| /* | 
 |  *  linux/arch/arm/mm/fault-armv.c | 
 |  * | 
 |  *  Copyright (C) 1995  Linus Torvalds | 
 |  *  Modifications for ARM processor (c) 1995-2002 Russell King | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  */ | 
 | #include <linux/module.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/init.h> | 
 | #include <linux/pagemap.h> | 
 |  | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/tlbflush.h> | 
 |  | 
 | static unsigned long shared_pte_mask = L_PTE_CACHEABLE; | 
 |  | 
 | /* | 
 |  * We take the easy way out of this problem - we make the | 
 |  * PTE uncacheable.  However, we leave the write buffer on. | 
 |  * | 
 |  * Note that the pte lock held when calling update_mmu_cache must also | 
 |  * guard the pte (somewhere else in the same mm) that we modify here. | 
 |  * Therefore those configurations which might call adjust_pte (those | 
 |  * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock. | 
 |  */ | 
 | static int adjust_pte(struct vm_area_struct *vma, unsigned long address) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte, entry; | 
 | 	int ret = 0; | 
 |  | 
 | 	pgd = pgd_offset(vma->vm_mm, address); | 
 | 	if (pgd_none(*pgd)) | 
 | 		goto no_pgd; | 
 | 	if (pgd_bad(*pgd)) | 
 | 		goto bad_pgd; | 
 |  | 
 | 	pmd = pmd_offset(pgd, address); | 
 | 	if (pmd_none(*pmd)) | 
 | 		goto no_pmd; | 
 | 	if (pmd_bad(*pmd)) | 
 | 		goto bad_pmd; | 
 |  | 
 | 	pte = pte_offset_map(pmd, address); | 
 | 	entry = *pte; | 
 |  | 
 | 	/* | 
 | 	 * If this page isn't present, or is already setup to | 
 | 	 * fault (ie, is old), we can safely ignore any issues. | 
 | 	 */ | 
 | 	if (pte_present(entry) && pte_val(entry) & shared_pte_mask) { | 
 | 		flush_cache_page(vma, address, pte_pfn(entry)); | 
 | 		pte_val(entry) &= ~shared_pte_mask; | 
 | 		set_pte_at(vma->vm_mm, address, pte, entry); | 
 | 		flush_tlb_page(vma, address); | 
 | 		ret = 1; | 
 | 	} | 
 | 	pte_unmap(pte); | 
 | 	return ret; | 
 |  | 
 | bad_pgd: | 
 | 	pgd_ERROR(*pgd); | 
 | 	pgd_clear(pgd); | 
 | no_pgd: | 
 | 	return 0; | 
 |  | 
 | bad_pmd: | 
 | 	pmd_ERROR(*pmd); | 
 | 	pmd_clear(pmd); | 
 | no_pmd: | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | make_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	struct vm_area_struct *mpnt; | 
 | 	struct prio_tree_iter iter; | 
 | 	unsigned long offset; | 
 | 	pgoff_t pgoff; | 
 | 	int aliases = 0; | 
 |  | 
 | 	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT); | 
 |  | 
 | 	/* | 
 | 	 * If we have any shared mappings that are in the same mm | 
 | 	 * space, then we need to handle them specially to maintain | 
 | 	 * cache coherency. | 
 | 	 */ | 
 | 	flush_dcache_mmap_lock(mapping); | 
 | 	vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) { | 
 | 		/* | 
 | 		 * If this VMA is not in our MM, we can ignore it. | 
 | 		 * Note that we intentionally mask out the VMA | 
 | 		 * that we are fixing up. | 
 | 		 */ | 
 | 		if (mpnt->vm_mm != mm || mpnt == vma) | 
 | 			continue; | 
 | 		if (!(mpnt->vm_flags & VM_MAYSHARE)) | 
 | 			continue; | 
 | 		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT; | 
 | 		aliases += adjust_pte(mpnt, mpnt->vm_start + offset); | 
 | 	} | 
 | 	flush_dcache_mmap_unlock(mapping); | 
 | 	if (aliases) | 
 | 		adjust_pte(vma, addr); | 
 | 	else | 
 | 		flush_cache_page(vma, addr, pfn); | 
 | } | 
 |  | 
 | void __flush_dcache_page(struct address_space *mapping, struct page *page); | 
 |  | 
 | /* | 
 |  * Take care of architecture specific things when placing a new PTE into | 
 |  * a page table, or changing an existing PTE.  Basically, there are two | 
 |  * things that we need to take care of: | 
 |  * | 
 |  *  1. If PG_dcache_dirty is set for the page, we need to ensure | 
 |  *     that any cache entries for the kernels virtual memory | 
 |  *     range are written back to the page. | 
 |  *  2. If we have multiple shared mappings of the same space in | 
 |  *     an object, we need to deal with the cache aliasing issues. | 
 |  * | 
 |  * Note that the pte lock will be held. | 
 |  */ | 
 | void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte) | 
 | { | 
 | 	unsigned long pfn = pte_pfn(pte); | 
 | 	struct address_space *mapping; | 
 | 	struct page *page; | 
 |  | 
 | 	if (!pfn_valid(pfn)) | 
 | 		return; | 
 |  | 
 | 	page = pfn_to_page(pfn); | 
 | 	mapping = page_mapping(page); | 
 | 	if (mapping) { | 
 | 		int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags); | 
 |  | 
 | 		if (dirty) | 
 | 			__flush_dcache_page(mapping, page); | 
 |  | 
 | 		if (cache_is_vivt()) | 
 | 			make_coherent(mapping, vma, addr, pfn); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Check whether the write buffer has physical address aliasing | 
 |  * issues.  If it has, we need to avoid them for the case where | 
 |  * we have several shared mappings of the same object in user | 
 |  * space. | 
 |  */ | 
 | static int __init check_writebuffer(unsigned long *p1, unsigned long *p2) | 
 | { | 
 | 	register unsigned long zero = 0, one = 1, val; | 
 |  | 
 | 	local_irq_disable(); | 
 | 	mb(); | 
 | 	*p1 = one; | 
 | 	mb(); | 
 | 	*p2 = zero; | 
 | 	mb(); | 
 | 	val = *p1; | 
 | 	mb(); | 
 | 	local_irq_enable(); | 
 | 	return val != zero; | 
 | } | 
 |  | 
 | void __init check_writebuffer_bugs(void) | 
 | { | 
 | 	struct page *page; | 
 | 	const char *reason; | 
 | 	unsigned long v = 1; | 
 |  | 
 | 	printk(KERN_INFO "CPU: Testing write buffer coherency: "); | 
 |  | 
 | 	page = alloc_page(GFP_KERNEL); | 
 | 	if (page) { | 
 | 		unsigned long *p1, *p2; | 
 | 		pgprot_t prot = __pgprot(L_PTE_PRESENT|L_PTE_YOUNG| | 
 | 					 L_PTE_DIRTY|L_PTE_WRITE| | 
 | 					 L_PTE_BUFFERABLE); | 
 |  | 
 | 		p1 = vmap(&page, 1, VM_IOREMAP, prot); | 
 | 		p2 = vmap(&page, 1, VM_IOREMAP, prot); | 
 |  | 
 | 		if (p1 && p2) { | 
 | 			v = check_writebuffer(p1, p2); | 
 | 			reason = "enabling work-around"; | 
 | 		} else { | 
 | 			reason = "unable to map memory\n"; | 
 | 		} | 
 |  | 
 | 		vunmap(p1); | 
 | 		vunmap(p2); | 
 | 		put_page(page); | 
 | 	} else { | 
 | 		reason = "unable to grab page\n"; | 
 | 	} | 
 |  | 
 | 	if (v) { | 
 | 		printk("failed, %s\n", reason); | 
 | 		shared_pte_mask |= L_PTE_BUFFERABLE; | 
 | 	} else { | 
 | 		printk("ok\n"); | 
 | 	} | 
 | } |