|  | /* | 
|  | *  linux/drivers/video/kyro/STG4000InitDevice.c | 
|  | * | 
|  | *  Copyright (C) 2000 Imagination Technologies Ltd | 
|  | *  Copyright (C) 2002 STMicroelectronics | 
|  | * | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file COPYING in the main directory of this archive | 
|  | * for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/pci.h> | 
|  |  | 
|  | #include "STG4000Reg.h" | 
|  | #include "STG4000Interface.h" | 
|  |  | 
|  | /* SDRAM fixed settings */ | 
|  | #define SDRAM_CFG_0   0x49A1 | 
|  | #define SDRAM_CFG_1   0xA732 | 
|  | #define SDRAM_CFG_2   0x31 | 
|  | #define SDRAM_ARB_CFG 0xA0 | 
|  | #define SDRAM_REFRESH 0x20 | 
|  |  | 
|  | /* Reset values */ | 
|  | #define PMX2_SOFTRESET_DAC_RST		0x0001 | 
|  | #define PMX2_SOFTRESET_C1_RST		0x0004 | 
|  | #define PMX2_SOFTRESET_C2_RST		0x0008 | 
|  | #define PMX2_SOFTRESET_3D_RST		0x0010 | 
|  | #define PMX2_SOFTRESET_VIDIN_RST	0x0020 | 
|  | #define PMX2_SOFTRESET_TLB_RST		0x0040 | 
|  | #define PMX2_SOFTRESET_SD_RST		0x0080 | 
|  | #define PMX2_SOFTRESET_VGA_RST		0x0100 | 
|  | #define PMX2_SOFTRESET_ROM_RST		0x0200	/* reserved bit, do not reset */ | 
|  | #define PMX2_SOFTRESET_TA_RST		0x0400 | 
|  | #define PMX2_SOFTRESET_REG_RST		0x4000 | 
|  | #define PMX2_SOFTRESET_ALL		0x7fff | 
|  |  | 
|  | /* Core clock freq */ | 
|  | #define CORE_PLL_FREQ 1000000 | 
|  |  | 
|  | /* Reference Clock freq */ | 
|  | #define REF_FREQ 14318 | 
|  |  | 
|  | /* PCI Registers */ | 
|  | static u16 CorePllControl = 0x70; | 
|  |  | 
|  | #define	PCI_CONFIG_SUBSYS_ID	0x2e | 
|  |  | 
|  | /* Misc */ | 
|  | #define CORE_PLL_MODE_REG_0_7      3 | 
|  | #define CORE_PLL_MODE_REG_8_15     2 | 
|  | #define CORE_PLL_MODE_CONFIG_REG   1 | 
|  | #define DAC_PLL_CONFIG_REG         0 | 
|  |  | 
|  | #define STG_MAX_VCO 500000 | 
|  | #define STG_MIN_VCO 100000 | 
|  |  | 
|  | /* PLL Clock */ | 
|  | #define    STG4K3_PLL_SCALER      8	/* scale numbers by 2^8 for fixed point calc */ | 
|  | #define    STG4K3_PLL_MIN_R       2	/* Minimum multiplier */ | 
|  | #define    STG4K3_PLL_MAX_R       33	/* Max */ | 
|  | #define    STG4K3_PLL_MIN_F       2	/* Minimum divisor */ | 
|  | #define    STG4K3_PLL_MAX_F       513	/* Max */ | 
|  | #define    STG4K3_PLL_MIN_OD      0	/* Min output divider (shift) */ | 
|  | #define    STG4K3_PLL_MAX_OD      2	/* Max */ | 
|  | #define    STG4K3_PLL_MIN_VCO_SC  (100000000 >> STG4K3_PLL_SCALER)	/* Min VCO rate */ | 
|  | #define    STG4K3_PLL_MAX_VCO_SC  (500000000 >> STG4K3_PLL_SCALER)	/* Max VCO rate */ | 
|  | #define    STG4K3_PLL_MINR_VCO_SC (100000000 >> STG4K3_PLL_SCALER)	/* Min VCO rate (restricted) */ | 
|  | #define    STG4K3_PLL_MAXR_VCO_SC (500000000 >> STG4K3_PLL_SCALER)	/* Max VCO rate (restricted) */ | 
|  | #define    STG4K3_PLL_MINR_VCO    100000000	/* Min VCO rate (restricted) */ | 
|  | #define    STG4K3_PLL_MAX_VCO     500000000	/* Max VCO rate */ | 
|  | #define    STG4K3_PLL_MAXR_VCO    500000000	/* Max VCO rate (restricted) */ | 
|  |  | 
|  | #define OS_DELAY(X) \ | 
|  | { \ | 
|  | volatile u32 i,count=0; \ | 
|  | for(i=0;i<X;i++) count++; \ | 
|  | } | 
|  |  | 
|  | static u32 InitSDRAMRegisters(volatile STG4000REG __iomem *pSTGReg, | 
|  | u32 dwSubSysID, u32 dwRevID) | 
|  | { | 
|  | u32 adwSDRAMArgCfg0[] = { 0xa0, 0x80, 0xa0, 0xa0, 0xa0 }; | 
|  | u32 adwSDRAMCfg1[] = { 0x8732, 0x8732, 0xa732, 0xa732, 0x8732 }; | 
|  | u32 adwSDRAMCfg2[] = { 0x87d2, 0x87d2, 0xa7d2, 0x87d2, 0xa7d2 }; | 
|  | u32 adwSDRAMRsh[] = { 36, 39, 40 }; | 
|  | u32 adwChipSpeed[] = { 110, 120, 125 }; | 
|  | u32 dwMemTypeIdx; | 
|  | u32 dwChipSpeedIdx; | 
|  |  | 
|  | /* Get memory tpye and chip speed indexs from the SubSysDevID */ | 
|  | dwMemTypeIdx = (dwSubSysID & 0x70) >> 4; | 
|  | dwChipSpeedIdx = (dwSubSysID & 0x180) >> 7; | 
|  |  | 
|  | if (dwMemTypeIdx > 4 || dwChipSpeedIdx > 2) | 
|  | return 0; | 
|  |  | 
|  | /* Program SD-RAM interface */ | 
|  | STG_WRITE_REG(SDRAMArbiterConf, adwSDRAMArgCfg0[dwMemTypeIdx]); | 
|  | if (dwRevID < 5) { | 
|  | STG_WRITE_REG(SDRAMConf0, 0x49A1); | 
|  | STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg1[dwMemTypeIdx]); | 
|  | } else { | 
|  | STG_WRITE_REG(SDRAMConf0, 0x4DF1); | 
|  | STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg2[dwMemTypeIdx]); | 
|  | } | 
|  |  | 
|  | STG_WRITE_REG(SDRAMConf2, 0x31); | 
|  | STG_WRITE_REG(SDRAMRefresh, adwSDRAMRsh[dwChipSpeedIdx]); | 
|  |  | 
|  | return adwChipSpeed[dwChipSpeedIdx] * 10000; | 
|  | } | 
|  |  | 
|  | u32 ProgramClock(u32 refClock, | 
|  | u32 coreClock, | 
|  | u32 * FOut, u32 * ROut, u32 * POut) | 
|  | { | 
|  | u32 R = 0, F = 0, OD = 0, ODIndex = 0; | 
|  | u32 ulBestR = 0, ulBestF = 0, ulBestOD = 0; | 
|  | u32 ulBestVCO = 0, ulBestClk = 0, ulBestScore = 0; | 
|  | u32 ulScore, ulPhaseScore, ulVcoScore; | 
|  | u32 ulTmp = 0, ulVCO; | 
|  | u32 ulScaleClockReq, ulMinClock, ulMaxClock; | 
|  | u32 ODValues[] = { 1, 2, 0 }; | 
|  |  | 
|  | /* Translate clock in Hz */ | 
|  | coreClock *= 100;	/* in Hz */ | 
|  | refClock *= 1000;	/* in Hz */ | 
|  |  | 
|  | /* Work out acceptable clock | 
|  | * The method calculates ~ +- 0.4% (1/256) | 
|  | */ | 
|  | ulMinClock = coreClock - (coreClock >> 8); | 
|  | ulMaxClock = coreClock + (coreClock >> 8); | 
|  |  | 
|  | /* Scale clock required for use in calculations */ | 
|  | ulScaleClockReq = coreClock >> STG4K3_PLL_SCALER; | 
|  |  | 
|  | /* Iterate through post divider values */ | 
|  | for (ODIndex = 0; ODIndex < 3; ODIndex++) { | 
|  | OD = ODValues[ODIndex]; | 
|  | R = STG4K3_PLL_MIN_R; | 
|  |  | 
|  | /* loop for pre-divider from min to max  */ | 
|  | while (R <= STG4K3_PLL_MAX_R) { | 
|  | /* estimate required feedback multiplier */ | 
|  | ulTmp = R * (ulScaleClockReq << OD); | 
|  |  | 
|  | /* F = ClkRequired * R * (2^OD) / Fref */ | 
|  | F = (u32)(ulTmp / (refClock >> STG4K3_PLL_SCALER)); | 
|  |  | 
|  | /* compensate for accuracy */ | 
|  | if (F > STG4K3_PLL_MIN_F) | 
|  | F--; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * We should be close to our target frequency (if it's | 
|  | * achievable with current OD & R) let's iterate | 
|  | * through F for best fit | 
|  | */ | 
|  | while ((F >= STG4K3_PLL_MIN_F) && | 
|  | (F <= STG4K3_PLL_MAX_F)) { | 
|  | /* Calc VCO at full accuracy */ | 
|  | ulVCO = refClock / R; | 
|  | ulVCO = F * ulVCO; | 
|  |  | 
|  | /* | 
|  | * Check it's within restricted VCO range | 
|  | * unless of course the desired frequency is | 
|  | * above the restricted range, then test | 
|  | * against VCO limit | 
|  | */ | 
|  | if ((ulVCO >= STG4K3_PLL_MINR_VCO) && | 
|  | ((ulVCO <= STG4K3_PLL_MAXR_VCO) || | 
|  | ((coreClock > STG4K3_PLL_MAXR_VCO) | 
|  | && (ulVCO <= STG4K3_PLL_MAX_VCO)))) { | 
|  | ulTmp = (ulVCO >> OD);	/* Clock = VCO / (2^OD) */ | 
|  |  | 
|  | /* Is this clock good enough? */ | 
|  | if ((ulTmp >= ulMinClock) | 
|  | && (ulTmp <= ulMaxClock)) { | 
|  | ulPhaseScore = (((refClock / R) - (refClock / STG4K3_PLL_MAX_R))) / ((refClock - (refClock / STG4K3_PLL_MAX_R)) >> 10); | 
|  |  | 
|  | ulVcoScore = ((ulVCO - STG4K3_PLL_MINR_VCO)) / ((STG4K3_PLL_MAXR_VCO - STG4K3_PLL_MINR_VCO) >> 10); | 
|  | ulScore = ulPhaseScore + ulVcoScore; | 
|  |  | 
|  | if (!ulBestScore) { | 
|  | ulBestVCO = ulVCO; | 
|  | ulBestOD = OD; | 
|  | ulBestF = F; | 
|  | ulBestR = R; | 
|  | ulBestClk = ulTmp; | 
|  | ulBestScore = | 
|  | ulScore; | 
|  | } | 
|  | /* is this better, ( aim for highest Score) */ | 
|  | /*-------------------------------------------------------------------------- | 
|  | Here we want to use a scoring system which will take account of both the | 
|  | value at the phase comparater and the VCO output | 
|  | to do this we will use a cumulative score between the two | 
|  | The way this ends up is that we choose the first value in the loop anyway | 
|  | but we shall keep this code in case new restrictions come into play | 
|  | --------------------------------------------------------------------------*/ | 
|  | if ((ulScore >= ulBestScore) && (OD > 0)) { | 
|  | ulBestVCO = ulVCO; | 
|  | ulBestOD = OD; | 
|  | ulBestF = F; | 
|  | ulBestR = R; | 
|  | ulBestClk = ulTmp; | 
|  | ulBestScore = | 
|  | ulScore; | 
|  | } | 
|  | } | 
|  | } | 
|  | F++; | 
|  | } | 
|  | R++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | did we find anything? | 
|  | Then return RFOD | 
|  | */ | 
|  | if (ulBestScore) { | 
|  | *ROut = ulBestR; | 
|  | *FOut = ulBestF; | 
|  |  | 
|  | if ((ulBestOD == 2) || (ulBestOD == 3)) { | 
|  | *POut = 3; | 
|  | } else | 
|  | *POut = ulBestOD; | 
|  |  | 
|  | } | 
|  |  | 
|  | return (ulBestClk); | 
|  | } | 
|  |  | 
|  | int SetCoreClockPLL(volatile STG4000REG __iomem *pSTGReg, struct pci_dev *pDev) | 
|  | { | 
|  | u32 F, R, P; | 
|  | u16 core_pll = 0, sub; | 
|  | u32 ulCoreClock; | 
|  | u32 tmp; | 
|  | u32 ulChipSpeed; | 
|  |  | 
|  | STG_WRITE_REG(IntMask, 0xFFFF); | 
|  |  | 
|  | /* Disable Primary Core Thread0 */ | 
|  | tmp = STG_READ_REG(Thread0Enable); | 
|  | CLEAR_BIT(0); | 
|  | STG_WRITE_REG(Thread0Enable, tmp); | 
|  |  | 
|  | /* Disable Primary Core Thread1 */ | 
|  | tmp = STG_READ_REG(Thread1Enable); | 
|  | CLEAR_BIT(0); | 
|  | STG_WRITE_REG(Thread1Enable, tmp); | 
|  |  | 
|  | STG_WRITE_REG(SoftwareReset, | 
|  | PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST); | 
|  | STG_WRITE_REG(SoftwareReset, | 
|  | PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST | | 
|  | PMX2_SOFTRESET_ROM_RST); | 
|  |  | 
|  | /* Need to play around to reset TA */ | 
|  | STG_WRITE_REG(TAConfiguration, 0); | 
|  | STG_WRITE_REG(SoftwareReset, | 
|  | PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST); | 
|  | STG_WRITE_REG(SoftwareReset, | 
|  | PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST | | 
|  | PMX2_SOFTRESET_ROM_RST); | 
|  |  | 
|  | pci_read_config_word(pDev, PCI_CONFIG_SUBSYS_ID, &sub); | 
|  |  | 
|  | ulChipSpeed = InitSDRAMRegisters(pSTGReg, (u32)sub, | 
|  | (u32)pDev->revision); | 
|  |  | 
|  | if (ulChipSpeed == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | ulCoreClock = ProgramClock(REF_FREQ, CORE_PLL_FREQ, &F, &R, &P); | 
|  |  | 
|  | core_pll |= ((P) | ((F - 2) << 2) | ((R - 2) << 11)); | 
|  |  | 
|  | /* Set Core PLL Control to Core PLL Mode  */ | 
|  |  | 
|  | /* Send bits 0:7 of the Core PLL Mode register */ | 
|  | tmp = ((CORE_PLL_MODE_REG_0_7 << 8) | (core_pll & 0x00FF)); | 
|  | pci_write_config_word(pDev, CorePllControl, tmp); | 
|  | /* Without some delay between the PCI config writes the clock does | 
|  | not reliably set when the code is compiled -O3 | 
|  | */ | 
|  | OS_DELAY(1000000); | 
|  |  | 
|  | tmp |= SET_BIT(14); | 
|  | pci_write_config_word(pDev, CorePllControl, tmp); | 
|  | OS_DELAY(1000000); | 
|  |  | 
|  | /* Send bits 8:15 of the Core PLL Mode register */ | 
|  | tmp = | 
|  | ((CORE_PLL_MODE_REG_8_15 << 8) | ((core_pll & 0xFF00) >> 8)); | 
|  | pci_write_config_word(pDev, CorePllControl, tmp); | 
|  | OS_DELAY(1000000); | 
|  |  | 
|  | tmp |= SET_BIT(14); | 
|  | pci_write_config_word(pDev, CorePllControl, tmp); | 
|  | OS_DELAY(1000000); | 
|  |  | 
|  | STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_ALL); | 
|  |  | 
|  | #if 0 | 
|  | /* Enable Primary Core Thread0 */ | 
|  | tmp = ((STG_READ_REG(Thread0Enable)) | SET_BIT(0)); | 
|  | STG_WRITE_REG(Thread0Enable, tmp); | 
|  |  | 
|  | /* Enable Primary Core Thread1 */ | 
|  | tmp = ((STG_READ_REG(Thread1Enable)) | SET_BIT(0)); | 
|  | STG_WRITE_REG(Thread1Enable, tmp); | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } |