|  | /* | 
|  | *  linux/fs/exec.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * #!-checking implemented by tytso. | 
|  | */ | 
|  | /* | 
|  | * Demand-loading implemented 01.12.91 - no need to read anything but | 
|  | * the header into memory. The inode of the executable is put into | 
|  | * "current->executable", and page faults do the actual loading. Clean. | 
|  | * | 
|  | * Once more I can proudly say that linux stood up to being changed: it | 
|  | * was less than 2 hours work to get demand-loading completely implemented. | 
|  | * | 
|  | * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead, | 
|  | * current->executable is only used by the procfs.  This allows a dispatch | 
|  | * table to check for several different types  of binary formats.  We keep | 
|  | * trying until we recognize the file or we run out of supported binary | 
|  | * formats. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/a.out.h> | 
|  | #include <linux/stat.h> | 
|  | #include <linux/fcntl.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/key.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/pid_namespace.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/tsacct_kern.h> | 
|  | #include <linux/cn_proc.h> | 
|  | #include <linux/audit.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/tlb.h> | 
|  |  | 
|  | #ifdef CONFIG_KMOD | 
|  | #include <linux/kmod.h> | 
|  | #endif | 
|  |  | 
|  | int core_uses_pid; | 
|  | char core_pattern[CORENAME_MAX_SIZE] = "core"; | 
|  | int suid_dumpable = 0; | 
|  |  | 
|  | /* The maximal length of core_pattern is also specified in sysctl.c */ | 
|  |  | 
|  | static LIST_HEAD(formats); | 
|  | static DEFINE_RWLOCK(binfmt_lock); | 
|  |  | 
|  | int register_binfmt(struct linux_binfmt * fmt) | 
|  | { | 
|  | if (!fmt) | 
|  | return -EINVAL; | 
|  | write_lock(&binfmt_lock); | 
|  | list_add(&fmt->lh, &formats); | 
|  | write_unlock(&binfmt_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(register_binfmt); | 
|  |  | 
|  | void unregister_binfmt(struct linux_binfmt * fmt) | 
|  | { | 
|  | write_lock(&binfmt_lock); | 
|  | list_del(&fmt->lh); | 
|  | write_unlock(&binfmt_lock); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(unregister_binfmt); | 
|  |  | 
|  | static inline void put_binfmt(struct linux_binfmt * fmt) | 
|  | { | 
|  | module_put(fmt->module); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that a shared library must be both readable and executable due to | 
|  | * security reasons. | 
|  | * | 
|  | * Also note that we take the address to load from from the file itself. | 
|  | */ | 
|  | asmlinkage long sys_uselib(const char __user * library) | 
|  | { | 
|  | struct file * file; | 
|  | struct nameidata nd; | 
|  | int error; | 
|  |  | 
|  | error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | error = -EINVAL; | 
|  | if (!S_ISREG(nd.dentry->d_inode->i_mode)) | 
|  | goto exit; | 
|  |  | 
|  | error = vfs_permission(&nd, MAY_READ | MAY_EXEC); | 
|  | if (error) | 
|  | goto exit; | 
|  |  | 
|  | file = nameidata_to_filp(&nd, O_RDONLY); | 
|  | error = PTR_ERR(file); | 
|  | if (IS_ERR(file)) | 
|  | goto out; | 
|  |  | 
|  | error = -ENOEXEC; | 
|  | if(file->f_op) { | 
|  | struct linux_binfmt * fmt; | 
|  |  | 
|  | read_lock(&binfmt_lock); | 
|  | list_for_each_entry(fmt, &formats, lh) { | 
|  | if (!fmt->load_shlib) | 
|  | continue; | 
|  | if (!try_module_get(fmt->module)) | 
|  | continue; | 
|  | read_unlock(&binfmt_lock); | 
|  | error = fmt->load_shlib(file); | 
|  | read_lock(&binfmt_lock); | 
|  | put_binfmt(fmt); | 
|  | if (error != -ENOEXEC) | 
|  | break; | 
|  | } | 
|  | read_unlock(&binfmt_lock); | 
|  | } | 
|  | fput(file); | 
|  | out: | 
|  | return error; | 
|  | exit: | 
|  | release_open_intent(&nd); | 
|  | path_release(&nd); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  |  | 
|  | static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
|  | int write) | 
|  | { | 
|  | struct page *page; | 
|  | int ret; | 
|  |  | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | if (write) { | 
|  | ret = expand_stack_downwards(bprm->vma, pos); | 
|  | if (ret < 0) | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  | ret = get_user_pages(current, bprm->mm, pos, | 
|  | 1, write, 1, &page, NULL); | 
|  | if (ret <= 0) | 
|  | return NULL; | 
|  |  | 
|  | if (write) { | 
|  | struct rlimit *rlim = current->signal->rlim; | 
|  | unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; | 
|  |  | 
|  | /* | 
|  | * Limit to 1/4-th the stack size for the argv+env strings. | 
|  | * This ensures that: | 
|  | *  - the remaining binfmt code will not run out of stack space, | 
|  | *  - the program will have a reasonable amount of stack left | 
|  | *    to work from. | 
|  | */ | 
|  | if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { | 
|  | put_page(page); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void put_arg_page(struct page *page) | 
|  | { | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | static void free_arg_page(struct linux_binprm *bprm, int i) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void free_arg_pages(struct linux_binprm *bprm) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
|  | struct page *page) | 
|  | { | 
|  | flush_cache_page(bprm->vma, pos, page_to_pfn(page)); | 
|  | } | 
|  |  | 
|  | static int __bprm_mm_init(struct linux_binprm *bprm) | 
|  | { | 
|  | int err = -ENOMEM; | 
|  | struct vm_area_struct *vma = NULL; | 
|  | struct mm_struct *mm = bprm->mm; | 
|  |  | 
|  | bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (!vma) | 
|  | goto err; | 
|  |  | 
|  | down_write(&mm->mmap_sem); | 
|  | vma->vm_mm = mm; | 
|  |  | 
|  | /* | 
|  | * Place the stack at the largest stack address the architecture | 
|  | * supports. Later, we'll move this to an appropriate place. We don't | 
|  | * use STACK_TOP because that can depend on attributes which aren't | 
|  | * configured yet. | 
|  | */ | 
|  | vma->vm_end = STACK_TOP_MAX; | 
|  | vma->vm_start = vma->vm_end - PAGE_SIZE; | 
|  |  | 
|  | vma->vm_flags = VM_STACK_FLAGS; | 
|  | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); | 
|  | err = insert_vm_struct(mm, vma); | 
|  | if (err) { | 
|  | up_write(&mm->mmap_sem); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | mm->stack_vm = mm->total_vm = 1; | 
|  | up_write(&mm->mmap_sem); | 
|  |  | 
|  | bprm->p = vma->vm_end - sizeof(void *); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | if (vma) { | 
|  | bprm->vma = NULL; | 
|  | kmem_cache_free(vm_area_cachep, vma); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static bool valid_arg_len(struct linux_binprm *bprm, long len) | 
|  | { | 
|  | return len <= MAX_ARG_STRLEN; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
|  | int write) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = bprm->page[pos / PAGE_SIZE]; | 
|  | if (!page && write) { | 
|  | page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); | 
|  | if (!page) | 
|  | return NULL; | 
|  | bprm->page[pos / PAGE_SIZE] = page; | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void put_arg_page(struct page *page) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void free_arg_page(struct linux_binprm *bprm, int i) | 
|  | { | 
|  | if (bprm->page[i]) { | 
|  | __free_page(bprm->page[i]); | 
|  | bprm->page[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void free_arg_pages(struct linux_binprm *bprm) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_ARG_PAGES; i++) | 
|  | free_arg_page(bprm, i); | 
|  | } | 
|  |  | 
|  | static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
|  | struct page *page) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int __bprm_mm_init(struct linux_binprm *bprm) | 
|  | { | 
|  | bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool valid_arg_len(struct linux_binprm *bprm, long len) | 
|  | { | 
|  | return len <= bprm->p; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MMU */ | 
|  |  | 
|  | /* | 
|  | * Create a new mm_struct and populate it with a temporary stack | 
|  | * vm_area_struct.  We don't have enough context at this point to set the stack | 
|  | * flags, permissions, and offset, so we use temporary values.  We'll update | 
|  | * them later in setup_arg_pages(). | 
|  | */ | 
|  | int bprm_mm_init(struct linux_binprm *bprm) | 
|  | { | 
|  | int err; | 
|  | struct mm_struct *mm = NULL; | 
|  |  | 
|  | bprm->mm = mm = mm_alloc(); | 
|  | err = -ENOMEM; | 
|  | if (!mm) | 
|  | goto err; | 
|  |  | 
|  | err = init_new_context(current, mm); | 
|  | if (err) | 
|  | goto err; | 
|  |  | 
|  | err = __bprm_mm_init(bprm); | 
|  | if (err) | 
|  | goto err; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | if (mm) { | 
|  | bprm->mm = NULL; | 
|  | mmdrop(mm); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * count() counts the number of strings in array ARGV. | 
|  | */ | 
|  | static int count(char __user * __user * argv, int max) | 
|  | { | 
|  | int i = 0; | 
|  |  | 
|  | if (argv != NULL) { | 
|  | for (;;) { | 
|  | char __user * p; | 
|  |  | 
|  | if (get_user(p, argv)) | 
|  | return -EFAULT; | 
|  | if (!p) | 
|  | break; | 
|  | argv++; | 
|  | if(++i > max) | 
|  | return -E2BIG; | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 'copy_strings()' copies argument/environment strings from the old | 
|  | * processes's memory to the new process's stack.  The call to get_user_pages() | 
|  | * ensures the destination page is created and not swapped out. | 
|  | */ | 
|  | static int copy_strings(int argc, char __user * __user * argv, | 
|  | struct linux_binprm *bprm) | 
|  | { | 
|  | struct page *kmapped_page = NULL; | 
|  | char *kaddr = NULL; | 
|  | unsigned long kpos = 0; | 
|  | int ret; | 
|  |  | 
|  | while (argc-- > 0) { | 
|  | char __user *str; | 
|  | int len; | 
|  | unsigned long pos; | 
|  |  | 
|  | if (get_user(str, argv+argc) || | 
|  | !(len = strnlen_user(str, MAX_ARG_STRLEN))) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!valid_arg_len(bprm, len)) { | 
|  | ret = -E2BIG; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* We're going to work our way backwords. */ | 
|  | pos = bprm->p; | 
|  | str += len; | 
|  | bprm->p -= len; | 
|  |  | 
|  | while (len > 0) { | 
|  | int offset, bytes_to_copy; | 
|  |  | 
|  | offset = pos % PAGE_SIZE; | 
|  | if (offset == 0) | 
|  | offset = PAGE_SIZE; | 
|  |  | 
|  | bytes_to_copy = offset; | 
|  | if (bytes_to_copy > len) | 
|  | bytes_to_copy = len; | 
|  |  | 
|  | offset -= bytes_to_copy; | 
|  | pos -= bytes_to_copy; | 
|  | str -= bytes_to_copy; | 
|  | len -= bytes_to_copy; | 
|  |  | 
|  | if (!kmapped_page || kpos != (pos & PAGE_MASK)) { | 
|  | struct page *page; | 
|  |  | 
|  | page = get_arg_page(bprm, pos, 1); | 
|  | if (!page) { | 
|  | ret = -E2BIG; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (kmapped_page) { | 
|  | flush_kernel_dcache_page(kmapped_page); | 
|  | kunmap(kmapped_page); | 
|  | put_arg_page(kmapped_page); | 
|  | } | 
|  | kmapped_page = page; | 
|  | kaddr = kmap(kmapped_page); | 
|  | kpos = pos & PAGE_MASK; | 
|  | flush_arg_page(bprm, kpos, kmapped_page); | 
|  | } | 
|  | if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | if (kmapped_page) { | 
|  | flush_kernel_dcache_page(kmapped_page); | 
|  | kunmap(kmapped_page); | 
|  | put_arg_page(kmapped_page); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Like copy_strings, but get argv and its values from kernel memory. | 
|  | */ | 
|  | int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) | 
|  | { | 
|  | int r; | 
|  | mm_segment_t oldfs = get_fs(); | 
|  | set_fs(KERNEL_DS); | 
|  | r = copy_strings(argc, (char __user * __user *)argv, bprm); | 
|  | set_fs(oldfs); | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL(copy_strings_kernel); | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  |  | 
|  | /* | 
|  | * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once | 
|  | * the binfmt code determines where the new stack should reside, we shift it to | 
|  | * its final location.  The process proceeds as follows: | 
|  | * | 
|  | * 1) Use shift to calculate the new vma endpoints. | 
|  | * 2) Extend vma to cover both the old and new ranges.  This ensures the | 
|  | *    arguments passed to subsequent functions are consistent. | 
|  | * 3) Move vma's page tables to the new range. | 
|  | * 4) Free up any cleared pgd range. | 
|  | * 5) Shrink the vma to cover only the new range. | 
|  | */ | 
|  | static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long old_start = vma->vm_start; | 
|  | unsigned long old_end = vma->vm_end; | 
|  | unsigned long length = old_end - old_start; | 
|  | unsigned long new_start = old_start - shift; | 
|  | unsigned long new_end = old_end - shift; | 
|  | struct mmu_gather *tlb; | 
|  |  | 
|  | BUG_ON(new_start > new_end); | 
|  |  | 
|  | /* | 
|  | * ensure there are no vmas between where we want to go | 
|  | * and where we are | 
|  | */ | 
|  | if (vma != find_vma(mm, new_start)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * cover the whole range: [new_start, old_end) | 
|  | */ | 
|  | vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); | 
|  |  | 
|  | /* | 
|  | * move the page tables downwards, on failure we rely on | 
|  | * process cleanup to remove whatever mess we made. | 
|  | */ | 
|  | if (length != move_page_tables(vma, old_start, | 
|  | vma, new_start, length)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | lru_add_drain(); | 
|  | tlb = tlb_gather_mmu(mm, 0); | 
|  | if (new_end > old_start) { | 
|  | /* | 
|  | * when the old and new regions overlap clear from new_end. | 
|  | */ | 
|  | free_pgd_range(&tlb, new_end, old_end, new_end, | 
|  | vma->vm_next ? vma->vm_next->vm_start : 0); | 
|  | } else { | 
|  | /* | 
|  | * otherwise, clean from old_start; this is done to not touch | 
|  | * the address space in [new_end, old_start) some architectures | 
|  | * have constraints on va-space that make this illegal (IA64) - | 
|  | * for the others its just a little faster. | 
|  | */ | 
|  | free_pgd_range(&tlb, old_start, old_end, new_end, | 
|  | vma->vm_next ? vma->vm_next->vm_start : 0); | 
|  | } | 
|  | tlb_finish_mmu(tlb, new_end, old_end); | 
|  |  | 
|  | /* | 
|  | * shrink the vma to just the new range. | 
|  | */ | 
|  | vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define EXTRA_STACK_VM_PAGES	20	/* random */ | 
|  |  | 
|  | /* | 
|  | * Finalizes the stack vm_area_struct. The flags and permissions are updated, | 
|  | * the stack is optionally relocated, and some extra space is added. | 
|  | */ | 
|  | int setup_arg_pages(struct linux_binprm *bprm, | 
|  | unsigned long stack_top, | 
|  | int executable_stack) | 
|  | { | 
|  | unsigned long ret; | 
|  | unsigned long stack_shift; | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma = bprm->vma; | 
|  | struct vm_area_struct *prev = NULL; | 
|  | unsigned long vm_flags; | 
|  | unsigned long stack_base; | 
|  |  | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | /* Limit stack size to 1GB */ | 
|  | stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; | 
|  | if (stack_base > (1 << 30)) | 
|  | stack_base = 1 << 30; | 
|  |  | 
|  | /* Make sure we didn't let the argument array grow too large. */ | 
|  | if (vma->vm_end - vma->vm_start > stack_base) | 
|  | return -ENOMEM; | 
|  |  | 
|  | stack_base = PAGE_ALIGN(stack_top - stack_base); | 
|  |  | 
|  | stack_shift = vma->vm_start - stack_base; | 
|  | mm->arg_start = bprm->p - stack_shift; | 
|  | bprm->p = vma->vm_end - stack_shift; | 
|  | #else | 
|  | stack_top = arch_align_stack(stack_top); | 
|  | stack_top = PAGE_ALIGN(stack_top); | 
|  | stack_shift = vma->vm_end - stack_top; | 
|  |  | 
|  | bprm->p -= stack_shift; | 
|  | mm->arg_start = bprm->p; | 
|  | #endif | 
|  |  | 
|  | if (bprm->loader) | 
|  | bprm->loader -= stack_shift; | 
|  | bprm->exec -= stack_shift; | 
|  |  | 
|  | down_write(&mm->mmap_sem); | 
|  | vm_flags = vma->vm_flags; | 
|  |  | 
|  | /* | 
|  | * Adjust stack execute permissions; explicitly enable for | 
|  | * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone | 
|  | * (arch default) otherwise. | 
|  | */ | 
|  | if (unlikely(executable_stack == EXSTACK_ENABLE_X)) | 
|  | vm_flags |= VM_EXEC; | 
|  | else if (executable_stack == EXSTACK_DISABLE_X) | 
|  | vm_flags &= ~VM_EXEC; | 
|  | vm_flags |= mm->def_flags; | 
|  |  | 
|  | ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, | 
|  | vm_flags); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | BUG_ON(prev != vma); | 
|  |  | 
|  | /* Move stack pages down in memory. */ | 
|  | if (stack_shift) { | 
|  | ret = shift_arg_pages(vma, stack_shift); | 
|  | if (ret) { | 
|  | up_write(&mm->mmap_sem); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; | 
|  | #else | 
|  | stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; | 
|  | #endif | 
|  | ret = expand_stack(vma, stack_base); | 
|  | if (ret) | 
|  | ret = -EFAULT; | 
|  |  | 
|  | out_unlock: | 
|  | up_write(&mm->mmap_sem); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(setup_arg_pages); | 
|  |  | 
|  | #endif /* CONFIG_MMU */ | 
|  |  | 
|  | struct file *open_exec(const char *name) | 
|  | { | 
|  | struct nameidata nd; | 
|  | int err; | 
|  | struct file *file; | 
|  |  | 
|  | err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); | 
|  | file = ERR_PTR(err); | 
|  |  | 
|  | if (!err) { | 
|  | struct inode *inode = nd.dentry->d_inode; | 
|  | file = ERR_PTR(-EACCES); | 
|  | if (S_ISREG(inode->i_mode)) { | 
|  | int err = vfs_permission(&nd, MAY_EXEC); | 
|  | file = ERR_PTR(err); | 
|  | if (!err) { | 
|  | file = nameidata_to_filp(&nd, O_RDONLY); | 
|  | if (!IS_ERR(file)) { | 
|  | err = deny_write_access(file); | 
|  | if (err) { | 
|  | fput(file); | 
|  | file = ERR_PTR(err); | 
|  | } | 
|  | } | 
|  | out: | 
|  | return file; | 
|  | } | 
|  | } | 
|  | release_open_intent(&nd); | 
|  | path_release(&nd); | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(open_exec); | 
|  |  | 
|  | int kernel_read(struct file *file, unsigned long offset, | 
|  | char *addr, unsigned long count) | 
|  | { | 
|  | mm_segment_t old_fs; | 
|  | loff_t pos = offset; | 
|  | int result; | 
|  |  | 
|  | old_fs = get_fs(); | 
|  | set_fs(get_ds()); | 
|  | /* The cast to a user pointer is valid due to the set_fs() */ | 
|  | result = vfs_read(file, (void __user *)addr, count, &pos); | 
|  | set_fs(old_fs); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(kernel_read); | 
|  |  | 
|  | static int exec_mmap(struct mm_struct *mm) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | struct mm_struct * old_mm, *active_mm; | 
|  |  | 
|  | /* Notify parent that we're no longer interested in the old VM */ | 
|  | tsk = current; | 
|  | old_mm = current->mm; | 
|  | mm_release(tsk, old_mm); | 
|  |  | 
|  | if (old_mm) { | 
|  | /* | 
|  | * Make sure that if there is a core dump in progress | 
|  | * for the old mm, we get out and die instead of going | 
|  | * through with the exec.  We must hold mmap_sem around | 
|  | * checking core_waiters and changing tsk->mm.  The | 
|  | * core-inducing thread will increment core_waiters for | 
|  | * each thread whose ->mm == old_mm. | 
|  | */ | 
|  | down_read(&old_mm->mmap_sem); | 
|  | if (unlikely(old_mm->core_waiters)) { | 
|  | up_read(&old_mm->mmap_sem); | 
|  | return -EINTR; | 
|  | } | 
|  | } | 
|  | task_lock(tsk); | 
|  | active_mm = tsk->active_mm; | 
|  | tsk->mm = mm; | 
|  | tsk->active_mm = mm; | 
|  | activate_mm(active_mm, mm); | 
|  | task_unlock(tsk); | 
|  | arch_pick_mmap_layout(mm); | 
|  | if (old_mm) { | 
|  | up_read(&old_mm->mmap_sem); | 
|  | BUG_ON(active_mm != old_mm); | 
|  | mmput(old_mm); | 
|  | return 0; | 
|  | } | 
|  | mmdrop(active_mm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function makes sure the current process has its own signal table, | 
|  | * so that flush_signal_handlers can later reset the handlers without | 
|  | * disturbing other processes.  (Other processes might share the signal | 
|  | * table via the CLONE_SIGHAND option to clone().) | 
|  | */ | 
|  | static int de_thread(struct task_struct *tsk) | 
|  | { | 
|  | struct signal_struct *sig = tsk->signal; | 
|  | struct sighand_struct *oldsighand = tsk->sighand; | 
|  | spinlock_t *lock = &oldsighand->siglock; | 
|  | struct task_struct *leader = NULL; | 
|  | int count; | 
|  |  | 
|  | if (thread_group_empty(tsk)) | 
|  | goto no_thread_group; | 
|  |  | 
|  | /* | 
|  | * Kill all other threads in the thread group. | 
|  | * We must hold tasklist_lock to call zap_other_threads. | 
|  | */ | 
|  | read_lock(&tasklist_lock); | 
|  | spin_lock_irq(lock); | 
|  | if (sig->flags & SIGNAL_GROUP_EXIT) { | 
|  | /* | 
|  | * Another group action in progress, just | 
|  | * return so that the signal is processed. | 
|  | */ | 
|  | spin_unlock_irq(lock); | 
|  | read_unlock(&tasklist_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * child_reaper ignores SIGKILL, change it now. | 
|  | * Reparenting needs write_lock on tasklist_lock, | 
|  | * so it is safe to do it under read_lock. | 
|  | */ | 
|  | if (unlikely(tsk->group_leader == task_child_reaper(tsk))) | 
|  | task_active_pid_ns(tsk)->child_reaper = tsk; | 
|  |  | 
|  | zap_other_threads(tsk); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | /* | 
|  | * Account for the thread group leader hanging around: | 
|  | */ | 
|  | count = 1; | 
|  | if (!thread_group_leader(tsk)) { | 
|  | count = 2; | 
|  | /* | 
|  | * The SIGALRM timer survives the exec, but needs to point | 
|  | * at us as the new group leader now.  We have a race with | 
|  | * a timer firing now getting the old leader, so we need to | 
|  | * synchronize with any firing (by calling del_timer_sync) | 
|  | * before we can safely let the old group leader die. | 
|  | */ | 
|  | sig->tsk = tsk; | 
|  | spin_unlock_irq(lock); | 
|  | if (hrtimer_cancel(&sig->real_timer)) | 
|  | hrtimer_restart(&sig->real_timer); | 
|  | spin_lock_irq(lock); | 
|  | } | 
|  |  | 
|  | sig->notify_count = count; | 
|  | sig->group_exit_task = tsk; | 
|  | while (atomic_read(&sig->count) > count) { | 
|  | __set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | spin_unlock_irq(lock); | 
|  | schedule(); | 
|  | spin_lock_irq(lock); | 
|  | } | 
|  | spin_unlock_irq(lock); | 
|  |  | 
|  | /* | 
|  | * At this point all other threads have exited, all we have to | 
|  | * do is to wait for the thread group leader to become inactive, | 
|  | * and to assume its PID: | 
|  | */ | 
|  | if (!thread_group_leader(tsk)) { | 
|  | leader = tsk->group_leader; | 
|  |  | 
|  | sig->notify_count = -1; | 
|  | for (;;) { | 
|  | write_lock_irq(&tasklist_lock); | 
|  | if (likely(leader->exit_state)) | 
|  | break; | 
|  | __set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The only record we have of the real-time age of a | 
|  | * process, regardless of execs it's done, is start_time. | 
|  | * All the past CPU time is accumulated in signal_struct | 
|  | * from sister threads now dead.  But in this non-leader | 
|  | * exec, nothing survives from the original leader thread, | 
|  | * whose birth marks the true age of this process now. | 
|  | * When we take on its identity by switching to its PID, we | 
|  | * also take its birthdate (always earlier than our own). | 
|  | */ | 
|  | tsk->start_time = leader->start_time; | 
|  |  | 
|  | BUG_ON(!same_thread_group(leader, tsk)); | 
|  | BUG_ON(has_group_leader_pid(tsk)); | 
|  | /* | 
|  | * An exec() starts a new thread group with the | 
|  | * TGID of the previous thread group. Rehash the | 
|  | * two threads with a switched PID, and release | 
|  | * the former thread group leader: | 
|  | */ | 
|  |  | 
|  | /* Become a process group leader with the old leader's pid. | 
|  | * The old leader becomes a thread of the this thread group. | 
|  | * Note: The old leader also uses this pid until release_task | 
|  | *       is called.  Odd but simple and correct. | 
|  | */ | 
|  | detach_pid(tsk, PIDTYPE_PID); | 
|  | tsk->pid = leader->pid; | 
|  | attach_pid(tsk, PIDTYPE_PID,  task_pid(leader)); | 
|  | transfer_pid(leader, tsk, PIDTYPE_PGID); | 
|  | transfer_pid(leader, tsk, PIDTYPE_SID); | 
|  | list_replace_rcu(&leader->tasks, &tsk->tasks); | 
|  |  | 
|  | tsk->group_leader = tsk; | 
|  | leader->group_leader = tsk; | 
|  |  | 
|  | tsk->exit_signal = SIGCHLD; | 
|  |  | 
|  | BUG_ON(leader->exit_state != EXIT_ZOMBIE); | 
|  | leader->exit_state = EXIT_DEAD; | 
|  |  | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | sig->group_exit_task = NULL; | 
|  | sig->notify_count = 0; | 
|  | /* | 
|  | * There may be one thread left which is just exiting, | 
|  | * but it's safe to stop telling the group to kill themselves. | 
|  | */ | 
|  | sig->flags = 0; | 
|  |  | 
|  | no_thread_group: | 
|  | exit_itimers(sig); | 
|  | if (leader) | 
|  | release_task(leader); | 
|  |  | 
|  | if (atomic_read(&oldsighand->count) != 1) { | 
|  | struct sighand_struct *newsighand; | 
|  | /* | 
|  | * This ->sighand is shared with the CLONE_SIGHAND | 
|  | * but not CLONE_THREAD task, switch to the new one. | 
|  | */ | 
|  | newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); | 
|  | if (!newsighand) | 
|  | return -ENOMEM; | 
|  |  | 
|  | atomic_set(&newsighand->count, 1); | 
|  | memcpy(newsighand->action, oldsighand->action, | 
|  | sizeof(newsighand->action)); | 
|  |  | 
|  | write_lock_irq(&tasklist_lock); | 
|  | spin_lock(&oldsighand->siglock); | 
|  | rcu_assign_pointer(tsk->sighand, newsighand); | 
|  | spin_unlock(&oldsighand->siglock); | 
|  | write_unlock_irq(&tasklist_lock); | 
|  |  | 
|  | __cleanup_sighand(oldsighand); | 
|  | } | 
|  |  | 
|  | BUG_ON(!thread_group_leader(tsk)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These functions flushes out all traces of the currently running executable | 
|  | * so that a new one can be started | 
|  | */ | 
|  | static void flush_old_files(struct files_struct * files) | 
|  | { | 
|  | long j = -1; | 
|  | struct fdtable *fdt; | 
|  |  | 
|  | spin_lock(&files->file_lock); | 
|  | for (;;) { | 
|  | unsigned long set, i; | 
|  |  | 
|  | j++; | 
|  | i = j * __NFDBITS; | 
|  | fdt = files_fdtable(files); | 
|  | if (i >= fdt->max_fds) | 
|  | break; | 
|  | set = fdt->close_on_exec->fds_bits[j]; | 
|  | if (!set) | 
|  | continue; | 
|  | fdt->close_on_exec->fds_bits[j] = 0; | 
|  | spin_unlock(&files->file_lock); | 
|  | for ( ; set ; i++,set >>= 1) { | 
|  | if (set & 1) { | 
|  | sys_close(i); | 
|  | } | 
|  | } | 
|  | spin_lock(&files->file_lock); | 
|  |  | 
|  | } | 
|  | spin_unlock(&files->file_lock); | 
|  | } | 
|  |  | 
|  | void get_task_comm(char *buf, struct task_struct *tsk) | 
|  | { | 
|  | /* buf must be at least sizeof(tsk->comm) in size */ | 
|  | task_lock(tsk); | 
|  | strncpy(buf, tsk->comm, sizeof(tsk->comm)); | 
|  | task_unlock(tsk); | 
|  | } | 
|  |  | 
|  | void set_task_comm(struct task_struct *tsk, char *buf) | 
|  | { | 
|  | task_lock(tsk); | 
|  | strlcpy(tsk->comm, buf, sizeof(tsk->comm)); | 
|  | task_unlock(tsk); | 
|  | } | 
|  |  | 
|  | int flush_old_exec(struct linux_binprm * bprm) | 
|  | { | 
|  | char * name; | 
|  | int i, ch, retval; | 
|  | struct files_struct *files; | 
|  | char tcomm[sizeof(current->comm)]; | 
|  |  | 
|  | /* | 
|  | * Make sure we have a private signal table and that | 
|  | * we are unassociated from the previous thread group. | 
|  | */ | 
|  | retval = de_thread(current); | 
|  | if (retval) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Make sure we have private file handles. Ask the | 
|  | * fork helper to do the work for us and the exit | 
|  | * helper to do the cleanup of the old one. | 
|  | */ | 
|  | files = current->files;		/* refcounted so safe to hold */ | 
|  | retval = unshare_files(); | 
|  | if (retval) | 
|  | goto out; | 
|  | /* | 
|  | * Release all of the old mmap stuff | 
|  | */ | 
|  | retval = exec_mmap(bprm->mm); | 
|  | if (retval) | 
|  | goto mmap_failed; | 
|  |  | 
|  | bprm->mm = NULL;		/* We're using it now */ | 
|  |  | 
|  | /* This is the point of no return */ | 
|  | put_files_struct(files); | 
|  |  | 
|  | current->sas_ss_sp = current->sas_ss_size = 0; | 
|  |  | 
|  | if (current->euid == current->uid && current->egid == current->gid) | 
|  | set_dumpable(current->mm, 1); | 
|  | else | 
|  | set_dumpable(current->mm, suid_dumpable); | 
|  |  | 
|  | name = bprm->filename; | 
|  |  | 
|  | /* Copies the binary name from after last slash */ | 
|  | for (i=0; (ch = *(name++)) != '\0';) { | 
|  | if (ch == '/') | 
|  | i = 0; /* overwrite what we wrote */ | 
|  | else | 
|  | if (i < (sizeof(tcomm) - 1)) | 
|  | tcomm[i++] = ch; | 
|  | } | 
|  | tcomm[i] = '\0'; | 
|  | set_task_comm(current, tcomm); | 
|  |  | 
|  | current->flags &= ~PF_RANDOMIZE; | 
|  | flush_thread(); | 
|  |  | 
|  | /* Set the new mm task size. We have to do that late because it may | 
|  | * depend on TIF_32BIT which is only updated in flush_thread() on | 
|  | * some architectures like powerpc | 
|  | */ | 
|  | current->mm->task_size = TASK_SIZE; | 
|  |  | 
|  | if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { | 
|  | suid_keys(current); | 
|  | set_dumpable(current->mm, suid_dumpable); | 
|  | current->pdeath_signal = 0; | 
|  | } else if (file_permission(bprm->file, MAY_READ) || | 
|  | (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { | 
|  | suid_keys(current); | 
|  | set_dumpable(current->mm, suid_dumpable); | 
|  | } | 
|  |  | 
|  | /* An exec changes our domain. We are no longer part of the thread | 
|  | group */ | 
|  |  | 
|  | current->self_exec_id++; | 
|  |  | 
|  | flush_signal_handlers(current, 0); | 
|  | flush_old_files(current->files); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | mmap_failed: | 
|  | reset_files_struct(current, files); | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(flush_old_exec); | 
|  |  | 
|  | /* | 
|  | * Fill the binprm structure from the inode. | 
|  | * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes | 
|  | */ | 
|  | int prepare_binprm(struct linux_binprm *bprm) | 
|  | { | 
|  | int mode; | 
|  | struct inode * inode = bprm->file->f_path.dentry->d_inode; | 
|  | int retval; | 
|  |  | 
|  | mode = inode->i_mode; | 
|  | if (bprm->file->f_op == NULL) | 
|  | return -EACCES; | 
|  |  | 
|  | bprm->e_uid = current->euid; | 
|  | bprm->e_gid = current->egid; | 
|  |  | 
|  | if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { | 
|  | /* Set-uid? */ | 
|  | if (mode & S_ISUID) { | 
|  | current->personality &= ~PER_CLEAR_ON_SETID; | 
|  | bprm->e_uid = inode->i_uid; | 
|  | } | 
|  |  | 
|  | /* Set-gid? */ | 
|  | /* | 
|  | * If setgid is set but no group execute bit then this | 
|  | * is a candidate for mandatory locking, not a setgid | 
|  | * executable. | 
|  | */ | 
|  | if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { | 
|  | current->personality &= ~PER_CLEAR_ON_SETID; | 
|  | bprm->e_gid = inode->i_gid; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* fill in binprm security blob */ | 
|  | retval = security_bprm_set(bprm); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | memset(bprm->buf,0,BINPRM_BUF_SIZE); | 
|  | return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(prepare_binprm); | 
|  |  | 
|  | static int unsafe_exec(struct task_struct *p) | 
|  | { | 
|  | int unsafe = 0; | 
|  | if (p->ptrace & PT_PTRACED) { | 
|  | if (p->ptrace & PT_PTRACE_CAP) | 
|  | unsafe |= LSM_UNSAFE_PTRACE_CAP; | 
|  | else | 
|  | unsafe |= LSM_UNSAFE_PTRACE; | 
|  | } | 
|  | if (atomic_read(&p->fs->count) > 1 || | 
|  | atomic_read(&p->files->count) > 1 || | 
|  | atomic_read(&p->sighand->count) > 1) | 
|  | unsafe |= LSM_UNSAFE_SHARE; | 
|  |  | 
|  | return unsafe; | 
|  | } | 
|  |  | 
|  | void compute_creds(struct linux_binprm *bprm) | 
|  | { | 
|  | int unsafe; | 
|  |  | 
|  | if (bprm->e_uid != current->uid) { | 
|  | suid_keys(current); | 
|  | current->pdeath_signal = 0; | 
|  | } | 
|  | exec_keys(current); | 
|  |  | 
|  | task_lock(current); | 
|  | unsafe = unsafe_exec(current); | 
|  | security_bprm_apply_creds(bprm, unsafe); | 
|  | task_unlock(current); | 
|  | security_bprm_post_apply_creds(bprm); | 
|  | } | 
|  | EXPORT_SYMBOL(compute_creds); | 
|  |  | 
|  | /* | 
|  | * Arguments are '\0' separated strings found at the location bprm->p | 
|  | * points to; chop off the first by relocating brpm->p to right after | 
|  | * the first '\0' encountered. | 
|  | */ | 
|  | int remove_arg_zero(struct linux_binprm *bprm) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned long offset; | 
|  | char *kaddr; | 
|  | struct page *page; | 
|  |  | 
|  | if (!bprm->argc) | 
|  | return 0; | 
|  |  | 
|  | do { | 
|  | offset = bprm->p & ~PAGE_MASK; | 
|  | page = get_arg_page(bprm, bprm->p, 0); | 
|  | if (!page) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  |  | 
|  | for (; offset < PAGE_SIZE && kaddr[offset]; | 
|  | offset++, bprm->p++) | 
|  | ; | 
|  |  | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | put_arg_page(page); | 
|  |  | 
|  | if (offset == PAGE_SIZE) | 
|  | free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); | 
|  | } while (offset == PAGE_SIZE); | 
|  |  | 
|  | bprm->p++; | 
|  | bprm->argc--; | 
|  | ret = 0; | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(remove_arg_zero); | 
|  |  | 
|  | /* | 
|  | * cycle the list of binary formats handler, until one recognizes the image | 
|  | */ | 
|  | int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) | 
|  | { | 
|  | int try,retval; | 
|  | struct linux_binfmt *fmt; | 
|  | #ifdef __alpha__ | 
|  | /* handle /sbin/loader.. */ | 
|  | { | 
|  | struct exec * eh = (struct exec *) bprm->buf; | 
|  |  | 
|  | if (!bprm->loader && eh->fh.f_magic == 0x183 && | 
|  | (eh->fh.f_flags & 0x3000) == 0x3000) | 
|  | { | 
|  | struct file * file; | 
|  | unsigned long loader; | 
|  |  | 
|  | allow_write_access(bprm->file); | 
|  | fput(bprm->file); | 
|  | bprm->file = NULL; | 
|  |  | 
|  | loader = bprm->vma->vm_end - sizeof(void *); | 
|  |  | 
|  | file = open_exec("/sbin/loader"); | 
|  | retval = PTR_ERR(file); | 
|  | if (IS_ERR(file)) | 
|  | return retval; | 
|  |  | 
|  | /* Remember if the application is TASO.  */ | 
|  | bprm->sh_bang = eh->ah.entry < 0x100000000UL; | 
|  |  | 
|  | bprm->file = file; | 
|  | bprm->loader = loader; | 
|  | retval = prepare_binprm(bprm); | 
|  | if (retval<0) | 
|  | return retval; | 
|  | /* should call search_binary_handler recursively here, | 
|  | but it does not matter */ | 
|  | } | 
|  | } | 
|  | #endif | 
|  | retval = security_bprm_check(bprm); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* kernel module loader fixup */ | 
|  | /* so we don't try to load run modprobe in kernel space. */ | 
|  | set_fs(USER_DS); | 
|  |  | 
|  | retval = audit_bprm(bprm); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | retval = -ENOENT; | 
|  | for (try=0; try<2; try++) { | 
|  | read_lock(&binfmt_lock); | 
|  | list_for_each_entry(fmt, &formats, lh) { | 
|  | int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; | 
|  | if (!fn) | 
|  | continue; | 
|  | if (!try_module_get(fmt->module)) | 
|  | continue; | 
|  | read_unlock(&binfmt_lock); | 
|  | retval = fn(bprm, regs); | 
|  | if (retval >= 0) { | 
|  | put_binfmt(fmt); | 
|  | allow_write_access(bprm->file); | 
|  | if (bprm->file) | 
|  | fput(bprm->file); | 
|  | bprm->file = NULL; | 
|  | current->did_exec = 1; | 
|  | proc_exec_connector(current); | 
|  | return retval; | 
|  | } | 
|  | read_lock(&binfmt_lock); | 
|  | put_binfmt(fmt); | 
|  | if (retval != -ENOEXEC || bprm->mm == NULL) | 
|  | break; | 
|  | if (!bprm->file) { | 
|  | read_unlock(&binfmt_lock); | 
|  | return retval; | 
|  | } | 
|  | } | 
|  | read_unlock(&binfmt_lock); | 
|  | if (retval != -ENOEXEC || bprm->mm == NULL) { | 
|  | break; | 
|  | #ifdef CONFIG_KMOD | 
|  | }else{ | 
|  | #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) | 
|  | if (printable(bprm->buf[0]) && | 
|  | printable(bprm->buf[1]) && | 
|  | printable(bprm->buf[2]) && | 
|  | printable(bprm->buf[3])) | 
|  | break; /* -ENOEXEC */ | 
|  | request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(search_binary_handler); | 
|  |  | 
|  | /* | 
|  | * sys_execve() executes a new program. | 
|  | */ | 
|  | int do_execve(char * filename, | 
|  | char __user *__user *argv, | 
|  | char __user *__user *envp, | 
|  | struct pt_regs * regs) | 
|  | { | 
|  | struct linux_binprm *bprm; | 
|  | struct file *file; | 
|  | unsigned long env_p; | 
|  | int retval; | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); | 
|  | if (!bprm) | 
|  | goto out_ret; | 
|  |  | 
|  | file = open_exec(filename); | 
|  | retval = PTR_ERR(file); | 
|  | if (IS_ERR(file)) | 
|  | goto out_kfree; | 
|  |  | 
|  | sched_exec(); | 
|  |  | 
|  | bprm->file = file; | 
|  | bprm->filename = filename; | 
|  | bprm->interp = filename; | 
|  |  | 
|  | retval = bprm_mm_init(bprm); | 
|  | if (retval) | 
|  | goto out_file; | 
|  |  | 
|  | bprm->argc = count(argv, MAX_ARG_STRINGS); | 
|  | if ((retval = bprm->argc) < 0) | 
|  | goto out_mm; | 
|  |  | 
|  | bprm->envc = count(envp, MAX_ARG_STRINGS); | 
|  | if ((retval = bprm->envc) < 0) | 
|  | goto out_mm; | 
|  |  | 
|  | retval = security_bprm_alloc(bprm); | 
|  | if (retval) | 
|  | goto out; | 
|  |  | 
|  | retval = prepare_binprm(bprm); | 
|  | if (retval < 0) | 
|  | goto out; | 
|  |  | 
|  | retval = copy_strings_kernel(1, &bprm->filename, bprm); | 
|  | if (retval < 0) | 
|  | goto out; | 
|  |  | 
|  | bprm->exec = bprm->p; | 
|  | retval = copy_strings(bprm->envc, envp, bprm); | 
|  | if (retval < 0) | 
|  | goto out; | 
|  |  | 
|  | env_p = bprm->p; | 
|  | retval = copy_strings(bprm->argc, argv, bprm); | 
|  | if (retval < 0) | 
|  | goto out; | 
|  | bprm->argv_len = env_p - bprm->p; | 
|  |  | 
|  | retval = search_binary_handler(bprm,regs); | 
|  | if (retval >= 0) { | 
|  | /* execve success */ | 
|  | free_arg_pages(bprm); | 
|  | security_bprm_free(bprm); | 
|  | acct_update_integrals(current); | 
|  | kfree(bprm); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | out: | 
|  | free_arg_pages(bprm); | 
|  | if (bprm->security) | 
|  | security_bprm_free(bprm); | 
|  |  | 
|  | out_mm: | 
|  | if (bprm->mm) | 
|  | mmput (bprm->mm); | 
|  |  | 
|  | out_file: | 
|  | if (bprm->file) { | 
|  | allow_write_access(bprm->file); | 
|  | fput(bprm->file); | 
|  | } | 
|  | out_kfree: | 
|  | kfree(bprm); | 
|  |  | 
|  | out_ret: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | int set_binfmt(struct linux_binfmt *new) | 
|  | { | 
|  | struct linux_binfmt *old = current->binfmt; | 
|  |  | 
|  | if (new) { | 
|  | if (!try_module_get(new->module)) | 
|  | return -1; | 
|  | } | 
|  | current->binfmt = new; | 
|  | if (old) | 
|  | module_put(old->module); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(set_binfmt); | 
|  |  | 
|  | /* format_corename will inspect the pattern parameter, and output a | 
|  | * name into corename, which must have space for at least | 
|  | * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. | 
|  | */ | 
|  | static int format_corename(char *corename, const char *pattern, long signr) | 
|  | { | 
|  | const char *pat_ptr = pattern; | 
|  | char *out_ptr = corename; | 
|  | char *const out_end = corename + CORENAME_MAX_SIZE; | 
|  | int rc; | 
|  | int pid_in_pattern = 0; | 
|  | int ispipe = 0; | 
|  |  | 
|  | if (*pattern == '|') | 
|  | ispipe = 1; | 
|  |  | 
|  | /* Repeat as long as we have more pattern to process and more output | 
|  | space */ | 
|  | while (*pat_ptr) { | 
|  | if (*pat_ptr != '%') { | 
|  | if (out_ptr == out_end) | 
|  | goto out; | 
|  | *out_ptr++ = *pat_ptr++; | 
|  | } else { | 
|  | switch (*++pat_ptr) { | 
|  | case 0: | 
|  | goto out; | 
|  | /* Double percent, output one percent */ | 
|  | case '%': | 
|  | if (out_ptr == out_end) | 
|  | goto out; | 
|  | *out_ptr++ = '%'; | 
|  | break; | 
|  | /* pid */ | 
|  | case 'p': | 
|  | pid_in_pattern = 1; | 
|  | rc = snprintf(out_ptr, out_end - out_ptr, | 
|  | "%d", task_tgid_vnr(current)); | 
|  | if (rc > out_end - out_ptr) | 
|  | goto out; | 
|  | out_ptr += rc; | 
|  | break; | 
|  | /* uid */ | 
|  | case 'u': | 
|  | rc = snprintf(out_ptr, out_end - out_ptr, | 
|  | "%d", current->uid); | 
|  | if (rc > out_end - out_ptr) | 
|  | goto out; | 
|  | out_ptr += rc; | 
|  | break; | 
|  | /* gid */ | 
|  | case 'g': | 
|  | rc = snprintf(out_ptr, out_end - out_ptr, | 
|  | "%d", current->gid); | 
|  | if (rc > out_end - out_ptr) | 
|  | goto out; | 
|  | out_ptr += rc; | 
|  | break; | 
|  | /* signal that caused the coredump */ | 
|  | case 's': | 
|  | rc = snprintf(out_ptr, out_end - out_ptr, | 
|  | "%ld", signr); | 
|  | if (rc > out_end - out_ptr) | 
|  | goto out; | 
|  | out_ptr += rc; | 
|  | break; | 
|  | /* UNIX time of coredump */ | 
|  | case 't': { | 
|  | struct timeval tv; | 
|  | do_gettimeofday(&tv); | 
|  | rc = snprintf(out_ptr, out_end - out_ptr, | 
|  | "%lu", tv.tv_sec); | 
|  | if (rc > out_end - out_ptr) | 
|  | goto out; | 
|  | out_ptr += rc; | 
|  | break; | 
|  | } | 
|  | /* hostname */ | 
|  | case 'h': | 
|  | down_read(&uts_sem); | 
|  | rc = snprintf(out_ptr, out_end - out_ptr, | 
|  | "%s", utsname()->nodename); | 
|  | up_read(&uts_sem); | 
|  | if (rc > out_end - out_ptr) | 
|  | goto out; | 
|  | out_ptr += rc; | 
|  | break; | 
|  | /* executable */ | 
|  | case 'e': | 
|  | rc = snprintf(out_ptr, out_end - out_ptr, | 
|  | "%s", current->comm); | 
|  | if (rc > out_end - out_ptr) | 
|  | goto out; | 
|  | out_ptr += rc; | 
|  | break; | 
|  | /* core limit size */ | 
|  | case 'c': | 
|  | rc = snprintf(out_ptr, out_end - out_ptr, | 
|  | "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); | 
|  | if (rc > out_end - out_ptr) | 
|  | goto out; | 
|  | out_ptr += rc; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | ++pat_ptr; | 
|  | } | 
|  | } | 
|  | /* Backward compatibility with core_uses_pid: | 
|  | * | 
|  | * If core_pattern does not include a %p (as is the default) | 
|  | * and core_uses_pid is set, then .%pid will be appended to | 
|  | * the filename. Do not do this for piped commands. */ | 
|  | if (!ispipe && !pid_in_pattern | 
|  | && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { | 
|  | rc = snprintf(out_ptr, out_end - out_ptr, | 
|  | ".%d", task_tgid_vnr(current)); | 
|  | if (rc > out_end - out_ptr) | 
|  | goto out; | 
|  | out_ptr += rc; | 
|  | } | 
|  | out: | 
|  | *out_ptr = 0; | 
|  | return ispipe; | 
|  | } | 
|  |  | 
|  | static void zap_process(struct task_struct *start) | 
|  | { | 
|  | struct task_struct *t; | 
|  |  | 
|  | start->signal->flags = SIGNAL_GROUP_EXIT; | 
|  | start->signal->group_stop_count = 0; | 
|  |  | 
|  | t = start; | 
|  | do { | 
|  | if (t != current && t->mm) { | 
|  | t->mm->core_waiters++; | 
|  | sigaddset(&t->pending.signal, SIGKILL); | 
|  | signal_wake_up(t, 1); | 
|  | } | 
|  | } while ((t = next_thread(t)) != start); | 
|  | } | 
|  |  | 
|  | static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, | 
|  | int exit_code) | 
|  | { | 
|  | struct task_struct *g, *p; | 
|  | unsigned long flags; | 
|  | int err = -EAGAIN; | 
|  |  | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) { | 
|  | tsk->signal->group_exit_code = exit_code; | 
|  | zap_process(tsk); | 
|  | err = 0; | 
|  | } | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) | 
|  | goto done; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for_each_process(g) { | 
|  | if (g == tsk->group_leader) | 
|  | continue; | 
|  |  | 
|  | p = g; | 
|  | do { | 
|  | if (p->mm) { | 
|  | if (p->mm == mm) { | 
|  | /* | 
|  | * p->sighand can't disappear, but | 
|  | * may be changed by de_thread() | 
|  | */ | 
|  | lock_task_sighand(p, &flags); | 
|  | zap_process(p); | 
|  | unlock_task_sighand(p, &flags); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } while ((p = next_thread(p)) != g); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | done: | 
|  | return mm->core_waiters; | 
|  | } | 
|  |  | 
|  | static int coredump_wait(int exit_code) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | struct mm_struct *mm = tsk->mm; | 
|  | struct completion startup_done; | 
|  | struct completion *vfork_done; | 
|  | int core_waiters; | 
|  |  | 
|  | init_completion(&mm->core_done); | 
|  | init_completion(&startup_done); | 
|  | mm->core_startup_done = &startup_done; | 
|  |  | 
|  | core_waiters = zap_threads(tsk, mm, exit_code); | 
|  | up_write(&mm->mmap_sem); | 
|  |  | 
|  | if (unlikely(core_waiters < 0)) | 
|  | goto fail; | 
|  |  | 
|  | /* | 
|  | * Make sure nobody is waiting for us to release the VM, | 
|  | * otherwise we can deadlock when we wait on each other | 
|  | */ | 
|  | vfork_done = tsk->vfork_done; | 
|  | if (vfork_done) { | 
|  | tsk->vfork_done = NULL; | 
|  | complete(vfork_done); | 
|  | } | 
|  |  | 
|  | if (core_waiters) | 
|  | wait_for_completion(&startup_done); | 
|  | fail: | 
|  | BUG_ON(mm->core_waiters); | 
|  | return core_waiters; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set_dumpable converts traditional three-value dumpable to two flags and | 
|  | * stores them into mm->flags.  It modifies lower two bits of mm->flags, but | 
|  | * these bits are not changed atomically.  So get_dumpable can observe the | 
|  | * intermediate state.  To avoid doing unexpected behavior, get get_dumpable | 
|  | * return either old dumpable or new one by paying attention to the order of | 
|  | * modifying the bits. | 
|  | * | 
|  | * dumpable |   mm->flags (binary) | 
|  | * old  new | initial interim  final | 
|  | * ---------+----------------------- | 
|  | *  0    1  |   00      01      01 | 
|  | *  0    2  |   00      10(*)   11 | 
|  | *  1    0  |   01      00      00 | 
|  | *  1    2  |   01      11      11 | 
|  | *  2    0  |   11      10(*)   00 | 
|  | *  2    1  |   11      11      01 | 
|  | * | 
|  | * (*) get_dumpable regards interim value of 10 as 11. | 
|  | */ | 
|  | void set_dumpable(struct mm_struct *mm, int value) | 
|  | { | 
|  | switch (value) { | 
|  | case 0: | 
|  | clear_bit(MMF_DUMPABLE, &mm->flags); | 
|  | smp_wmb(); | 
|  | clear_bit(MMF_DUMP_SECURELY, &mm->flags); | 
|  | break; | 
|  | case 1: | 
|  | set_bit(MMF_DUMPABLE, &mm->flags); | 
|  | smp_wmb(); | 
|  | clear_bit(MMF_DUMP_SECURELY, &mm->flags); | 
|  | break; | 
|  | case 2: | 
|  | set_bit(MMF_DUMP_SECURELY, &mm->flags); | 
|  | smp_wmb(); | 
|  | set_bit(MMF_DUMPABLE, &mm->flags); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | int get_dumpable(struct mm_struct *mm) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = mm->flags & 0x3; | 
|  | return (ret >= 2) ? 2 : ret; | 
|  | } | 
|  |  | 
|  | int do_coredump(long signr, int exit_code, struct pt_regs * regs) | 
|  | { | 
|  | char corename[CORENAME_MAX_SIZE + 1]; | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct linux_binfmt * binfmt; | 
|  | struct inode * inode; | 
|  | struct file * file; | 
|  | int retval = 0; | 
|  | int fsuid = current->fsuid; | 
|  | int flag = 0; | 
|  | int ispipe = 0; | 
|  | unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; | 
|  | char **helper_argv = NULL; | 
|  | int helper_argc = 0; | 
|  | char *delimit; | 
|  |  | 
|  | audit_core_dumps(signr); | 
|  |  | 
|  | binfmt = current->binfmt; | 
|  | if (!binfmt || !binfmt->core_dump) | 
|  | goto fail; | 
|  | down_write(&mm->mmap_sem); | 
|  | /* | 
|  | * If another thread got here first, or we are not dumpable, bail out. | 
|  | */ | 
|  | if (mm->core_waiters || !get_dumpable(mm)) { | 
|  | up_write(&mm->mmap_sem); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	We cannot trust fsuid as being the "true" uid of the | 
|  | *	process nor do we know its entire history. We only know it | 
|  | *	was tainted so we dump it as root in mode 2. | 
|  | */ | 
|  | if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */ | 
|  | flag = O_EXCL;		/* Stop rewrite attacks */ | 
|  | current->fsuid = 0;	/* Dump root private */ | 
|  | } | 
|  |  | 
|  | retval = coredump_wait(exit_code); | 
|  | if (retval < 0) | 
|  | goto fail; | 
|  |  | 
|  | /* | 
|  | * Clear any false indication of pending signals that might | 
|  | * be seen by the filesystem code called to write the core file. | 
|  | */ | 
|  | clear_thread_flag(TIF_SIGPENDING); | 
|  |  | 
|  | /* | 
|  | * lock_kernel() because format_corename() is controlled by sysctl, which | 
|  | * uses lock_kernel() | 
|  | */ | 
|  | lock_kernel(); | 
|  | ispipe = format_corename(corename, core_pattern, signr); | 
|  | unlock_kernel(); | 
|  | /* | 
|  | * Don't bother to check the RLIMIT_CORE value if core_pattern points | 
|  | * to a pipe.  Since we're not writing directly to the filesystem | 
|  | * RLIMIT_CORE doesn't really apply, as no actual core file will be | 
|  | * created unless the pipe reader choses to write out the core file | 
|  | * at which point file size limits and permissions will be imposed | 
|  | * as it does with any other process | 
|  | */ | 
|  | if ((!ispipe) && (core_limit < binfmt->min_coredump)) | 
|  | goto fail_unlock; | 
|  |  | 
|  | if (ispipe) { | 
|  | helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); | 
|  | /* Terminate the string before the first option */ | 
|  | delimit = strchr(corename, ' '); | 
|  | if (delimit) | 
|  | *delimit = '\0'; | 
|  | delimit = strrchr(helper_argv[0], '/'); | 
|  | if (delimit) | 
|  | delimit++; | 
|  | else | 
|  | delimit = helper_argv[0]; | 
|  | if (!strcmp(delimit, current->comm)) { | 
|  | printk(KERN_NOTICE "Recursive core dump detected, " | 
|  | "aborting\n"); | 
|  | goto fail_unlock; | 
|  | } | 
|  |  | 
|  | core_limit = RLIM_INFINITY; | 
|  |  | 
|  | /* SIGPIPE can happen, but it's just never processed */ | 
|  | if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, | 
|  | &file)) { | 
|  | printk(KERN_INFO "Core dump to %s pipe failed\n", | 
|  | corename); | 
|  | goto fail_unlock; | 
|  | } | 
|  | } else | 
|  | file = filp_open(corename, | 
|  | O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, | 
|  | 0600); | 
|  | if (IS_ERR(file)) | 
|  | goto fail_unlock; | 
|  | inode = file->f_path.dentry->d_inode; | 
|  | if (inode->i_nlink > 1) | 
|  | goto close_fail;	/* multiple links - don't dump */ | 
|  | if (!ispipe && d_unhashed(file->f_path.dentry)) | 
|  | goto close_fail; | 
|  |  | 
|  | /* AK: actually i see no reason to not allow this for named pipes etc., | 
|  | but keep the previous behaviour for now. */ | 
|  | if (!ispipe && !S_ISREG(inode->i_mode)) | 
|  | goto close_fail; | 
|  | if (!file->f_op) | 
|  | goto close_fail; | 
|  | if (!file->f_op->write) | 
|  | goto close_fail; | 
|  | if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) | 
|  | goto close_fail; | 
|  |  | 
|  | retval = binfmt->core_dump(signr, regs, file, core_limit); | 
|  |  | 
|  | if (retval) | 
|  | current->signal->group_exit_code |= 0x80; | 
|  | close_fail: | 
|  | filp_close(file, NULL); | 
|  | fail_unlock: | 
|  | if (helper_argv) | 
|  | argv_free(helper_argv); | 
|  |  | 
|  | current->fsuid = fsuid; | 
|  | complete_all(&mm->core_done); | 
|  | fail: | 
|  | return retval; | 
|  | } |