|  | | | 
|  | |	scosh.sa 3.1 12/10/90 | 
|  | | | 
|  | |	The entry point sCosh computes the hyperbolic cosine of | 
|  | |	an input argument; sCoshd does the same except for denormalized | 
|  | |	input. | 
|  | | | 
|  | |	Input: Double-extended number X in location pointed to | 
|  | |		by address register a0. | 
|  | | | 
|  | |	Output: The value cosh(X) returned in floating-point register Fp0. | 
|  | | | 
|  | |	Accuracy and Monotonicity: The returned result is within 3 ulps in | 
|  | |		64 significant bit, i.e. within 0.5001 ulp to 53 bits if the | 
|  | |		result is subsequently rounded to double precision. The | 
|  | |		result is provably monotonic in double precision. | 
|  | | | 
|  | |	Speed: The program sCOSH takes approximately 250 cycles. | 
|  | | | 
|  | |	Algorithm: | 
|  | | | 
|  | |	COSH | 
|  | |	1. If |X| > 16380 log2, go to 3. | 
|  | | | 
|  | |	2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae | 
|  | |		y = |X|, z = exp(Y), and | 
|  | |		cosh(X) = (1/2)*( z + 1/z ). | 
|  | |		Exit. | 
|  | | | 
|  | |	3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. | 
|  | | | 
|  | |	4. (16380 log2 < |X| <= 16480 log2) | 
|  | |		cosh(X) = sign(X) * exp(|X|)/2. | 
|  | |		However, invoking exp(|X|) may cause premature overflow. | 
|  | |		Thus, we calculate sinh(X) as follows: | 
|  | |		Y	:= |X| | 
|  | |		Fact	:=	2**(16380) | 
|  | |		Y'	:= Y - 16381 log2 | 
|  | |		cosh(X) := Fact * exp(Y'). | 
|  | |		Exit. | 
|  | | | 
|  | |	5. (|X| > 16480 log2) sinh(X) must overflow. Return | 
|  | |		Huge*Huge to generate overflow and an infinity with | 
|  | |		the appropriate sign. Huge is the largest finite number in | 
|  | |		extended format. Exit. | 
|  | | | 
|  | | | 
|  |  | 
|  | |		Copyright (C) Motorola, Inc. 1990 | 
|  | |			All Rights Reserved | 
|  | | | 
|  | |       For details on the license for this file, please see the | 
|  | |       file, README, in this same directory. | 
|  |  | 
|  | |SCOSH	idnt	2,1 | Motorola 040 Floating Point Software Package | 
|  |  | 
|  | |section	8 | 
|  |  | 
|  | |xref	t_ovfl | 
|  | |xref	t_frcinx | 
|  | |xref	setox | 
|  |  | 
|  | T1:	.long 0x40C62D38,0xD3D64634 | ... 16381 LOG2 LEAD | 
|  | T2:	.long 0x3D6F90AE,0xB1E75CC7 | ... 16381 LOG2 TRAIL | 
|  |  | 
|  | TWO16380: .long 0x7FFB0000,0x80000000,0x00000000,0x00000000 | 
|  |  | 
|  | .global	scoshd | 
|  | scoshd: | 
|  | |--COSH(X) = 1 FOR DENORMALIZED X | 
|  |  | 
|  | fmoves		#0x3F800000,%fp0 | 
|  |  | 
|  | fmovel		%d1,%FPCR | 
|  | fadds		#0x00800000,%fp0 | 
|  | bra		t_frcinx | 
|  |  | 
|  | .global	scosh | 
|  | scosh: | 
|  | fmovex		(%a0),%fp0	| ...LOAD INPUT | 
|  |  | 
|  | movel		(%a0),%d0 | 
|  | movew		4(%a0),%d0 | 
|  | andil		#0x7FFFFFFF,%d0 | 
|  | cmpil		#0x400CB167,%d0 | 
|  | bgts		COSHBIG | 
|  |  | 
|  | |--THIS IS THE USUAL CASE, |X| < 16380 LOG2 | 
|  | |--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) ) | 
|  |  | 
|  | fabsx		%fp0		| ...|X| | 
|  |  | 
|  | movel		%d1,-(%sp) | 
|  | clrl		%d1 | 
|  | fmovemx	%fp0-%fp0,(%a0)	|pass parameter to setox | 
|  | bsr		setox		| ...FP0 IS EXP(|X|) | 
|  | fmuls		#0x3F000000,%fp0	| ...(1/2)EXP(|X|) | 
|  | movel		(%sp)+,%d1 | 
|  |  | 
|  | fmoves		#0x3E800000,%fp1	| ...(1/4) | 
|  | fdivx		%fp0,%fp1		| ...1/(2 EXP(|X|)) | 
|  |  | 
|  | fmovel		%d1,%FPCR | 
|  | faddx		%fp1,%fp0 | 
|  |  | 
|  | bra		t_frcinx | 
|  |  | 
|  | COSHBIG: | 
|  | cmpil		#0x400CB2B3,%d0 | 
|  | bgts		COSHHUGE | 
|  |  | 
|  | fabsx		%fp0 | 
|  | fsubd		T1(%pc),%fp0		| ...(|X|-16381LOG2_LEAD) | 
|  | fsubd		T2(%pc),%fp0		| ...|X| - 16381 LOG2, ACCURATE | 
|  |  | 
|  | movel		%d1,-(%sp) | 
|  | clrl		%d1 | 
|  | fmovemx	%fp0-%fp0,(%a0) | 
|  | bsr		setox | 
|  | fmovel		(%sp)+,%fpcr | 
|  |  | 
|  | fmulx		TWO16380(%pc),%fp0 | 
|  | bra		t_frcinx | 
|  |  | 
|  | COSHHUGE: | 
|  | fmovel		#0,%fpsr		|clr N bit if set by source | 
|  | bclrb		#7,(%a0)		|always return positive value | 
|  | fmovemx	(%a0),%fp0-%fp0 | 
|  | bra		t_ovfl | 
|  |  | 
|  | |end |