| /* | 
 |  * Copyright (c) 2006, Intel Corporation. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms and conditions of the GNU General Public License, | 
 |  * version 2, as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License along with | 
 |  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple | 
 |  * Place - Suite 330, Boston, MA 02111-1307 USA. | 
 |  * | 
 |  * Copyright (C) Ashok Raj <ashok.raj@intel.com> | 
 |  * Copyright (C) Shaohua Li <shaohua.li@intel.com> | 
 |  * Copyright (C) Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> | 
 |  */ | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/bitmap.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/sysdev.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/dmar.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/mempool.h> | 
 | #include "iova.h" | 
 | #include "intel-iommu.h" | 
 | #include <asm/proto.h> /* force_iommu in this header in x86-64*/ | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/gart.h> | 
 | #include "pci.h" | 
 |  | 
 | #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) | 
 | #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) | 
 |  | 
 | #define IOAPIC_RANGE_START	(0xfee00000) | 
 | #define IOAPIC_RANGE_END	(0xfeefffff) | 
 | #define IOVA_START_ADDR		(0x1000) | 
 |  | 
 | #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48 | 
 |  | 
 | #define DMAR_OPERATION_TIMEOUT (HZ*60) /* 1m */ | 
 |  | 
 | #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1) | 
 |  | 
 | static void domain_remove_dev_info(struct dmar_domain *domain); | 
 |  | 
 | static int dmar_disabled; | 
 | static int __initdata dmar_map_gfx = 1; | 
 | static int dmar_forcedac; | 
 |  | 
 | #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1)) | 
 | static DEFINE_SPINLOCK(device_domain_lock); | 
 | static LIST_HEAD(device_domain_list); | 
 |  | 
 | static int __init intel_iommu_setup(char *str) | 
 | { | 
 | 	if (!str) | 
 | 		return -EINVAL; | 
 | 	while (*str) { | 
 | 		if (!strncmp(str, "off", 3)) { | 
 | 			dmar_disabled = 1; | 
 | 			printk(KERN_INFO"Intel-IOMMU: disabled\n"); | 
 | 		} else if (!strncmp(str, "igfx_off", 8)) { | 
 | 			dmar_map_gfx = 0; | 
 | 			printk(KERN_INFO | 
 | 				"Intel-IOMMU: disable GFX device mapping\n"); | 
 | 		} else if (!strncmp(str, "forcedac", 8)) { | 
 | 			printk (KERN_INFO | 
 | 				"Intel-IOMMU: Forcing DAC for PCI devices\n"); | 
 | 			dmar_forcedac = 1; | 
 | 		} | 
 |  | 
 | 		str += strcspn(str, ","); | 
 | 		while (*str == ',') | 
 | 			str++; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | __setup("intel_iommu=", intel_iommu_setup); | 
 |  | 
 | static struct kmem_cache *iommu_domain_cache; | 
 | static struct kmem_cache *iommu_devinfo_cache; | 
 | static struct kmem_cache *iommu_iova_cache; | 
 |  | 
 | static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep) | 
 | { | 
 | 	unsigned int flags; | 
 | 	void *vaddr; | 
 |  | 
 | 	/* trying to avoid low memory issues */ | 
 | 	flags = current->flags & PF_MEMALLOC; | 
 | 	current->flags |= PF_MEMALLOC; | 
 | 	vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC); | 
 | 	current->flags &= (~PF_MEMALLOC | flags); | 
 | 	return vaddr; | 
 | } | 
 |  | 
 |  | 
 | static inline void *alloc_pgtable_page(void) | 
 | { | 
 | 	unsigned int flags; | 
 | 	void *vaddr; | 
 |  | 
 | 	/* trying to avoid low memory issues */ | 
 | 	flags = current->flags & PF_MEMALLOC; | 
 | 	current->flags |= PF_MEMALLOC; | 
 | 	vaddr = (void *)get_zeroed_page(GFP_ATOMIC); | 
 | 	current->flags &= (~PF_MEMALLOC | flags); | 
 | 	return vaddr; | 
 | } | 
 |  | 
 | static inline void free_pgtable_page(void *vaddr) | 
 | { | 
 | 	free_page((unsigned long)vaddr); | 
 | } | 
 |  | 
 | static inline void *alloc_domain_mem(void) | 
 | { | 
 | 	return iommu_kmem_cache_alloc(iommu_domain_cache); | 
 | } | 
 |  | 
 | static inline void free_domain_mem(void *vaddr) | 
 | { | 
 | 	kmem_cache_free(iommu_domain_cache, vaddr); | 
 | } | 
 |  | 
 | static inline void * alloc_devinfo_mem(void) | 
 | { | 
 | 	return iommu_kmem_cache_alloc(iommu_devinfo_cache); | 
 | } | 
 |  | 
 | static inline void free_devinfo_mem(void *vaddr) | 
 | { | 
 | 	kmem_cache_free(iommu_devinfo_cache, vaddr); | 
 | } | 
 |  | 
 | struct iova *alloc_iova_mem(void) | 
 | { | 
 | 	return iommu_kmem_cache_alloc(iommu_iova_cache); | 
 | } | 
 |  | 
 | void free_iova_mem(struct iova *iova) | 
 | { | 
 | 	kmem_cache_free(iommu_iova_cache, iova); | 
 | } | 
 |  | 
 | static inline void __iommu_flush_cache( | 
 | 	struct intel_iommu *iommu, void *addr, int size) | 
 | { | 
 | 	if (!ecap_coherent(iommu->ecap)) | 
 | 		clflush_cache_range(addr, size); | 
 | } | 
 |  | 
 | /* Gets context entry for a given bus and devfn */ | 
 | static struct context_entry * device_to_context_entry(struct intel_iommu *iommu, | 
 | 		u8 bus, u8 devfn) | 
 | { | 
 | 	struct root_entry *root; | 
 | 	struct context_entry *context; | 
 | 	unsigned long phy_addr; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->lock, flags); | 
 | 	root = &iommu->root_entry[bus]; | 
 | 	context = get_context_addr_from_root(root); | 
 | 	if (!context) { | 
 | 		context = (struct context_entry *)alloc_pgtable_page(); | 
 | 		if (!context) { | 
 | 			spin_unlock_irqrestore(&iommu->lock, flags); | 
 | 			return NULL; | 
 | 		} | 
 | 		__iommu_flush_cache(iommu, (void *)context, PAGE_SIZE_4K); | 
 | 		phy_addr = virt_to_phys((void *)context); | 
 | 		set_root_value(root, phy_addr); | 
 | 		set_root_present(root); | 
 | 		__iommu_flush_cache(iommu, root, sizeof(*root)); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&iommu->lock, flags); | 
 | 	return &context[devfn]; | 
 | } | 
 |  | 
 | static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) | 
 | { | 
 | 	struct root_entry *root; | 
 | 	struct context_entry *context; | 
 | 	int ret; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->lock, flags); | 
 | 	root = &iommu->root_entry[bus]; | 
 | 	context = get_context_addr_from_root(root); | 
 | 	if (!context) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 | 	ret = context_present(context[devfn]); | 
 | out: | 
 | 	spin_unlock_irqrestore(&iommu->lock, flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn) | 
 | { | 
 | 	struct root_entry *root; | 
 | 	struct context_entry *context; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->lock, flags); | 
 | 	root = &iommu->root_entry[bus]; | 
 | 	context = get_context_addr_from_root(root); | 
 | 	if (context) { | 
 | 		context_clear_entry(context[devfn]); | 
 | 		__iommu_flush_cache(iommu, &context[devfn], \ | 
 | 			sizeof(*context)); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&iommu->lock, flags); | 
 | } | 
 |  | 
 | static void free_context_table(struct intel_iommu *iommu) | 
 | { | 
 | 	struct root_entry *root; | 
 | 	int i; | 
 | 	unsigned long flags; | 
 | 	struct context_entry *context; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->lock, flags); | 
 | 	if (!iommu->root_entry) { | 
 | 		goto out; | 
 | 	} | 
 | 	for (i = 0; i < ROOT_ENTRY_NR; i++) { | 
 | 		root = &iommu->root_entry[i]; | 
 | 		context = get_context_addr_from_root(root); | 
 | 		if (context) | 
 | 			free_pgtable_page(context); | 
 | 	} | 
 | 	free_pgtable_page(iommu->root_entry); | 
 | 	iommu->root_entry = NULL; | 
 | out: | 
 | 	spin_unlock_irqrestore(&iommu->lock, flags); | 
 | } | 
 |  | 
 | /* page table handling */ | 
 | #define LEVEL_STRIDE		(9) | 
 | #define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1) | 
 |  | 
 | static inline int agaw_to_level(int agaw) | 
 | { | 
 | 	return agaw + 2; | 
 | } | 
 |  | 
 | static inline int agaw_to_width(int agaw) | 
 | { | 
 | 	return 30 + agaw * LEVEL_STRIDE; | 
 |  | 
 | } | 
 |  | 
 | static inline int width_to_agaw(int width) | 
 | { | 
 | 	return (width - 30) / LEVEL_STRIDE; | 
 | } | 
 |  | 
 | static inline unsigned int level_to_offset_bits(int level) | 
 | { | 
 | 	return (12 + (level - 1) * LEVEL_STRIDE); | 
 | } | 
 |  | 
 | static inline int address_level_offset(u64 addr, int level) | 
 | { | 
 | 	return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK); | 
 | } | 
 |  | 
 | static inline u64 level_mask(int level) | 
 | { | 
 | 	return ((u64)-1 << level_to_offset_bits(level)); | 
 | } | 
 |  | 
 | static inline u64 level_size(int level) | 
 | { | 
 | 	return ((u64)1 << level_to_offset_bits(level)); | 
 | } | 
 |  | 
 | static inline u64 align_to_level(u64 addr, int level) | 
 | { | 
 | 	return ((addr + level_size(level) - 1) & level_mask(level)); | 
 | } | 
 |  | 
 | static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr) | 
 | { | 
 | 	int addr_width = agaw_to_width(domain->agaw); | 
 | 	struct dma_pte *parent, *pte = NULL; | 
 | 	int level = agaw_to_level(domain->agaw); | 
 | 	int offset; | 
 | 	unsigned long flags; | 
 |  | 
 | 	BUG_ON(!domain->pgd); | 
 |  | 
 | 	addr &= (((u64)1) << addr_width) - 1; | 
 | 	parent = domain->pgd; | 
 |  | 
 | 	spin_lock_irqsave(&domain->mapping_lock, flags); | 
 | 	while (level > 0) { | 
 | 		void *tmp_page; | 
 |  | 
 | 		offset = address_level_offset(addr, level); | 
 | 		pte = &parent[offset]; | 
 | 		if (level == 1) | 
 | 			break; | 
 |  | 
 | 		if (!dma_pte_present(*pte)) { | 
 | 			tmp_page = alloc_pgtable_page(); | 
 |  | 
 | 			if (!tmp_page) { | 
 | 				spin_unlock_irqrestore(&domain->mapping_lock, | 
 | 					flags); | 
 | 				return NULL; | 
 | 			} | 
 | 			__iommu_flush_cache(domain->iommu, tmp_page, | 
 | 					PAGE_SIZE_4K); | 
 | 			dma_set_pte_addr(*pte, virt_to_phys(tmp_page)); | 
 | 			/* | 
 | 			 * high level table always sets r/w, last level page | 
 | 			 * table control read/write | 
 | 			 */ | 
 | 			dma_set_pte_readable(*pte); | 
 | 			dma_set_pte_writable(*pte); | 
 | 			__iommu_flush_cache(domain->iommu, pte, sizeof(*pte)); | 
 | 		} | 
 | 		parent = phys_to_virt(dma_pte_addr(*pte)); | 
 | 		level--; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&domain->mapping_lock, flags); | 
 | 	return pte; | 
 | } | 
 |  | 
 | /* return address's pte at specific level */ | 
 | static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr, | 
 | 		int level) | 
 | { | 
 | 	struct dma_pte *parent, *pte = NULL; | 
 | 	int total = agaw_to_level(domain->agaw); | 
 | 	int offset; | 
 |  | 
 | 	parent = domain->pgd; | 
 | 	while (level <= total) { | 
 | 		offset = address_level_offset(addr, total); | 
 | 		pte = &parent[offset]; | 
 | 		if (level == total) | 
 | 			return pte; | 
 |  | 
 | 		if (!dma_pte_present(*pte)) | 
 | 			break; | 
 | 		parent = phys_to_virt(dma_pte_addr(*pte)); | 
 | 		total--; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* clear one page's page table */ | 
 | static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr) | 
 | { | 
 | 	struct dma_pte *pte = NULL; | 
 |  | 
 | 	/* get last level pte */ | 
 | 	pte = dma_addr_level_pte(domain, addr, 1); | 
 |  | 
 | 	if (pte) { | 
 | 		dma_clear_pte(*pte); | 
 | 		__iommu_flush_cache(domain->iommu, pte, sizeof(*pte)); | 
 | 	} | 
 | } | 
 |  | 
 | /* clear last level pte, a tlb flush should be followed */ | 
 | static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end) | 
 | { | 
 | 	int addr_width = agaw_to_width(domain->agaw); | 
 |  | 
 | 	start &= (((u64)1) << addr_width) - 1; | 
 | 	end &= (((u64)1) << addr_width) - 1; | 
 | 	/* in case it's partial page */ | 
 | 	start = PAGE_ALIGN_4K(start); | 
 | 	end &= PAGE_MASK_4K; | 
 |  | 
 | 	/* we don't need lock here, nobody else touches the iova range */ | 
 | 	while (start < end) { | 
 | 		dma_pte_clear_one(domain, start); | 
 | 		start += PAGE_SIZE_4K; | 
 | 	} | 
 | } | 
 |  | 
 | /* free page table pages. last level pte should already be cleared */ | 
 | static void dma_pte_free_pagetable(struct dmar_domain *domain, | 
 | 	u64 start, u64 end) | 
 | { | 
 | 	int addr_width = agaw_to_width(domain->agaw); | 
 | 	struct dma_pte *pte; | 
 | 	int total = agaw_to_level(domain->agaw); | 
 | 	int level; | 
 | 	u64 tmp; | 
 |  | 
 | 	start &= (((u64)1) << addr_width) - 1; | 
 | 	end &= (((u64)1) << addr_width) - 1; | 
 |  | 
 | 	/* we don't need lock here, nobody else touches the iova range */ | 
 | 	level = 2; | 
 | 	while (level <= total) { | 
 | 		tmp = align_to_level(start, level); | 
 | 		if (tmp >= end || (tmp + level_size(level) > end)) | 
 | 			return; | 
 |  | 
 | 		while (tmp < end) { | 
 | 			pte = dma_addr_level_pte(domain, tmp, level); | 
 | 			if (pte) { | 
 | 				free_pgtable_page( | 
 | 					phys_to_virt(dma_pte_addr(*pte))); | 
 | 				dma_clear_pte(*pte); | 
 | 				__iommu_flush_cache(domain->iommu, | 
 | 						pte, sizeof(*pte)); | 
 | 			} | 
 | 			tmp += level_size(level); | 
 | 		} | 
 | 		level++; | 
 | 	} | 
 | 	/* free pgd */ | 
 | 	if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) { | 
 | 		free_pgtable_page(domain->pgd); | 
 | 		domain->pgd = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* iommu handling */ | 
 | static int iommu_alloc_root_entry(struct intel_iommu *iommu) | 
 | { | 
 | 	struct root_entry *root; | 
 | 	unsigned long flags; | 
 |  | 
 | 	root = (struct root_entry *)alloc_pgtable_page(); | 
 | 	if (!root) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	__iommu_flush_cache(iommu, root, PAGE_SIZE_4K); | 
 |  | 
 | 	spin_lock_irqsave(&iommu->lock, flags); | 
 | 	iommu->root_entry = root; | 
 | 	spin_unlock_irqrestore(&iommu->lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define IOMMU_WAIT_OP(iommu, offset, op, cond, sts) \ | 
 | {\ | 
 | 	unsigned long start_time = jiffies;\ | 
 | 	while (1) {\ | 
 | 		sts = op (iommu->reg + offset);\ | 
 | 		if (cond)\ | 
 | 			break;\ | 
 | 		if (time_after(jiffies, start_time + DMAR_OPERATION_TIMEOUT))\ | 
 | 			panic("DMAR hardware is malfunctioning\n");\ | 
 | 		cpu_relax();\ | 
 | 	}\ | 
 | } | 
 |  | 
 | static void iommu_set_root_entry(struct intel_iommu *iommu) | 
 | { | 
 | 	void *addr; | 
 | 	u32 cmd, sts; | 
 | 	unsigned long flag; | 
 |  | 
 | 	addr = iommu->root_entry; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->register_lock, flag); | 
 | 	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr)); | 
 |  | 
 | 	cmd = iommu->gcmd | DMA_GCMD_SRTP; | 
 | 	writel(cmd, iommu->reg + DMAR_GCMD_REG); | 
 |  | 
 | 	/* Make sure hardware complete it */ | 
 | 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | 
 | 		readl, (sts & DMA_GSTS_RTPS), sts); | 
 |  | 
 | 	spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 | } | 
 |  | 
 | static void iommu_flush_write_buffer(struct intel_iommu *iommu) | 
 | { | 
 | 	u32 val; | 
 | 	unsigned long flag; | 
 |  | 
 | 	if (!cap_rwbf(iommu->cap)) | 
 | 		return; | 
 | 	val = iommu->gcmd | DMA_GCMD_WBF; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->register_lock, flag); | 
 | 	writel(val, iommu->reg + DMAR_GCMD_REG); | 
 |  | 
 | 	/* Make sure hardware complete it */ | 
 | 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | 
 | 			readl, (!(val & DMA_GSTS_WBFS)), val); | 
 |  | 
 | 	spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 | } | 
 |  | 
 | /* return value determine if we need a write buffer flush */ | 
 | static int __iommu_flush_context(struct intel_iommu *iommu, | 
 | 	u16 did, u16 source_id, u8 function_mask, u64 type, | 
 | 	int non_present_entry_flush) | 
 | { | 
 | 	u64 val = 0; | 
 | 	unsigned long flag; | 
 |  | 
 | 	/* | 
 | 	 * In the non-present entry flush case, if hardware doesn't cache | 
 | 	 * non-present entry we do nothing and if hardware cache non-present | 
 | 	 * entry, we flush entries of domain 0 (the domain id is used to cache | 
 | 	 * any non-present entries) | 
 | 	 */ | 
 | 	if (non_present_entry_flush) { | 
 | 		if (!cap_caching_mode(iommu->cap)) | 
 | 			return 1; | 
 | 		else | 
 | 			did = 0; | 
 | 	} | 
 |  | 
 | 	switch (type) { | 
 | 	case DMA_CCMD_GLOBAL_INVL: | 
 | 		val = DMA_CCMD_GLOBAL_INVL; | 
 | 		break; | 
 | 	case DMA_CCMD_DOMAIN_INVL: | 
 | 		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); | 
 | 		break; | 
 | 	case DMA_CCMD_DEVICE_INVL: | 
 | 		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) | 
 | 			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | 	val |= DMA_CCMD_ICC; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->register_lock, flag); | 
 | 	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); | 
 |  | 
 | 	/* Make sure hardware complete it */ | 
 | 	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, | 
 | 		dmar_readq, (!(val & DMA_CCMD_ICC)), val); | 
 |  | 
 | 	spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 |  | 
 | 	/* flush context entry will implictly flush write buffer */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int inline iommu_flush_context_global(struct intel_iommu *iommu, | 
 | 	int non_present_entry_flush) | 
 | { | 
 | 	return __iommu_flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL, | 
 | 		non_present_entry_flush); | 
 | } | 
 |  | 
 | static int inline iommu_flush_context_domain(struct intel_iommu *iommu, u16 did, | 
 | 	int non_present_entry_flush) | 
 | { | 
 | 	return __iommu_flush_context(iommu, did, 0, 0, DMA_CCMD_DOMAIN_INVL, | 
 | 		non_present_entry_flush); | 
 | } | 
 |  | 
 | static int inline iommu_flush_context_device(struct intel_iommu *iommu, | 
 | 	u16 did, u16 source_id, u8 function_mask, int non_present_entry_flush) | 
 | { | 
 | 	return __iommu_flush_context(iommu, did, source_id, function_mask, | 
 | 		DMA_CCMD_DEVICE_INVL, non_present_entry_flush); | 
 | } | 
 |  | 
 | /* return value determine if we need a write buffer flush */ | 
 | static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, | 
 | 	u64 addr, unsigned int size_order, u64 type, | 
 | 	int non_present_entry_flush) | 
 | { | 
 | 	int tlb_offset = ecap_iotlb_offset(iommu->ecap); | 
 | 	u64 val = 0, val_iva = 0; | 
 | 	unsigned long flag; | 
 |  | 
 | 	/* | 
 | 	 * In the non-present entry flush case, if hardware doesn't cache | 
 | 	 * non-present entry we do nothing and if hardware cache non-present | 
 | 	 * entry, we flush entries of domain 0 (the domain id is used to cache | 
 | 	 * any non-present entries) | 
 | 	 */ | 
 | 	if (non_present_entry_flush) { | 
 | 		if (!cap_caching_mode(iommu->cap)) | 
 | 			return 1; | 
 | 		else | 
 | 			did = 0; | 
 | 	} | 
 |  | 
 | 	switch (type) { | 
 | 	case DMA_TLB_GLOBAL_FLUSH: | 
 | 		/* global flush doesn't need set IVA_REG */ | 
 | 		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; | 
 | 		break; | 
 | 	case DMA_TLB_DSI_FLUSH: | 
 | 		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); | 
 | 		break; | 
 | 	case DMA_TLB_PSI_FLUSH: | 
 | 		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); | 
 | 		/* Note: always flush non-leaf currently */ | 
 | 		val_iva = size_order | addr; | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | 	/* Note: set drain read/write */ | 
 | #if 0 | 
 | 	/* | 
 | 	 * This is probably to be super secure.. Looks like we can | 
 | 	 * ignore it without any impact. | 
 | 	 */ | 
 | 	if (cap_read_drain(iommu->cap)) | 
 | 		val |= DMA_TLB_READ_DRAIN; | 
 | #endif | 
 | 	if (cap_write_drain(iommu->cap)) | 
 | 		val |= DMA_TLB_WRITE_DRAIN; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->register_lock, flag); | 
 | 	/* Note: Only uses first TLB reg currently */ | 
 | 	if (val_iva) | 
 | 		dmar_writeq(iommu->reg + tlb_offset, val_iva); | 
 | 	dmar_writeq(iommu->reg + tlb_offset + 8, val); | 
 |  | 
 | 	/* Make sure hardware complete it */ | 
 | 	IOMMU_WAIT_OP(iommu, tlb_offset + 8, | 
 | 		dmar_readq, (!(val & DMA_TLB_IVT)), val); | 
 |  | 
 | 	spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 |  | 
 | 	/* check IOTLB invalidation granularity */ | 
 | 	if (DMA_TLB_IAIG(val) == 0) | 
 | 		printk(KERN_ERR"IOMMU: flush IOTLB failed\n"); | 
 | 	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) | 
 | 		pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n", | 
 | 			DMA_TLB_IIRG(type), DMA_TLB_IAIG(val)); | 
 | 	/* flush context entry will implictly flush write buffer */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int inline iommu_flush_iotlb_global(struct intel_iommu *iommu, | 
 | 	int non_present_entry_flush) | 
 | { | 
 | 	return __iommu_flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH, | 
 | 		non_present_entry_flush); | 
 | } | 
 |  | 
 | static int inline iommu_flush_iotlb_dsi(struct intel_iommu *iommu, u16 did, | 
 | 	int non_present_entry_flush) | 
 | { | 
 | 	return __iommu_flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH, | 
 | 		non_present_entry_flush); | 
 | } | 
 |  | 
 | static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did, | 
 | 	u64 addr, unsigned int pages, int non_present_entry_flush) | 
 | { | 
 | 	unsigned int mask; | 
 |  | 
 | 	BUG_ON(addr & (~PAGE_MASK_4K)); | 
 | 	BUG_ON(pages == 0); | 
 |  | 
 | 	/* Fallback to domain selective flush if no PSI support */ | 
 | 	if (!cap_pgsel_inv(iommu->cap)) | 
 | 		return iommu_flush_iotlb_dsi(iommu, did, | 
 | 			non_present_entry_flush); | 
 |  | 
 | 	/* | 
 | 	 * PSI requires page size to be 2 ^ x, and the base address is naturally | 
 | 	 * aligned to the size | 
 | 	 */ | 
 | 	mask = ilog2(__roundup_pow_of_two(pages)); | 
 | 	/* Fallback to domain selective flush if size is too big */ | 
 | 	if (mask > cap_max_amask_val(iommu->cap)) | 
 | 		return iommu_flush_iotlb_dsi(iommu, did, | 
 | 			non_present_entry_flush); | 
 |  | 
 | 	return __iommu_flush_iotlb(iommu, did, addr, mask, | 
 | 		DMA_TLB_PSI_FLUSH, non_present_entry_flush); | 
 | } | 
 |  | 
 | static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) | 
 | { | 
 | 	u32 pmen; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->register_lock, flags); | 
 | 	pmen = readl(iommu->reg + DMAR_PMEN_REG); | 
 | 	pmen &= ~DMA_PMEN_EPM; | 
 | 	writel(pmen, iommu->reg + DMAR_PMEN_REG); | 
 |  | 
 | 	/* wait for the protected region status bit to clear */ | 
 | 	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, | 
 | 		readl, !(pmen & DMA_PMEN_PRS), pmen); | 
 |  | 
 | 	spin_unlock_irqrestore(&iommu->register_lock, flags); | 
 | } | 
 |  | 
 | static int iommu_enable_translation(struct intel_iommu *iommu) | 
 | { | 
 | 	u32 sts; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->register_lock, flags); | 
 | 	writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG); | 
 |  | 
 | 	/* Make sure hardware complete it */ | 
 | 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | 
 | 		readl, (sts & DMA_GSTS_TES), sts); | 
 |  | 
 | 	iommu->gcmd |= DMA_GCMD_TE; | 
 | 	spin_unlock_irqrestore(&iommu->register_lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int iommu_disable_translation(struct intel_iommu *iommu) | 
 | { | 
 | 	u32 sts; | 
 | 	unsigned long flag; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->register_lock, flag); | 
 | 	iommu->gcmd &= ~DMA_GCMD_TE; | 
 | 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); | 
 |  | 
 | 	/* Make sure hardware complete it */ | 
 | 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, | 
 | 		readl, (!(sts & DMA_GSTS_TES)), sts); | 
 |  | 
 | 	spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* iommu interrupt handling. Most stuff are MSI-like. */ | 
 |  | 
 | static const char *fault_reason_strings[] = | 
 | { | 
 | 	"Software", | 
 | 	"Present bit in root entry is clear", | 
 | 	"Present bit in context entry is clear", | 
 | 	"Invalid context entry", | 
 | 	"Access beyond MGAW", | 
 | 	"PTE Write access is not set", | 
 | 	"PTE Read access is not set", | 
 | 	"Next page table ptr is invalid", | 
 | 	"Root table address invalid", | 
 | 	"Context table ptr is invalid", | 
 | 	"non-zero reserved fields in RTP", | 
 | 	"non-zero reserved fields in CTP", | 
 | 	"non-zero reserved fields in PTE", | 
 | }; | 
 | #define MAX_FAULT_REASON_IDX 	(ARRAY_SIZE(fault_reason_strings) - 1) | 
 |  | 
 | const char *dmar_get_fault_reason(u8 fault_reason) | 
 | { | 
 | 	if (fault_reason > MAX_FAULT_REASON_IDX) | 
 | 		return "Unknown"; | 
 | 	else | 
 | 		return fault_reason_strings[fault_reason]; | 
 | } | 
 |  | 
 | void dmar_msi_unmask(unsigned int irq) | 
 | { | 
 | 	struct intel_iommu *iommu = get_irq_data(irq); | 
 | 	unsigned long flag; | 
 |  | 
 | 	/* unmask it */ | 
 | 	spin_lock_irqsave(&iommu->register_lock, flag); | 
 | 	writel(0, iommu->reg + DMAR_FECTL_REG); | 
 | 	/* Read a reg to force flush the post write */ | 
 | 	readl(iommu->reg + DMAR_FECTL_REG); | 
 | 	spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 | } | 
 |  | 
 | void dmar_msi_mask(unsigned int irq) | 
 | { | 
 | 	unsigned long flag; | 
 | 	struct intel_iommu *iommu = get_irq_data(irq); | 
 |  | 
 | 	/* mask it */ | 
 | 	spin_lock_irqsave(&iommu->register_lock, flag); | 
 | 	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG); | 
 | 	/* Read a reg to force flush the post write */ | 
 | 	readl(iommu->reg + DMAR_FECTL_REG); | 
 | 	spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 | } | 
 |  | 
 | void dmar_msi_write(int irq, struct msi_msg *msg) | 
 | { | 
 | 	struct intel_iommu *iommu = get_irq_data(irq); | 
 | 	unsigned long flag; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->register_lock, flag); | 
 | 	writel(msg->data, iommu->reg + DMAR_FEDATA_REG); | 
 | 	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG); | 
 | 	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG); | 
 | 	spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 | } | 
 |  | 
 | void dmar_msi_read(int irq, struct msi_msg *msg) | 
 | { | 
 | 	struct intel_iommu *iommu = get_irq_data(irq); | 
 | 	unsigned long flag; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->register_lock, flag); | 
 | 	msg->data = readl(iommu->reg + DMAR_FEDATA_REG); | 
 | 	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG); | 
 | 	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG); | 
 | 	spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 | } | 
 |  | 
 | static int iommu_page_fault_do_one(struct intel_iommu *iommu, int type, | 
 | 		u8 fault_reason, u16 source_id, u64 addr) | 
 | { | 
 | 	const char *reason; | 
 |  | 
 | 	reason = dmar_get_fault_reason(fault_reason); | 
 |  | 
 | 	printk(KERN_ERR | 
 | 		"DMAR:[%s] Request device [%02x:%02x.%d] " | 
 | 		"fault addr %llx \n" | 
 | 		"DMAR:[fault reason %02d] %s\n", | 
 | 		(type ? "DMA Read" : "DMA Write"), | 
 | 		(source_id >> 8), PCI_SLOT(source_id & 0xFF), | 
 | 		PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define PRIMARY_FAULT_REG_LEN (16) | 
 | static irqreturn_t iommu_page_fault(int irq, void *dev_id) | 
 | { | 
 | 	struct intel_iommu *iommu = dev_id; | 
 | 	int reg, fault_index; | 
 | 	u32 fault_status; | 
 | 	unsigned long flag; | 
 |  | 
 | 	spin_lock_irqsave(&iommu->register_lock, flag); | 
 | 	fault_status = readl(iommu->reg + DMAR_FSTS_REG); | 
 |  | 
 | 	/* TBD: ignore advanced fault log currently */ | 
 | 	if (!(fault_status & DMA_FSTS_PPF)) | 
 | 		goto clear_overflow; | 
 |  | 
 | 	fault_index = dma_fsts_fault_record_index(fault_status); | 
 | 	reg = cap_fault_reg_offset(iommu->cap); | 
 | 	while (1) { | 
 | 		u8 fault_reason; | 
 | 		u16 source_id; | 
 | 		u64 guest_addr; | 
 | 		int type; | 
 | 		u32 data; | 
 |  | 
 | 		/* highest 32 bits */ | 
 | 		data = readl(iommu->reg + reg + | 
 | 				fault_index * PRIMARY_FAULT_REG_LEN + 12); | 
 | 		if (!(data & DMA_FRCD_F)) | 
 | 			break; | 
 |  | 
 | 		fault_reason = dma_frcd_fault_reason(data); | 
 | 		type = dma_frcd_type(data); | 
 |  | 
 | 		data = readl(iommu->reg + reg + | 
 | 				fault_index * PRIMARY_FAULT_REG_LEN + 8); | 
 | 		source_id = dma_frcd_source_id(data); | 
 |  | 
 | 		guest_addr = dmar_readq(iommu->reg + reg + | 
 | 				fault_index * PRIMARY_FAULT_REG_LEN); | 
 | 		guest_addr = dma_frcd_page_addr(guest_addr); | 
 | 		/* clear the fault */ | 
 | 		writel(DMA_FRCD_F, iommu->reg + reg + | 
 | 			fault_index * PRIMARY_FAULT_REG_LEN + 12); | 
 |  | 
 | 		spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 |  | 
 | 		iommu_page_fault_do_one(iommu, type, fault_reason, | 
 | 				source_id, guest_addr); | 
 |  | 
 | 		fault_index++; | 
 | 		if (fault_index > cap_num_fault_regs(iommu->cap)) | 
 | 			fault_index = 0; | 
 | 		spin_lock_irqsave(&iommu->register_lock, flag); | 
 | 	} | 
 | clear_overflow: | 
 | 	/* clear primary fault overflow */ | 
 | 	fault_status = readl(iommu->reg + DMAR_FSTS_REG); | 
 | 	if (fault_status & DMA_FSTS_PFO) | 
 | 		writel(DMA_FSTS_PFO, iommu->reg + DMAR_FSTS_REG); | 
 |  | 
 | 	spin_unlock_irqrestore(&iommu->register_lock, flag); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | int dmar_set_interrupt(struct intel_iommu *iommu) | 
 | { | 
 | 	int irq, ret; | 
 |  | 
 | 	irq = create_irq(); | 
 | 	if (!irq) { | 
 | 		printk(KERN_ERR "IOMMU: no free vectors\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	set_irq_data(irq, iommu); | 
 | 	iommu->irq = irq; | 
 |  | 
 | 	ret = arch_setup_dmar_msi(irq); | 
 | 	if (ret) { | 
 | 		set_irq_data(irq, NULL); | 
 | 		iommu->irq = 0; | 
 | 		destroy_irq(irq); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Force fault register is cleared */ | 
 | 	iommu_page_fault(irq, iommu); | 
 |  | 
 | 	ret = request_irq(irq, iommu_page_fault, 0, iommu->name, iommu); | 
 | 	if (ret) | 
 | 		printk(KERN_ERR "IOMMU: can't request irq\n"); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int iommu_init_domains(struct intel_iommu *iommu) | 
 | { | 
 | 	unsigned long ndomains; | 
 | 	unsigned long nlongs; | 
 |  | 
 | 	ndomains = cap_ndoms(iommu->cap); | 
 | 	pr_debug("Number of Domains supportd <%ld>\n", ndomains); | 
 | 	nlongs = BITS_TO_LONGS(ndomains); | 
 |  | 
 | 	/* TBD: there might be 64K domains, | 
 | 	 * consider other allocation for future chip | 
 | 	 */ | 
 | 	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); | 
 | 	if (!iommu->domain_ids) { | 
 | 		printk(KERN_ERR "Allocating domain id array failed\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *), | 
 | 			GFP_KERNEL); | 
 | 	if (!iommu->domains) { | 
 | 		printk(KERN_ERR "Allocating domain array failed\n"); | 
 | 		kfree(iommu->domain_ids); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * if Caching mode is set, then invalid translations are tagged | 
 | 	 * with domainid 0. Hence we need to pre-allocate it. | 
 | 	 */ | 
 | 	if (cap_caching_mode(iommu->cap)) | 
 | 		set_bit(0, iommu->domain_ids); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct intel_iommu *alloc_iommu(struct dmar_drhd_unit *drhd) | 
 | { | 
 | 	struct intel_iommu *iommu; | 
 | 	int ret; | 
 | 	int map_size; | 
 | 	u32 ver; | 
 |  | 
 | 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); | 
 | 	if (!iommu) | 
 | 		return NULL; | 
 | 	iommu->reg = ioremap(drhd->reg_base_addr, PAGE_SIZE_4K); | 
 | 	if (!iommu->reg) { | 
 | 		printk(KERN_ERR "IOMMU: can't map the region\n"); | 
 | 		goto error; | 
 | 	} | 
 | 	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); | 
 | 	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); | 
 |  | 
 | 	/* the registers might be more than one page */ | 
 | 	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), | 
 | 		cap_max_fault_reg_offset(iommu->cap)); | 
 | 	map_size = PAGE_ALIGN_4K(map_size); | 
 | 	if (map_size > PAGE_SIZE_4K) { | 
 | 		iounmap(iommu->reg); | 
 | 		iommu->reg = ioremap(drhd->reg_base_addr, map_size); | 
 | 		if (!iommu->reg) { | 
 | 			printk(KERN_ERR "IOMMU: can't map the region\n"); | 
 | 			goto error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ver = readl(iommu->reg + DMAR_VER_REG); | 
 | 	pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n", | 
 | 		drhd->reg_base_addr, DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), | 
 | 		iommu->cap, iommu->ecap); | 
 | 	ret = iommu_init_domains(iommu); | 
 | 	if (ret) | 
 | 		goto error_unmap; | 
 | 	spin_lock_init(&iommu->lock); | 
 | 	spin_lock_init(&iommu->register_lock); | 
 |  | 
 | 	drhd->iommu = iommu; | 
 | 	return iommu; | 
 | error_unmap: | 
 | 	iounmap(iommu->reg); | 
 | error: | 
 | 	kfree(iommu); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void domain_exit(struct dmar_domain *domain); | 
 | static void free_iommu(struct intel_iommu *iommu) | 
 | { | 
 | 	struct dmar_domain *domain; | 
 | 	int i; | 
 |  | 
 | 	if (!iommu) | 
 | 		return; | 
 |  | 
 | 	i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap)); | 
 | 	for (; i < cap_ndoms(iommu->cap); ) { | 
 | 		domain = iommu->domains[i]; | 
 | 		clear_bit(i, iommu->domain_ids); | 
 | 		domain_exit(domain); | 
 | 		i = find_next_bit(iommu->domain_ids, | 
 | 			cap_ndoms(iommu->cap), i+1); | 
 | 	} | 
 |  | 
 | 	if (iommu->gcmd & DMA_GCMD_TE) | 
 | 		iommu_disable_translation(iommu); | 
 |  | 
 | 	if (iommu->irq) { | 
 | 		set_irq_data(iommu->irq, NULL); | 
 | 		/* This will mask the irq */ | 
 | 		free_irq(iommu->irq, iommu); | 
 | 		destroy_irq(iommu->irq); | 
 | 	} | 
 |  | 
 | 	kfree(iommu->domains); | 
 | 	kfree(iommu->domain_ids); | 
 |  | 
 | 	/* free context mapping */ | 
 | 	free_context_table(iommu); | 
 |  | 
 | 	if (iommu->reg) | 
 | 		iounmap(iommu->reg); | 
 | 	kfree(iommu); | 
 | } | 
 |  | 
 | static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu) | 
 | { | 
 | 	unsigned long num; | 
 | 	unsigned long ndomains; | 
 | 	struct dmar_domain *domain; | 
 | 	unsigned long flags; | 
 |  | 
 | 	domain = alloc_domain_mem(); | 
 | 	if (!domain) | 
 | 		return NULL; | 
 |  | 
 | 	ndomains = cap_ndoms(iommu->cap); | 
 |  | 
 | 	spin_lock_irqsave(&iommu->lock, flags); | 
 | 	num = find_first_zero_bit(iommu->domain_ids, ndomains); | 
 | 	if (num >= ndomains) { | 
 | 		spin_unlock_irqrestore(&iommu->lock, flags); | 
 | 		free_domain_mem(domain); | 
 | 		printk(KERN_ERR "IOMMU: no free domain ids\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	set_bit(num, iommu->domain_ids); | 
 | 	domain->id = num; | 
 | 	domain->iommu = iommu; | 
 | 	iommu->domains[num] = domain; | 
 | 	spin_unlock_irqrestore(&iommu->lock, flags); | 
 |  | 
 | 	return domain; | 
 | } | 
 |  | 
 | static void iommu_free_domain(struct dmar_domain *domain) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&domain->iommu->lock, flags); | 
 | 	clear_bit(domain->id, domain->iommu->domain_ids); | 
 | 	spin_unlock_irqrestore(&domain->iommu->lock, flags); | 
 | } | 
 |  | 
 | static struct iova_domain reserved_iova_list; | 
 |  | 
 | static void dmar_init_reserved_ranges(void) | 
 | { | 
 | 	struct pci_dev *pdev = NULL; | 
 | 	struct iova *iova; | 
 | 	int i; | 
 | 	u64 addr, size; | 
 |  | 
 | 	init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN); | 
 |  | 
 | 	/* IOAPIC ranges shouldn't be accessed by DMA */ | 
 | 	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START), | 
 | 		IOVA_PFN(IOAPIC_RANGE_END)); | 
 | 	if (!iova) | 
 | 		printk(KERN_ERR "Reserve IOAPIC range failed\n"); | 
 |  | 
 | 	/* Reserve all PCI MMIO to avoid peer-to-peer access */ | 
 | 	for_each_pci_dev(pdev) { | 
 | 		struct resource *r; | 
 |  | 
 | 		for (i = 0; i < PCI_NUM_RESOURCES; i++) { | 
 | 			r = &pdev->resource[i]; | 
 | 			if (!r->flags || !(r->flags & IORESOURCE_MEM)) | 
 | 				continue; | 
 | 			addr = r->start; | 
 | 			addr &= PAGE_MASK_4K; | 
 | 			size = r->end - addr; | 
 | 			size = PAGE_ALIGN_4K(size); | 
 | 			iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr), | 
 | 				IOVA_PFN(size + addr) - 1); | 
 | 			if (!iova) | 
 | 				printk(KERN_ERR "Reserve iova failed\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | static void domain_reserve_special_ranges(struct dmar_domain *domain) | 
 | { | 
 | 	copy_reserved_iova(&reserved_iova_list, &domain->iovad); | 
 | } | 
 |  | 
 | static inline int guestwidth_to_adjustwidth(int gaw) | 
 | { | 
 | 	int agaw; | 
 | 	int r = (gaw - 12) % 9; | 
 |  | 
 | 	if (r == 0) | 
 | 		agaw = gaw; | 
 | 	else | 
 | 		agaw = gaw + 9 - r; | 
 | 	if (agaw > 64) | 
 | 		agaw = 64; | 
 | 	return agaw; | 
 | } | 
 |  | 
 | static int domain_init(struct dmar_domain *domain, int guest_width) | 
 | { | 
 | 	struct intel_iommu *iommu; | 
 | 	int adjust_width, agaw; | 
 | 	unsigned long sagaw; | 
 |  | 
 | 	init_iova_domain(&domain->iovad, DMA_32BIT_PFN); | 
 | 	spin_lock_init(&domain->mapping_lock); | 
 |  | 
 | 	domain_reserve_special_ranges(domain); | 
 |  | 
 | 	/* calculate AGAW */ | 
 | 	iommu = domain->iommu; | 
 | 	if (guest_width > cap_mgaw(iommu->cap)) | 
 | 		guest_width = cap_mgaw(iommu->cap); | 
 | 	domain->gaw = guest_width; | 
 | 	adjust_width = guestwidth_to_adjustwidth(guest_width); | 
 | 	agaw = width_to_agaw(adjust_width); | 
 | 	sagaw = cap_sagaw(iommu->cap); | 
 | 	if (!test_bit(agaw, &sagaw)) { | 
 | 		/* hardware doesn't support it, choose a bigger one */ | 
 | 		pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw); | 
 | 		agaw = find_next_bit(&sagaw, 5, agaw); | 
 | 		if (agaw >= 5) | 
 | 			return -ENODEV; | 
 | 	} | 
 | 	domain->agaw = agaw; | 
 | 	INIT_LIST_HEAD(&domain->devices); | 
 |  | 
 | 	/* always allocate the top pgd */ | 
 | 	domain->pgd = (struct dma_pte *)alloc_pgtable_page(); | 
 | 	if (!domain->pgd) | 
 | 		return -ENOMEM; | 
 | 	__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE_4K); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void domain_exit(struct dmar_domain *domain) | 
 | { | 
 | 	u64 end; | 
 |  | 
 | 	/* Domain 0 is reserved, so dont process it */ | 
 | 	if (!domain) | 
 | 		return; | 
 |  | 
 | 	domain_remove_dev_info(domain); | 
 | 	/* destroy iovas */ | 
 | 	put_iova_domain(&domain->iovad); | 
 | 	end = DOMAIN_MAX_ADDR(domain->gaw); | 
 | 	end = end & (~PAGE_MASK_4K); | 
 |  | 
 | 	/* clear ptes */ | 
 | 	dma_pte_clear_range(domain, 0, end); | 
 |  | 
 | 	/* free page tables */ | 
 | 	dma_pte_free_pagetable(domain, 0, end); | 
 |  | 
 | 	iommu_free_domain(domain); | 
 | 	free_domain_mem(domain); | 
 | } | 
 |  | 
 | static int domain_context_mapping_one(struct dmar_domain *domain, | 
 | 		u8 bus, u8 devfn) | 
 | { | 
 | 	struct context_entry *context; | 
 | 	struct intel_iommu *iommu = domain->iommu; | 
 | 	unsigned long flags; | 
 |  | 
 | 	pr_debug("Set context mapping for %02x:%02x.%d\n", | 
 | 		bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); | 
 | 	BUG_ON(!domain->pgd); | 
 | 	context = device_to_context_entry(iommu, bus, devfn); | 
 | 	if (!context) | 
 | 		return -ENOMEM; | 
 | 	spin_lock_irqsave(&iommu->lock, flags); | 
 | 	if (context_present(*context)) { | 
 | 		spin_unlock_irqrestore(&iommu->lock, flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	context_set_domain_id(*context, domain->id); | 
 | 	context_set_address_width(*context, domain->agaw); | 
 | 	context_set_address_root(*context, virt_to_phys(domain->pgd)); | 
 | 	context_set_translation_type(*context, CONTEXT_TT_MULTI_LEVEL); | 
 | 	context_set_fault_enable(*context); | 
 | 	context_set_present(*context); | 
 | 	__iommu_flush_cache(iommu, context, sizeof(*context)); | 
 |  | 
 | 	/* it's a non-present to present mapping */ | 
 | 	if (iommu_flush_context_device(iommu, domain->id, | 
 | 			(((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT, 1)) | 
 | 		iommu_flush_write_buffer(iommu); | 
 | 	else | 
 | 		iommu_flush_iotlb_dsi(iommu, 0, 0); | 
 | 	spin_unlock_irqrestore(&iommu->lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev) | 
 | { | 
 | 	int ret; | 
 | 	struct pci_dev *tmp, *parent; | 
 |  | 
 | 	ret = domain_context_mapping_one(domain, pdev->bus->number, | 
 | 		pdev->devfn); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* dependent device mapping */ | 
 | 	tmp = pci_find_upstream_pcie_bridge(pdev); | 
 | 	if (!tmp) | 
 | 		return 0; | 
 | 	/* Secondary interface's bus number and devfn 0 */ | 
 | 	parent = pdev->bus->self; | 
 | 	while (parent != tmp) { | 
 | 		ret = domain_context_mapping_one(domain, parent->bus->number, | 
 | 			parent->devfn); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		parent = parent->bus->self; | 
 | 	} | 
 | 	if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */ | 
 | 		return domain_context_mapping_one(domain, | 
 | 			tmp->subordinate->number, 0); | 
 | 	else /* this is a legacy PCI bridge */ | 
 | 		return domain_context_mapping_one(domain, | 
 | 			tmp->bus->number, tmp->devfn); | 
 | } | 
 |  | 
 | static int domain_context_mapped(struct dmar_domain *domain, | 
 | 	struct pci_dev *pdev) | 
 | { | 
 | 	int ret; | 
 | 	struct pci_dev *tmp, *parent; | 
 |  | 
 | 	ret = device_context_mapped(domain->iommu, | 
 | 		pdev->bus->number, pdev->devfn); | 
 | 	if (!ret) | 
 | 		return ret; | 
 | 	/* dependent device mapping */ | 
 | 	tmp = pci_find_upstream_pcie_bridge(pdev); | 
 | 	if (!tmp) | 
 | 		return ret; | 
 | 	/* Secondary interface's bus number and devfn 0 */ | 
 | 	parent = pdev->bus->self; | 
 | 	while (parent != tmp) { | 
 | 		ret = device_context_mapped(domain->iommu, parent->bus->number, | 
 | 			parent->devfn); | 
 | 		if (!ret) | 
 | 			return ret; | 
 | 		parent = parent->bus->self; | 
 | 	} | 
 | 	if (tmp->is_pcie) | 
 | 		return device_context_mapped(domain->iommu, | 
 | 			tmp->subordinate->number, 0); | 
 | 	else | 
 | 		return device_context_mapped(domain->iommu, | 
 | 			tmp->bus->number, tmp->devfn); | 
 | } | 
 |  | 
 | static int | 
 | domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova, | 
 | 			u64 hpa, size_t size, int prot) | 
 | { | 
 | 	u64 start_pfn, end_pfn; | 
 | 	struct dma_pte *pte; | 
 | 	int index; | 
 |  | 
 | 	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) | 
 | 		return -EINVAL; | 
 | 	iova &= PAGE_MASK_4K; | 
 | 	start_pfn = ((u64)hpa) >> PAGE_SHIFT_4K; | 
 | 	end_pfn = (PAGE_ALIGN_4K(((u64)hpa) + size)) >> PAGE_SHIFT_4K; | 
 | 	index = 0; | 
 | 	while (start_pfn < end_pfn) { | 
 | 		pte = addr_to_dma_pte(domain, iova + PAGE_SIZE_4K * index); | 
 | 		if (!pte) | 
 | 			return -ENOMEM; | 
 | 		/* We don't need lock here, nobody else | 
 | 		 * touches the iova range | 
 | 		 */ | 
 | 		BUG_ON(dma_pte_addr(*pte)); | 
 | 		dma_set_pte_addr(*pte, start_pfn << PAGE_SHIFT_4K); | 
 | 		dma_set_pte_prot(*pte, prot); | 
 | 		__iommu_flush_cache(domain->iommu, pte, sizeof(*pte)); | 
 | 		start_pfn++; | 
 | 		index++; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void detach_domain_for_dev(struct dmar_domain *domain, u8 bus, u8 devfn) | 
 | { | 
 | 	clear_context_table(domain->iommu, bus, devfn); | 
 | 	iommu_flush_context_global(domain->iommu, 0); | 
 | 	iommu_flush_iotlb_global(domain->iommu, 0); | 
 | } | 
 |  | 
 | static void domain_remove_dev_info(struct dmar_domain *domain) | 
 | { | 
 | 	struct device_domain_info *info; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&device_domain_lock, flags); | 
 | 	while (!list_empty(&domain->devices)) { | 
 | 		info = list_entry(domain->devices.next, | 
 | 			struct device_domain_info, link); | 
 | 		list_del(&info->link); | 
 | 		list_del(&info->global); | 
 | 		if (info->dev) | 
 | 			info->dev->dev.archdata.iommu = NULL; | 
 | 		spin_unlock_irqrestore(&device_domain_lock, flags); | 
 |  | 
 | 		detach_domain_for_dev(info->domain, info->bus, info->devfn); | 
 | 		free_devinfo_mem(info); | 
 |  | 
 | 		spin_lock_irqsave(&device_domain_lock, flags); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&device_domain_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * find_domain | 
 |  * Note: we use struct pci_dev->dev.archdata.iommu stores the info | 
 |  */ | 
 | struct dmar_domain * | 
 | find_domain(struct pci_dev *pdev) | 
 | { | 
 | 	struct device_domain_info *info; | 
 |  | 
 | 	/* No lock here, assumes no domain exit in normal case */ | 
 | 	info = pdev->dev.archdata.iommu; | 
 | 	if (info) | 
 | 		return info->domain; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int dmar_pci_device_match(struct pci_dev *devices[], int cnt, | 
 |      struct pci_dev *dev) | 
 | { | 
 | 	int index; | 
 |  | 
 | 	while (dev) { | 
 | 		for (index = 0; index < cnt; index ++) | 
 | 			if (dev == devices[index]) | 
 | 				return 1; | 
 |  | 
 | 		/* Check our parent */ | 
 | 		dev = dev->bus->self; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct dmar_drhd_unit * | 
 | dmar_find_matched_drhd_unit(struct pci_dev *dev) | 
 | { | 
 | 	struct dmar_drhd_unit *drhd = NULL; | 
 |  | 
 | 	list_for_each_entry(drhd, &dmar_drhd_units, list) { | 
 | 		if (drhd->include_all || dmar_pci_device_match(drhd->devices, | 
 | 						drhd->devices_cnt, dev)) | 
 | 			return drhd; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* domain is initialized */ | 
 | static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw) | 
 | { | 
 | 	struct dmar_domain *domain, *found = NULL; | 
 | 	struct intel_iommu *iommu; | 
 | 	struct dmar_drhd_unit *drhd; | 
 | 	struct device_domain_info *info, *tmp; | 
 | 	struct pci_dev *dev_tmp; | 
 | 	unsigned long flags; | 
 | 	int bus = 0, devfn = 0; | 
 |  | 
 | 	domain = find_domain(pdev); | 
 | 	if (domain) | 
 | 		return domain; | 
 |  | 
 | 	dev_tmp = pci_find_upstream_pcie_bridge(pdev); | 
 | 	if (dev_tmp) { | 
 | 		if (dev_tmp->is_pcie) { | 
 | 			bus = dev_tmp->subordinate->number; | 
 | 			devfn = 0; | 
 | 		} else { | 
 | 			bus = dev_tmp->bus->number; | 
 | 			devfn = dev_tmp->devfn; | 
 | 		} | 
 | 		spin_lock_irqsave(&device_domain_lock, flags); | 
 | 		list_for_each_entry(info, &device_domain_list, global) { | 
 | 			if (info->bus == bus && info->devfn == devfn) { | 
 | 				found = info->domain; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock_irqrestore(&device_domain_lock, flags); | 
 | 		/* pcie-pci bridge already has a domain, uses it */ | 
 | 		if (found) { | 
 | 			domain = found; | 
 | 			goto found_domain; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Allocate new domain for the device */ | 
 | 	drhd = dmar_find_matched_drhd_unit(pdev); | 
 | 	if (!drhd) { | 
 | 		printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n", | 
 | 			pci_name(pdev)); | 
 | 		return NULL; | 
 | 	} | 
 | 	iommu = drhd->iommu; | 
 |  | 
 | 	domain = iommu_alloc_domain(iommu); | 
 | 	if (!domain) | 
 | 		goto error; | 
 |  | 
 | 	if (domain_init(domain, gaw)) { | 
 | 		domain_exit(domain); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	/* register pcie-to-pci device */ | 
 | 	if (dev_tmp) { | 
 | 		info = alloc_devinfo_mem(); | 
 | 		if (!info) { | 
 | 			domain_exit(domain); | 
 | 			goto error; | 
 | 		} | 
 | 		info->bus = bus; | 
 | 		info->devfn = devfn; | 
 | 		info->dev = NULL; | 
 | 		info->domain = domain; | 
 | 		/* This domain is shared by devices under p2p bridge */ | 
 | 		domain->flags |= DOMAIN_FLAG_MULTIPLE_DEVICES; | 
 |  | 
 | 		/* pcie-to-pci bridge already has a domain, uses it */ | 
 | 		found = NULL; | 
 | 		spin_lock_irqsave(&device_domain_lock, flags); | 
 | 		list_for_each_entry(tmp, &device_domain_list, global) { | 
 | 			if (tmp->bus == bus && tmp->devfn == devfn) { | 
 | 				found = tmp->domain; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		if (found) { | 
 | 			free_devinfo_mem(info); | 
 | 			domain_exit(domain); | 
 | 			domain = found; | 
 | 		} else { | 
 | 			list_add(&info->link, &domain->devices); | 
 | 			list_add(&info->global, &device_domain_list); | 
 | 		} | 
 | 		spin_unlock_irqrestore(&device_domain_lock, flags); | 
 | 	} | 
 |  | 
 | found_domain: | 
 | 	info = alloc_devinfo_mem(); | 
 | 	if (!info) | 
 | 		goto error; | 
 | 	info->bus = pdev->bus->number; | 
 | 	info->devfn = pdev->devfn; | 
 | 	info->dev = pdev; | 
 | 	info->domain = domain; | 
 | 	spin_lock_irqsave(&device_domain_lock, flags); | 
 | 	/* somebody is fast */ | 
 | 	found = find_domain(pdev); | 
 | 	if (found != NULL) { | 
 | 		spin_unlock_irqrestore(&device_domain_lock, flags); | 
 | 		if (found != domain) { | 
 | 			domain_exit(domain); | 
 | 			domain = found; | 
 | 		} | 
 | 		free_devinfo_mem(info); | 
 | 		return domain; | 
 | 	} | 
 | 	list_add(&info->link, &domain->devices); | 
 | 	list_add(&info->global, &device_domain_list); | 
 | 	pdev->dev.archdata.iommu = info; | 
 | 	spin_unlock_irqrestore(&device_domain_lock, flags); | 
 | 	return domain; | 
 | error: | 
 | 	/* recheck it here, maybe others set it */ | 
 | 	return find_domain(pdev); | 
 | } | 
 |  | 
 | static int iommu_prepare_identity_map(struct pci_dev *pdev, u64 start, u64 end) | 
 | { | 
 | 	struct dmar_domain *domain; | 
 | 	unsigned long size; | 
 | 	u64 base; | 
 | 	int ret; | 
 |  | 
 | 	printk(KERN_INFO | 
 | 		"IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n", | 
 | 		pci_name(pdev), start, end); | 
 | 	/* page table init */ | 
 | 	domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH); | 
 | 	if (!domain) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* The address might not be aligned */ | 
 | 	base = start & PAGE_MASK_4K; | 
 | 	size = end - base; | 
 | 	size = PAGE_ALIGN_4K(size); | 
 | 	if (!reserve_iova(&domain->iovad, IOVA_PFN(base), | 
 | 			IOVA_PFN(base + size) - 1)) { | 
 | 		printk(KERN_ERR "IOMMU: reserve iova failed\n"); | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	pr_debug("Mapping reserved region %lx@%llx for %s\n", | 
 | 		size, base, pci_name(pdev)); | 
 | 	/* | 
 | 	 * RMRR range might have overlap with physical memory range, | 
 | 	 * clear it first | 
 | 	 */ | 
 | 	dma_pte_clear_range(domain, base, base + size); | 
 |  | 
 | 	ret = domain_page_mapping(domain, base, base, size, | 
 | 		DMA_PTE_READ|DMA_PTE_WRITE); | 
 | 	if (ret) | 
 | 		goto error; | 
 |  | 
 | 	/* context entry init */ | 
 | 	ret = domain_context_mapping(domain, pdev); | 
 | 	if (!ret) | 
 | 		return 0; | 
 | error: | 
 | 	domain_exit(domain); | 
 | 	return ret; | 
 |  | 
 | } | 
 |  | 
 | static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr, | 
 | 	struct pci_dev *pdev) | 
 | { | 
 | 	if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) | 
 | 		return 0; | 
 | 	return iommu_prepare_identity_map(pdev, rmrr->base_address, | 
 | 		rmrr->end_address + 1); | 
 | } | 
 |  | 
 | #ifdef CONFIG_DMAR_GFX_WA | 
 | extern int arch_get_ram_range(int slot, u64 *addr, u64 *size); | 
 | static void __init iommu_prepare_gfx_mapping(void) | 
 | { | 
 | 	struct pci_dev *pdev = NULL; | 
 | 	u64 base, size; | 
 | 	int slot; | 
 | 	int ret; | 
 |  | 
 | 	for_each_pci_dev(pdev) { | 
 | 		if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO || | 
 | 				!IS_GFX_DEVICE(pdev)) | 
 | 			continue; | 
 | 		printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n", | 
 | 			pci_name(pdev)); | 
 | 		slot = arch_get_ram_range(0, &base, &size); | 
 | 		while (slot >= 0) { | 
 | 			ret = iommu_prepare_identity_map(pdev, | 
 | 					base, base + size); | 
 | 			if (ret) | 
 | 				goto error; | 
 | 			slot = arch_get_ram_range(slot, &base, &size); | 
 | 		} | 
 | 		continue; | 
 | error: | 
 | 		printk(KERN_ERR "IOMMU: mapping reserved region failed\n"); | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_DMAR_FLOPPY_WA | 
 | static inline void iommu_prepare_isa(void) | 
 | { | 
 | 	struct pci_dev *pdev; | 
 | 	int ret; | 
 |  | 
 | 	pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL); | 
 | 	if (!pdev) | 
 | 		return; | 
 |  | 
 | 	printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n"); | 
 | 	ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024); | 
 |  | 
 | 	if (ret) | 
 | 		printk("IOMMU: Failed to create 0-64M identity map, " | 
 | 			"floppy might not work\n"); | 
 |  | 
 | } | 
 | #else | 
 | static inline void iommu_prepare_isa(void) | 
 | { | 
 | 	return; | 
 | } | 
 | #endif /* !CONFIG_DMAR_FLPY_WA */ | 
 |  | 
 | int __init init_dmars(void) | 
 | { | 
 | 	struct dmar_drhd_unit *drhd; | 
 | 	struct dmar_rmrr_unit *rmrr; | 
 | 	struct pci_dev *pdev; | 
 | 	struct intel_iommu *iommu; | 
 | 	int ret, unit = 0; | 
 |  | 
 | 	/* | 
 | 	 * for each drhd | 
 | 	 *    allocate root | 
 | 	 *    initialize and program root entry to not present | 
 | 	 * endfor | 
 | 	 */ | 
 | 	for_each_drhd_unit(drhd) { | 
 | 		if (drhd->ignored) | 
 | 			continue; | 
 | 		iommu = alloc_iommu(drhd); | 
 | 		if (!iommu) { | 
 | 			ret = -ENOMEM; | 
 | 			goto error; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * TBD: | 
 | 		 * we could share the same root & context tables | 
 | 		 * amoung all IOMMU's. Need to Split it later. | 
 | 		 */ | 
 | 		ret = iommu_alloc_root_entry(iommu); | 
 | 		if (ret) { | 
 | 			printk(KERN_ERR "IOMMU: allocate root entry failed\n"); | 
 | 			goto error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For each rmrr | 
 | 	 *   for each dev attached to rmrr | 
 | 	 *   do | 
 | 	 *     locate drhd for dev, alloc domain for dev | 
 | 	 *     allocate free domain | 
 | 	 *     allocate page table entries for rmrr | 
 | 	 *     if context not allocated for bus | 
 | 	 *           allocate and init context | 
 | 	 *           set present in root table for this bus | 
 | 	 *     init context with domain, translation etc | 
 | 	 *    endfor | 
 | 	 * endfor | 
 | 	 */ | 
 | 	for_each_rmrr_units(rmrr) { | 
 | 		int i; | 
 | 		for (i = 0; i < rmrr->devices_cnt; i++) { | 
 | 			pdev = rmrr->devices[i]; | 
 | 			/* some BIOS lists non-exist devices in DMAR table */ | 
 | 			if (!pdev) | 
 | 				continue; | 
 | 			ret = iommu_prepare_rmrr_dev(rmrr, pdev); | 
 | 			if (ret) | 
 | 				printk(KERN_ERR | 
 | 				 "IOMMU: mapping reserved region failed\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	iommu_prepare_gfx_mapping(); | 
 |  | 
 | 	iommu_prepare_isa(); | 
 |  | 
 | 	/* | 
 | 	 * for each drhd | 
 | 	 *   enable fault log | 
 | 	 *   global invalidate context cache | 
 | 	 *   global invalidate iotlb | 
 | 	 *   enable translation | 
 | 	 */ | 
 | 	for_each_drhd_unit(drhd) { | 
 | 		if (drhd->ignored) | 
 | 			continue; | 
 | 		iommu = drhd->iommu; | 
 | 		sprintf (iommu->name, "dmar%d", unit++); | 
 |  | 
 | 		iommu_flush_write_buffer(iommu); | 
 |  | 
 | 		ret = dmar_set_interrupt(iommu); | 
 | 		if (ret) | 
 | 			goto error; | 
 |  | 
 | 		iommu_set_root_entry(iommu); | 
 |  | 
 | 		iommu_flush_context_global(iommu, 0); | 
 | 		iommu_flush_iotlb_global(iommu, 0); | 
 |  | 
 | 		iommu_disable_protect_mem_regions(iommu); | 
 |  | 
 | 		ret = iommu_enable_translation(iommu); | 
 | 		if (ret) | 
 | 			goto error; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | error: | 
 | 	for_each_drhd_unit(drhd) { | 
 | 		if (drhd->ignored) | 
 | 			continue; | 
 | 		iommu = drhd->iommu; | 
 | 		free_iommu(iommu); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline u64 aligned_size(u64 host_addr, size_t size) | 
 | { | 
 | 	u64 addr; | 
 | 	addr = (host_addr & (~PAGE_MASK_4K)) + size; | 
 | 	return PAGE_ALIGN_4K(addr); | 
 | } | 
 |  | 
 | struct iova * | 
 | iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end) | 
 | { | 
 | 	struct iova *piova; | 
 |  | 
 | 	/* Make sure it's in range */ | 
 | 	end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end); | 
 | 	if (!size || (IOVA_START_ADDR + size > end)) | 
 | 		return NULL; | 
 |  | 
 | 	piova = alloc_iova(&domain->iovad, | 
 | 			size >> PAGE_SHIFT_4K, IOVA_PFN(end), 1); | 
 | 	return piova; | 
 | } | 
 |  | 
 | static struct iova * | 
 | __intel_alloc_iova(struct device *dev, struct dmar_domain *domain, | 
 | 		size_t size) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(dev); | 
 | 	struct iova *iova = NULL; | 
 |  | 
 | 	if ((pdev->dma_mask <= DMA_32BIT_MASK) || (dmar_forcedac)) { | 
 | 		iova = iommu_alloc_iova(domain, size, pdev->dma_mask); | 
 | 	} else  { | 
 | 		/* | 
 | 		 * First try to allocate an io virtual address in | 
 | 		 * DMA_32BIT_MASK and if that fails then try allocating | 
 | 		 * from higher range | 
 | 		 */ | 
 | 		iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK); | 
 | 		if (!iova) | 
 | 			iova = iommu_alloc_iova(domain, size, pdev->dma_mask); | 
 | 	} | 
 |  | 
 | 	if (!iova) { | 
 | 		printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev)); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return iova; | 
 | } | 
 |  | 
 | static struct dmar_domain * | 
 | get_valid_domain_for_dev(struct pci_dev *pdev) | 
 | { | 
 | 	struct dmar_domain *domain; | 
 | 	int ret; | 
 |  | 
 | 	domain = get_domain_for_dev(pdev, | 
 | 			DEFAULT_DOMAIN_ADDRESS_WIDTH); | 
 | 	if (!domain) { | 
 | 		printk(KERN_ERR | 
 | 			"Allocating domain for %s failed", pci_name(pdev)); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* make sure context mapping is ok */ | 
 | 	if (unlikely(!domain_context_mapped(domain, pdev))) { | 
 | 		ret = domain_context_mapping(domain, pdev); | 
 | 		if (ret) { | 
 | 			printk(KERN_ERR | 
 | 				"Domain context map for %s failed", | 
 | 				pci_name(pdev)); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return domain; | 
 | } | 
 |  | 
 | static dma_addr_t intel_map_single(struct device *hwdev, void *addr, | 
 | 	size_t size, int dir) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(hwdev); | 
 | 	int ret; | 
 | 	struct dmar_domain *domain; | 
 | 	unsigned long start_addr; | 
 | 	struct iova *iova; | 
 | 	int prot = 0; | 
 |  | 
 | 	BUG_ON(dir == DMA_NONE); | 
 | 	if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) | 
 | 		return virt_to_bus(addr); | 
 |  | 
 | 	domain = get_valid_domain_for_dev(pdev); | 
 | 	if (!domain) | 
 | 		return 0; | 
 |  | 
 | 	addr = (void *)virt_to_phys(addr); | 
 | 	size = aligned_size((u64)addr, size); | 
 |  | 
 | 	iova = __intel_alloc_iova(hwdev, domain, size); | 
 | 	if (!iova) | 
 | 		goto error; | 
 |  | 
 | 	start_addr = iova->pfn_lo << PAGE_SHIFT_4K; | 
 |  | 
 | 	/* | 
 | 	 * Check if DMAR supports zero-length reads on write only | 
 | 	 * mappings.. | 
 | 	 */ | 
 | 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ | 
 | 			!cap_zlr(domain->iommu->cap)) | 
 | 		prot |= DMA_PTE_READ; | 
 | 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) | 
 | 		prot |= DMA_PTE_WRITE; | 
 | 	/* | 
 | 	 * addr - (addr + size) might be partial page, we should map the whole | 
 | 	 * page.  Note: if two part of one page are separately mapped, we | 
 | 	 * might have two guest_addr mapping to the same host addr, but this | 
 | 	 * is not a big problem | 
 | 	 */ | 
 | 	ret = domain_page_mapping(domain, start_addr, | 
 | 		((u64)addr) & PAGE_MASK_4K, size, prot); | 
 | 	if (ret) | 
 | 		goto error; | 
 |  | 
 | 	pr_debug("Device %s request: %lx@%llx mapping: %lx@%llx, dir %d\n", | 
 | 		pci_name(pdev), size, (u64)addr, | 
 | 		size, (u64)start_addr, dir); | 
 |  | 
 | 	/* it's a non-present to present mapping */ | 
 | 	ret = iommu_flush_iotlb_psi(domain->iommu, domain->id, | 
 | 			start_addr, size >> PAGE_SHIFT_4K, 1); | 
 | 	if (ret) | 
 | 		iommu_flush_write_buffer(domain->iommu); | 
 |  | 
 | 	return (start_addr + ((u64)addr & (~PAGE_MASK_4K))); | 
 |  | 
 | error: | 
 | 	if (iova) | 
 | 		__free_iova(&domain->iovad, iova); | 
 | 	printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n", | 
 | 		pci_name(pdev), size, (u64)addr, dir); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, | 
 | 	size_t size, int dir) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(dev); | 
 | 	struct dmar_domain *domain; | 
 | 	unsigned long start_addr; | 
 | 	struct iova *iova; | 
 |  | 
 | 	if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) | 
 | 		return; | 
 | 	domain = find_domain(pdev); | 
 | 	BUG_ON(!domain); | 
 |  | 
 | 	iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr)); | 
 | 	if (!iova) | 
 | 		return; | 
 |  | 
 | 	start_addr = iova->pfn_lo << PAGE_SHIFT_4K; | 
 | 	size = aligned_size((u64)dev_addr, size); | 
 |  | 
 | 	pr_debug("Device %s unmapping: %lx@%llx\n", | 
 | 		pci_name(pdev), size, (u64)start_addr); | 
 |  | 
 | 	/*  clear the whole page */ | 
 | 	dma_pte_clear_range(domain, start_addr, start_addr + size); | 
 | 	/* free page tables */ | 
 | 	dma_pte_free_pagetable(domain, start_addr, start_addr + size); | 
 |  | 
 | 	if (iommu_flush_iotlb_psi(domain->iommu, domain->id, start_addr, | 
 | 			size >> PAGE_SHIFT_4K, 0)) | 
 | 		iommu_flush_write_buffer(domain->iommu); | 
 |  | 
 | 	/* free iova */ | 
 | 	__free_iova(&domain->iovad, iova); | 
 | } | 
 |  | 
 | static void * intel_alloc_coherent(struct device *hwdev, size_t size, | 
 | 		       dma_addr_t *dma_handle, gfp_t flags) | 
 | { | 
 | 	void *vaddr; | 
 | 	int order; | 
 |  | 
 | 	size = PAGE_ALIGN_4K(size); | 
 | 	order = get_order(size); | 
 | 	flags &= ~(GFP_DMA | GFP_DMA32); | 
 |  | 
 | 	vaddr = (void *)__get_free_pages(flags, order); | 
 | 	if (!vaddr) | 
 | 		return NULL; | 
 | 	memset(vaddr, 0, size); | 
 |  | 
 | 	*dma_handle = intel_map_single(hwdev, vaddr, size, DMA_BIDIRECTIONAL); | 
 | 	if (*dma_handle) | 
 | 		return vaddr; | 
 | 	free_pages((unsigned long)vaddr, order); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void intel_free_coherent(struct device *hwdev, size_t size, | 
 | 	void *vaddr, dma_addr_t dma_handle) | 
 | { | 
 | 	int order; | 
 |  | 
 | 	size = PAGE_ALIGN_4K(size); | 
 | 	order = get_order(size); | 
 |  | 
 | 	intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL); | 
 | 	free_pages((unsigned long)vaddr, order); | 
 | } | 
 |  | 
 | #define SG_ENT_VIRT_ADDRESS(sg)	(sg_virt((sg))) | 
 | static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist, | 
 | 	int nelems, int dir) | 
 | { | 
 | 	int i; | 
 | 	struct pci_dev *pdev = to_pci_dev(hwdev); | 
 | 	struct dmar_domain *domain; | 
 | 	unsigned long start_addr; | 
 | 	struct iova *iova; | 
 | 	size_t size = 0; | 
 | 	void *addr; | 
 | 	struct scatterlist *sg; | 
 |  | 
 | 	if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) | 
 | 		return; | 
 |  | 
 | 	domain = find_domain(pdev); | 
 |  | 
 | 	iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address)); | 
 | 	if (!iova) | 
 | 		return; | 
 | 	for_each_sg(sglist, sg, nelems, i) { | 
 | 		addr = SG_ENT_VIRT_ADDRESS(sg); | 
 | 		size += aligned_size((u64)addr, sg->length); | 
 | 	} | 
 |  | 
 | 	start_addr = iova->pfn_lo << PAGE_SHIFT_4K; | 
 |  | 
 | 	/*  clear the whole page */ | 
 | 	dma_pte_clear_range(domain, start_addr, start_addr + size); | 
 | 	/* free page tables */ | 
 | 	dma_pte_free_pagetable(domain, start_addr, start_addr + size); | 
 |  | 
 | 	if (iommu_flush_iotlb_psi(domain->iommu, domain->id, start_addr, | 
 | 			size >> PAGE_SHIFT_4K, 0)) | 
 | 		iommu_flush_write_buffer(domain->iommu); | 
 |  | 
 | 	/* free iova */ | 
 | 	__free_iova(&domain->iovad, iova); | 
 | } | 
 |  | 
 | static int intel_nontranslate_map_sg(struct device *hddev, | 
 | 	struct scatterlist *sglist, int nelems, int dir) | 
 | { | 
 | 	int i; | 
 | 	struct scatterlist *sg; | 
 |  | 
 | 	for_each_sg(sglist, sg, nelems, i) { | 
 | 		BUG_ON(!sg_page(sg)); | 
 | 		sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg)); | 
 | 		sg->dma_length = sg->length; | 
 | 	} | 
 | 	return nelems; | 
 | } | 
 |  | 
 | static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, | 
 | 				int nelems, int dir) | 
 | { | 
 | 	void *addr; | 
 | 	int i; | 
 | 	struct pci_dev *pdev = to_pci_dev(hwdev); | 
 | 	struct dmar_domain *domain; | 
 | 	size_t size = 0; | 
 | 	int prot = 0; | 
 | 	size_t offset = 0; | 
 | 	struct iova *iova = NULL; | 
 | 	int ret; | 
 | 	struct scatterlist *sg; | 
 | 	unsigned long start_addr; | 
 |  | 
 | 	BUG_ON(dir == DMA_NONE); | 
 | 	if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO) | 
 | 		return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir); | 
 |  | 
 | 	domain = get_valid_domain_for_dev(pdev); | 
 | 	if (!domain) | 
 | 		return 0; | 
 |  | 
 | 	for_each_sg(sglist, sg, nelems, i) { | 
 | 		addr = SG_ENT_VIRT_ADDRESS(sg); | 
 | 		addr = (void *)virt_to_phys(addr); | 
 | 		size += aligned_size((u64)addr, sg->length); | 
 | 	} | 
 |  | 
 | 	iova = __intel_alloc_iova(hwdev, domain, size); | 
 | 	if (!iova) { | 
 | 		sglist->dma_length = 0; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check if DMAR supports zero-length reads on write only | 
 | 	 * mappings.. | 
 | 	 */ | 
 | 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ | 
 | 			!cap_zlr(domain->iommu->cap)) | 
 | 		prot |= DMA_PTE_READ; | 
 | 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) | 
 | 		prot |= DMA_PTE_WRITE; | 
 |  | 
 | 	start_addr = iova->pfn_lo << PAGE_SHIFT_4K; | 
 | 	offset = 0; | 
 | 	for_each_sg(sglist, sg, nelems, i) { | 
 | 		addr = SG_ENT_VIRT_ADDRESS(sg); | 
 | 		addr = (void *)virt_to_phys(addr); | 
 | 		size = aligned_size((u64)addr, sg->length); | 
 | 		ret = domain_page_mapping(domain, start_addr + offset, | 
 | 			((u64)addr) & PAGE_MASK_4K, | 
 | 			size, prot); | 
 | 		if (ret) { | 
 | 			/*  clear the page */ | 
 | 			dma_pte_clear_range(domain, start_addr, | 
 | 				  start_addr + offset); | 
 | 			/* free page tables */ | 
 | 			dma_pte_free_pagetable(domain, start_addr, | 
 | 				  start_addr + offset); | 
 | 			/* free iova */ | 
 | 			__free_iova(&domain->iovad, iova); | 
 | 			return 0; | 
 | 		} | 
 | 		sg->dma_address = start_addr + offset + | 
 | 				((u64)addr & (~PAGE_MASK_4K)); | 
 | 		sg->dma_length = sg->length; | 
 | 		offset += size; | 
 | 	} | 
 |  | 
 | 	/* it's a non-present to present mapping */ | 
 | 	if (iommu_flush_iotlb_psi(domain->iommu, domain->id, | 
 | 			start_addr, offset >> PAGE_SHIFT_4K, 1)) | 
 | 		iommu_flush_write_buffer(domain->iommu); | 
 | 	return nelems; | 
 | } | 
 |  | 
 | static struct dma_mapping_ops intel_dma_ops = { | 
 | 	.alloc_coherent = intel_alloc_coherent, | 
 | 	.free_coherent = intel_free_coherent, | 
 | 	.map_single = intel_map_single, | 
 | 	.unmap_single = intel_unmap_single, | 
 | 	.map_sg = intel_map_sg, | 
 | 	.unmap_sg = intel_unmap_sg, | 
 | }; | 
 |  | 
 | static inline int iommu_domain_cache_init(void) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	iommu_domain_cache = kmem_cache_create("iommu_domain", | 
 | 					 sizeof(struct dmar_domain), | 
 | 					 0, | 
 | 					 SLAB_HWCACHE_ALIGN, | 
 |  | 
 | 					 NULL); | 
 | 	if (!iommu_domain_cache) { | 
 | 		printk(KERN_ERR "Couldn't create iommu_domain cache\n"); | 
 | 		ret = -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int iommu_devinfo_cache_init(void) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", | 
 | 					 sizeof(struct device_domain_info), | 
 | 					 0, | 
 | 					 SLAB_HWCACHE_ALIGN, | 
 |  | 
 | 					 NULL); | 
 | 	if (!iommu_devinfo_cache) { | 
 | 		printk(KERN_ERR "Couldn't create devinfo cache\n"); | 
 | 		ret = -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int iommu_iova_cache_init(void) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	iommu_iova_cache = kmem_cache_create("iommu_iova", | 
 | 					 sizeof(struct iova), | 
 | 					 0, | 
 | 					 SLAB_HWCACHE_ALIGN, | 
 |  | 
 | 					 NULL); | 
 | 	if (!iommu_iova_cache) { | 
 | 		printk(KERN_ERR "Couldn't create iova cache\n"); | 
 | 		ret = -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __init iommu_init_mempool(void) | 
 | { | 
 | 	int ret; | 
 | 	ret = iommu_iova_cache_init(); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = iommu_domain_cache_init(); | 
 | 	if (ret) | 
 | 		goto domain_error; | 
 |  | 
 | 	ret = iommu_devinfo_cache_init(); | 
 | 	if (!ret) | 
 | 		return ret; | 
 |  | 
 | 	kmem_cache_destroy(iommu_domain_cache); | 
 | domain_error: | 
 | 	kmem_cache_destroy(iommu_iova_cache); | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void __init iommu_exit_mempool(void) | 
 | { | 
 | 	kmem_cache_destroy(iommu_devinfo_cache); | 
 | 	kmem_cache_destroy(iommu_domain_cache); | 
 | 	kmem_cache_destroy(iommu_iova_cache); | 
 |  | 
 | } | 
 |  | 
 | void __init detect_intel_iommu(void) | 
 | { | 
 | 	if (swiotlb || no_iommu || iommu_detected || dmar_disabled) | 
 | 		return; | 
 | 	if (early_dmar_detect()) { | 
 | 		iommu_detected = 1; | 
 | 	} | 
 | } | 
 |  | 
 | static void __init init_no_remapping_devices(void) | 
 | { | 
 | 	struct dmar_drhd_unit *drhd; | 
 |  | 
 | 	for_each_drhd_unit(drhd) { | 
 | 		if (!drhd->include_all) { | 
 | 			int i; | 
 | 			for (i = 0; i < drhd->devices_cnt; i++) | 
 | 				if (drhd->devices[i] != NULL) | 
 | 					break; | 
 | 			/* ignore DMAR unit if no pci devices exist */ | 
 | 			if (i == drhd->devices_cnt) | 
 | 				drhd->ignored = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (dmar_map_gfx) | 
 | 		return; | 
 |  | 
 | 	for_each_drhd_unit(drhd) { | 
 | 		int i; | 
 | 		if (drhd->ignored || drhd->include_all) | 
 | 			continue; | 
 |  | 
 | 		for (i = 0; i < drhd->devices_cnt; i++) | 
 | 			if (drhd->devices[i] && | 
 | 				!IS_GFX_DEVICE(drhd->devices[i])) | 
 | 				break; | 
 |  | 
 | 		if (i < drhd->devices_cnt) | 
 | 			continue; | 
 |  | 
 | 		/* bypass IOMMU if it is just for gfx devices */ | 
 | 		drhd->ignored = 1; | 
 | 		for (i = 0; i < drhd->devices_cnt; i++) { | 
 | 			if (!drhd->devices[i]) | 
 | 				continue; | 
 | 			drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | int __init intel_iommu_init(void) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (no_iommu || swiotlb || dmar_disabled) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (dmar_table_init()) | 
 | 		return 	-ENODEV; | 
 |  | 
 | 	iommu_init_mempool(); | 
 | 	dmar_init_reserved_ranges(); | 
 |  | 
 | 	init_no_remapping_devices(); | 
 |  | 
 | 	ret = init_dmars(); | 
 | 	if (ret) { | 
 | 		printk(KERN_ERR "IOMMU: dmar init failed\n"); | 
 | 		put_iova_domain(&reserved_iova_list); | 
 | 		iommu_exit_mempool(); | 
 | 		return ret; | 
 | 	} | 
 | 	printk(KERN_INFO | 
 | 	"PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n"); | 
 |  | 
 | 	force_iommu = 1; | 
 | 	dma_ops = &intel_dma_ops; | 
 | 	return 0; | 
 | } | 
 |  |