|  | #include <linux/linkage.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/sysdev.h> | 
|  | #include <linux/bitops.h> | 
|  |  | 
|  | #include <asm/acpi.h> | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/hw_irq.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/delay.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/apic.h> | 
|  | #include <asm/i8259.h> | 
|  |  | 
|  | /* | 
|  | * Common place to define all x86 IRQ vectors | 
|  | * | 
|  | * This builds up the IRQ handler stubs using some ugly macros in irq.h | 
|  | * | 
|  | * These macros create the low-level assembly IRQ routines that save | 
|  | * register context and call do_IRQ(). do_IRQ() then does all the | 
|  | * operations that are needed to keep the AT (or SMP IOAPIC) | 
|  | * interrupt-controller happy. | 
|  | */ | 
|  |  | 
|  | #define IRQ_NAME2(nr) nr##_interrupt(void) | 
|  | #define IRQ_NAME(nr) IRQ_NAME2(IRQ##nr) | 
|  |  | 
|  | /* | 
|  | *	SMP has a few special interrupts for IPI messages | 
|  | */ | 
|  |  | 
|  | #define BUILD_IRQ(nr)				\ | 
|  | asmlinkage void IRQ_NAME(nr);		\ | 
|  | asm("\n.text\n.p2align\n"		\ | 
|  | "IRQ" #nr "_interrupt:\n\t"		\ | 
|  | "push $~(" #nr ") ; "		\ | 
|  | "jmp common_interrupt\n"		\ | 
|  | ".previous"); | 
|  |  | 
|  | #define BI(x,y) \ | 
|  | BUILD_IRQ(x##y) | 
|  |  | 
|  | #define BUILD_16_IRQS(x) \ | 
|  | BI(x,0) BI(x,1) BI(x,2) BI(x,3) \ | 
|  | BI(x,4) BI(x,5) BI(x,6) BI(x,7) \ | 
|  | BI(x,8) BI(x,9) BI(x,a) BI(x,b) \ | 
|  | BI(x,c) BI(x,d) BI(x,e) BI(x,f) | 
|  |  | 
|  | /* | 
|  | * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts: | 
|  | * (these are usually mapped to vectors 0x30-0x3f) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The IO-APIC gives us many more interrupt sources. Most of these | 
|  | * are unused but an SMP system is supposed to have enough memory ... | 
|  | * sometimes (mostly wrt. hw bugs) we get corrupted vectors all | 
|  | * across the spectrum, so we really want to be prepared to get all | 
|  | * of these. Plus, more powerful systems might have more than 64 | 
|  | * IO-APIC registers. | 
|  | * | 
|  | * (these are usually mapped into the 0x30-0xff vector range) | 
|  | */ | 
|  | BUILD_16_IRQS(0x2) BUILD_16_IRQS(0x3) | 
|  | BUILD_16_IRQS(0x4) BUILD_16_IRQS(0x5) BUILD_16_IRQS(0x6) BUILD_16_IRQS(0x7) | 
|  | BUILD_16_IRQS(0x8) BUILD_16_IRQS(0x9) BUILD_16_IRQS(0xa) BUILD_16_IRQS(0xb) | 
|  | BUILD_16_IRQS(0xc) BUILD_16_IRQS(0xd) BUILD_16_IRQS(0xe) BUILD_16_IRQS(0xf) | 
|  |  | 
|  | #undef BUILD_16_IRQS | 
|  | #undef BI | 
|  |  | 
|  |  | 
|  | #define IRQ(x,y) \ | 
|  | IRQ##x##y##_interrupt | 
|  |  | 
|  | #define IRQLIST_16(x) \ | 
|  | IRQ(x,0), IRQ(x,1), IRQ(x,2), IRQ(x,3), \ | 
|  | IRQ(x,4), IRQ(x,5), IRQ(x,6), IRQ(x,7), \ | 
|  | IRQ(x,8), IRQ(x,9), IRQ(x,a), IRQ(x,b), \ | 
|  | IRQ(x,c), IRQ(x,d), IRQ(x,e), IRQ(x,f) | 
|  |  | 
|  | /* for the irq vectors */ | 
|  | static void (*__initdata interrupt[NR_VECTORS - FIRST_EXTERNAL_VECTOR])(void) = { | 
|  | IRQLIST_16(0x2), IRQLIST_16(0x3), | 
|  | IRQLIST_16(0x4), IRQLIST_16(0x5), IRQLIST_16(0x6), IRQLIST_16(0x7), | 
|  | IRQLIST_16(0x8), IRQLIST_16(0x9), IRQLIST_16(0xa), IRQLIST_16(0xb), | 
|  | IRQLIST_16(0xc), IRQLIST_16(0xd), IRQLIST_16(0xe), IRQLIST_16(0xf) | 
|  | }; | 
|  |  | 
|  | #undef IRQ | 
|  | #undef IRQLIST_16 | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | /* | 
|  | * IRQ2 is cascade interrupt to second interrupt controller | 
|  | */ | 
|  |  | 
|  | static struct irqaction irq2 = { | 
|  | .handler = no_action, | 
|  | .mask = CPU_MASK_NONE, | 
|  | .name = "cascade", | 
|  | }; | 
|  | DEFINE_PER_CPU(vector_irq_t, vector_irq) = { | 
|  | [0 ... IRQ0_VECTOR - 1] = -1, | 
|  | [IRQ0_VECTOR] = 0, | 
|  | [IRQ1_VECTOR] = 1, | 
|  | [IRQ2_VECTOR] = 2, | 
|  | [IRQ3_VECTOR] = 3, | 
|  | [IRQ4_VECTOR] = 4, | 
|  | [IRQ5_VECTOR] = 5, | 
|  | [IRQ6_VECTOR] = 6, | 
|  | [IRQ7_VECTOR] = 7, | 
|  | [IRQ8_VECTOR] = 8, | 
|  | [IRQ9_VECTOR] = 9, | 
|  | [IRQ10_VECTOR] = 10, | 
|  | [IRQ11_VECTOR] = 11, | 
|  | [IRQ12_VECTOR] = 12, | 
|  | [IRQ13_VECTOR] = 13, | 
|  | [IRQ14_VECTOR] = 14, | 
|  | [IRQ15_VECTOR] = 15, | 
|  | [IRQ15_VECTOR + 1 ... NR_VECTORS - 1] = -1 | 
|  | }; | 
|  |  | 
|  | static void __init init_ISA_irqs (void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | init_bsp_APIC(); | 
|  | init_8259A(0); | 
|  |  | 
|  | for (i = 0; i < NR_IRQS; i++) { | 
|  | irq_desc[i].status = IRQ_DISABLED; | 
|  | irq_desc[i].action = NULL; | 
|  | irq_desc[i].depth = 1; | 
|  |  | 
|  | if (i < 16) { | 
|  | /* | 
|  | * 16 old-style INTA-cycle interrupts: | 
|  | */ | 
|  | set_irq_chip_and_handler_name(i, &i8259A_chip, | 
|  | handle_level_irq, "XT"); | 
|  | } else { | 
|  | /* | 
|  | * 'high' PCI IRQs filled in on demand | 
|  | */ | 
|  | irq_desc[i].chip = &no_irq_chip; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void init_IRQ(void) __attribute__((weak, alias("native_init_IRQ"))); | 
|  |  | 
|  | void __init native_init_IRQ(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | init_ISA_irqs(); | 
|  | /* | 
|  | * Cover the whole vector space, no vector can escape | 
|  | * us. (some of these will be overridden and become | 
|  | * 'special' SMP interrupts) | 
|  | */ | 
|  | for (i = 0; i < (NR_VECTORS - FIRST_EXTERNAL_VECTOR); i++) { | 
|  | int vector = FIRST_EXTERNAL_VECTOR + i; | 
|  | if (vector != IA32_SYSCALL_VECTOR) | 
|  | set_intr_gate(vector, interrupt[i]); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * The reschedule interrupt is a CPU-to-CPU reschedule-helper | 
|  | * IPI, driven by wakeup. | 
|  | */ | 
|  | alloc_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt); | 
|  |  | 
|  | /* IPIs for invalidation */ | 
|  | alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+0, invalidate_interrupt0); | 
|  | alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+1, invalidate_interrupt1); | 
|  | alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+2, invalidate_interrupt2); | 
|  | alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+3, invalidate_interrupt3); | 
|  | alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+4, invalidate_interrupt4); | 
|  | alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+5, invalidate_interrupt5); | 
|  | alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+6, invalidate_interrupt6); | 
|  | alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+7, invalidate_interrupt7); | 
|  |  | 
|  | /* IPI for generic function call */ | 
|  | alloc_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt); | 
|  |  | 
|  | /* IPI for generic single function call */ | 
|  | alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR, | 
|  | call_function_single_interrupt); | 
|  |  | 
|  | /* Low priority IPI to cleanup after moving an irq */ | 
|  | set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt); | 
|  | #endif | 
|  | alloc_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt); | 
|  | alloc_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt); | 
|  |  | 
|  | /* self generated IPI for local APIC timer */ | 
|  | alloc_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt); | 
|  |  | 
|  | /* IPI vectors for APIC spurious and error interrupts */ | 
|  | alloc_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt); | 
|  | alloc_intr_gate(ERROR_APIC_VECTOR, error_interrupt); | 
|  |  | 
|  | if (!acpi_ioapic) | 
|  | setup_irq(2, &irq2); | 
|  | } |