| /* | 
 |  *  linux/kernel/timer.c | 
 |  * | 
 |  *  Kernel internal timers, kernel timekeeping, basic process system calls | 
 |  * | 
 |  *  Copyright (C) 1991, 1992  Linus Torvalds | 
 |  * | 
 |  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better. | 
 |  * | 
 |  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96 | 
 |  *              "A Kernel Model for Precision Timekeeping" by Dave Mills | 
 |  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to | 
 |  *              serialize accesses to xtime/lost_ticks). | 
 |  *                              Copyright (C) 1998  Andrea Arcangeli | 
 |  *  1999-03-10  Improved NTP compatibility by Ulrich Windl | 
 |  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love | 
 |  *  2000-10-05  Implemented scalable SMP per-CPU timer handling. | 
 |  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar | 
 |  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar | 
 |  */ | 
 |  | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/module.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/thread_info.h> | 
 | #include <linux/time.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/posix-timers.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/delay.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 | #include <asm/unistd.h> | 
 | #include <asm/div64.h> | 
 | #include <asm/timex.h> | 
 | #include <asm/io.h> | 
 |  | 
 | #ifdef CONFIG_TIME_INTERPOLATION | 
 | static void time_interpolator_update(long delta_nsec); | 
 | #else | 
 | #define time_interpolator_update(x) | 
 | #endif | 
 |  | 
 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; | 
 |  | 
 | EXPORT_SYMBOL(jiffies_64); | 
 |  | 
 | /* | 
 |  * per-CPU timer vector definitions: | 
 |  */ | 
 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) | 
 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) | 
 | #define TVN_SIZE (1 << TVN_BITS) | 
 | #define TVR_SIZE (1 << TVR_BITS) | 
 | #define TVN_MASK (TVN_SIZE - 1) | 
 | #define TVR_MASK (TVR_SIZE - 1) | 
 |  | 
 | typedef struct tvec_s { | 
 | 	struct list_head vec[TVN_SIZE]; | 
 | } tvec_t; | 
 |  | 
 | typedef struct tvec_root_s { | 
 | 	struct list_head vec[TVR_SIZE]; | 
 | } tvec_root_t; | 
 |  | 
 | struct tvec_t_base_s { | 
 | 	spinlock_t lock; | 
 | 	struct timer_list *running_timer; | 
 | 	unsigned long timer_jiffies; | 
 | 	tvec_root_t tv1; | 
 | 	tvec_t tv2; | 
 | 	tvec_t tv3; | 
 | 	tvec_t tv4; | 
 | 	tvec_t tv5; | 
 | } ____cacheline_aligned_in_smp; | 
 |  | 
 | typedef struct tvec_t_base_s tvec_base_t; | 
 |  | 
 | tvec_base_t boot_tvec_bases; | 
 | EXPORT_SYMBOL(boot_tvec_bases); | 
 | static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = { &boot_tvec_bases }; | 
 |  | 
 | static inline void set_running_timer(tvec_base_t *base, | 
 | 					struct timer_list *timer) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	base->running_timer = timer; | 
 | #endif | 
 | } | 
 |  | 
 | static void internal_add_timer(tvec_base_t *base, struct timer_list *timer) | 
 | { | 
 | 	unsigned long expires = timer->expires; | 
 | 	unsigned long idx = expires - base->timer_jiffies; | 
 | 	struct list_head *vec; | 
 |  | 
 | 	if (idx < TVR_SIZE) { | 
 | 		int i = expires & TVR_MASK; | 
 | 		vec = base->tv1.vec + i; | 
 | 	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) { | 
 | 		int i = (expires >> TVR_BITS) & TVN_MASK; | 
 | 		vec = base->tv2.vec + i; | 
 | 	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { | 
 | 		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; | 
 | 		vec = base->tv3.vec + i; | 
 | 	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { | 
 | 		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; | 
 | 		vec = base->tv4.vec + i; | 
 | 	} else if ((signed long) idx < 0) { | 
 | 		/* | 
 | 		 * Can happen if you add a timer with expires == jiffies, | 
 | 		 * or you set a timer to go off in the past | 
 | 		 */ | 
 | 		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); | 
 | 	} else { | 
 | 		int i; | 
 | 		/* If the timeout is larger than 0xffffffff on 64-bit | 
 | 		 * architectures then we use the maximum timeout: | 
 | 		 */ | 
 | 		if (idx > 0xffffffffUL) { | 
 | 			idx = 0xffffffffUL; | 
 | 			expires = idx + base->timer_jiffies; | 
 | 		} | 
 | 		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; | 
 | 		vec = base->tv5.vec + i; | 
 | 	} | 
 | 	/* | 
 | 	 * Timers are FIFO: | 
 | 	 */ | 
 | 	list_add_tail(&timer->entry, vec); | 
 | } | 
 |  | 
 | /*** | 
 |  * init_timer - initialize a timer. | 
 |  * @timer: the timer to be initialized | 
 |  * | 
 |  * init_timer() must be done to a timer prior calling *any* of the | 
 |  * other timer functions. | 
 |  */ | 
 | void fastcall init_timer(struct timer_list *timer) | 
 | { | 
 | 	timer->entry.next = NULL; | 
 | 	timer->base = __raw_get_cpu_var(tvec_bases); | 
 | } | 
 | EXPORT_SYMBOL(init_timer); | 
 |  | 
 | static inline void detach_timer(struct timer_list *timer, | 
 | 					int clear_pending) | 
 | { | 
 | 	struct list_head *entry = &timer->entry; | 
 |  | 
 | 	__list_del(entry->prev, entry->next); | 
 | 	if (clear_pending) | 
 | 		entry->next = NULL; | 
 | 	entry->prev = LIST_POISON2; | 
 | } | 
 |  | 
 | /* | 
 |  * We are using hashed locking: holding per_cpu(tvec_bases).lock | 
 |  * means that all timers which are tied to this base via timer->base are | 
 |  * locked, and the base itself is locked too. | 
 |  * | 
 |  * So __run_timers/migrate_timers can safely modify all timers which could | 
 |  * be found on ->tvX lists. | 
 |  * | 
 |  * When the timer's base is locked, and the timer removed from list, it is | 
 |  * possible to set timer->base = NULL and drop the lock: the timer remains | 
 |  * locked. | 
 |  */ | 
 | static tvec_base_t *lock_timer_base(struct timer_list *timer, | 
 | 					unsigned long *flags) | 
 | { | 
 | 	tvec_base_t *base; | 
 |  | 
 | 	for (;;) { | 
 | 		base = timer->base; | 
 | 		if (likely(base != NULL)) { | 
 | 			spin_lock_irqsave(&base->lock, *flags); | 
 | 			if (likely(base == timer->base)) | 
 | 				return base; | 
 | 			/* The timer has migrated to another CPU */ | 
 | 			spin_unlock_irqrestore(&base->lock, *flags); | 
 | 		} | 
 | 		cpu_relax(); | 
 | 	} | 
 | } | 
 |  | 
 | int __mod_timer(struct timer_list *timer, unsigned long expires) | 
 | { | 
 | 	tvec_base_t *base, *new_base; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	BUG_ON(!timer->function); | 
 |  | 
 | 	base = lock_timer_base(timer, &flags); | 
 |  | 
 | 	if (timer_pending(timer)) { | 
 | 		detach_timer(timer, 0); | 
 | 		ret = 1; | 
 | 	} | 
 |  | 
 | 	new_base = __get_cpu_var(tvec_bases); | 
 |  | 
 | 	if (base != new_base) { | 
 | 		/* | 
 | 		 * We are trying to schedule the timer on the local CPU. | 
 | 		 * However we can't change timer's base while it is running, | 
 | 		 * otherwise del_timer_sync() can't detect that the timer's | 
 | 		 * handler yet has not finished. This also guarantees that | 
 | 		 * the timer is serialized wrt itself. | 
 | 		 */ | 
 | 		if (likely(base->running_timer != timer)) { | 
 | 			/* See the comment in lock_timer_base() */ | 
 | 			timer->base = NULL; | 
 | 			spin_unlock(&base->lock); | 
 | 			base = new_base; | 
 | 			spin_lock(&base->lock); | 
 | 			timer->base = base; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	timer->expires = expires; | 
 | 	internal_add_timer(base, timer); | 
 | 	spin_unlock_irqrestore(&base->lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(__mod_timer); | 
 |  | 
 | /*** | 
 |  * add_timer_on - start a timer on a particular CPU | 
 |  * @timer: the timer to be added | 
 |  * @cpu: the CPU to start it on | 
 |  * | 
 |  * This is not very scalable on SMP. Double adds are not possible. | 
 |  */ | 
 | void add_timer_on(struct timer_list *timer, int cpu) | 
 | { | 
 | 	tvec_base_t *base = per_cpu(tvec_bases, cpu); | 
 |   	unsigned long flags; | 
 |  | 
 |   	BUG_ON(timer_pending(timer) || !timer->function); | 
 | 	spin_lock_irqsave(&base->lock, flags); | 
 | 	timer->base = base; | 
 | 	internal_add_timer(base, timer); | 
 | 	spin_unlock_irqrestore(&base->lock, flags); | 
 | } | 
 |  | 
 |  | 
 | /*** | 
 |  * mod_timer - modify a timer's timeout | 
 |  * @timer: the timer to be modified | 
 |  * | 
 |  * mod_timer is a more efficient way to update the expire field of an | 
 |  * active timer (if the timer is inactive it will be activated) | 
 |  * | 
 |  * mod_timer(timer, expires) is equivalent to: | 
 |  * | 
 |  *     del_timer(timer); timer->expires = expires; add_timer(timer); | 
 |  * | 
 |  * Note that if there are multiple unserialized concurrent users of the | 
 |  * same timer, then mod_timer() is the only safe way to modify the timeout, | 
 |  * since add_timer() cannot modify an already running timer. | 
 |  * | 
 |  * The function returns whether it has modified a pending timer or not. | 
 |  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an | 
 |  * active timer returns 1.) | 
 |  */ | 
 | int mod_timer(struct timer_list *timer, unsigned long expires) | 
 | { | 
 | 	BUG_ON(!timer->function); | 
 |  | 
 | 	/* | 
 | 	 * This is a common optimization triggered by the | 
 | 	 * networking code - if the timer is re-modified | 
 | 	 * to be the same thing then just return: | 
 | 	 */ | 
 | 	if (timer->expires == expires && timer_pending(timer)) | 
 | 		return 1; | 
 |  | 
 | 	return __mod_timer(timer, expires); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(mod_timer); | 
 |  | 
 | /*** | 
 |  * del_timer - deactive a timer. | 
 |  * @timer: the timer to be deactivated | 
 |  * | 
 |  * del_timer() deactivates a timer - this works on both active and inactive | 
 |  * timers. | 
 |  * | 
 |  * The function returns whether it has deactivated a pending timer or not. | 
 |  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an | 
 |  * active timer returns 1.) | 
 |  */ | 
 | int del_timer(struct timer_list *timer) | 
 | { | 
 | 	tvec_base_t *base; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (timer_pending(timer)) { | 
 | 		base = lock_timer_base(timer, &flags); | 
 | 		if (timer_pending(timer)) { | 
 | 			detach_timer(timer, 1); | 
 | 			ret = 1; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&base->lock, flags); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(del_timer); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * This function tries to deactivate a timer. Upon successful (ret >= 0) | 
 |  * exit the timer is not queued and the handler is not running on any CPU. | 
 |  * | 
 |  * It must not be called from interrupt contexts. | 
 |  */ | 
 | int try_to_del_timer_sync(struct timer_list *timer) | 
 | { | 
 | 	tvec_base_t *base; | 
 | 	unsigned long flags; | 
 | 	int ret = -1; | 
 |  | 
 | 	base = lock_timer_base(timer, &flags); | 
 |  | 
 | 	if (base->running_timer == timer) | 
 | 		goto out; | 
 |  | 
 | 	ret = 0; | 
 | 	if (timer_pending(timer)) { | 
 | 		detach_timer(timer, 1); | 
 | 		ret = 1; | 
 | 	} | 
 | out: | 
 | 	spin_unlock_irqrestore(&base->lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /*** | 
 |  * del_timer_sync - deactivate a timer and wait for the handler to finish. | 
 |  * @timer: the timer to be deactivated | 
 |  * | 
 |  * This function only differs from del_timer() on SMP: besides deactivating | 
 |  * the timer it also makes sure the handler has finished executing on other | 
 |  * CPUs. | 
 |  * | 
 |  * Synchronization rules: callers must prevent restarting of the timer, | 
 |  * otherwise this function is meaningless. It must not be called from | 
 |  * interrupt contexts. The caller must not hold locks which would prevent | 
 |  * completion of the timer's handler. The timer's handler must not call | 
 |  * add_timer_on(). Upon exit the timer is not queued and the handler is | 
 |  * not running on any CPU. | 
 |  * | 
 |  * The function returns whether it has deactivated a pending timer or not. | 
 |  */ | 
 | int del_timer_sync(struct timer_list *timer) | 
 | { | 
 | 	for (;;) { | 
 | 		int ret = try_to_del_timer_sync(timer); | 
 | 		if (ret >= 0) | 
 | 			return ret; | 
 | 	} | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(del_timer_sync); | 
 | #endif | 
 |  | 
 | static int cascade(tvec_base_t *base, tvec_t *tv, int index) | 
 | { | 
 | 	/* cascade all the timers from tv up one level */ | 
 | 	struct timer_list *timer, *tmp; | 
 | 	struct list_head tv_list; | 
 |  | 
 | 	list_replace_init(tv->vec + index, &tv_list); | 
 |  | 
 | 	/* | 
 | 	 * We are removing _all_ timers from the list, so we | 
 | 	 * don't have to detach them individually. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(timer, tmp, &tv_list, entry) { | 
 | 		BUG_ON(timer->base != base); | 
 | 		internal_add_timer(base, timer); | 
 | 	} | 
 |  | 
 | 	return index; | 
 | } | 
 |  | 
 | /*** | 
 |  * __run_timers - run all expired timers (if any) on this CPU. | 
 |  * @base: the timer vector to be processed. | 
 |  * | 
 |  * This function cascades all vectors and executes all expired timer | 
 |  * vectors. | 
 |  */ | 
 | #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK | 
 |  | 
 | static inline void __run_timers(tvec_base_t *base) | 
 | { | 
 | 	struct timer_list *timer; | 
 |  | 
 | 	spin_lock_irq(&base->lock); | 
 | 	while (time_after_eq(jiffies, base->timer_jiffies)) { | 
 | 		struct list_head work_list; | 
 | 		struct list_head *head = &work_list; | 
 |  		int index = base->timer_jiffies & TVR_MASK; | 
 |  | 
 | 		/* | 
 | 		 * Cascade timers: | 
 | 		 */ | 
 | 		if (!index && | 
 | 			(!cascade(base, &base->tv2, INDEX(0))) && | 
 | 				(!cascade(base, &base->tv3, INDEX(1))) && | 
 | 					!cascade(base, &base->tv4, INDEX(2))) | 
 | 			cascade(base, &base->tv5, INDEX(3)); | 
 | 		++base->timer_jiffies; | 
 | 		list_replace_init(base->tv1.vec + index, &work_list); | 
 | 		while (!list_empty(head)) { | 
 | 			void (*fn)(unsigned long); | 
 | 			unsigned long data; | 
 |  | 
 | 			timer = list_entry(head->next,struct timer_list,entry); | 
 |  			fn = timer->function; | 
 |  			data = timer->data; | 
 |  | 
 | 			set_running_timer(base, timer); | 
 | 			detach_timer(timer, 1); | 
 | 			spin_unlock_irq(&base->lock); | 
 | 			{ | 
 | 				int preempt_count = preempt_count(); | 
 | 				fn(data); | 
 | 				if (preempt_count != preempt_count()) { | 
 | 					printk(KERN_WARNING "huh, entered %p " | 
 | 					       "with preempt_count %08x, exited" | 
 | 					       " with %08x?\n", | 
 | 					       fn, preempt_count, | 
 | 					       preempt_count()); | 
 | 					BUG(); | 
 | 				} | 
 | 			} | 
 | 			spin_lock_irq(&base->lock); | 
 | 		} | 
 | 	} | 
 | 	set_running_timer(base, NULL); | 
 | 	spin_unlock_irq(&base->lock); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NO_IDLE_HZ | 
 | /* | 
 |  * Find out when the next timer event is due to happen. This | 
 |  * is used on S/390 to stop all activity when a cpus is idle. | 
 |  * This functions needs to be called disabled. | 
 |  */ | 
 | unsigned long next_timer_interrupt(void) | 
 | { | 
 | 	tvec_base_t *base; | 
 | 	struct list_head *list; | 
 | 	struct timer_list *nte; | 
 | 	unsigned long expires; | 
 | 	unsigned long hr_expires = MAX_JIFFY_OFFSET; | 
 | 	ktime_t hr_delta; | 
 | 	tvec_t *varray[4]; | 
 | 	int i, j; | 
 |  | 
 | 	hr_delta = hrtimer_get_next_event(); | 
 | 	if (hr_delta.tv64 != KTIME_MAX) { | 
 | 		struct timespec tsdelta; | 
 | 		tsdelta = ktime_to_timespec(hr_delta); | 
 | 		hr_expires = timespec_to_jiffies(&tsdelta); | 
 | 		if (hr_expires < 3) | 
 | 			return hr_expires + jiffies; | 
 | 	} | 
 | 	hr_expires += jiffies; | 
 |  | 
 | 	base = __get_cpu_var(tvec_bases); | 
 | 	spin_lock(&base->lock); | 
 | 	expires = base->timer_jiffies + (LONG_MAX >> 1); | 
 | 	list = NULL; | 
 |  | 
 | 	/* Look for timer events in tv1. */ | 
 | 	j = base->timer_jiffies & TVR_MASK; | 
 | 	do { | 
 | 		list_for_each_entry(nte, base->tv1.vec + j, entry) { | 
 | 			expires = nte->expires; | 
 | 			if (j < (base->timer_jiffies & TVR_MASK)) | 
 | 				list = base->tv2.vec + (INDEX(0)); | 
 | 			goto found; | 
 | 		} | 
 | 		j = (j + 1) & TVR_MASK; | 
 | 	} while (j != (base->timer_jiffies & TVR_MASK)); | 
 |  | 
 | 	/* Check tv2-tv5. */ | 
 | 	varray[0] = &base->tv2; | 
 | 	varray[1] = &base->tv3; | 
 | 	varray[2] = &base->tv4; | 
 | 	varray[3] = &base->tv5; | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		j = INDEX(i); | 
 | 		do { | 
 | 			if (list_empty(varray[i]->vec + j)) { | 
 | 				j = (j + 1) & TVN_MASK; | 
 | 				continue; | 
 | 			} | 
 | 			list_for_each_entry(nte, varray[i]->vec + j, entry) | 
 | 				if (time_before(nte->expires, expires)) | 
 | 					expires = nte->expires; | 
 | 			if (j < (INDEX(i)) && i < 3) | 
 | 				list = varray[i + 1]->vec + (INDEX(i + 1)); | 
 | 			goto found; | 
 | 		} while (j != (INDEX(i))); | 
 | 	} | 
 | found: | 
 | 	if (list) { | 
 | 		/* | 
 | 		 * The search wrapped. We need to look at the next list | 
 | 		 * from next tv element that would cascade into tv element | 
 | 		 * where we found the timer element. | 
 | 		 */ | 
 | 		list_for_each_entry(nte, list, entry) { | 
 | 			if (time_before(nte->expires, expires)) | 
 | 				expires = nte->expires; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&base->lock); | 
 |  | 
 | 	/* | 
 | 	 * It can happen that other CPUs service timer IRQs and increment | 
 | 	 * jiffies, but we have not yet got a local timer tick to process | 
 | 	 * the timer wheels.  In that case, the expiry time can be before | 
 | 	 * jiffies, but since the high-resolution timer here is relative to | 
 | 	 * jiffies, the default expression when high-resolution timers are | 
 | 	 * not active, | 
 | 	 * | 
 | 	 *   time_before(MAX_JIFFY_OFFSET + jiffies, expires) | 
 | 	 * | 
 | 	 * would falsely evaluate to true.  If that is the case, just | 
 | 	 * return jiffies so that we can immediately fire the local timer | 
 | 	 */ | 
 | 	if (time_before(expires, jiffies)) | 
 | 		return jiffies; | 
 |  | 
 | 	if (time_before(hr_expires, expires)) | 
 | 		return hr_expires; | 
 |  | 
 | 	return expires; | 
 | } | 
 | #endif | 
 |  | 
 | /******************************************************************/ | 
 |  | 
 | /* | 
 |  * Timekeeping variables | 
 |  */ | 
 | unsigned long tick_usec = TICK_USEC; 		/* USER_HZ period (usec) */ | 
 | unsigned long tick_nsec = TICK_NSEC;		/* ACTHZ period (nsec) */ | 
 |  | 
 | /*  | 
 |  * The current time  | 
 |  * wall_to_monotonic is what we need to add to xtime (or xtime corrected  | 
 |  * for sub jiffie times) to get to monotonic time.  Monotonic is pegged | 
 |  * at zero at system boot time, so wall_to_monotonic will be negative, | 
 |  * however, we will ALWAYS keep the tv_nsec part positive so we can use | 
 |  * the usual normalization. | 
 |  */ | 
 | struct timespec xtime __attribute__ ((aligned (16))); | 
 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); | 
 |  | 
 | EXPORT_SYMBOL(xtime); | 
 |  | 
 | /* Don't completely fail for HZ > 500.  */ | 
 | int tickadj = 500/HZ ? : 1;		/* microsecs */ | 
 |  | 
 |  | 
 | /* | 
 |  * phase-lock loop variables | 
 |  */ | 
 | /* TIME_ERROR prevents overwriting the CMOS clock */ | 
 | int time_state = TIME_OK;		/* clock synchronization status	*/ | 
 | int time_status = STA_UNSYNC;		/* clock status bits		*/ | 
 | long time_offset;			/* time adjustment (us)		*/ | 
 | long time_constant = 2;			/* pll time constant		*/ | 
 | long time_tolerance = MAXFREQ;		/* frequency tolerance (ppm)	*/ | 
 | long time_precision = 1;		/* clock precision (us)		*/ | 
 | long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us)		*/ | 
 | long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us)		*/ | 
 | long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC; | 
 | 					/* frequency offset (scaled ppm)*/ | 
 | static long time_adj;			/* tick adjust (scaled 1 / HZ)	*/ | 
 | long time_reftime;			/* time at last adjustment (s)	*/ | 
 | long time_adjust; | 
 | long time_next_adjust; | 
 |  | 
 | /* | 
 |  * this routine handles the overflow of the microsecond field | 
 |  * | 
 |  * The tricky bits of code to handle the accurate clock support | 
 |  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | 
 |  * They were originally developed for SUN and DEC kernels. | 
 |  * All the kudos should go to Dave for this stuff. | 
 |  * | 
 |  */ | 
 | static void second_overflow(void) | 
 | { | 
 | 	long ltemp; | 
 |  | 
 | 	/* Bump the maxerror field */ | 
 | 	time_maxerror += time_tolerance >> SHIFT_USEC; | 
 | 	if (time_maxerror > NTP_PHASE_LIMIT) { | 
 | 		time_maxerror = NTP_PHASE_LIMIT; | 
 | 		time_status |= STA_UNSYNC; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Leap second processing. If in leap-insert state at the end of the | 
 | 	 * day, the system clock is set back one second; if in leap-delete | 
 | 	 * state, the system clock is set ahead one second. The microtime() | 
 | 	 * routine or external clock driver will insure that reported time is | 
 | 	 * always monotonic. The ugly divides should be replaced. | 
 | 	 */ | 
 | 	switch (time_state) { | 
 | 	case TIME_OK: | 
 | 		if (time_status & STA_INS) | 
 | 			time_state = TIME_INS; | 
 | 		else if (time_status & STA_DEL) | 
 | 			time_state = TIME_DEL; | 
 | 		break; | 
 | 	case TIME_INS: | 
 | 		if (xtime.tv_sec % 86400 == 0) { | 
 | 			xtime.tv_sec--; | 
 | 			wall_to_monotonic.tv_sec++; | 
 | 			/* | 
 | 			 * The timer interpolator will make time change | 
 | 			 * gradually instead of an immediate jump by one second | 
 | 			 */ | 
 | 			time_interpolator_update(-NSEC_PER_SEC); | 
 | 			time_state = TIME_OOP; | 
 | 			clock_was_set(); | 
 | 			printk(KERN_NOTICE "Clock: inserting leap second " | 
 | 					"23:59:60 UTC\n"); | 
 | 		} | 
 | 		break; | 
 | 	case TIME_DEL: | 
 | 		if ((xtime.tv_sec + 1) % 86400 == 0) { | 
 | 			xtime.tv_sec++; | 
 | 			wall_to_monotonic.tv_sec--; | 
 | 			/* | 
 | 			 * Use of time interpolator for a gradual change of | 
 | 			 * time | 
 | 			 */ | 
 | 			time_interpolator_update(NSEC_PER_SEC); | 
 | 			time_state = TIME_WAIT; | 
 | 			clock_was_set(); | 
 | 			printk(KERN_NOTICE "Clock: deleting leap second " | 
 | 					"23:59:59 UTC\n"); | 
 | 		} | 
 | 		break; | 
 | 	case TIME_OOP: | 
 | 		time_state = TIME_WAIT; | 
 | 		break; | 
 | 	case TIME_WAIT: | 
 | 		if (!(time_status & (STA_INS | STA_DEL))) | 
 | 		time_state = TIME_OK; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Compute the phase adjustment for the next second. In PLL mode, the | 
 | 	 * offset is reduced by a fixed factor times the time constant. In FLL | 
 | 	 * mode the offset is used directly. In either mode, the maximum phase | 
 | 	 * adjustment for each second is clamped so as to spread the adjustment | 
 | 	 * over not more than the number of seconds between updates. | 
 | 	 */ | 
 | 	ltemp = time_offset; | 
 | 	if (!(time_status & STA_FLL)) | 
 | 		ltemp = shift_right(ltemp, SHIFT_KG + time_constant); | 
 | 	ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE); | 
 | 	ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE); | 
 | 	time_offset -= ltemp; | 
 | 	time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); | 
 |  | 
 | 	/* | 
 | 	 * Compute the frequency estimate and additional phase adjustment due | 
 | 	 * to frequency error for the next second. | 
 | 	 */ | 
 | 	ltemp = time_freq; | 
 | 	time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE)); | 
 |  | 
 | #if HZ == 100 | 
 | 	/* | 
 | 	 * Compensate for (HZ==100) != (1 << SHIFT_HZ).  Add 25% and 3.125% to | 
 | 	 * get 128.125; => only 0.125% error (p. 14) | 
 | 	 */ | 
 | 	time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5); | 
 | #endif | 
 | #if HZ == 250 | 
 | 	/* | 
 | 	 * Compensate for (HZ==250) != (1 << SHIFT_HZ).  Add 1.5625% and | 
 | 	 * 0.78125% to get 255.85938; => only 0.05% error (p. 14) | 
 | 	 */ | 
 | 	time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); | 
 | #endif | 
 | #if HZ == 1000 | 
 | 	/* | 
 | 	 * Compensate for (HZ==1000) != (1 << SHIFT_HZ).  Add 1.5625% and | 
 | 	 * 0.78125% to get 1023.4375; => only 0.05% error (p. 14) | 
 | 	 */ | 
 | 	time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Returns how many microseconds we need to add to xtime this tick | 
 |  * in doing an adjustment requested with adjtime. | 
 |  */ | 
 | static long adjtime_adjustment(void) | 
 | { | 
 | 	long time_adjust_step; | 
 |  | 
 | 	time_adjust_step = time_adjust; | 
 | 	if (time_adjust_step) { | 
 | 		/* | 
 | 		 * We are doing an adjtime thing.  Prepare time_adjust_step to | 
 | 		 * be within bounds.  Note that a positive time_adjust means we | 
 | 		 * want the clock to run faster. | 
 | 		 * | 
 | 		 * Limit the amount of the step to be in the range | 
 | 		 * -tickadj .. +tickadj | 
 | 		 */ | 
 | 		time_adjust_step = min(time_adjust_step, (long)tickadj); | 
 | 		time_adjust_step = max(time_adjust_step, (long)-tickadj); | 
 | 	} | 
 | 	return time_adjust_step; | 
 | } | 
 |  | 
 | /* in the NTP reference this is called "hardclock()" */ | 
 | static void update_ntp_one_tick(void) | 
 | { | 
 | 	long time_adjust_step; | 
 |  | 
 | 	time_adjust_step = adjtime_adjustment(); | 
 | 	if (time_adjust_step) | 
 | 		/* Reduce by this step the amount of time left  */ | 
 | 		time_adjust -= time_adjust_step; | 
 |  | 
 | 	/* Changes by adjtime() do not take effect till next tick. */ | 
 | 	if (time_next_adjust != 0) { | 
 | 		time_adjust = time_next_adjust; | 
 | 		time_next_adjust = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Return how long ticks are at the moment, that is, how much time | 
 |  * update_wall_time_one_tick will add to xtime next time we call it | 
 |  * (assuming no calls to do_adjtimex in the meantime). | 
 |  * The return value is in fixed-point nanoseconds shifted by the | 
 |  * specified number of bits to the right of the binary point. | 
 |  * This function has no side-effects. | 
 |  */ | 
 | u64 current_tick_length(void) | 
 | { | 
 | 	long delta_nsec; | 
 | 	u64 ret; | 
 |  | 
 | 	/* calculate the finest interval NTP will allow. | 
 | 	 *    ie: nanosecond value shifted by (SHIFT_SCALE - 10) | 
 | 	 */ | 
 | 	delta_nsec = tick_nsec + adjtime_adjustment() * 1000; | 
 | 	ret = (u64)delta_nsec << TICK_LENGTH_SHIFT; | 
 | 	ret += (s64)time_adj << (TICK_LENGTH_SHIFT - (SHIFT_SCALE - 10)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* XXX - all of this timekeeping code should be later moved to time.c */ | 
 | #include <linux/clocksource.h> | 
 | static struct clocksource *clock; /* pointer to current clocksource */ | 
 |  | 
 | #ifdef CONFIG_GENERIC_TIME | 
 | /** | 
 |  * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook | 
 |  * | 
 |  * private function, must hold xtime_lock lock when being | 
 |  * called. Returns the number of nanoseconds since the | 
 |  * last call to update_wall_time() (adjusted by NTP scaling) | 
 |  */ | 
 | static inline s64 __get_nsec_offset(void) | 
 | { | 
 | 	cycle_t cycle_now, cycle_delta; | 
 | 	s64 ns_offset; | 
 |  | 
 | 	/* read clocksource: */ | 
 | 	cycle_now = clocksource_read(clock); | 
 |  | 
 | 	/* calculate the delta since the last update_wall_time: */ | 
 | 	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | 
 |  | 
 | 	/* convert to nanoseconds: */ | 
 | 	ns_offset = cyc2ns(clock, cycle_delta); | 
 |  | 
 | 	return ns_offset; | 
 | } | 
 |  | 
 | /** | 
 |  * __get_realtime_clock_ts - Returns the time of day in a timespec | 
 |  * @ts:		pointer to the timespec to be set | 
 |  * | 
 |  * Returns the time of day in a timespec. Used by | 
 |  * do_gettimeofday() and get_realtime_clock_ts(). | 
 |  */ | 
 | static inline void __get_realtime_clock_ts(struct timespec *ts) | 
 | { | 
 | 	unsigned long seq; | 
 | 	s64 nsecs; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqbegin(&xtime_lock); | 
 |  | 
 | 		*ts = xtime; | 
 | 		nsecs = __get_nsec_offset(); | 
 |  | 
 | 	} while (read_seqretry(&xtime_lock, seq)); | 
 |  | 
 | 	timespec_add_ns(ts, nsecs); | 
 | } | 
 |  | 
 | /** | 
 |  * getnstimeofday - Returns the time of day in a timespec | 
 |  * @ts:		pointer to the timespec to be set | 
 |  * | 
 |  * Returns the time of day in a timespec. | 
 |  */ | 
 | void getnstimeofday(struct timespec *ts) | 
 | { | 
 | 	__get_realtime_clock_ts(ts); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(getnstimeofday); | 
 |  | 
 | /** | 
 |  * do_gettimeofday - Returns the time of day in a timeval | 
 |  * @tv:		pointer to the timeval to be set | 
 |  * | 
 |  * NOTE: Users should be converted to using get_realtime_clock_ts() | 
 |  */ | 
 | void do_gettimeofday(struct timeval *tv) | 
 | { | 
 | 	struct timespec now; | 
 |  | 
 | 	__get_realtime_clock_ts(&now); | 
 | 	tv->tv_sec = now.tv_sec; | 
 | 	tv->tv_usec = now.tv_nsec/1000; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(do_gettimeofday); | 
 | /** | 
 |  * do_settimeofday - Sets the time of day | 
 |  * @tv:		pointer to the timespec variable containing the new time | 
 |  * | 
 |  * Sets the time of day to the new time and update NTP and notify hrtimers | 
 |  */ | 
 | int do_settimeofday(struct timespec *tv) | 
 | { | 
 | 	unsigned long flags; | 
 | 	time_t wtm_sec, sec = tv->tv_sec; | 
 | 	long wtm_nsec, nsec = tv->tv_nsec; | 
 |  | 
 | 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | 
 | 		return -EINVAL; | 
 |  | 
 | 	write_seqlock_irqsave(&xtime_lock, flags); | 
 |  | 
 | 	nsec -= __get_nsec_offset(); | 
 |  | 
 | 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); | 
 | 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); | 
 |  | 
 | 	set_normalized_timespec(&xtime, sec, nsec); | 
 | 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | 
 |  | 
 | 	ntp_clear(); | 
 |  | 
 | 	write_sequnlock_irqrestore(&xtime_lock, flags); | 
 |  | 
 | 	/* signal hrtimers about time change */ | 
 | 	clock_was_set(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(do_settimeofday); | 
 |  | 
 | /** | 
 |  * change_clocksource - Swaps clocksources if a new one is available | 
 |  * | 
 |  * Accumulates current time interval and initializes new clocksource | 
 |  */ | 
 | static int change_clocksource(void) | 
 | { | 
 | 	struct clocksource *new; | 
 | 	cycle_t now; | 
 | 	u64 nsec; | 
 | 	new = clocksource_get_next(); | 
 | 	if (clock != new) { | 
 | 		now = clocksource_read(new); | 
 | 		nsec =  __get_nsec_offset(); | 
 | 		timespec_add_ns(&xtime, nsec); | 
 |  | 
 | 		clock = new; | 
 | 		clock->cycle_last = now; | 
 | 		printk(KERN_INFO "Time: %s clocksource has been installed.\n", | 
 | 					clock->name); | 
 | 		return 1; | 
 | 	} else if (clock->update_callback) { | 
 | 		return clock->update_callback(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | #else | 
 | #define change_clocksource() (0) | 
 | #endif | 
 |  | 
 | /** | 
 |  * timeofday_is_continuous - check to see if timekeeping is free running | 
 |  */ | 
 | int timekeeping_is_continuous(void) | 
 | { | 
 | 	unsigned long seq; | 
 | 	int ret; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqbegin(&xtime_lock); | 
 |  | 
 | 		ret = clock->is_continuous; | 
 |  | 
 | 	} while (read_seqretry(&xtime_lock, seq)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * timekeeping_init - Initializes the clocksource and common timekeeping values | 
 |  */ | 
 | void __init timekeeping_init(void) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	write_seqlock_irqsave(&xtime_lock, flags); | 
 | 	clock = clocksource_get_next(); | 
 | 	clocksource_calculate_interval(clock, tick_nsec); | 
 | 	clock->cycle_last = clocksource_read(clock); | 
 | 	ntp_clear(); | 
 | 	write_sequnlock_irqrestore(&xtime_lock, flags); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * timekeeping_resume - Resumes the generic timekeeping subsystem. | 
 |  * @dev:	unused | 
 |  * | 
 |  * This is for the generic clocksource timekeeping. | 
 |  * xtime/wall_to_monotonic/jiffies/wall_jiffies/etc are | 
 |  * still managed by arch specific suspend/resume code. | 
 |  */ | 
 | static int timekeeping_resume(struct sys_device *dev) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	write_seqlock_irqsave(&xtime_lock, flags); | 
 | 	/* restart the last cycle value */ | 
 | 	clock->cycle_last = clocksource_read(clock); | 
 | 	write_sequnlock_irqrestore(&xtime_lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* sysfs resume/suspend bits for timekeeping */ | 
 | static struct sysdev_class timekeeping_sysclass = { | 
 | 	.resume		= timekeeping_resume, | 
 | 	set_kset_name("timekeeping"), | 
 | }; | 
 |  | 
 | static struct sys_device device_timer = { | 
 | 	.id		= 0, | 
 | 	.cls		= &timekeeping_sysclass, | 
 | }; | 
 |  | 
 | static int __init timekeeping_init_device(void) | 
 | { | 
 | 	int error = sysdev_class_register(&timekeeping_sysclass); | 
 | 	if (!error) | 
 | 		error = sysdev_register(&device_timer); | 
 | 	return error; | 
 | } | 
 |  | 
 | device_initcall(timekeeping_init_device); | 
 |  | 
 | /* | 
 |  * If the error is already larger, we look ahead another tick, | 
 |  * to compensate for late or lost adjustments. | 
 |  */ | 
 | static __always_inline int clocksource_bigadjust(int sign, s64 error, s64 *interval, s64 *offset) | 
 | { | 
 | 	int adj; | 
 |  | 
 | 	/* | 
 | 	 * As soon as the machine is synchronized to the external time | 
 | 	 * source this should be the common case. | 
 | 	 */ | 
 | 	error >>= 2; | 
 | 	if (likely(sign > 0 ? error <= *interval : error >= *interval)) | 
 | 		return sign; | 
 |  | 
 | 	/* | 
 | 	 * An extra look ahead dampens the effect of the current error, | 
 | 	 * which can grow quite large with continously late updates, as | 
 | 	 * it would dominate the adjustment value and can lead to | 
 | 	 * oscillation. | 
 | 	 */ | 
 | 	error += current_tick_length() >> (TICK_LENGTH_SHIFT - clock->shift + 1); | 
 | 	error -= clock->xtime_interval >> 1; | 
 |  | 
 | 	adj = 0; | 
 | 	while (1) { | 
 | 		error >>= 1; | 
 | 		if (sign > 0 ? error <= *interval : error >= *interval) | 
 | 			break; | 
 | 		adj++; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Add the current adjustments to the error and take the offset | 
 | 	 * into account, the latter can cause the error to be hardly | 
 | 	 * reduced at the next tick. Check the error again if there's | 
 | 	 * room for another adjustment, thus further reducing the error | 
 | 	 * which otherwise had to be corrected at the next update. | 
 | 	 */ | 
 | 	error = (error << 1) - *interval + *offset; | 
 | 	if (sign > 0 ? error > *interval : error < *interval) | 
 | 		adj++; | 
 |  | 
 | 	*interval <<= adj; | 
 | 	*offset <<= adj; | 
 | 	return sign << adj; | 
 | } | 
 |  | 
 | /* | 
 |  * Adjust the multiplier to reduce the error value, | 
 |  * this is optimized for the most common adjustments of -1,0,1, | 
 |  * for other values we can do a bit more work. | 
 |  */ | 
 | static void clocksource_adjust(struct clocksource *clock, s64 offset) | 
 | { | 
 | 	s64 error, interval = clock->cycle_interval; | 
 | 	int adj; | 
 |  | 
 | 	error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1); | 
 | 	if (error > interval) { | 
 | 		adj = clocksource_bigadjust(1, error, &interval, &offset); | 
 | 	} else if (error < -interval) { | 
 | 		interval = -interval; | 
 | 		offset = -offset; | 
 | 		adj = clocksource_bigadjust(-1, error, &interval, &offset); | 
 | 	} else | 
 | 		return; | 
 |  | 
 | 	clock->mult += adj; | 
 | 	clock->xtime_interval += interval; | 
 | 	clock->xtime_nsec -= offset; | 
 | 	clock->error -= (interval - offset) << (TICK_LENGTH_SHIFT - clock->shift); | 
 | } | 
 |  | 
 | /* | 
 |  * update_wall_time - Uses the current clocksource to increment the wall time | 
 |  * | 
 |  * Called from the timer interrupt, must hold a write on xtime_lock. | 
 |  */ | 
 | static void update_wall_time(void) | 
 | { | 
 | 	cycle_t offset; | 
 |  | 
 | 	clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift; | 
 |  | 
 | #ifdef CONFIG_GENERIC_TIME | 
 | 	offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask; | 
 | #else | 
 | 	offset = clock->cycle_interval; | 
 | #endif | 
 |  | 
 | 	/* normally this loop will run just once, however in the | 
 | 	 * case of lost or late ticks, it will accumulate correctly. | 
 | 	 */ | 
 | 	while (offset >= clock->cycle_interval) { | 
 | 		/* accumulate one interval */ | 
 | 		clock->xtime_nsec += clock->xtime_interval; | 
 | 		clock->cycle_last += clock->cycle_interval; | 
 | 		offset -= clock->cycle_interval; | 
 |  | 
 | 		if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) { | 
 | 			clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift; | 
 | 			xtime.tv_sec++; | 
 | 			second_overflow(); | 
 | 		} | 
 |  | 
 | 		/* interpolator bits */ | 
 | 		time_interpolator_update(clock->xtime_interval | 
 | 						>> clock->shift); | 
 | 		/* increment the NTP state machine */ | 
 | 		update_ntp_one_tick(); | 
 |  | 
 | 		/* accumulate error between NTP and clock interval */ | 
 | 		clock->error += current_tick_length(); | 
 | 		clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift); | 
 | 	} | 
 |  | 
 | 	/* correct the clock when NTP error is too big */ | 
 | 	clocksource_adjust(clock, offset); | 
 |  | 
 | 	/* store full nanoseconds into xtime */ | 
 | 	xtime.tv_nsec = clock->xtime_nsec >> clock->shift; | 
 | 	clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift; | 
 |  | 
 | 	/* check to see if there is a new clocksource to use */ | 
 | 	if (change_clocksource()) { | 
 | 		clock->error = 0; | 
 | 		clock->xtime_nsec = 0; | 
 | 		clocksource_calculate_interval(clock, tick_nsec); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Called from the timer interrupt handler to charge one tick to the current  | 
 |  * process.  user_tick is 1 if the tick is user time, 0 for system. | 
 |  */ | 
 | void update_process_times(int user_tick) | 
 | { | 
 | 	struct task_struct *p = current; | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	/* Note: this timer irq context must be accounted for as well. */ | 
 | 	if (user_tick) | 
 | 		account_user_time(p, jiffies_to_cputime(1)); | 
 | 	else | 
 | 		account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1)); | 
 | 	run_local_timers(); | 
 | 	if (rcu_pending(cpu)) | 
 | 		rcu_check_callbacks(cpu, user_tick); | 
 | 	scheduler_tick(); | 
 |  	run_posix_cpu_timers(p); | 
 | } | 
 |  | 
 | /* | 
 |  * Nr of active tasks - counted in fixed-point numbers | 
 |  */ | 
 | static unsigned long count_active_tasks(void) | 
 | { | 
 | 	return nr_active() * FIXED_1; | 
 | } | 
 |  | 
 | /* | 
 |  * Hmm.. Changed this, as the GNU make sources (load.c) seems to | 
 |  * imply that avenrun[] is the standard name for this kind of thing. | 
 |  * Nothing else seems to be standardized: the fractional size etc | 
 |  * all seem to differ on different machines. | 
 |  * | 
 |  * Requires xtime_lock to access. | 
 |  */ | 
 | unsigned long avenrun[3]; | 
 |  | 
 | EXPORT_SYMBOL(avenrun); | 
 |  | 
 | /* | 
 |  * calc_load - given tick count, update the avenrun load estimates. | 
 |  * This is called while holding a write_lock on xtime_lock. | 
 |  */ | 
 | static inline void calc_load(unsigned long ticks) | 
 | { | 
 | 	unsigned long active_tasks; /* fixed-point */ | 
 | 	static int count = LOAD_FREQ; | 
 |  | 
 | 	count -= ticks; | 
 | 	if (count < 0) { | 
 | 		count += LOAD_FREQ; | 
 | 		active_tasks = count_active_tasks(); | 
 | 		CALC_LOAD(avenrun[0], EXP_1, active_tasks); | 
 | 		CALC_LOAD(avenrun[1], EXP_5, active_tasks); | 
 | 		CALC_LOAD(avenrun[2], EXP_15, active_tasks); | 
 | 	} | 
 | } | 
 |  | 
 | /* jiffies at the most recent update of wall time */ | 
 | unsigned long wall_jiffies = INITIAL_JIFFIES; | 
 |  | 
 | /* | 
 |  * This read-write spinlock protects us from races in SMP while | 
 |  * playing with xtime and avenrun. | 
 |  */ | 
 | #ifndef ARCH_HAVE_XTIME_LOCK | 
 | seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED; | 
 |  | 
 | EXPORT_SYMBOL(xtime_lock); | 
 | #endif | 
 |  | 
 | /* | 
 |  * This function runs timers and the timer-tq in bottom half context. | 
 |  */ | 
 | static void run_timer_softirq(struct softirq_action *h) | 
 | { | 
 | 	tvec_base_t *base = __get_cpu_var(tvec_bases); | 
 |  | 
 |  	hrtimer_run_queues(); | 
 | 	if (time_after_eq(jiffies, base->timer_jiffies)) | 
 | 		__run_timers(base); | 
 | } | 
 |  | 
 | /* | 
 |  * Called by the local, per-CPU timer interrupt on SMP. | 
 |  */ | 
 | void run_local_timers(void) | 
 | { | 
 | 	raise_softirq(TIMER_SOFTIRQ); | 
 | 	softlockup_tick(); | 
 | } | 
 |  | 
 | /* | 
 |  * Called by the timer interrupt. xtime_lock must already be taken | 
 |  * by the timer IRQ! | 
 |  */ | 
 | static inline void update_times(void) | 
 | { | 
 | 	unsigned long ticks; | 
 |  | 
 | 	ticks = jiffies - wall_jiffies; | 
 | 	wall_jiffies += ticks; | 
 | 	update_wall_time(); | 
 | 	calc_load(ticks); | 
 | } | 
 |    | 
 | /* | 
 |  * The 64-bit jiffies value is not atomic - you MUST NOT read it | 
 |  * without sampling the sequence number in xtime_lock. | 
 |  * jiffies is defined in the linker script... | 
 |  */ | 
 |  | 
 | void do_timer(struct pt_regs *regs) | 
 | { | 
 | 	jiffies_64++; | 
 | 	/* prevent loading jiffies before storing new jiffies_64 value. */ | 
 | 	barrier(); | 
 | 	update_times(); | 
 | } | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_ALARM | 
 |  | 
 | /* | 
 |  * For backwards compatibility?  This can be done in libc so Alpha | 
 |  * and all newer ports shouldn't need it. | 
 |  */ | 
 | asmlinkage unsigned long sys_alarm(unsigned int seconds) | 
 | { | 
 | 	return alarm_setitimer(seconds); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | #ifndef __alpha__ | 
 |  | 
 | /* | 
 |  * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this | 
 |  * should be moved into arch/i386 instead? | 
 |  */ | 
 |  | 
 | /** | 
 |  * sys_getpid - return the thread group id of the current process | 
 |  * | 
 |  * Note, despite the name, this returns the tgid not the pid.  The tgid and | 
 |  * the pid are identical unless CLONE_THREAD was specified on clone() in | 
 |  * which case the tgid is the same in all threads of the same group. | 
 |  * | 
 |  * This is SMP safe as current->tgid does not change. | 
 |  */ | 
 | asmlinkage long sys_getpid(void) | 
 | { | 
 | 	return current->tgid; | 
 | } | 
 |  | 
 | /* | 
 |  * Accessing ->group_leader->real_parent is not SMP-safe, it could | 
 |  * change from under us. However, rather than getting any lock | 
 |  * we can use an optimistic algorithm: get the parent | 
 |  * pid, and go back and check that the parent is still | 
 |  * the same. If it has changed (which is extremely unlikely | 
 |  * indeed), we just try again.. | 
 |  * | 
 |  * NOTE! This depends on the fact that even if we _do_ | 
 |  * get an old value of "parent", we can happily dereference | 
 |  * the pointer (it was and remains a dereferencable kernel pointer | 
 |  * no matter what): we just can't necessarily trust the result | 
 |  * until we know that the parent pointer is valid. | 
 |  * | 
 |  * NOTE2: ->group_leader never changes from under us. | 
 |  */ | 
 | asmlinkage long sys_getppid(void) | 
 | { | 
 | 	int pid; | 
 | 	struct task_struct *me = current; | 
 | 	struct task_struct *parent; | 
 |  | 
 | 	parent = me->group_leader->real_parent; | 
 | 	for (;;) { | 
 | 		pid = parent->tgid; | 
 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | 
 | { | 
 | 		struct task_struct *old = parent; | 
 |  | 
 | 		/* | 
 | 		 * Make sure we read the pid before re-reading the | 
 | 		 * parent pointer: | 
 | 		 */ | 
 | 		smp_rmb(); | 
 | 		parent = me->group_leader->real_parent; | 
 | 		if (old != parent) | 
 | 			continue; | 
 | } | 
 | #endif | 
 | 		break; | 
 | 	} | 
 | 	return pid; | 
 | } | 
 |  | 
 | asmlinkage long sys_getuid(void) | 
 | { | 
 | 	/* Only we change this so SMP safe */ | 
 | 	return current->uid; | 
 | } | 
 |  | 
 | asmlinkage long sys_geteuid(void) | 
 | { | 
 | 	/* Only we change this so SMP safe */ | 
 | 	return current->euid; | 
 | } | 
 |  | 
 | asmlinkage long sys_getgid(void) | 
 | { | 
 | 	/* Only we change this so SMP safe */ | 
 | 	return current->gid; | 
 | } | 
 |  | 
 | asmlinkage long sys_getegid(void) | 
 | { | 
 | 	/* Only we change this so SMP safe */ | 
 | 	return  current->egid; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static void process_timeout(unsigned long __data) | 
 | { | 
 | 	wake_up_process((task_t *)__data); | 
 | } | 
 |  | 
 | /** | 
 |  * schedule_timeout - sleep until timeout | 
 |  * @timeout: timeout value in jiffies | 
 |  * | 
 |  * Make the current task sleep until @timeout jiffies have | 
 |  * elapsed. The routine will return immediately unless | 
 |  * the current task state has been set (see set_current_state()). | 
 |  * | 
 |  * You can set the task state as follows - | 
 |  * | 
 |  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to | 
 |  * pass before the routine returns. The routine will return 0 | 
 |  * | 
 |  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | 
 |  * delivered to the current task. In this case the remaining time | 
 |  * in jiffies will be returned, or 0 if the timer expired in time | 
 |  * | 
 |  * The current task state is guaranteed to be TASK_RUNNING when this | 
 |  * routine returns. | 
 |  * | 
 |  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule | 
 |  * the CPU away without a bound on the timeout. In this case the return | 
 |  * value will be %MAX_SCHEDULE_TIMEOUT. | 
 |  * | 
 |  * In all cases the return value is guaranteed to be non-negative. | 
 |  */ | 
 | fastcall signed long __sched schedule_timeout(signed long timeout) | 
 | { | 
 | 	struct timer_list timer; | 
 | 	unsigned long expire; | 
 |  | 
 | 	switch (timeout) | 
 | 	{ | 
 | 	case MAX_SCHEDULE_TIMEOUT: | 
 | 		/* | 
 | 		 * These two special cases are useful to be comfortable | 
 | 		 * in the caller. Nothing more. We could take | 
 | 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value | 
 | 		 * but I' d like to return a valid offset (>=0) to allow | 
 | 		 * the caller to do everything it want with the retval. | 
 | 		 */ | 
 | 		schedule(); | 
 | 		goto out; | 
 | 	default: | 
 | 		/* | 
 | 		 * Another bit of PARANOID. Note that the retval will be | 
 | 		 * 0 since no piece of kernel is supposed to do a check | 
 | 		 * for a negative retval of schedule_timeout() (since it | 
 | 		 * should never happens anyway). You just have the printk() | 
 | 		 * that will tell you if something is gone wrong and where. | 
 | 		 */ | 
 | 		if (timeout < 0) | 
 | 		{ | 
 | 			printk(KERN_ERR "schedule_timeout: wrong timeout " | 
 | 				"value %lx from %p\n", timeout, | 
 | 				__builtin_return_address(0)); | 
 | 			current->state = TASK_RUNNING; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	expire = timeout + jiffies; | 
 |  | 
 | 	setup_timer(&timer, process_timeout, (unsigned long)current); | 
 | 	__mod_timer(&timer, expire); | 
 | 	schedule(); | 
 | 	del_singleshot_timer_sync(&timer); | 
 |  | 
 | 	timeout = expire - jiffies; | 
 |  | 
 |  out: | 
 | 	return timeout < 0 ? 0 : timeout; | 
 | } | 
 | EXPORT_SYMBOL(schedule_timeout); | 
 |  | 
 | /* | 
 |  * We can use __set_current_state() here because schedule_timeout() calls | 
 |  * schedule() unconditionally. | 
 |  */ | 
 | signed long __sched schedule_timeout_interruptible(signed long timeout) | 
 | { | 
 | 	__set_current_state(TASK_INTERRUPTIBLE); | 
 | 	return schedule_timeout(timeout); | 
 | } | 
 | EXPORT_SYMBOL(schedule_timeout_interruptible); | 
 |  | 
 | signed long __sched schedule_timeout_uninterruptible(signed long timeout) | 
 | { | 
 | 	__set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 	return schedule_timeout(timeout); | 
 | } | 
 | EXPORT_SYMBOL(schedule_timeout_uninterruptible); | 
 |  | 
 | /* Thread ID - the internal kernel "pid" */ | 
 | asmlinkage long sys_gettid(void) | 
 | { | 
 | 	return current->pid; | 
 | } | 
 |  | 
 | /* | 
 |  * sys_sysinfo - fill in sysinfo struct | 
 |  */  | 
 | asmlinkage long sys_sysinfo(struct sysinfo __user *info) | 
 | { | 
 | 	struct sysinfo val; | 
 | 	unsigned long mem_total, sav_total; | 
 | 	unsigned int mem_unit, bitcount; | 
 | 	unsigned long seq; | 
 |  | 
 | 	memset((char *)&val, 0, sizeof(struct sysinfo)); | 
 |  | 
 | 	do { | 
 | 		struct timespec tp; | 
 | 		seq = read_seqbegin(&xtime_lock); | 
 |  | 
 | 		/* | 
 | 		 * This is annoying.  The below is the same thing | 
 | 		 * posix_get_clock_monotonic() does, but it wants to | 
 | 		 * take the lock which we want to cover the loads stuff | 
 | 		 * too. | 
 | 		 */ | 
 |  | 
 | 		getnstimeofday(&tp); | 
 | 		tp.tv_sec += wall_to_monotonic.tv_sec; | 
 | 		tp.tv_nsec += wall_to_monotonic.tv_nsec; | 
 | 		if (tp.tv_nsec - NSEC_PER_SEC >= 0) { | 
 | 			tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC; | 
 | 			tp.tv_sec++; | 
 | 		} | 
 | 		val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); | 
 |  | 
 | 		val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); | 
 | 		val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); | 
 | 		val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); | 
 |  | 
 | 		val.procs = nr_threads; | 
 | 	} while (read_seqretry(&xtime_lock, seq)); | 
 |  | 
 | 	si_meminfo(&val); | 
 | 	si_swapinfo(&val); | 
 |  | 
 | 	/* | 
 | 	 * If the sum of all the available memory (i.e. ram + swap) | 
 | 	 * is less than can be stored in a 32 bit unsigned long then | 
 | 	 * we can be binary compatible with 2.2.x kernels.  If not, | 
 | 	 * well, in that case 2.2.x was broken anyways... | 
 | 	 * | 
 | 	 *  -Erik Andersen <andersee@debian.org> | 
 | 	 */ | 
 |  | 
 | 	mem_total = val.totalram + val.totalswap; | 
 | 	if (mem_total < val.totalram || mem_total < val.totalswap) | 
 | 		goto out; | 
 | 	bitcount = 0; | 
 | 	mem_unit = val.mem_unit; | 
 | 	while (mem_unit > 1) { | 
 | 		bitcount++; | 
 | 		mem_unit >>= 1; | 
 | 		sav_total = mem_total; | 
 | 		mem_total <<= 1; | 
 | 		if (mem_total < sav_total) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If mem_total did not overflow, multiply all memory values by | 
 | 	 * val.mem_unit and set it to 1.  This leaves things compatible | 
 | 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x | 
 | 	 * kernels... | 
 | 	 */ | 
 |  | 
 | 	val.mem_unit = 1; | 
 | 	val.totalram <<= bitcount; | 
 | 	val.freeram <<= bitcount; | 
 | 	val.sharedram <<= bitcount; | 
 | 	val.bufferram <<= bitcount; | 
 | 	val.totalswap <<= bitcount; | 
 | 	val.freeswap <<= bitcount; | 
 | 	val.totalhigh <<= bitcount; | 
 | 	val.freehigh <<= bitcount; | 
 |  | 
 |  out: | 
 | 	if (copy_to_user(info, &val, sizeof(struct sysinfo))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __devinit init_timers_cpu(int cpu) | 
 | { | 
 | 	int j; | 
 | 	tvec_base_t *base; | 
 | 	static char __devinitdata tvec_base_done[NR_CPUS]; | 
 |  | 
 | 	if (!tvec_base_done[cpu]) { | 
 | 		static char boot_done; | 
 |  | 
 | 		if (boot_done) { | 
 | 			/* | 
 | 			 * The APs use this path later in boot | 
 | 			 */ | 
 | 			base = kmalloc_node(sizeof(*base), GFP_KERNEL, | 
 | 						cpu_to_node(cpu)); | 
 | 			if (!base) | 
 | 				return -ENOMEM; | 
 | 			memset(base, 0, sizeof(*base)); | 
 | 			per_cpu(tvec_bases, cpu) = base; | 
 | 		} else { | 
 | 			/* | 
 | 			 * This is for the boot CPU - we use compile-time | 
 | 			 * static initialisation because per-cpu memory isn't | 
 | 			 * ready yet and because the memory allocators are not | 
 | 			 * initialised either. | 
 | 			 */ | 
 | 			boot_done = 1; | 
 | 			base = &boot_tvec_bases; | 
 | 		} | 
 | 		tvec_base_done[cpu] = 1; | 
 | 	} else { | 
 | 		base = per_cpu(tvec_bases, cpu); | 
 | 	} | 
 |  | 
 | 	spin_lock_init(&base->lock); | 
 | 	for (j = 0; j < TVN_SIZE; j++) { | 
 | 		INIT_LIST_HEAD(base->tv5.vec + j); | 
 | 		INIT_LIST_HEAD(base->tv4.vec + j); | 
 | 		INIT_LIST_HEAD(base->tv3.vec + j); | 
 | 		INIT_LIST_HEAD(base->tv2.vec + j); | 
 | 	} | 
 | 	for (j = 0; j < TVR_SIZE; j++) | 
 | 		INIT_LIST_HEAD(base->tv1.vec + j); | 
 |  | 
 | 	base->timer_jiffies = jiffies; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head) | 
 | { | 
 | 	struct timer_list *timer; | 
 |  | 
 | 	while (!list_empty(head)) { | 
 | 		timer = list_entry(head->next, struct timer_list, entry); | 
 | 		detach_timer(timer, 0); | 
 | 		timer->base = new_base; | 
 | 		internal_add_timer(new_base, timer); | 
 | 	} | 
 | } | 
 |  | 
 | static void __devinit migrate_timers(int cpu) | 
 | { | 
 | 	tvec_base_t *old_base; | 
 | 	tvec_base_t *new_base; | 
 | 	int i; | 
 |  | 
 | 	BUG_ON(cpu_online(cpu)); | 
 | 	old_base = per_cpu(tvec_bases, cpu); | 
 | 	new_base = get_cpu_var(tvec_bases); | 
 |  | 
 | 	local_irq_disable(); | 
 | 	spin_lock(&new_base->lock); | 
 | 	spin_lock(&old_base->lock); | 
 |  | 
 | 	BUG_ON(old_base->running_timer); | 
 |  | 
 | 	for (i = 0; i < TVR_SIZE; i++) | 
 | 		migrate_timer_list(new_base, old_base->tv1.vec + i); | 
 | 	for (i = 0; i < TVN_SIZE; i++) { | 
 | 		migrate_timer_list(new_base, old_base->tv2.vec + i); | 
 | 		migrate_timer_list(new_base, old_base->tv3.vec + i); | 
 | 		migrate_timer_list(new_base, old_base->tv4.vec + i); | 
 | 		migrate_timer_list(new_base, old_base->tv5.vec + i); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&old_base->lock); | 
 | 	spin_unlock(&new_base->lock); | 
 | 	local_irq_enable(); | 
 | 	put_cpu_var(tvec_bases); | 
 | } | 
 | #endif /* CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | static int timer_cpu_notify(struct notifier_block *self, | 
 | 				unsigned long action, void *hcpu) | 
 | { | 
 | 	long cpu = (long)hcpu; | 
 | 	switch(action) { | 
 | 	case CPU_UP_PREPARE: | 
 | 		if (init_timers_cpu(cpu) < 0) | 
 | 			return NOTIFY_BAD; | 
 | 		break; | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	case CPU_DEAD: | 
 | 		migrate_timers(cpu); | 
 | 		break; | 
 | #endif | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static struct notifier_block timers_nb = { | 
 | 	.notifier_call	= timer_cpu_notify, | 
 | }; | 
 |  | 
 |  | 
 | void __init init_timers(void) | 
 | { | 
 | 	timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, | 
 | 				(void *)(long)smp_processor_id()); | 
 | 	register_cpu_notifier(&timers_nb); | 
 | 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL); | 
 | } | 
 |  | 
 | #ifdef CONFIG_TIME_INTERPOLATION | 
 |  | 
 | struct time_interpolator *time_interpolator __read_mostly; | 
 | static struct time_interpolator *time_interpolator_list __read_mostly; | 
 | static DEFINE_SPINLOCK(time_interpolator_lock); | 
 |  | 
 | static inline u64 time_interpolator_get_cycles(unsigned int src) | 
 | { | 
 | 	unsigned long (*x)(void); | 
 |  | 
 | 	switch (src) | 
 | 	{ | 
 | 		case TIME_SOURCE_FUNCTION: | 
 | 			x = time_interpolator->addr; | 
 | 			return x(); | 
 |  | 
 | 		case TIME_SOURCE_MMIO64	: | 
 | 			return readq_relaxed((void __iomem *)time_interpolator->addr); | 
 |  | 
 | 		case TIME_SOURCE_MMIO32	: | 
 | 			return readl_relaxed((void __iomem *)time_interpolator->addr); | 
 |  | 
 | 		default: return get_cycles(); | 
 | 	} | 
 | } | 
 |  | 
 | static inline u64 time_interpolator_get_counter(int writelock) | 
 | { | 
 | 	unsigned int src = time_interpolator->source; | 
 |  | 
 | 	if (time_interpolator->jitter) | 
 | 	{ | 
 | 		u64 lcycle; | 
 | 		u64 now; | 
 |  | 
 | 		do { | 
 | 			lcycle = time_interpolator->last_cycle; | 
 | 			now = time_interpolator_get_cycles(src); | 
 | 			if (lcycle && time_after(lcycle, now)) | 
 | 				return lcycle; | 
 |  | 
 | 			/* When holding the xtime write lock, there's no need | 
 | 			 * to add the overhead of the cmpxchg.  Readers are | 
 | 			 * force to retry until the write lock is released. | 
 | 			 */ | 
 | 			if (writelock) { | 
 | 				time_interpolator->last_cycle = now; | 
 | 				return now; | 
 | 			} | 
 | 			/* Keep track of the last timer value returned. The use of cmpxchg here | 
 | 			 * will cause contention in an SMP environment. | 
 | 			 */ | 
 | 		} while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle)); | 
 | 		return now; | 
 | 	} | 
 | 	else | 
 | 		return time_interpolator_get_cycles(src); | 
 | } | 
 |  | 
 | void time_interpolator_reset(void) | 
 | { | 
 | 	time_interpolator->offset = 0; | 
 | 	time_interpolator->last_counter = time_interpolator_get_counter(1); | 
 | } | 
 |  | 
 | #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift) | 
 |  | 
 | unsigned long time_interpolator_get_offset(void) | 
 | { | 
 | 	/* If we do not have a time interpolator set up then just return zero */ | 
 | 	if (!time_interpolator) | 
 | 		return 0; | 
 |  | 
 | 	return time_interpolator->offset + | 
 | 		GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator); | 
 | } | 
 |  | 
 | #define INTERPOLATOR_ADJUST 65536 | 
 | #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST | 
 |  | 
 | static void time_interpolator_update(long delta_nsec) | 
 | { | 
 | 	u64 counter; | 
 | 	unsigned long offset; | 
 |  | 
 | 	/* If there is no time interpolator set up then do nothing */ | 
 | 	if (!time_interpolator) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * The interpolator compensates for late ticks by accumulating the late | 
 | 	 * time in time_interpolator->offset. A tick earlier than expected will | 
 | 	 * lead to a reset of the offset and a corresponding jump of the clock | 
 | 	 * forward. Again this only works if the interpolator clock is running | 
 | 	 * slightly slower than the regular clock and the tuning logic insures | 
 | 	 * that. | 
 | 	 */ | 
 |  | 
 | 	counter = time_interpolator_get_counter(1); | 
 | 	offset = time_interpolator->offset + | 
 | 			GET_TI_NSECS(counter, time_interpolator); | 
 |  | 
 | 	if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) | 
 | 		time_interpolator->offset = offset - delta_nsec; | 
 | 	else { | 
 | 		time_interpolator->skips++; | 
 | 		time_interpolator->ns_skipped += delta_nsec - offset; | 
 | 		time_interpolator->offset = 0; | 
 | 	} | 
 | 	time_interpolator->last_counter = counter; | 
 |  | 
 | 	/* Tuning logic for time interpolator invoked every minute or so. | 
 | 	 * Decrease interpolator clock speed if no skips occurred and an offset is carried. | 
 | 	 * Increase interpolator clock speed if we skip too much time. | 
 | 	 */ | 
 | 	if (jiffies % INTERPOLATOR_ADJUST == 0) | 
 | 	{ | 
 | 		if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec) | 
 | 			time_interpolator->nsec_per_cyc--; | 
 | 		if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0) | 
 | 			time_interpolator->nsec_per_cyc++; | 
 | 		time_interpolator->skips = 0; | 
 | 		time_interpolator->ns_skipped = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static inline int | 
 | is_better_time_interpolator(struct time_interpolator *new) | 
 | { | 
 | 	if (!time_interpolator) | 
 | 		return 1; | 
 | 	return new->frequency > 2*time_interpolator->frequency || | 
 | 	    (unsigned long)new->drift < (unsigned long)time_interpolator->drift; | 
 | } | 
 |  | 
 | void | 
 | register_time_interpolator(struct time_interpolator *ti) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Sanity check */ | 
 | 	BUG_ON(ti->frequency == 0 || ti->mask == 0); | 
 |  | 
 | 	ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency; | 
 | 	spin_lock(&time_interpolator_lock); | 
 | 	write_seqlock_irqsave(&xtime_lock, flags); | 
 | 	if (is_better_time_interpolator(ti)) { | 
 | 		time_interpolator = ti; | 
 | 		time_interpolator_reset(); | 
 | 	} | 
 | 	write_sequnlock_irqrestore(&xtime_lock, flags); | 
 |  | 
 | 	ti->next = time_interpolator_list; | 
 | 	time_interpolator_list = ti; | 
 | 	spin_unlock(&time_interpolator_lock); | 
 | } | 
 |  | 
 | void | 
 | unregister_time_interpolator(struct time_interpolator *ti) | 
 | { | 
 | 	struct time_interpolator *curr, **prev; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock(&time_interpolator_lock); | 
 | 	prev = &time_interpolator_list; | 
 | 	for (curr = *prev; curr; curr = curr->next) { | 
 | 		if (curr == ti) { | 
 | 			*prev = curr->next; | 
 | 			break; | 
 | 		} | 
 | 		prev = &curr->next; | 
 | 	} | 
 |  | 
 | 	write_seqlock_irqsave(&xtime_lock, flags); | 
 | 	if (ti == time_interpolator) { | 
 | 		/* we lost the best time-interpolator: */ | 
 | 		time_interpolator = NULL; | 
 | 		/* find the next-best interpolator */ | 
 | 		for (curr = time_interpolator_list; curr; curr = curr->next) | 
 | 			if (is_better_time_interpolator(curr)) | 
 | 				time_interpolator = curr; | 
 | 		time_interpolator_reset(); | 
 | 	} | 
 | 	write_sequnlock_irqrestore(&xtime_lock, flags); | 
 | 	spin_unlock(&time_interpolator_lock); | 
 | } | 
 | #endif /* CONFIG_TIME_INTERPOLATION */ | 
 |  | 
 | /** | 
 |  * msleep - sleep safely even with waitqueue interruptions | 
 |  * @msecs: Time in milliseconds to sleep for | 
 |  */ | 
 | void msleep(unsigned int msecs) | 
 | { | 
 | 	unsigned long timeout = msecs_to_jiffies(msecs) + 1; | 
 |  | 
 | 	while (timeout) | 
 | 		timeout = schedule_timeout_uninterruptible(timeout); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(msleep); | 
 |  | 
 | /** | 
 |  * msleep_interruptible - sleep waiting for signals | 
 |  * @msecs: Time in milliseconds to sleep for | 
 |  */ | 
 | unsigned long msleep_interruptible(unsigned int msecs) | 
 | { | 
 | 	unsigned long timeout = msecs_to_jiffies(msecs) + 1; | 
 |  | 
 | 	while (timeout && !signal_pending(current)) | 
 | 		timeout = schedule_timeout_interruptible(timeout); | 
 | 	return jiffies_to_msecs(timeout); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(msleep_interruptible); |