | 
|  | static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi) | 
|  | { | 
|  | unsigned long numaram, e820ram; | 
|  | int i; | 
|  |  | 
|  | numaram = 0; | 
|  | for (i = 0; i < mi->nr_blks; i++) { | 
|  | unsigned long s = mi->blk[i].start >> PAGE_SHIFT; | 
|  | unsigned long e = mi->blk[i].end >> PAGE_SHIFT; | 
|  | numaram += e - s; | 
|  | numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e); | 
|  | if ((long)numaram < 0) | 
|  | numaram = 0; | 
|  | } | 
|  |  | 
|  | e820ram = max_pfn - (memblock_x86_hole_size(0, | 
|  | max_pfn << PAGE_SHIFT) >> PAGE_SHIFT); | 
|  | /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ | 
|  | if ((long)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) { | 
|  | printk(KERN_ERR "NUMA: nodes only cover %luMB of your %luMB e820 RAM. Not used.\n", | 
|  | (numaram << PAGE_SHIFT) >> 20, | 
|  | (e820ram << PAGE_SHIFT) >> 20); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int __init numa_register_memblks(struct numa_meminfo *mi) | 
|  | { | 
|  | int i, nid; | 
|  |  | 
|  | /* Account for nodes with cpus and no memory */ | 
|  | node_possible_map = numa_nodes_parsed; | 
|  | numa_nodemask_from_meminfo(&node_possible_map, mi); | 
|  | if (WARN_ON(nodes_empty(node_possible_map))) | 
|  | return -EINVAL; | 
|  |  | 
|  | memnode_shift = compute_hash_shift(mi); | 
|  | if (memnode_shift < 0) { | 
|  | printk(KERN_ERR "NUMA: No NUMA node hash function found. Contact maintainer\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < mi->nr_blks; i++) | 
|  | memblock_x86_register_active_regions(mi->blk[i].nid, | 
|  | mi->blk[i].start >> PAGE_SHIFT, | 
|  | mi->blk[i].end >> PAGE_SHIFT); | 
|  |  | 
|  | /* for out of order entries */ | 
|  | sort_node_map(); | 
|  | if (!numa_meminfo_cover_memory(mi)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Finally register nodes. */ | 
|  | for_each_node_mask(nid, node_possible_map) { | 
|  | u64 start = (u64)max_pfn << PAGE_SHIFT; | 
|  | u64 end = 0; | 
|  |  | 
|  | for (i = 0; i < mi->nr_blks; i++) { | 
|  | if (nid != mi->blk[i].nid) | 
|  | continue; | 
|  | start = min(mi->blk[i].start, start); | 
|  | end = max(mi->blk[i].end, end); | 
|  | } | 
|  |  | 
|  | if (start < end) | 
|  | setup_node_bootmem(nid, start, end); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dummy_numma_init - Fallback dummy NUMA init | 
|  | * | 
|  | * Used if there's no underlying NUMA architecture, NUMA initialization | 
|  | * fails, or NUMA is disabled on the command line. | 
|  | * | 
|  | * Must online at least one node and add memory blocks that cover all | 
|  | * allowed memory.  This function must not fail. | 
|  | */ | 
|  | static int __init dummy_numa_init(void) | 
|  | { | 
|  | printk(KERN_INFO "%s\n", | 
|  | numa_off ? "NUMA turned off" : "No NUMA configuration found"); | 
|  | printk(KERN_INFO "Faking a node at %016lx-%016lx\n", | 
|  | 0LU, max_pfn << PAGE_SHIFT); | 
|  |  | 
|  | node_set(0, numa_nodes_parsed); | 
|  | numa_add_memblk(0, 0, (u64)max_pfn << PAGE_SHIFT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init numa_init(int (*init_func)(void)) | 
|  | { | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | for (i = 0; i < MAX_LOCAL_APIC; i++) | 
|  | set_apicid_to_node(i, NUMA_NO_NODE); | 
|  |  | 
|  | nodes_clear(numa_nodes_parsed); | 
|  | nodes_clear(node_possible_map); | 
|  | nodes_clear(node_online_map); | 
|  | memset(&numa_meminfo, 0, sizeof(numa_meminfo)); | 
|  | remove_all_active_ranges(); | 
|  | numa_reset_distance(); | 
|  |  | 
|  | ret = init_func(); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ret = numa_cleanup_meminfo(&numa_meminfo); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | numa_emulation(&numa_meminfo, numa_distance_cnt); | 
|  |  | 
|  | ret = numa_register_memblks(&numa_meminfo); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | for (i = 0; i < nr_cpu_ids; i++) { | 
|  | int nid = early_cpu_to_node(i); | 
|  |  | 
|  | if (nid == NUMA_NO_NODE) | 
|  | continue; | 
|  | if (!node_online(nid)) | 
|  | numa_clear_node(i); | 
|  | } | 
|  | numa_init_array(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init initmem_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!numa_off) { | 
|  | #ifdef CONFIG_ACPI_NUMA | 
|  | ret = numa_init(x86_acpi_numa_init); | 
|  | if (!ret) | 
|  | return; | 
|  | #endif | 
|  | #ifdef CONFIG_AMD_NUMA | 
|  | ret = numa_init(amd_numa_init); | 
|  | if (!ret) | 
|  | return; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | numa_init(dummy_numa_init); | 
|  | } | 
|  |  | 
|  | unsigned long __init numa_free_all_bootmem(void) | 
|  | { | 
|  | unsigned long pages = 0; | 
|  | int i; | 
|  |  | 
|  | for_each_online_node(i) | 
|  | pages += free_all_bootmem_node(NODE_DATA(i)); | 
|  |  | 
|  | pages += free_all_memory_core_early(MAX_NUMNODES); | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | int __cpuinit numa_cpu_node(int cpu) | 
|  | { | 
|  | int apicid = early_per_cpu(x86_cpu_to_apicid, cpu); | 
|  |  | 
|  | if (apicid != BAD_APICID) | 
|  | return __apicid_to_node[apicid]; | 
|  | return NUMA_NO_NODE; | 
|  | } |