|  | /* | 
|  | * Copyright (C) 2001 Sistina Software (UK) Limited. | 
|  | * Copyright (C) 2004 Red Hat, Inc. All rights reserved. | 
|  | * | 
|  | * This file is released under the GPL. | 
|  | */ | 
|  |  | 
|  | #include "dm.h" | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <asm/atomic.h> | 
|  |  | 
|  | #define MAX_DEPTH 16 | 
|  | #define NODE_SIZE L1_CACHE_BYTES | 
|  | #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) | 
|  | #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) | 
|  |  | 
|  | struct dm_table { | 
|  | atomic_t holders; | 
|  |  | 
|  | /* btree table */ | 
|  | unsigned int depth; | 
|  | unsigned int counts[MAX_DEPTH];	/* in nodes */ | 
|  | sector_t *index[MAX_DEPTH]; | 
|  |  | 
|  | unsigned int num_targets; | 
|  | unsigned int num_allocated; | 
|  | sector_t *highs; | 
|  | struct dm_target *targets; | 
|  |  | 
|  | /* | 
|  | * Indicates the rw permissions for the new logical | 
|  | * device.  This should be a combination of FMODE_READ | 
|  | * and FMODE_WRITE. | 
|  | */ | 
|  | int mode; | 
|  |  | 
|  | /* a list of devices used by this table */ | 
|  | struct list_head devices; | 
|  |  | 
|  | /* | 
|  | * These are optimistic limits taken from all the | 
|  | * targets, some targets will need smaller limits. | 
|  | */ | 
|  | struct io_restrictions limits; | 
|  |  | 
|  | /* events get handed up using this callback */ | 
|  | void (*event_fn)(void *); | 
|  | void *event_context; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Similar to ceiling(log_size(n)) | 
|  | */ | 
|  | static unsigned int int_log(unsigned int n, unsigned int base) | 
|  | { | 
|  | int result = 0; | 
|  |  | 
|  | while (n > 1) { | 
|  | n = dm_div_up(n, base); | 
|  | result++; | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the minimum that is _not_ zero, unless both are zero. | 
|  | */ | 
|  | #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) | 
|  |  | 
|  | /* | 
|  | * Combine two io_restrictions, always taking the lower value. | 
|  | */ | 
|  | static void combine_restrictions_low(struct io_restrictions *lhs, | 
|  | struct io_restrictions *rhs) | 
|  | { | 
|  | lhs->max_sectors = | 
|  | min_not_zero(lhs->max_sectors, rhs->max_sectors); | 
|  |  | 
|  | lhs->max_phys_segments = | 
|  | min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments); | 
|  |  | 
|  | lhs->max_hw_segments = | 
|  | min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments); | 
|  |  | 
|  | lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size); | 
|  |  | 
|  | lhs->max_segment_size = | 
|  | min_not_zero(lhs->max_segment_size, rhs->max_segment_size); | 
|  |  | 
|  | lhs->seg_boundary_mask = | 
|  | min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the index of the child node of the n'th node k'th key. | 
|  | */ | 
|  | static inline unsigned int get_child(unsigned int n, unsigned int k) | 
|  | { | 
|  | return (n * CHILDREN_PER_NODE) + k; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the n'th node of level l from table t. | 
|  | */ | 
|  | static inline sector_t *get_node(struct dm_table *t, | 
|  | unsigned int l, unsigned int n) | 
|  | { | 
|  | return t->index[l] + (n * KEYS_PER_NODE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the highest key that you could lookup from the n'th | 
|  | * node on level l of the btree. | 
|  | */ | 
|  | static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) | 
|  | { | 
|  | for (; l < t->depth - 1; l++) | 
|  | n = get_child(n, CHILDREN_PER_NODE - 1); | 
|  |  | 
|  | if (n >= t->counts[l]) | 
|  | return (sector_t) - 1; | 
|  |  | 
|  | return get_node(t, l, n)[KEYS_PER_NODE - 1]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fills in a level of the btree based on the highs of the level | 
|  | * below it. | 
|  | */ | 
|  | static int setup_btree_index(unsigned int l, struct dm_table *t) | 
|  | { | 
|  | unsigned int n, k; | 
|  | sector_t *node; | 
|  |  | 
|  | for (n = 0U; n < t->counts[l]; n++) { | 
|  | node = get_node(t, l, n); | 
|  |  | 
|  | for (k = 0U; k < KEYS_PER_NODE; k++) | 
|  | node[k] = high(t, l + 1, get_child(n, k)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) | 
|  | { | 
|  | unsigned long size; | 
|  | void *addr; | 
|  |  | 
|  | /* | 
|  | * Check that we're not going to overflow. | 
|  | */ | 
|  | if (nmemb > (ULONG_MAX / elem_size)) | 
|  | return NULL; | 
|  |  | 
|  | size = nmemb * elem_size; | 
|  | addr = vmalloc(size); | 
|  | if (addr) | 
|  | memset(addr, 0, size); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * highs, and targets are managed as dynamic arrays during a | 
|  | * table load. | 
|  | */ | 
|  | static int alloc_targets(struct dm_table *t, unsigned int num) | 
|  | { | 
|  | sector_t *n_highs; | 
|  | struct dm_target *n_targets; | 
|  | int n = t->num_targets; | 
|  |  | 
|  | /* | 
|  | * Allocate both the target array and offset array at once. | 
|  | */ | 
|  | n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) + | 
|  | sizeof(sector_t)); | 
|  | if (!n_highs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | n_targets = (struct dm_target *) (n_highs + num); | 
|  |  | 
|  | if (n) { | 
|  | memcpy(n_highs, t->highs, sizeof(*n_highs) * n); | 
|  | memcpy(n_targets, t->targets, sizeof(*n_targets) * n); | 
|  | } | 
|  |  | 
|  | memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); | 
|  | vfree(t->highs); | 
|  |  | 
|  | t->num_allocated = num; | 
|  | t->highs = n_highs; | 
|  | t->targets = n_targets; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int dm_table_create(struct dm_table **result, int mode, unsigned num_targets) | 
|  | { | 
|  | struct dm_table *t = kmalloc(sizeof(*t), GFP_KERNEL); | 
|  |  | 
|  | if (!t) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memset(t, 0, sizeof(*t)); | 
|  | INIT_LIST_HEAD(&t->devices); | 
|  | atomic_set(&t->holders, 1); | 
|  |  | 
|  | if (!num_targets) | 
|  | num_targets = KEYS_PER_NODE; | 
|  |  | 
|  | num_targets = dm_round_up(num_targets, KEYS_PER_NODE); | 
|  |  | 
|  | if (alloc_targets(t, num_targets)) { | 
|  | kfree(t); | 
|  | t = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | t->mode = mode; | 
|  | *result = t; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_devices(struct list_head *devices) | 
|  | { | 
|  | struct list_head *tmp, *next; | 
|  |  | 
|  | for (tmp = devices->next; tmp != devices; tmp = next) { | 
|  | struct dm_dev *dd = list_entry(tmp, struct dm_dev, list); | 
|  | next = tmp->next; | 
|  | kfree(dd); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void table_destroy(struct dm_table *t) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | /* free the indexes (see dm_table_complete) */ | 
|  | if (t->depth >= 2) | 
|  | vfree(t->index[t->depth - 2]); | 
|  |  | 
|  | /* free the targets */ | 
|  | for (i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *tgt = t->targets + i; | 
|  |  | 
|  | if (tgt->type->dtr) | 
|  | tgt->type->dtr(tgt); | 
|  |  | 
|  | dm_put_target_type(tgt->type); | 
|  | } | 
|  |  | 
|  | vfree(t->highs); | 
|  |  | 
|  | /* free the device list */ | 
|  | if (t->devices.next != &t->devices) { | 
|  | DMWARN("devices still present during destroy: " | 
|  | "dm_table_remove_device calls missing"); | 
|  |  | 
|  | free_devices(&t->devices); | 
|  | } | 
|  |  | 
|  | kfree(t); | 
|  | } | 
|  |  | 
|  | void dm_table_get(struct dm_table *t) | 
|  | { | 
|  | atomic_inc(&t->holders); | 
|  | } | 
|  |  | 
|  | void dm_table_put(struct dm_table *t) | 
|  | { | 
|  | if (!t) | 
|  | return; | 
|  |  | 
|  | if (atomic_dec_and_test(&t->holders)) | 
|  | table_destroy(t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks to see if we need to extend highs or targets. | 
|  | */ | 
|  | static inline int check_space(struct dm_table *t) | 
|  | { | 
|  | if (t->num_targets >= t->num_allocated) | 
|  | return alloc_targets(t, t->num_allocated * 2); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert a device path to a dev_t. | 
|  | */ | 
|  | static int lookup_device(const char *path, dev_t *dev) | 
|  | { | 
|  | int r; | 
|  | struct nameidata nd; | 
|  | struct inode *inode; | 
|  |  | 
|  | if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd))) | 
|  | return r; | 
|  |  | 
|  | inode = nd.dentry->d_inode; | 
|  | if (!inode) { | 
|  | r = -ENOENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!S_ISBLK(inode->i_mode)) { | 
|  | r = -ENOTBLK; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | *dev = inode->i_rdev; | 
|  |  | 
|  | out: | 
|  | path_release(&nd); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See if we've already got a device in the list. | 
|  | */ | 
|  | static struct dm_dev *find_device(struct list_head *l, dev_t dev) | 
|  | { | 
|  | struct dm_dev *dd; | 
|  |  | 
|  | list_for_each_entry (dd, l, list) | 
|  | if (dd->bdev->bd_dev == dev) | 
|  | return dd; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Open a device so we can use it as a map destination. | 
|  | */ | 
|  | static int open_dev(struct dm_dev *d, dev_t dev) | 
|  | { | 
|  | static char *_claim_ptr = "I belong to device-mapper"; | 
|  | struct block_device *bdev; | 
|  |  | 
|  | int r; | 
|  |  | 
|  | if (d->bdev) | 
|  | BUG(); | 
|  |  | 
|  | bdev = open_by_devnum(dev, d->mode); | 
|  | if (IS_ERR(bdev)) | 
|  | return PTR_ERR(bdev); | 
|  | r = bd_claim(bdev, _claim_ptr); | 
|  | if (r) | 
|  | blkdev_put(bdev); | 
|  | else | 
|  | d->bdev = bdev; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Close a device that we've been using. | 
|  | */ | 
|  | static void close_dev(struct dm_dev *d) | 
|  | { | 
|  | if (!d->bdev) | 
|  | return; | 
|  |  | 
|  | bd_release(d->bdev); | 
|  | blkdev_put(d->bdev); | 
|  | d->bdev = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If possible (ie. blk_size[major] is set), this checks an area | 
|  | * of a destination device is valid. | 
|  | */ | 
|  | static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len) | 
|  | { | 
|  | sector_t dev_size; | 
|  | dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT; | 
|  | return ((start < dev_size) && (len <= (dev_size - start))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This upgrades the mode on an already open dm_dev.  Being | 
|  | * careful to leave things as they were if we fail to reopen the | 
|  | * device. | 
|  | */ | 
|  | static int upgrade_mode(struct dm_dev *dd, int new_mode) | 
|  | { | 
|  | int r; | 
|  | struct dm_dev dd_copy; | 
|  | dev_t dev = dd->bdev->bd_dev; | 
|  |  | 
|  | dd_copy = *dd; | 
|  |  | 
|  | dd->mode |= new_mode; | 
|  | dd->bdev = NULL; | 
|  | r = open_dev(dd, dev); | 
|  | if (!r) | 
|  | close_dev(&dd_copy); | 
|  | else | 
|  | *dd = dd_copy; | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a device to the list, or just increment the usage count if | 
|  | * it's already present. | 
|  | */ | 
|  | static int __table_get_device(struct dm_table *t, struct dm_target *ti, | 
|  | const char *path, sector_t start, sector_t len, | 
|  | int mode, struct dm_dev **result) | 
|  | { | 
|  | int r; | 
|  | dev_t dev; | 
|  | struct dm_dev *dd; | 
|  | unsigned int major, minor; | 
|  |  | 
|  | if (!t) | 
|  | BUG(); | 
|  |  | 
|  | if (sscanf(path, "%u:%u", &major, &minor) == 2) { | 
|  | /* Extract the major/minor numbers */ | 
|  | dev = MKDEV(major, minor); | 
|  | if (MAJOR(dev) != major || MINOR(dev) != minor) | 
|  | return -EOVERFLOW; | 
|  | } else { | 
|  | /* convert the path to a device */ | 
|  | if ((r = lookup_device(path, &dev))) | 
|  | return r; | 
|  | } | 
|  |  | 
|  | dd = find_device(&t->devices, dev); | 
|  | if (!dd) { | 
|  | dd = kmalloc(sizeof(*dd), GFP_KERNEL); | 
|  | if (!dd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dd->mode = mode; | 
|  | dd->bdev = NULL; | 
|  |  | 
|  | if ((r = open_dev(dd, dev))) { | 
|  | kfree(dd); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | format_dev_t(dd->name, dev); | 
|  |  | 
|  | atomic_set(&dd->count, 0); | 
|  | list_add(&dd->list, &t->devices); | 
|  |  | 
|  | } else if (dd->mode != (mode | dd->mode)) { | 
|  | r = upgrade_mode(dd, mode); | 
|  | if (r) | 
|  | return r; | 
|  | } | 
|  | atomic_inc(&dd->count); | 
|  |  | 
|  | if (!check_device_area(dd, start, len)) { | 
|  | DMWARN("device %s too small for target", path); | 
|  | dm_put_device(ti, dd); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | *result = dd; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | int dm_get_device(struct dm_target *ti, const char *path, sector_t start, | 
|  | sector_t len, int mode, struct dm_dev **result) | 
|  | { | 
|  | int r = __table_get_device(ti->table, ti, path, | 
|  | start, len, mode, result); | 
|  | if (!r) { | 
|  | request_queue_t *q = bdev_get_queue((*result)->bdev); | 
|  | struct io_restrictions *rs = &ti->limits; | 
|  |  | 
|  | /* | 
|  | * Combine the device limits low. | 
|  | * | 
|  | * FIXME: if we move an io_restriction struct | 
|  | *        into q this would just be a call to | 
|  | *        combine_restrictions_low() | 
|  | */ | 
|  | rs->max_sectors = | 
|  | min_not_zero(rs->max_sectors, q->max_sectors); | 
|  |  | 
|  | /* FIXME: Device-Mapper on top of RAID-0 breaks because DM | 
|  | *        currently doesn't honor MD's merge_bvec_fn routine. | 
|  | *        In this case, we'll force DM to use PAGE_SIZE or | 
|  | *        smaller I/O, just to be safe. A better fix is in the | 
|  | *        works, but add this for the time being so it will at | 
|  | *        least operate correctly. | 
|  | */ | 
|  | if (q->merge_bvec_fn) | 
|  | rs->max_sectors = | 
|  | min_not_zero(rs->max_sectors, | 
|  | (unsigned short)(PAGE_SIZE >> 9)); | 
|  |  | 
|  | rs->max_phys_segments = | 
|  | min_not_zero(rs->max_phys_segments, | 
|  | q->max_phys_segments); | 
|  |  | 
|  | rs->max_hw_segments = | 
|  | min_not_zero(rs->max_hw_segments, q->max_hw_segments); | 
|  |  | 
|  | rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size); | 
|  |  | 
|  | rs->max_segment_size = | 
|  | min_not_zero(rs->max_segment_size, q->max_segment_size); | 
|  |  | 
|  | rs->seg_boundary_mask = | 
|  | min_not_zero(rs->seg_boundary_mask, | 
|  | q->seg_boundary_mask); | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decrement a devices use count and remove it if necessary. | 
|  | */ | 
|  | void dm_put_device(struct dm_target *ti, struct dm_dev *dd) | 
|  | { | 
|  | if (atomic_dec_and_test(&dd->count)) { | 
|  | close_dev(dd); | 
|  | list_del(&dd->list); | 
|  | kfree(dd); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks to see if the target joins onto the end of the table. | 
|  | */ | 
|  | static int adjoin(struct dm_table *table, struct dm_target *ti) | 
|  | { | 
|  | struct dm_target *prev; | 
|  |  | 
|  | if (!table->num_targets) | 
|  | return !ti->begin; | 
|  |  | 
|  | prev = &table->targets[table->num_targets - 1]; | 
|  | return (ti->begin == (prev->begin + prev->len)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used to dynamically allocate the arg array. | 
|  | */ | 
|  | static char **realloc_argv(unsigned *array_size, char **old_argv) | 
|  | { | 
|  | char **argv; | 
|  | unsigned new_size; | 
|  |  | 
|  | new_size = *array_size ? *array_size * 2 : 64; | 
|  | argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); | 
|  | if (argv) { | 
|  | memcpy(argv, old_argv, *array_size * sizeof(*argv)); | 
|  | *array_size = new_size; | 
|  | } | 
|  |  | 
|  | kfree(old_argv); | 
|  | return argv; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Destructively splits up the argument list to pass to ctr. | 
|  | */ | 
|  | int dm_split_args(int *argc, char ***argvp, char *input) | 
|  | { | 
|  | char *start, *end = input, *out, **argv = NULL; | 
|  | unsigned array_size = 0; | 
|  |  | 
|  | *argc = 0; | 
|  | argv = realloc_argv(&array_size, argv); | 
|  | if (!argv) | 
|  | return -ENOMEM; | 
|  |  | 
|  | while (1) { | 
|  | start = end; | 
|  |  | 
|  | /* Skip whitespace */ | 
|  | while (*start && isspace(*start)) | 
|  | start++; | 
|  |  | 
|  | if (!*start) | 
|  | break;	/* success, we hit the end */ | 
|  |  | 
|  | /* 'out' is used to remove any back-quotes */ | 
|  | end = out = start; | 
|  | while (*end) { | 
|  | /* Everything apart from '\0' can be quoted */ | 
|  | if (*end == '\\' && *(end + 1)) { | 
|  | *out++ = *(end + 1); | 
|  | end += 2; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (isspace(*end)) | 
|  | break;	/* end of token */ | 
|  |  | 
|  | *out++ = *end++; | 
|  | } | 
|  |  | 
|  | /* have we already filled the array ? */ | 
|  | if ((*argc + 1) > array_size) { | 
|  | argv = realloc_argv(&array_size, argv); | 
|  | if (!argv) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* we know this is whitespace */ | 
|  | if (*end) | 
|  | end++; | 
|  |  | 
|  | /* terminate the string and put it in the array */ | 
|  | *out = '\0'; | 
|  | argv[*argc] = start; | 
|  | (*argc)++; | 
|  | } | 
|  |  | 
|  | *argvp = argv; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void check_for_valid_limits(struct io_restrictions *rs) | 
|  | { | 
|  | if (!rs->max_sectors) | 
|  | rs->max_sectors = MAX_SECTORS; | 
|  | if (!rs->max_phys_segments) | 
|  | rs->max_phys_segments = MAX_PHYS_SEGMENTS; | 
|  | if (!rs->max_hw_segments) | 
|  | rs->max_hw_segments = MAX_HW_SEGMENTS; | 
|  | if (!rs->hardsect_size) | 
|  | rs->hardsect_size = 1 << SECTOR_SHIFT; | 
|  | if (!rs->max_segment_size) | 
|  | rs->max_segment_size = MAX_SEGMENT_SIZE; | 
|  | if (!rs->seg_boundary_mask) | 
|  | rs->seg_boundary_mask = -1; | 
|  | } | 
|  |  | 
|  | int dm_table_add_target(struct dm_table *t, const char *type, | 
|  | sector_t start, sector_t len, char *params) | 
|  | { | 
|  | int r = -EINVAL, argc; | 
|  | char **argv; | 
|  | struct dm_target *tgt; | 
|  |  | 
|  | if ((r = check_space(t))) | 
|  | return r; | 
|  |  | 
|  | tgt = t->targets + t->num_targets; | 
|  | memset(tgt, 0, sizeof(*tgt)); | 
|  |  | 
|  | if (!len) { | 
|  | tgt->error = "zero-length target"; | 
|  | DMERR("%s", tgt->error); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | tgt->type = dm_get_target_type(type); | 
|  | if (!tgt->type) { | 
|  | tgt->error = "unknown target type"; | 
|  | DMERR("%s", tgt->error); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | tgt->table = t; | 
|  | tgt->begin = start; | 
|  | tgt->len = len; | 
|  | tgt->error = "Unknown error"; | 
|  |  | 
|  | /* | 
|  | * Does this target adjoin the previous one ? | 
|  | */ | 
|  | if (!adjoin(t, tgt)) { | 
|  | tgt->error = "Gap in table"; | 
|  | r = -EINVAL; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | r = dm_split_args(&argc, &argv, params); | 
|  | if (r) { | 
|  | tgt->error = "couldn't split parameters (insufficient memory)"; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | r = tgt->type->ctr(tgt, argc, argv); | 
|  | kfree(argv); | 
|  | if (r) | 
|  | goto bad; | 
|  |  | 
|  | t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; | 
|  |  | 
|  | /* FIXME: the plan is to combine high here and then have | 
|  | * the merge fn apply the target level restrictions. */ | 
|  | combine_restrictions_low(&t->limits, &tgt->limits); | 
|  | return 0; | 
|  |  | 
|  | bad: | 
|  | DMERR("%s", tgt->error); | 
|  | dm_put_target_type(tgt->type); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int setup_indexes(struct dm_table *t) | 
|  | { | 
|  | int i; | 
|  | unsigned int total = 0; | 
|  | sector_t *indexes; | 
|  |  | 
|  | /* allocate the space for *all* the indexes */ | 
|  | for (i = t->depth - 2; i >= 0; i--) { | 
|  | t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); | 
|  | total += t->counts[i]; | 
|  | } | 
|  |  | 
|  | indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); | 
|  | if (!indexes) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* set up internal nodes, bottom-up */ | 
|  | for (i = t->depth - 2, total = 0; i >= 0; i--) { | 
|  | t->index[i] = indexes; | 
|  | indexes += (KEYS_PER_NODE * t->counts[i]); | 
|  | setup_btree_index(i, t); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Builds the btree to index the map. | 
|  | */ | 
|  | int dm_table_complete(struct dm_table *t) | 
|  | { | 
|  | int r = 0; | 
|  | unsigned int leaf_nodes; | 
|  |  | 
|  | check_for_valid_limits(&t->limits); | 
|  |  | 
|  | /* how many indexes will the btree have ? */ | 
|  | leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); | 
|  | t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); | 
|  |  | 
|  | /* leaf layer has already been set up */ | 
|  | t->counts[t->depth - 1] = leaf_nodes; | 
|  | t->index[t->depth - 1] = t->highs; | 
|  |  | 
|  | if (t->depth >= 2) | 
|  | r = setup_indexes(t); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static DECLARE_MUTEX(_event_lock); | 
|  | void dm_table_event_callback(struct dm_table *t, | 
|  | void (*fn)(void *), void *context) | 
|  | { | 
|  | down(&_event_lock); | 
|  | t->event_fn = fn; | 
|  | t->event_context = context; | 
|  | up(&_event_lock); | 
|  | } | 
|  |  | 
|  | void dm_table_event(struct dm_table *t) | 
|  | { | 
|  | /* | 
|  | * You can no longer call dm_table_event() from interrupt | 
|  | * context, use a bottom half instead. | 
|  | */ | 
|  | BUG_ON(in_interrupt()); | 
|  |  | 
|  | down(&_event_lock); | 
|  | if (t->event_fn) | 
|  | t->event_fn(t->event_context); | 
|  | up(&_event_lock); | 
|  | } | 
|  |  | 
|  | sector_t dm_table_get_size(struct dm_table *t) | 
|  | { | 
|  | return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; | 
|  | } | 
|  |  | 
|  | struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) | 
|  | { | 
|  | if (index > t->num_targets) | 
|  | return NULL; | 
|  |  | 
|  | return t->targets + index; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search the btree for the correct target. | 
|  | */ | 
|  | struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) | 
|  | { | 
|  | unsigned int l, n = 0, k = 0; | 
|  | sector_t *node; | 
|  |  | 
|  | for (l = 0; l < t->depth; l++) { | 
|  | n = get_child(n, k); | 
|  | node = get_node(t, l, n); | 
|  |  | 
|  | for (k = 0; k < KEYS_PER_NODE; k++) | 
|  | if (node[k] >= sector) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return &t->targets[(KEYS_PER_NODE * n) + k]; | 
|  | } | 
|  |  | 
|  | void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q) | 
|  | { | 
|  | /* | 
|  | * Make sure we obey the optimistic sub devices | 
|  | * restrictions. | 
|  | */ | 
|  | blk_queue_max_sectors(q, t->limits.max_sectors); | 
|  | q->max_phys_segments = t->limits.max_phys_segments; | 
|  | q->max_hw_segments = t->limits.max_hw_segments; | 
|  | q->hardsect_size = t->limits.hardsect_size; | 
|  | q->max_segment_size = t->limits.max_segment_size; | 
|  | q->seg_boundary_mask = t->limits.seg_boundary_mask; | 
|  | } | 
|  |  | 
|  | unsigned int dm_table_get_num_targets(struct dm_table *t) | 
|  | { | 
|  | return t->num_targets; | 
|  | } | 
|  |  | 
|  | struct list_head *dm_table_get_devices(struct dm_table *t) | 
|  | { | 
|  | return &t->devices; | 
|  | } | 
|  |  | 
|  | int dm_table_get_mode(struct dm_table *t) | 
|  | { | 
|  | return t->mode; | 
|  | } | 
|  |  | 
|  | static void suspend_targets(struct dm_table *t, unsigned postsuspend) | 
|  | { | 
|  | int i = t->num_targets; | 
|  | struct dm_target *ti = t->targets; | 
|  |  | 
|  | while (i--) { | 
|  | if (postsuspend) { | 
|  | if (ti->type->postsuspend) | 
|  | ti->type->postsuspend(ti); | 
|  | } else if (ti->type->presuspend) | 
|  | ti->type->presuspend(ti); | 
|  |  | 
|  | ti++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void dm_table_presuspend_targets(struct dm_table *t) | 
|  | { | 
|  | if (!t) | 
|  | return; | 
|  |  | 
|  | return suspend_targets(t, 0); | 
|  | } | 
|  |  | 
|  | void dm_table_postsuspend_targets(struct dm_table *t) | 
|  | { | 
|  | if (!t) | 
|  | return; | 
|  |  | 
|  | return suspend_targets(t, 1); | 
|  | } | 
|  |  | 
|  | void dm_table_resume_targets(struct dm_table *t) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < t->num_targets; i++) { | 
|  | struct dm_target *ti = t->targets + i; | 
|  |  | 
|  | if (ti->type->resume) | 
|  | ti->type->resume(ti); | 
|  | } | 
|  | } | 
|  |  | 
|  | int dm_table_any_congested(struct dm_table *t, int bdi_bits) | 
|  | { | 
|  | struct list_head *d, *devices; | 
|  | int r = 0; | 
|  |  | 
|  | devices = dm_table_get_devices(t); | 
|  | for (d = devices->next; d != devices; d = d->next) { | 
|  | struct dm_dev *dd = list_entry(d, struct dm_dev, list); | 
|  | request_queue_t *q = bdev_get_queue(dd->bdev); | 
|  | r |= bdi_congested(&q->backing_dev_info, bdi_bits); | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | void dm_table_unplug_all(struct dm_table *t) | 
|  | { | 
|  | struct list_head *d, *devices = dm_table_get_devices(t); | 
|  |  | 
|  | for (d = devices->next; d != devices; d = d->next) { | 
|  | struct dm_dev *dd = list_entry(d, struct dm_dev, list); | 
|  | request_queue_t *q = bdev_get_queue(dd->bdev); | 
|  |  | 
|  | if (q->unplug_fn) | 
|  | q->unplug_fn(q); | 
|  | } | 
|  | } | 
|  |  | 
|  | int dm_table_flush_all(struct dm_table *t) | 
|  | { | 
|  | struct list_head *d, *devices = dm_table_get_devices(t); | 
|  | int ret = 0; | 
|  |  | 
|  | for (d = devices->next; d != devices; d = d->next) { | 
|  | struct dm_dev *dd = list_entry(d, struct dm_dev, list); | 
|  | request_queue_t *q = bdev_get_queue(dd->bdev); | 
|  | int err; | 
|  |  | 
|  | if (!q->issue_flush_fn) | 
|  | err = -EOPNOTSUPP; | 
|  | else | 
|  | err = q->issue_flush_fn(q, dd->bdev->bd_disk, NULL); | 
|  |  | 
|  | if (!ret) | 
|  | ret = err; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dm_vcalloc); | 
|  | EXPORT_SYMBOL(dm_get_device); | 
|  | EXPORT_SYMBOL(dm_put_device); | 
|  | EXPORT_SYMBOL(dm_table_event); | 
|  | EXPORT_SYMBOL(dm_table_get_size); | 
|  | EXPORT_SYMBOL(dm_table_get_mode); | 
|  | EXPORT_SYMBOL(dm_table_put); | 
|  | EXPORT_SYMBOL(dm_table_get); | 
|  | EXPORT_SYMBOL(dm_table_unplug_all); | 
|  | EXPORT_SYMBOL(dm_table_flush_all); |