|  | /* | 
|  | *	x86 SMP booting functions | 
|  | * | 
|  | *	(c) 1995 Alan Cox, Building #3 <alan@redhat.com> | 
|  | *	(c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com> | 
|  | *	Copyright 2001 Andi Kleen, SuSE Labs. | 
|  | * | 
|  | *	Much of the core SMP work is based on previous work by Thomas Radke, to | 
|  | *	whom a great many thanks are extended. | 
|  | * | 
|  | *	Thanks to Intel for making available several different Pentium, | 
|  | *	Pentium Pro and Pentium-II/Xeon MP machines. | 
|  | *	Original development of Linux SMP code supported by Caldera. | 
|  | * | 
|  | *	This code is released under the GNU General Public License version 2 or | 
|  | *	later. | 
|  | * | 
|  | *	Fixes | 
|  | *		Felix Koop	:	NR_CPUS used properly | 
|  | *		Jose Renau	:	Handle single CPU case. | 
|  | *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report. | 
|  | *		Greg Wright	:	Fix for kernel stacks panic. | 
|  | *		Erich Boleyn	:	MP v1.4 and additional changes. | 
|  | *	Matthias Sattler	:	Changes for 2.1 kernel map. | 
|  | *	Michel Lespinasse	:	Changes for 2.1 kernel map. | 
|  | *	Michael Chastain	:	Change trampoline.S to gnu as. | 
|  | *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine | 
|  | *		Ingo Molnar	:	Added APIC timers, based on code | 
|  | *					from Jose Renau | 
|  | *		Ingo Molnar	:	various cleanups and rewrites | 
|  | *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug. | 
|  | *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs | 
|  | *	Andi Kleen		:	Changed for SMP boot into long mode. | 
|  | *		Martin J. Bligh	: 	Added support for multi-quad systems | 
|  | *		Dave Jones	:	Report invalid combinations of Athlon CPUs. | 
|  | *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process. | 
|  | *      Andi Kleen              :       Converted to new state machine. | 
|  | *	Ashok Raj		: 	CPU hotplug support | 
|  | *	Glauber Costa		:	i386 and x86_64 integration | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/nmi.h> | 
|  |  | 
|  | #include <asm/acpi.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/nmi.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/trampoline.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/numa.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/mtrr.h> | 
|  | #include <asm/vmi.h> | 
|  | #include <asm/genapic.h> | 
|  | #include <linux/mc146818rtc.h> | 
|  |  | 
|  | #include <mach_apic.h> | 
|  | #include <mach_wakecpu.h> | 
|  | #include <smpboot_hooks.h> | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | u8 apicid_2_node[MAX_APICID]; | 
|  | static int low_mappings; | 
|  | #endif | 
|  |  | 
|  | /* State of each CPU */ | 
|  | DEFINE_PER_CPU(int, cpu_state) = { 0 }; | 
|  |  | 
|  | /* Store all idle threads, this can be reused instead of creating | 
|  | * a new thread. Also avoids complicated thread destroy functionality | 
|  | * for idle threads. | 
|  | */ | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | /* | 
|  | * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is | 
|  | * removed after init for !CONFIG_HOTPLUG_CPU. | 
|  | */ | 
|  | static DEFINE_PER_CPU(struct task_struct *, idle_thread_array); | 
|  | #define get_idle_for_cpu(x)      (per_cpu(idle_thread_array, x)) | 
|  | #define set_idle_for_cpu(x, p)   (per_cpu(idle_thread_array, x) = (p)) | 
|  | #else | 
|  | struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ; | 
|  | #define get_idle_for_cpu(x)      (idle_thread_array[(x)]) | 
|  | #define set_idle_for_cpu(x, p)   (idle_thread_array[(x)] = (p)) | 
|  | #endif | 
|  |  | 
|  | /* Number of siblings per CPU package */ | 
|  | int smp_num_siblings = 1; | 
|  | EXPORT_SYMBOL(smp_num_siblings); | 
|  |  | 
|  | /* Last level cache ID of each logical CPU */ | 
|  | DEFINE_PER_CPU(u16, cpu_llc_id) = BAD_APICID; | 
|  |  | 
|  | /* bitmap of online cpus */ | 
|  | cpumask_t cpu_online_map __read_mostly; | 
|  | EXPORT_SYMBOL(cpu_online_map); | 
|  |  | 
|  | cpumask_t cpu_callin_map; | 
|  | cpumask_t cpu_callout_map; | 
|  | cpumask_t cpu_possible_map; | 
|  | EXPORT_SYMBOL(cpu_possible_map); | 
|  |  | 
|  | /* representing HT siblings of each logical CPU */ | 
|  | DEFINE_PER_CPU(cpumask_t, cpu_sibling_map); | 
|  | EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); | 
|  |  | 
|  | /* representing HT and core siblings of each logical CPU */ | 
|  | DEFINE_PER_CPU(cpumask_t, cpu_core_map); | 
|  | EXPORT_PER_CPU_SYMBOL(cpu_core_map); | 
|  |  | 
|  | /* Per CPU bogomips and other parameters */ | 
|  | DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info); | 
|  | EXPORT_PER_CPU_SYMBOL(cpu_info); | 
|  |  | 
|  | static atomic_t init_deasserted; | 
|  |  | 
|  | static int boot_cpu_logical_apicid; | 
|  |  | 
|  | /* representing cpus for which sibling maps can be computed */ | 
|  | static cpumask_t cpu_sibling_setup_map; | 
|  |  | 
|  | /* Set if we find a B stepping CPU */ | 
|  | int __cpuinitdata smp_b_stepping; | 
|  |  | 
|  | #if defined(CONFIG_NUMA) && defined(CONFIG_X86_32) | 
|  |  | 
|  | /* which logical CPUs are on which nodes */ | 
|  | cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly = | 
|  | { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE }; | 
|  | EXPORT_SYMBOL(node_to_cpumask_map); | 
|  | /* which node each logical CPU is on */ | 
|  | int cpu_to_node_map[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 }; | 
|  | EXPORT_SYMBOL(cpu_to_node_map); | 
|  |  | 
|  | /* set up a mapping between cpu and node. */ | 
|  | static void map_cpu_to_node(int cpu, int node) | 
|  | { | 
|  | printk(KERN_INFO "Mapping cpu %d to node %d\n", cpu, node); | 
|  | cpu_set(cpu, node_to_cpumask_map[node]); | 
|  | cpu_to_node_map[cpu] = node; | 
|  | } | 
|  |  | 
|  | /* undo a mapping between cpu and node. */ | 
|  | static void unmap_cpu_to_node(int cpu) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | printk(KERN_INFO "Unmapping cpu %d from all nodes\n", cpu); | 
|  | for (node = 0; node < MAX_NUMNODES; node++) | 
|  | cpu_clear(cpu, node_to_cpumask_map[node]); | 
|  | cpu_to_node_map[cpu] = 0; | 
|  | } | 
|  | #else /* !(CONFIG_NUMA && CONFIG_X86_32) */ | 
|  | #define map_cpu_to_node(cpu, node)	({}) | 
|  | #define unmap_cpu_to_node(cpu)	({}) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = | 
|  | { [0 ... NR_CPUS-1] = BAD_APICID }; | 
|  |  | 
|  | static void map_cpu_to_logical_apicid(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | int apicid = logical_smp_processor_id(); | 
|  | int node = apicid_to_node(apicid); | 
|  |  | 
|  | if (!node_online(node)) | 
|  | node = first_online_node; | 
|  |  | 
|  | cpu_2_logical_apicid[cpu] = apicid; | 
|  | map_cpu_to_node(cpu, node); | 
|  | } | 
|  |  | 
|  | void numa_remove_cpu(int cpu) | 
|  | { | 
|  | cpu_2_logical_apicid[cpu] = BAD_APICID; | 
|  | unmap_cpu_to_node(cpu); | 
|  | } | 
|  | #else | 
|  | #define map_cpu_to_logical_apicid()  do {} while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Report back to the Boot Processor. | 
|  | * Running on AP. | 
|  | */ | 
|  | static void __cpuinit smp_callin(void) | 
|  | { | 
|  | int cpuid, phys_id; | 
|  | unsigned long timeout; | 
|  |  | 
|  | /* | 
|  | * If waken up by an INIT in an 82489DX configuration | 
|  | * we may get here before an INIT-deassert IPI reaches | 
|  | * our local APIC.  We have to wait for the IPI or we'll | 
|  | * lock up on an APIC access. | 
|  | */ | 
|  | wait_for_init_deassert(&init_deasserted); | 
|  |  | 
|  | /* | 
|  | * (This works even if the APIC is not enabled.) | 
|  | */ | 
|  | phys_id = GET_APIC_ID(read_apic_id()); | 
|  | cpuid = smp_processor_id(); | 
|  | if (cpu_isset(cpuid, cpu_callin_map)) { | 
|  | panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__, | 
|  | phys_id, cpuid); | 
|  | } | 
|  | pr_debug("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id); | 
|  |  | 
|  | /* | 
|  | * STARTUP IPIs are fragile beasts as they might sometimes | 
|  | * trigger some glue motherboard logic. Complete APIC bus | 
|  | * silence for 1 second, this overestimates the time the | 
|  | * boot CPU is spending to send the up to 2 STARTUP IPIs | 
|  | * by a factor of two. This should be enough. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Waiting 2s total for startup (udelay is not yet working) | 
|  | */ | 
|  | timeout = jiffies + 2*HZ; | 
|  | while (time_before(jiffies, timeout)) { | 
|  | /* | 
|  | * Has the boot CPU finished it's STARTUP sequence? | 
|  | */ | 
|  | if (cpu_isset(cpuid, cpu_callout_map)) | 
|  | break; | 
|  | cpu_relax(); | 
|  | } | 
|  |  | 
|  | if (!time_before(jiffies, timeout)) { | 
|  | panic("%s: CPU%d started up but did not get a callout!\n", | 
|  | __func__, cpuid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the boot CPU has finished the init stage and is spinning | 
|  | * on callin_map until we finish. We are free to set up this | 
|  | * CPU, first the APIC. (this is probably redundant on most | 
|  | * boards) | 
|  | */ | 
|  |  | 
|  | pr_debug("CALLIN, before setup_local_APIC().\n"); | 
|  | smp_callin_clear_local_apic(); | 
|  | setup_local_APIC(); | 
|  | end_local_APIC_setup(); | 
|  | map_cpu_to_logical_apicid(); | 
|  |  | 
|  | /* | 
|  | * Get our bogomips. | 
|  | * | 
|  | * Need to enable IRQs because it can take longer and then | 
|  | * the NMI watchdog might kill us. | 
|  | */ | 
|  | local_irq_enable(); | 
|  | calibrate_delay(); | 
|  | local_irq_disable(); | 
|  | pr_debug("Stack at about %p\n", &cpuid); | 
|  |  | 
|  | /* | 
|  | * Save our processor parameters | 
|  | */ | 
|  | smp_store_cpu_info(cpuid); | 
|  |  | 
|  | /* | 
|  | * Allow the master to continue. | 
|  | */ | 
|  | cpu_set(cpuid, cpu_callin_map); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Activate a secondary processor. | 
|  | */ | 
|  | static void __cpuinit start_secondary(void *unused) | 
|  | { | 
|  | /* | 
|  | * Don't put *anything* before cpu_init(), SMP booting is too | 
|  | * fragile that we want to limit the things done here to the | 
|  | * most necessary things. | 
|  | */ | 
|  | #ifdef CONFIG_VMI | 
|  | vmi_bringup(); | 
|  | #endif | 
|  | cpu_init(); | 
|  | preempt_disable(); | 
|  | smp_callin(); | 
|  |  | 
|  | /* otherwise gcc will move up smp_processor_id before the cpu_init */ | 
|  | barrier(); | 
|  | /* | 
|  | * Check TSC synchronization with the BP: | 
|  | */ | 
|  | check_tsc_sync_target(); | 
|  |  | 
|  | if (nmi_watchdog == NMI_IO_APIC) { | 
|  | disable_8259A_irq(0); | 
|  | enable_NMI_through_LVT0(); | 
|  | enable_8259A_irq(0); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | while (low_mappings) | 
|  | cpu_relax(); | 
|  | __flush_tlb_all(); | 
|  | #endif | 
|  |  | 
|  | /* This must be done before setting cpu_online_map */ | 
|  | set_cpu_sibling_map(raw_smp_processor_id()); | 
|  | wmb(); | 
|  |  | 
|  | /* | 
|  | * We need to hold call_lock, so there is no inconsistency | 
|  | * between the time smp_call_function() determines number of | 
|  | * IPI recipients, and the time when the determination is made | 
|  | * for which cpus receive the IPI. Holding this | 
|  | * lock helps us to not include this cpu in a currently in progress | 
|  | * smp_call_function(). | 
|  | */ | 
|  | ipi_call_lock_irq(); | 
|  | #ifdef CONFIG_X86_IO_APIC | 
|  | setup_vector_irq(smp_processor_id()); | 
|  | #endif | 
|  | cpu_set(smp_processor_id(), cpu_online_map); | 
|  | ipi_call_unlock_irq(); | 
|  | per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; | 
|  |  | 
|  | setup_secondary_clock(); | 
|  |  | 
|  | wmb(); | 
|  | cpu_idle(); | 
|  | } | 
|  |  | 
|  | static void __cpuinit smp_apply_quirks(struct cpuinfo_x86 *c) | 
|  | { | 
|  | /* | 
|  | * Mask B, Pentium, but not Pentium MMX | 
|  | */ | 
|  | if (c->x86_vendor == X86_VENDOR_INTEL && | 
|  | c->x86 == 5 && | 
|  | c->x86_mask >= 1 && c->x86_mask <= 4 && | 
|  | c->x86_model <= 3) | 
|  | /* | 
|  | * Remember we have B step Pentia with bugs | 
|  | */ | 
|  | smp_b_stepping = 1; | 
|  |  | 
|  | /* | 
|  | * Certain Athlons might work (for various values of 'work') in SMP | 
|  | * but they are not certified as MP capable. | 
|  | */ | 
|  | if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) { | 
|  |  | 
|  | if (num_possible_cpus() == 1) | 
|  | goto valid_k7; | 
|  |  | 
|  | /* Athlon 660/661 is valid. */ | 
|  | if ((c->x86_model == 6) && ((c->x86_mask == 0) || | 
|  | (c->x86_mask == 1))) | 
|  | goto valid_k7; | 
|  |  | 
|  | /* Duron 670 is valid */ | 
|  | if ((c->x86_model == 7) && (c->x86_mask == 0)) | 
|  | goto valid_k7; | 
|  |  | 
|  | /* | 
|  | * Athlon 662, Duron 671, and Athlon >model 7 have capability | 
|  | * bit. It's worth noting that the A5 stepping (662) of some | 
|  | * Athlon XP's have the MP bit set. | 
|  | * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for | 
|  | * more. | 
|  | */ | 
|  | if (((c->x86_model == 6) && (c->x86_mask >= 2)) || | 
|  | ((c->x86_model == 7) && (c->x86_mask >= 1)) || | 
|  | (c->x86_model > 7)) | 
|  | if (cpu_has_mp) | 
|  | goto valid_k7; | 
|  |  | 
|  | /* If we get here, not a certified SMP capable AMD system. */ | 
|  | add_taint(TAINT_UNSAFE_SMP); | 
|  | } | 
|  |  | 
|  | valid_k7: | 
|  | ; | 
|  | } | 
|  |  | 
|  | static void __cpuinit smp_checks(void) | 
|  | { | 
|  | if (smp_b_stepping) | 
|  | printk(KERN_WARNING "WARNING: SMP operation may be unreliable" | 
|  | "with B stepping processors.\n"); | 
|  |  | 
|  | /* | 
|  | * Don't taint if we are running SMP kernel on a single non-MP | 
|  | * approved Athlon | 
|  | */ | 
|  | if (tainted & TAINT_UNSAFE_SMP) { | 
|  | if (num_online_cpus()) | 
|  | printk(KERN_INFO "WARNING: This combination of AMD" | 
|  | "processors is not suitable for SMP.\n"); | 
|  | else | 
|  | tainted &= ~TAINT_UNSAFE_SMP; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The bootstrap kernel entry code has set these up. Save them for | 
|  | * a given CPU | 
|  | */ | 
|  |  | 
|  | void __cpuinit smp_store_cpu_info(int id) | 
|  | { | 
|  | struct cpuinfo_x86 *c = &cpu_data(id); | 
|  |  | 
|  | *c = boot_cpu_data; | 
|  | c->cpu_index = id; | 
|  | if (id != 0) | 
|  | identify_secondary_cpu(c); | 
|  | smp_apply_quirks(c); | 
|  | } | 
|  |  | 
|  |  | 
|  | void __cpuinit set_cpu_sibling_map(int cpu) | 
|  | { | 
|  | int i; | 
|  | struct cpuinfo_x86 *c = &cpu_data(cpu); | 
|  |  | 
|  | cpu_set(cpu, cpu_sibling_setup_map); | 
|  |  | 
|  | if (smp_num_siblings > 1) { | 
|  | for_each_cpu_mask_nr(i, cpu_sibling_setup_map) { | 
|  | if (c->phys_proc_id == cpu_data(i).phys_proc_id && | 
|  | c->cpu_core_id == cpu_data(i).cpu_core_id) { | 
|  | cpu_set(i, per_cpu(cpu_sibling_map, cpu)); | 
|  | cpu_set(cpu, per_cpu(cpu_sibling_map, i)); | 
|  | cpu_set(i, per_cpu(cpu_core_map, cpu)); | 
|  | cpu_set(cpu, per_cpu(cpu_core_map, i)); | 
|  | cpu_set(i, c->llc_shared_map); | 
|  | cpu_set(cpu, cpu_data(i).llc_shared_map); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | cpu_set(cpu, per_cpu(cpu_sibling_map, cpu)); | 
|  | } | 
|  |  | 
|  | cpu_set(cpu, c->llc_shared_map); | 
|  |  | 
|  | if (current_cpu_data.x86_max_cores == 1) { | 
|  | per_cpu(cpu_core_map, cpu) = per_cpu(cpu_sibling_map, cpu); | 
|  | c->booted_cores = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | for_each_cpu_mask_nr(i, cpu_sibling_setup_map) { | 
|  | if (per_cpu(cpu_llc_id, cpu) != BAD_APICID && | 
|  | per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i)) { | 
|  | cpu_set(i, c->llc_shared_map); | 
|  | cpu_set(cpu, cpu_data(i).llc_shared_map); | 
|  | } | 
|  | if (c->phys_proc_id == cpu_data(i).phys_proc_id) { | 
|  | cpu_set(i, per_cpu(cpu_core_map, cpu)); | 
|  | cpu_set(cpu, per_cpu(cpu_core_map, i)); | 
|  | /* | 
|  | *  Does this new cpu bringup a new core? | 
|  | */ | 
|  | if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1) { | 
|  | /* | 
|  | * for each core in package, increment | 
|  | * the booted_cores for this new cpu | 
|  | */ | 
|  | if (first_cpu(per_cpu(cpu_sibling_map, i)) == i) | 
|  | c->booted_cores++; | 
|  | /* | 
|  | * increment the core count for all | 
|  | * the other cpus in this package | 
|  | */ | 
|  | if (i != cpu) | 
|  | cpu_data(i).booted_cores++; | 
|  | } else if (i != cpu && !c->booted_cores) | 
|  | c->booted_cores = cpu_data(i).booted_cores; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* maps the cpu to the sched domain representing multi-core */ | 
|  | cpumask_t cpu_coregroup_map(int cpu) | 
|  | { | 
|  | struct cpuinfo_x86 *c = &cpu_data(cpu); | 
|  | /* | 
|  | * For perf, we return last level cache shared map. | 
|  | * And for power savings, we return cpu_core_map | 
|  | */ | 
|  | if (sched_mc_power_savings || sched_smt_power_savings) | 
|  | return per_cpu(cpu_core_map, cpu); | 
|  | else | 
|  | return c->llc_shared_map; | 
|  | } | 
|  |  | 
|  | static void impress_friends(void) | 
|  | { | 
|  | int cpu; | 
|  | unsigned long bogosum = 0; | 
|  | /* | 
|  | * Allow the user to impress friends. | 
|  | */ | 
|  | pr_debug("Before bogomips.\n"); | 
|  | for_each_possible_cpu(cpu) | 
|  | if (cpu_isset(cpu, cpu_callout_map)) | 
|  | bogosum += cpu_data(cpu).loops_per_jiffy; | 
|  | printk(KERN_INFO | 
|  | "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", | 
|  | num_online_cpus(), | 
|  | bogosum/(500000/HZ), | 
|  | (bogosum/(5000/HZ))%100); | 
|  |  | 
|  | pr_debug("Before bogocount - setting activated=1.\n"); | 
|  | } | 
|  |  | 
|  | static inline void __inquire_remote_apic(int apicid) | 
|  | { | 
|  | unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; | 
|  | char *names[] = { "ID", "VERSION", "SPIV" }; | 
|  | int timeout; | 
|  | u32 status; | 
|  |  | 
|  | printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(regs); i++) { | 
|  | printk(KERN_INFO "... APIC #%d %s: ", apicid, names[i]); | 
|  |  | 
|  | /* | 
|  | * Wait for idle. | 
|  | */ | 
|  | status = safe_apic_wait_icr_idle(); | 
|  | if (status) | 
|  | printk(KERN_CONT | 
|  | "a previous APIC delivery may have failed\n"); | 
|  |  | 
|  | apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); | 
|  | apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]); | 
|  |  | 
|  | timeout = 0; | 
|  | do { | 
|  | udelay(100); | 
|  | status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; | 
|  | } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); | 
|  |  | 
|  | switch (status) { | 
|  | case APIC_ICR_RR_VALID: | 
|  | status = apic_read(APIC_RRR); | 
|  | printk(KERN_CONT "%08x\n", status); | 
|  | break; | 
|  | default: | 
|  | printk(KERN_CONT "failed\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef WAKE_SECONDARY_VIA_NMI | 
|  | /* | 
|  | * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal | 
|  | * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this | 
|  | * won't ... remember to clear down the APIC, etc later. | 
|  | */ | 
|  | static int __devinit | 
|  | wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip) | 
|  | { | 
|  | unsigned long send_status, accept_status = 0; | 
|  | int maxlvt; | 
|  |  | 
|  | /* Target chip */ | 
|  | apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid)); | 
|  |  | 
|  | /* Boot on the stack */ | 
|  | /* Kick the second */ | 
|  | apic_write(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL); | 
|  |  | 
|  | pr_debug("Waiting for send to finish...\n"); | 
|  | send_status = safe_apic_wait_icr_idle(); | 
|  |  | 
|  | /* | 
|  | * Give the other CPU some time to accept the IPI. | 
|  | */ | 
|  | udelay(200); | 
|  | maxlvt = lapic_get_maxlvt(); | 
|  | if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */ | 
|  | apic_write(APIC_ESR, 0); | 
|  | accept_status = (apic_read(APIC_ESR) & 0xEF); | 
|  | pr_debug("NMI sent.\n"); | 
|  |  | 
|  | if (send_status) | 
|  | printk(KERN_ERR "APIC never delivered???\n"); | 
|  | if (accept_status) | 
|  | printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status); | 
|  |  | 
|  | return (send_status | accept_status); | 
|  | } | 
|  | #endif	/* WAKE_SECONDARY_VIA_NMI */ | 
|  |  | 
|  | #ifdef WAKE_SECONDARY_VIA_INIT | 
|  | static int __devinit | 
|  | wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip) | 
|  | { | 
|  | unsigned long send_status, accept_status = 0; | 
|  | int maxlvt, num_starts, j; | 
|  |  | 
|  | if (get_uv_system_type() == UV_NON_UNIQUE_APIC) { | 
|  | send_status = uv_wakeup_secondary(phys_apicid, start_eip); | 
|  | atomic_set(&init_deasserted, 1); | 
|  | return send_status; | 
|  | } | 
|  |  | 
|  | maxlvt = lapic_get_maxlvt(); | 
|  |  | 
|  | /* | 
|  | * Be paranoid about clearing APIC errors. | 
|  | */ | 
|  | if (APIC_INTEGRATED(apic_version[phys_apicid])) { | 
|  | if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */ | 
|  | apic_write(APIC_ESR, 0); | 
|  | apic_read(APIC_ESR); | 
|  | } | 
|  |  | 
|  | pr_debug("Asserting INIT.\n"); | 
|  |  | 
|  | /* | 
|  | * Turn INIT on target chip | 
|  | */ | 
|  | apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); | 
|  |  | 
|  | /* | 
|  | * Send IPI | 
|  | */ | 
|  | apic_write(APIC_ICR, | 
|  | APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT); | 
|  |  | 
|  | pr_debug("Waiting for send to finish...\n"); | 
|  | send_status = safe_apic_wait_icr_idle(); | 
|  |  | 
|  | mdelay(10); | 
|  |  | 
|  | pr_debug("Deasserting INIT.\n"); | 
|  |  | 
|  | /* Target chip */ | 
|  | apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); | 
|  |  | 
|  | /* Send IPI */ | 
|  | apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT); | 
|  |  | 
|  | pr_debug("Waiting for send to finish...\n"); | 
|  | send_status = safe_apic_wait_icr_idle(); | 
|  |  | 
|  | mb(); | 
|  | atomic_set(&init_deasserted, 1); | 
|  |  | 
|  | /* | 
|  | * Should we send STARTUP IPIs ? | 
|  | * | 
|  | * Determine this based on the APIC version. | 
|  | * If we don't have an integrated APIC, don't send the STARTUP IPIs. | 
|  | */ | 
|  | if (APIC_INTEGRATED(apic_version[phys_apicid])) | 
|  | num_starts = 2; | 
|  | else | 
|  | num_starts = 0; | 
|  |  | 
|  | /* | 
|  | * Paravirt / VMI wants a startup IPI hook here to set up the | 
|  | * target processor state. | 
|  | */ | 
|  | startup_ipi_hook(phys_apicid, (unsigned long) start_secondary, | 
|  | (unsigned long)stack_start.sp); | 
|  |  | 
|  | /* | 
|  | * Run STARTUP IPI loop. | 
|  | */ | 
|  | pr_debug("#startup loops: %d.\n", num_starts); | 
|  |  | 
|  | for (j = 1; j <= num_starts; j++) { | 
|  | pr_debug("Sending STARTUP #%d.\n", j); | 
|  | if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */ | 
|  | apic_write(APIC_ESR, 0); | 
|  | apic_read(APIC_ESR); | 
|  | pr_debug("After apic_write.\n"); | 
|  |  | 
|  | /* | 
|  | * STARTUP IPI | 
|  | */ | 
|  |  | 
|  | /* Target chip */ | 
|  | apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); | 
|  |  | 
|  | /* Boot on the stack */ | 
|  | /* Kick the second */ | 
|  | apic_write(APIC_ICR, APIC_DM_STARTUP | (start_eip >> 12)); | 
|  |  | 
|  | /* | 
|  | * Give the other CPU some time to accept the IPI. | 
|  | */ | 
|  | udelay(300); | 
|  |  | 
|  | pr_debug("Startup point 1.\n"); | 
|  |  | 
|  | pr_debug("Waiting for send to finish...\n"); | 
|  | send_status = safe_apic_wait_icr_idle(); | 
|  |  | 
|  | /* | 
|  | * Give the other CPU some time to accept the IPI. | 
|  | */ | 
|  | udelay(200); | 
|  | if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */ | 
|  | apic_write(APIC_ESR, 0); | 
|  | accept_status = (apic_read(APIC_ESR) & 0xEF); | 
|  | if (send_status || accept_status) | 
|  | break; | 
|  | } | 
|  | pr_debug("After Startup.\n"); | 
|  |  | 
|  | if (send_status) | 
|  | printk(KERN_ERR "APIC never delivered???\n"); | 
|  | if (accept_status) | 
|  | printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status); | 
|  |  | 
|  | return (send_status | accept_status); | 
|  | } | 
|  | #endif	/* WAKE_SECONDARY_VIA_INIT */ | 
|  |  | 
|  | struct create_idle { | 
|  | struct work_struct work; | 
|  | struct task_struct *idle; | 
|  | struct completion done; | 
|  | int cpu; | 
|  | }; | 
|  |  | 
|  | static void __cpuinit do_fork_idle(struct work_struct *work) | 
|  | { | 
|  | struct create_idle *c_idle = | 
|  | container_of(work, struct create_idle, work); | 
|  |  | 
|  | c_idle->idle = fork_idle(c_idle->cpu); | 
|  | complete(&c_idle->done); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* | 
|  | * Allocate node local memory for the AP pda. | 
|  | * | 
|  | * Must be called after the _cpu_pda pointer table is initialized. | 
|  | */ | 
|  | int __cpuinit get_local_pda(int cpu) | 
|  | { | 
|  | struct x8664_pda *oldpda, *newpda; | 
|  | unsigned long size = sizeof(struct x8664_pda); | 
|  | int node = cpu_to_node(cpu); | 
|  |  | 
|  | if (cpu_pda(cpu) && !cpu_pda(cpu)->in_bootmem) | 
|  | return 0; | 
|  |  | 
|  | oldpda = cpu_pda(cpu); | 
|  | newpda = kmalloc_node(size, GFP_ATOMIC, node); | 
|  | if (!newpda) { | 
|  | printk(KERN_ERR "Could not allocate node local PDA " | 
|  | "for CPU %d on node %d\n", cpu, node); | 
|  |  | 
|  | if (oldpda) | 
|  | return 0;	/* have a usable pda */ | 
|  | else | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (oldpda) { | 
|  | memcpy(newpda, oldpda, size); | 
|  | if (!after_bootmem) | 
|  | free_bootmem((unsigned long)oldpda, size); | 
|  | } | 
|  |  | 
|  | newpda->in_bootmem = 0; | 
|  | cpu_pda(cpu) = newpda; | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_X86_64 */ | 
|  |  | 
|  | static int __cpuinit do_boot_cpu(int apicid, int cpu) | 
|  | /* | 
|  | * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad | 
|  | * (ie clustered apic addressing mode), this is a LOGICAL apic ID. | 
|  | * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu. | 
|  | */ | 
|  | { | 
|  | unsigned long boot_error = 0; | 
|  | int timeout; | 
|  | unsigned long start_ip; | 
|  | unsigned short nmi_high = 0, nmi_low = 0; | 
|  | struct create_idle c_idle = { | 
|  | .cpu = cpu, | 
|  | .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done), | 
|  | }; | 
|  | INIT_WORK(&c_idle.work, do_fork_idle); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* Allocate node local memory for AP pdas */ | 
|  | if (cpu > 0) { | 
|  | boot_error = get_local_pda(cpu); | 
|  | if (boot_error) | 
|  | goto restore_state; | 
|  | /* if can't get pda memory, can't start cpu */ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | alternatives_smp_switch(1); | 
|  |  | 
|  | c_idle.idle = get_idle_for_cpu(cpu); | 
|  |  | 
|  | /* | 
|  | * We can't use kernel_thread since we must avoid to | 
|  | * reschedule the child. | 
|  | */ | 
|  | if (c_idle.idle) { | 
|  | c_idle.idle->thread.sp = (unsigned long) (((struct pt_regs *) | 
|  | (THREAD_SIZE +  task_stack_page(c_idle.idle))) - 1); | 
|  | init_idle(c_idle.idle, cpu); | 
|  | goto do_rest; | 
|  | } | 
|  |  | 
|  | if (!keventd_up() || current_is_keventd()) | 
|  | c_idle.work.func(&c_idle.work); | 
|  | else { | 
|  | schedule_work(&c_idle.work); | 
|  | wait_for_completion(&c_idle.done); | 
|  | } | 
|  |  | 
|  | if (IS_ERR(c_idle.idle)) { | 
|  | printk("failed fork for CPU %d\n", cpu); | 
|  | return PTR_ERR(c_idle.idle); | 
|  | } | 
|  |  | 
|  | set_idle_for_cpu(cpu, c_idle.idle); | 
|  | do_rest: | 
|  | #ifdef CONFIG_X86_32 | 
|  | per_cpu(current_task, cpu) = c_idle.idle; | 
|  | init_gdt(cpu); | 
|  | /* Stack for startup_32 can be just as for start_secondary onwards */ | 
|  | irq_ctx_init(cpu); | 
|  | #else | 
|  | cpu_pda(cpu)->pcurrent = c_idle.idle; | 
|  | clear_tsk_thread_flag(c_idle.idle, TIF_FORK); | 
|  | #endif | 
|  | early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu); | 
|  | initial_code = (unsigned long)start_secondary; | 
|  | stack_start.sp = (void *) c_idle.idle->thread.sp; | 
|  |  | 
|  | /* start_ip had better be page-aligned! */ | 
|  | start_ip = setup_trampoline(); | 
|  |  | 
|  | /* So we see what's up   */ | 
|  | printk(KERN_INFO "Booting processor %d/%d ip %lx\n", | 
|  | cpu, apicid, start_ip); | 
|  |  | 
|  | /* | 
|  | * This grunge runs the startup process for | 
|  | * the targeted processor. | 
|  | */ | 
|  |  | 
|  | atomic_set(&init_deasserted, 0); | 
|  |  | 
|  | if (get_uv_system_type() != UV_NON_UNIQUE_APIC) { | 
|  |  | 
|  | pr_debug("Setting warm reset code and vector.\n"); | 
|  |  | 
|  | store_NMI_vector(&nmi_high, &nmi_low); | 
|  |  | 
|  | smpboot_setup_warm_reset_vector(start_ip); | 
|  | /* | 
|  | * Be paranoid about clearing APIC errors. | 
|  | */ | 
|  | apic_write(APIC_ESR, 0); | 
|  | apic_read(APIC_ESR); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Starting actual IPI sequence... | 
|  | */ | 
|  | boot_error = wakeup_secondary_cpu(apicid, start_ip); | 
|  |  | 
|  | if (!boot_error) { | 
|  | /* | 
|  | * allow APs to start initializing. | 
|  | */ | 
|  | pr_debug("Before Callout %d.\n", cpu); | 
|  | cpu_set(cpu, cpu_callout_map); | 
|  | pr_debug("After Callout %d.\n", cpu); | 
|  |  | 
|  | /* | 
|  | * Wait 5s total for a response | 
|  | */ | 
|  | for (timeout = 0; timeout < 50000; timeout++) { | 
|  | if (cpu_isset(cpu, cpu_callin_map)) | 
|  | break;	/* It has booted */ | 
|  | udelay(100); | 
|  | } | 
|  |  | 
|  | if (cpu_isset(cpu, cpu_callin_map)) { | 
|  | /* number CPUs logically, starting from 1 (BSP is 0) */ | 
|  | pr_debug("OK.\n"); | 
|  | printk(KERN_INFO "CPU%d: ", cpu); | 
|  | print_cpu_info(&cpu_data(cpu)); | 
|  | pr_debug("CPU has booted.\n"); | 
|  | } else { | 
|  | boot_error = 1; | 
|  | if (*((volatile unsigned char *)trampoline_base) | 
|  | == 0xA5) | 
|  | /* trampoline started but...? */ | 
|  | printk(KERN_ERR "Stuck ??\n"); | 
|  | else | 
|  | /* trampoline code not run */ | 
|  | printk(KERN_ERR "Not responding.\n"); | 
|  | if (get_uv_system_type() != UV_NON_UNIQUE_APIC) | 
|  | inquire_remote_apic(apicid); | 
|  | } | 
|  | } | 
|  | #ifdef CONFIG_X86_64 | 
|  | restore_state: | 
|  | #endif | 
|  | if (boot_error) { | 
|  | /* Try to put things back the way they were before ... */ | 
|  | numa_remove_cpu(cpu); /* was set by numa_add_cpu */ | 
|  | cpu_clear(cpu, cpu_callout_map); /* was set by do_boot_cpu() */ | 
|  | cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */ | 
|  | cpu_clear(cpu, cpu_present_map); | 
|  | per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID; | 
|  | } | 
|  |  | 
|  | /* mark "stuck" area as not stuck */ | 
|  | *((volatile unsigned long *)trampoline_base) = 0; | 
|  |  | 
|  | /* | 
|  | * Cleanup possible dangling ends... | 
|  | */ | 
|  | smpboot_restore_warm_reset_vector(); | 
|  |  | 
|  | return boot_error; | 
|  | } | 
|  |  | 
|  | int __cpuinit native_cpu_up(unsigned int cpu) | 
|  | { | 
|  | int apicid = cpu_present_to_apicid(cpu); | 
|  | unsigned long flags; | 
|  | int err; | 
|  |  | 
|  | WARN_ON(irqs_disabled()); | 
|  |  | 
|  | pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu); | 
|  |  | 
|  | if (apicid == BAD_APICID || apicid == boot_cpu_physical_apicid || | 
|  | !physid_isset(apicid, phys_cpu_present_map)) { | 
|  | printk(KERN_ERR "%s: bad cpu %d\n", __func__, cpu); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Already booted CPU? | 
|  | */ | 
|  | if (cpu_isset(cpu, cpu_callin_map)) { | 
|  | pr_debug("do_boot_cpu %d Already started\n", cpu); | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save current MTRR state in case it was changed since early boot | 
|  | * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: | 
|  | */ | 
|  | mtrr_save_state(); | 
|  |  | 
|  | per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* init low mem mapping */ | 
|  | clone_pgd_range(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY, | 
|  | min_t(unsigned long, KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY)); | 
|  | flush_tlb_all(); | 
|  | low_mappings = 1; | 
|  |  | 
|  | err = do_boot_cpu(apicid, cpu); | 
|  |  | 
|  | zap_low_mappings(); | 
|  | low_mappings = 0; | 
|  | #else | 
|  | err = do_boot_cpu(apicid, cpu); | 
|  | #endif | 
|  | if (err) { | 
|  | pr_debug("do_boot_cpu failed %d\n", err); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check TSC synchronization with the AP (keep irqs disabled | 
|  | * while doing so): | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | check_tsc_sync_source(cpu); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | while (!cpu_online(cpu)) { | 
|  | cpu_relax(); | 
|  | touch_nmi_watchdog(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fall back to non SMP mode after errors. | 
|  | * | 
|  | * RED-PEN audit/test this more. I bet there is more state messed up here. | 
|  | */ | 
|  | static __init void disable_smp(void) | 
|  | { | 
|  | cpu_present_map = cpumask_of_cpu(0); | 
|  | cpu_possible_map = cpumask_of_cpu(0); | 
|  | smpboot_clear_io_apic_irqs(); | 
|  |  | 
|  | if (smp_found_config) | 
|  | physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); | 
|  | else | 
|  | physid_set_mask_of_physid(0, &phys_cpu_present_map); | 
|  | map_cpu_to_logical_apicid(); | 
|  | cpu_set(0, per_cpu(cpu_sibling_map, 0)); | 
|  | cpu_set(0, per_cpu(cpu_core_map, 0)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Various sanity checks. | 
|  | */ | 
|  | static int __init smp_sanity_check(unsigned max_cpus) | 
|  | { | 
|  | preempt_disable(); | 
|  | if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) { | 
|  | printk(KERN_WARNING "weird, boot CPU (#%d) not listed" | 
|  | "by the BIOS.\n", hard_smp_processor_id()); | 
|  | physid_set(hard_smp_processor_id(), phys_cpu_present_map); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we couldn't find an SMP configuration at boot time, | 
|  | * get out of here now! | 
|  | */ | 
|  | if (!smp_found_config && !acpi_lapic) { | 
|  | preempt_enable(); | 
|  | printk(KERN_NOTICE "SMP motherboard not detected.\n"); | 
|  | disable_smp(); | 
|  | if (APIC_init_uniprocessor()) | 
|  | printk(KERN_NOTICE "Local APIC not detected." | 
|  | " Using dummy APIC emulation.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Should not be necessary because the MP table should list the boot | 
|  | * CPU too, but we do it for the sake of robustness anyway. | 
|  | */ | 
|  | if (!check_phys_apicid_present(boot_cpu_physical_apicid)) { | 
|  | printk(KERN_NOTICE | 
|  | "weird, boot CPU (#%d) not listed by the BIOS.\n", | 
|  | boot_cpu_physical_apicid); | 
|  | physid_set(hard_smp_processor_id(), phys_cpu_present_map); | 
|  | } | 
|  | preempt_enable(); | 
|  |  | 
|  | /* | 
|  | * If we couldn't find a local APIC, then get out of here now! | 
|  | */ | 
|  | if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && | 
|  | !cpu_has_apic) { | 
|  | printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n", | 
|  | boot_cpu_physical_apicid); | 
|  | printk(KERN_ERR "... forcing use of dummy APIC emulation." | 
|  | "(tell your hw vendor)\n"); | 
|  | smpboot_clear_io_apic(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | verify_local_APIC(); | 
|  |  | 
|  | /* | 
|  | * If SMP should be disabled, then really disable it! | 
|  | */ | 
|  | if (!max_cpus) { | 
|  | printk(KERN_INFO "SMP mode deactivated.\n"); | 
|  | smpboot_clear_io_apic(); | 
|  |  | 
|  | localise_nmi_watchdog(); | 
|  |  | 
|  | connect_bsp_APIC(); | 
|  | setup_local_APIC(); | 
|  | end_local_APIC_setup(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init smp_cpu_index_default(void) | 
|  | { | 
|  | int i; | 
|  | struct cpuinfo_x86 *c; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | c = &cpu_data(i); | 
|  | /* mark all to hotplug */ | 
|  | c->cpu_index = NR_CPUS; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare for SMP bootup.  The MP table or ACPI has been read | 
|  | * earlier.  Just do some sanity checking here and enable APIC mode. | 
|  | */ | 
|  | void __init native_smp_prepare_cpus(unsigned int max_cpus) | 
|  | { | 
|  | preempt_disable(); | 
|  | smp_cpu_index_default(); | 
|  | current_cpu_data = boot_cpu_data; | 
|  | cpu_callin_map = cpumask_of_cpu(0); | 
|  | mb(); | 
|  | /* | 
|  | * Setup boot CPU information | 
|  | */ | 
|  | smp_store_cpu_info(0); /* Final full version of the data */ | 
|  | boot_cpu_logical_apicid = logical_smp_processor_id(); | 
|  | current_thread_info()->cpu = 0;  /* needed? */ | 
|  | set_cpu_sibling_map(0); | 
|  |  | 
|  | if (smp_sanity_check(max_cpus) < 0) { | 
|  | printk(KERN_INFO "SMP disabled\n"); | 
|  | disable_smp(); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | preempt_disable(); | 
|  | if (GET_APIC_ID(read_apic_id()) != boot_cpu_physical_apicid) { | 
|  | panic("Boot APIC ID in local APIC unexpected (%d vs %d)", | 
|  | GET_APIC_ID(read_apic_id()), boot_cpu_physical_apicid); | 
|  | /* Or can we switch back to PIC here? */ | 
|  | } | 
|  | preempt_enable(); | 
|  |  | 
|  | connect_bsp_APIC(); | 
|  |  | 
|  | /* | 
|  | * Switch from PIC to APIC mode. | 
|  | */ | 
|  | setup_local_APIC(); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* | 
|  | * Enable IO APIC before setting up error vector | 
|  | */ | 
|  | if (!skip_ioapic_setup && nr_ioapics) | 
|  | enable_IO_APIC(); | 
|  | #endif | 
|  | end_local_APIC_setup(); | 
|  |  | 
|  | map_cpu_to_logical_apicid(); | 
|  |  | 
|  | setup_portio_remap(); | 
|  |  | 
|  | smpboot_setup_io_apic(); | 
|  | /* | 
|  | * Set up local APIC timer on boot CPU. | 
|  | */ | 
|  |  | 
|  | printk(KERN_INFO "CPU%d: ", 0); | 
|  | print_cpu_info(&cpu_data(0)); | 
|  | setup_boot_clock(); | 
|  | out: | 
|  | preempt_enable(); | 
|  | } | 
|  | /* | 
|  | * Early setup to make printk work. | 
|  | */ | 
|  | void __init native_smp_prepare_boot_cpu(void) | 
|  | { | 
|  | int me = smp_processor_id(); | 
|  | #ifdef CONFIG_X86_32 | 
|  | init_gdt(me); | 
|  | #endif | 
|  | switch_to_new_gdt(); | 
|  | /* already set me in cpu_online_map in boot_cpu_init() */ | 
|  | cpu_set(me, cpu_callout_map); | 
|  | per_cpu(cpu_state, me) = CPU_ONLINE; | 
|  | } | 
|  |  | 
|  | void __init native_smp_cpus_done(unsigned int max_cpus) | 
|  | { | 
|  | pr_debug("Boot done.\n"); | 
|  |  | 
|  | impress_friends(); | 
|  | smp_checks(); | 
|  | #ifdef CONFIG_X86_IO_APIC | 
|  | setup_ioapic_dest(); | 
|  | #endif | 
|  | check_nmi_watchdog(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  |  | 
|  | static void remove_siblinginfo(int cpu) | 
|  | { | 
|  | int sibling; | 
|  | struct cpuinfo_x86 *c = &cpu_data(cpu); | 
|  |  | 
|  | for_each_cpu_mask_nr(sibling, per_cpu(cpu_core_map, cpu)) { | 
|  | cpu_clear(cpu, per_cpu(cpu_core_map, sibling)); | 
|  | /*/ | 
|  | * last thread sibling in this cpu core going down | 
|  | */ | 
|  | if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1) | 
|  | cpu_data(sibling).booted_cores--; | 
|  | } | 
|  |  | 
|  | for_each_cpu_mask_nr(sibling, per_cpu(cpu_sibling_map, cpu)) | 
|  | cpu_clear(cpu, per_cpu(cpu_sibling_map, sibling)); | 
|  | cpus_clear(per_cpu(cpu_sibling_map, cpu)); | 
|  | cpus_clear(per_cpu(cpu_core_map, cpu)); | 
|  | c->phys_proc_id = 0; | 
|  | c->cpu_core_id = 0; | 
|  | cpu_clear(cpu, cpu_sibling_setup_map); | 
|  | } | 
|  |  | 
|  | static int additional_cpus __initdata = -1; | 
|  |  | 
|  | static __init int setup_additional_cpus(char *s) | 
|  | { | 
|  | return s && get_option(&s, &additional_cpus) ? 0 : -EINVAL; | 
|  | } | 
|  | early_param("additional_cpus", setup_additional_cpus); | 
|  |  | 
|  | /* | 
|  | * cpu_possible_map should be static, it cannot change as cpu's | 
|  | * are onlined, or offlined. The reason is per-cpu data-structures | 
|  | * are allocated by some modules at init time, and dont expect to | 
|  | * do this dynamically on cpu arrival/departure. | 
|  | * cpu_present_map on the other hand can change dynamically. | 
|  | * In case when cpu_hotplug is not compiled, then we resort to current | 
|  | * behaviour, which is cpu_possible == cpu_present. | 
|  | * - Ashok Raj | 
|  | * | 
|  | * Three ways to find out the number of additional hotplug CPUs: | 
|  | * - If the BIOS specified disabled CPUs in ACPI/mptables use that. | 
|  | * - The user can overwrite it with additional_cpus=NUM | 
|  | * - Otherwise don't reserve additional CPUs. | 
|  | * We do this because additional CPUs waste a lot of memory. | 
|  | * -AK | 
|  | */ | 
|  | __init void prefill_possible_map(void) | 
|  | { | 
|  | int i; | 
|  | int possible; | 
|  |  | 
|  | /* no processor from mptable or madt */ | 
|  | if (!num_processors) | 
|  | num_processors = 1; | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | if (additional_cpus == -1) { | 
|  | if (disabled_cpus > 0) | 
|  | additional_cpus = disabled_cpus; | 
|  | else | 
|  | additional_cpus = 0; | 
|  | } | 
|  | #else | 
|  | additional_cpus = 0; | 
|  | #endif | 
|  | possible = num_processors + additional_cpus; | 
|  | if (possible > NR_CPUS) | 
|  | possible = NR_CPUS; | 
|  |  | 
|  | printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n", | 
|  | possible, max_t(int, possible - num_processors, 0)); | 
|  |  | 
|  | for (i = 0; i < possible; i++) | 
|  | cpu_set(i, cpu_possible_map); | 
|  |  | 
|  | nr_cpu_ids = possible; | 
|  | } | 
|  |  | 
|  | static void __ref remove_cpu_from_maps(int cpu) | 
|  | { | 
|  | cpu_clear(cpu, cpu_online_map); | 
|  | cpu_clear(cpu, cpu_callout_map); | 
|  | cpu_clear(cpu, cpu_callin_map); | 
|  | /* was set by cpu_init() */ | 
|  | cpu_clear(cpu, cpu_initialized); | 
|  | numa_remove_cpu(cpu); | 
|  | } | 
|  |  | 
|  | int __cpu_disable(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | /* | 
|  | * Perhaps use cpufreq to drop frequency, but that could go | 
|  | * into generic code. | 
|  | * | 
|  | * We won't take down the boot processor on i386 due to some | 
|  | * interrupts only being able to be serviced by the BSP. | 
|  | * Especially so if we're not using an IOAPIC	-zwane | 
|  | */ | 
|  | if (cpu == 0) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (nmi_watchdog == NMI_LOCAL_APIC) | 
|  | stop_apic_nmi_watchdog(NULL); | 
|  | clear_local_APIC(); | 
|  |  | 
|  | /* | 
|  | * HACK: | 
|  | * Allow any queued timer interrupts to get serviced | 
|  | * This is only a temporary solution until we cleanup | 
|  | * fixup_irqs as we do for IA64. | 
|  | */ | 
|  | local_irq_enable(); | 
|  | mdelay(1); | 
|  |  | 
|  | local_irq_disable(); | 
|  | remove_siblinginfo(cpu); | 
|  |  | 
|  | /* It's now safe to remove this processor from the online map */ | 
|  | remove_cpu_from_maps(cpu); | 
|  | fixup_irqs(cpu_online_map); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __cpu_die(unsigned int cpu) | 
|  | { | 
|  | /* We don't do anything here: idle task is faking death itself. */ | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < 10; i++) { | 
|  | /* They ack this in play_dead by setting CPU_DEAD */ | 
|  | if (per_cpu(cpu_state, cpu) == CPU_DEAD) { | 
|  | printk(KERN_INFO "CPU %d is now offline\n", cpu); | 
|  | if (1 == num_online_cpus()) | 
|  | alternatives_smp_switch(0); | 
|  | return; | 
|  | } | 
|  | msleep(100); | 
|  | } | 
|  | printk(KERN_ERR "CPU %u didn't die...\n", cpu); | 
|  | } | 
|  | #else /* ... !CONFIG_HOTPLUG_CPU */ | 
|  | int __cpu_disable(void) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | void __cpu_die(unsigned int cpu) | 
|  | { | 
|  | /* We said "no" in __cpu_disable */ | 
|  | BUG(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * If the BIOS enumerates physical processors before logical, | 
|  | * maxcpus=N at enumeration-time can be used to disable HT. | 
|  | */ | 
|  | static int __init parse_maxcpus(char *arg) | 
|  | { | 
|  | extern unsigned int maxcpus; | 
|  |  | 
|  | if (arg) | 
|  | maxcpus = simple_strtoul(arg, NULL, 0); | 
|  | return 0; | 
|  | } | 
|  | early_param("maxcpus", parse_maxcpus); |