|  | /* Copyright(c) 2000, Compaq Computer Corporation | 
|  | * Fibre Channel Host Bus Adapter | 
|  | * 64-bit, 66MHz PCI | 
|  | * Originally developed and tested on: | 
|  | * (front): [chip] Tachyon TS HPFC-5166A/1.2  L2C1090 ... | 
|  | *          SP# P225CXCBFIEL6T, Rev XC | 
|  | *          SP# 161290-001, Rev XD | 
|  | * (back): Board No. 010008-001 A/W Rev X5, FAB REV X5 | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the | 
|  | * Free Software Foundation; either version 2, or (at your option) any | 
|  | * later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * Written by Don Zimmerman | 
|  | * IOCTL and procfs added by Jouke Numan | 
|  | * SMP testing by Chel Van Gennip | 
|  | * | 
|  | * portions copied from: | 
|  | * QLogic CPQFCTS SCSI-FCP | 
|  | * Written by Erik H. Moe, ehm@cris.com | 
|  | * Copyright 1995, Erik H. Moe | 
|  | * Renamed and updated to 1.3.x by Michael Griffith <grif@cs.ucr.edu> | 
|  | * Chris Loveland <cwl@iol.unh.edu> to support the isp2100 and isp2200 | 
|  | */ | 
|  |  | 
|  |  | 
|  | #define LinuxVersionCode(v, p, s) (((v)<<16)+((p)<<8)+(s)) | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/version.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/ioport.h>  // request_region() prototype | 
|  | #include <linux/completion.h> | 
|  |  | 
|  | #include <asm/io.h> | 
|  | #include <asm/uaccess.h>   // ioctl related | 
|  | #include <asm/irq.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include "scsi.h" | 
|  | #include <scsi/scsi_host.h> | 
|  | #include <scsi/scsi_ioctl.h> | 
|  | #include "cpqfcTSchip.h" | 
|  | #include "cpqfcTSstructs.h" | 
|  | #include "cpqfcTStrigger.h" | 
|  |  | 
|  | #include "cpqfcTS.h" | 
|  |  | 
|  | /* Embedded module documentation macros - see module.h */ | 
|  | MODULE_AUTHOR("Compaq Computer Corporation"); | 
|  | MODULE_DESCRIPTION("Driver for Compaq 64-bit/66Mhz PCI Fibre Channel HBA v. 2.5.4"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | int cpqfcTS_TargetDeviceReset( Scsi_Device *ScsiDev, unsigned int reset_flags); | 
|  |  | 
|  | // This struct was originally defined in | 
|  | // /usr/src/linux/include/linux/proc_fs.h | 
|  | // since it's only partially implemented, we only use first | 
|  | // few fields... | 
|  | // NOTE: proc_fs changes in 2.4 kernel | 
|  |  | 
|  | #if LINUX_VERSION_CODE < LinuxVersionCode(2,3,27) | 
|  | static struct proc_dir_entry proc_scsi_cpqfcTS = | 
|  | { | 
|  | PROC_SCSI_CPQFCTS,           // ushort low_ino (enumerated list) | 
|  | 7,                           // ushort namelen | 
|  | DEV_NAME,                    // const char* name | 
|  | S_IFDIR | S_IRUGO | S_IXUGO, // mode_t mode | 
|  | 2                            // nlink_t nlink | 
|  | // etc. ... | 
|  | }; | 
|  |  | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #if LINUX_VERSION_CODE >= LinuxVersionCode(2,4,7) | 
|  | #  define CPQFC_DECLARE_COMPLETION(x) DECLARE_COMPLETION(x) | 
|  | #  define CPQFC_WAITING waiting | 
|  | #  define CPQFC_COMPLETE(x) complete(x) | 
|  | #  define CPQFC_WAIT_FOR_COMPLETION(x) wait_for_completion(x); | 
|  | #else | 
|  | #  define CPQFC_DECLARE_COMPLETION(x) DECLARE_MUTEX_LOCKED(x) | 
|  | #  define CPQFC_WAITING sem | 
|  | #  define CPQFC_COMPLETE(x) up(x) | 
|  | #  define CPQFC_WAIT_FOR_COMPLETION(x) down(x) | 
|  | #endif | 
|  |  | 
|  | static int cpqfc_alloc_private_data_pool(CPQFCHBA *hba); | 
|  |  | 
|  | /* local function to load our per-HBA (local) data for chip | 
|  | registers, FC link state, all FC exchanges, etc. | 
|  |  | 
|  | We allocate space and compute address offsets for the | 
|  | most frequently accessed addresses; others (like World Wide | 
|  | Name) are not necessary. | 
|  | */ | 
|  | static void Cpqfc_initHBAdata(CPQFCHBA *cpqfcHBAdata, struct pci_dev *PciDev ) | 
|  | { | 
|  |  | 
|  | cpqfcHBAdata->PciDev = PciDev; // copy PCI info ptr | 
|  |  | 
|  | // since x86 port space is 64k, we only need the lower 16 bits | 
|  | cpqfcHBAdata->fcChip.Registers.IOBaseL = | 
|  | PciDev->resource[1].start & PCI_BASE_ADDRESS_IO_MASK; | 
|  |  | 
|  | cpqfcHBAdata->fcChip.Registers.IOBaseU = | 
|  | PciDev->resource[2].start & PCI_BASE_ADDRESS_IO_MASK; | 
|  |  | 
|  | // 32-bit memory addresses | 
|  | cpqfcHBAdata->fcChip.Registers.MemBase = | 
|  | PciDev->resource[3].start & PCI_BASE_ADDRESS_MEM_MASK; | 
|  |  | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase = | 
|  | ioremap( PciDev->resource[3].start & PCI_BASE_ADDRESS_MEM_MASK, | 
|  | 0x200); | 
|  |  | 
|  | cpqfcHBAdata->fcChip.Registers.RAMBase = | 
|  | PciDev->resource[4].start; | 
|  |  | 
|  | cpqfcHBAdata->fcChip.Registers.SROMBase =  // NULL for HP TS adapter | 
|  | PciDev->resource[5].start; | 
|  |  | 
|  | // now the Tachlite chip registers | 
|  | // the REGISTER struct holds both the physical address & last | 
|  | // written value (some TL registers are WRITE ONLY) | 
|  |  | 
|  | cpqfcHBAdata->fcChip.Registers.SFQconsumerIndex.address = | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_SFQ_CONSUMER_INDEX; | 
|  |  | 
|  | cpqfcHBAdata->fcChip.Registers.ERQproducerIndex.address = | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_ERQ_PRODUCER_INDEX; | 
|  |  | 
|  | // TL Frame Manager | 
|  | cpqfcHBAdata->fcChip.Registers.FMconfig.address = | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_CONFIG; | 
|  | cpqfcHBAdata->fcChip.Registers.FMcontrol.address = | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_CONTROL; | 
|  | cpqfcHBAdata->fcChip.Registers.FMstatus.address = | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_STATUS; | 
|  | cpqfcHBAdata->fcChip.Registers.FMLinkStatus1.address = | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_LINK_STAT1; | 
|  | cpqfcHBAdata->fcChip.Registers.FMLinkStatus2.address = | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_LINK_STAT2; | 
|  | cpqfcHBAdata->fcChip.Registers.FMBB_CreditZero.address = | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_BB_CREDIT0; | 
|  |  | 
|  | // TL Control Regs | 
|  | cpqfcHBAdata->fcChip.Registers.TYconfig.address = | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_CONFIG; | 
|  | cpqfcHBAdata->fcChip.Registers.TYcontrol.address = | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_CONTROL; | 
|  | cpqfcHBAdata->fcChip.Registers.TYstatus.address = | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_TACH_STATUS; | 
|  | cpqfcHBAdata->fcChip.Registers.rcv_al_pa.address = | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_RCV_AL_PA; | 
|  | cpqfcHBAdata->fcChip.Registers.ed_tov.address = | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + TL_MEM_FM_ED_TOV; | 
|  |  | 
|  |  | 
|  | cpqfcHBAdata->fcChip.Registers.INTEN.address = | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTEN; | 
|  | cpqfcHBAdata->fcChip.Registers.INTPEND.address = | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTPEND; | 
|  | cpqfcHBAdata->fcChip.Registers.INTSTAT.address = | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase + IINTSTAT; | 
|  |  | 
|  | DEBUG_PCI(printk("  cpqfcHBAdata->fcChip.Registers. :\n")); | 
|  | DEBUG_PCI(printk("    IOBaseL = %x\n", | 
|  | cpqfcHBAdata->fcChip.Registers.IOBaseL)); | 
|  | DEBUG_PCI(printk("    IOBaseU = %x\n", | 
|  | cpqfcHBAdata->fcChip.Registers.IOBaseU)); | 
|  |  | 
|  | /* printk(" ioremap'd Membase: %p\n", cpqfcHBAdata->fcChip.Registers.ReMapMemBase); */ | 
|  |  | 
|  | DEBUG_PCI(printk("    SFQconsumerIndex.address = %p\n", | 
|  | cpqfcHBAdata->fcChip.Registers.SFQconsumerIndex.address)); | 
|  | DEBUG_PCI(printk("    ERQproducerIndex.address = %p\n", | 
|  | cpqfcHBAdata->fcChip.Registers.ERQproducerIndex.address)); | 
|  | DEBUG_PCI(printk("    TYconfig.address = %p\n", | 
|  | cpqfcHBAdata->fcChip.Registers.TYconfig.address)); | 
|  | DEBUG_PCI(printk("    FMconfig.address = %p\n", | 
|  | cpqfcHBAdata->fcChip.Registers.FMconfig.address)); | 
|  | DEBUG_PCI(printk("    FMcontrol.address = %p\n", | 
|  | cpqfcHBAdata->fcChip.Registers.FMcontrol.address)); | 
|  |  | 
|  | // set default options for FC controller (chip) | 
|  | cpqfcHBAdata->fcChip.Options.initiator = 1;  // default: SCSI initiator | 
|  | cpqfcHBAdata->fcChip.Options.target = 0;     // default: SCSI target | 
|  | cpqfcHBAdata->fcChip.Options.extLoopback = 0;// default: no loopback @GBIC | 
|  | cpqfcHBAdata->fcChip.Options.intLoopback = 0;// default: no loopback inside chip | 
|  |  | 
|  | // set highest and lowest FC-PH version the adapter/driver supports | 
|  | // (NOT strict compliance) | 
|  | cpqfcHBAdata->fcChip.highest_FCPH_ver = FC_PH3; | 
|  | cpqfcHBAdata->fcChip.lowest_FCPH_ver = FC_PH43; | 
|  |  | 
|  | // set function points for this controller / adapter | 
|  | cpqfcHBAdata->fcChip.ResetTachyon = CpqTsResetTachLite; | 
|  | cpqfcHBAdata->fcChip.FreezeTachyon = CpqTsFreezeTachlite; | 
|  | cpqfcHBAdata->fcChip.UnFreezeTachyon = CpqTsUnFreezeTachlite; | 
|  | cpqfcHBAdata->fcChip.CreateTachyonQues = CpqTsCreateTachLiteQues; | 
|  | cpqfcHBAdata->fcChip.DestroyTachyonQues = CpqTsDestroyTachLiteQues; | 
|  | cpqfcHBAdata->fcChip.InitializeTachyon = CpqTsInitializeTachLite; | 
|  | cpqfcHBAdata->fcChip.LaserControl = CpqTsLaserControl; | 
|  | cpqfcHBAdata->fcChip.ProcessIMQEntry = CpqTsProcessIMQEntry; | 
|  | cpqfcHBAdata->fcChip.InitializeFrameManager = CpqTsInitializeFrameManager; | 
|  | cpqfcHBAdata->fcChip.ReadWriteWWN = CpqTsReadWriteWWN; | 
|  | cpqfcHBAdata->fcChip.ReadWriteNVRAM = CpqTsReadWriteNVRAM; | 
|  |  | 
|  | if (cpqfc_alloc_private_data_pool(cpqfcHBAdata) != 0) { | 
|  | printk(KERN_WARNING | 
|  | "cpqfc: unable to allocate pool for passthru ioctls.  " | 
|  | "Passthru ioctls disabled.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* (borrowed from linux/drivers/scsi/hosts.c) */ | 
|  | static void launch_FCworker_thread(struct Scsi_Host *HostAdapter) | 
|  | { | 
|  | DECLARE_MUTEX_LOCKED(sem); | 
|  |  | 
|  | CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; | 
|  |  | 
|  | ENTER("launch_FC_worker_thread"); | 
|  |  | 
|  | cpqfcHBAdata->notify_wt = &sem; | 
|  |  | 
|  | /* must unlock before kernel_thread(), for it may cause a reschedule. */ | 
|  | spin_unlock_irq(HostAdapter->host_lock); | 
|  | kernel_thread((int (*)(void *))cpqfcTSWorkerThread, | 
|  | (void *) HostAdapter, 0); | 
|  | /* | 
|  | * Now wait for the kernel error thread to initialize itself | 
|  |  | 
|  | */ | 
|  | down (&sem); | 
|  | spin_lock_irq(HostAdapter->host_lock); | 
|  | cpqfcHBAdata->notify_wt = NULL; | 
|  |  | 
|  | LEAVE("launch_FC_worker_thread"); | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | /* "Entry" point to discover if any supported PCI | 
|  | bus adapter can be found | 
|  | */ | 
|  | /* We're supporting: | 
|  | * Compaq 64-bit, 66MHz HBA with Tachyon TS | 
|  | * Agilent XL2 | 
|  | * HP Tachyon | 
|  | */ | 
|  | #define HBA_TYPES 3 | 
|  |  | 
|  | #ifndef PCI_DEVICE_ID_COMPAQ_ | 
|  | #define PCI_DEVICE_ID_COMPAQ_TACHYON	0xa0fc | 
|  | #endif | 
|  |  | 
|  | static struct SupportedPCIcards cpqfc_boards[] __initdata = { | 
|  | {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_TACHYON}, | 
|  | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_TACHLITE}, | 
|  | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_TACHYON}, | 
|  | }; | 
|  |  | 
|  |  | 
|  | int cpqfcTS_detect(Scsi_Host_Template *ScsiHostTemplate) | 
|  | { | 
|  | int NumberOfAdapters=0; // how many of our PCI adapters are found? | 
|  | struct pci_dev *PciDev = NULL; | 
|  | struct Scsi_Host *HostAdapter = NULL; | 
|  | CPQFCHBA *cpqfcHBAdata = NULL; | 
|  | struct timer_list *cpqfcTStimer = NULL; | 
|  | int i; | 
|  |  | 
|  | ENTER("cpqfcTS_detect"); | 
|  |  | 
|  | #if LINUX_VERSION_CODE < LinuxVersionCode(2,3,27) | 
|  | ScsiHostTemplate->proc_dir = &proc_scsi_cpqfcTS; | 
|  | #else | 
|  | ScsiHostTemplate->proc_name = "cpqfcTS"; | 
|  | #endif | 
|  |  | 
|  | for( i=0; i < HBA_TYPES; i++) | 
|  | { | 
|  | // look for all HBAs of each type | 
|  |  | 
|  | while((PciDev = pci_find_device(cpqfc_boards[i].vendor_id, | 
|  | cpqfc_boards[i].device_id, PciDev))) | 
|  | { | 
|  |  | 
|  | if (pci_enable_device(PciDev)) { | 
|  | printk(KERN_ERR | 
|  | "cpqfc: can't enable PCI device at %s\n", pci_name(PciDev)); | 
|  | goto err_continue; | 
|  | } | 
|  |  | 
|  | if (pci_set_dma_mask(PciDev, CPQFCTS_DMA_MASK) != 0) { | 
|  | printk(KERN_WARNING | 
|  | "cpqfc: HBA cannot support required DMA mask, skipping.\n"); | 
|  | goto err_disable_dev; | 
|  | } | 
|  |  | 
|  | // NOTE: (kernel 2.2.12-32) limits allocation to 128k bytes... | 
|  | /* printk(" scsi_register allocating %d bytes for FC HBA\n", | 
|  | (ULONG)sizeof(CPQFCHBA)); */ | 
|  |  | 
|  | HostAdapter = scsi_register( ScsiHostTemplate, sizeof( CPQFCHBA ) ); | 
|  |  | 
|  | if(HostAdapter == NULL) { | 
|  | printk(KERN_WARNING | 
|  | "cpqfc: can't register SCSI HBA, skipping.\n"); | 
|  | goto err_disable_dev; | 
|  | } | 
|  | DEBUG_PCI( printk("  HBA found!\n")); | 
|  | DEBUG_PCI( printk("  HostAdapter->PciDev->irq = %u\n", PciDev->irq) ); | 
|  | DEBUG_PCI(printk("  PciDev->baseaddress[0]= %lx\n", | 
|  | PciDev->resource[0].start)); | 
|  | DEBUG_PCI(printk("  PciDev->baseaddress[1]= %lx\n", | 
|  | PciDev->resource[1].start)); | 
|  | DEBUG_PCI(printk("  PciDev->baseaddress[2]= %lx\n", | 
|  | PciDev->resource[2].start)); | 
|  | DEBUG_PCI(printk("  PciDev->baseaddress[3]= %lx\n", | 
|  | PciDev->resource[3].start)); | 
|  |  | 
|  | HostAdapter->irq = PciDev->irq;  // copy for Scsi layers | 
|  |  | 
|  | // HP Tachlite uses two (255-byte) ranges of Port I/O (lower & upper), | 
|  | // for a total I/O port address space of 512 bytes. | 
|  | // mask out the I/O port address (lower) & record | 
|  | HostAdapter->io_port = (unsigned int) | 
|  | PciDev->resource[1].start & PCI_BASE_ADDRESS_IO_MASK; | 
|  | HostAdapter->n_io_port = 0xff; | 
|  |  | 
|  | // i.e., expect 128 targets (arbitrary number), while the | 
|  | //  RA-4000 supports 32 LUNs | 
|  | HostAdapter->max_id =  0;   // incremented as devices log in | 
|  | HostAdapter->max_lun = CPQFCTS_MAX_LUN;         // LUNs per FC device | 
|  | HostAdapter->max_channel = CPQFCTS_MAX_CHANNEL; // multiple busses? | 
|  |  | 
|  | // get the pointer to our HBA specific data... (one for | 
|  | // each HBA on the PCI bus(ses)). | 
|  | cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; | 
|  |  | 
|  | // make certain our data struct is clear | 
|  | memset( cpqfcHBAdata, 0, sizeof( CPQFCHBA ) ); | 
|  |  | 
|  |  | 
|  | // initialize our HBA info | 
|  | cpqfcHBAdata->HBAnum = NumberOfAdapters; | 
|  |  | 
|  | cpqfcHBAdata->HostAdapter = HostAdapter; // back ptr | 
|  | Cpqfc_initHBAdata( cpqfcHBAdata, PciDev ); // fill MOST fields | 
|  |  | 
|  | cpqfcHBAdata->HBAnum = NumberOfAdapters; | 
|  | spin_lock_init(&cpqfcHBAdata->hba_spinlock); | 
|  |  | 
|  | // request necessary resources and check for conflicts | 
|  | if( request_irq( HostAdapter->irq, | 
|  | cpqfcTS_intr_handler, | 
|  | SA_INTERRUPT | SA_SHIRQ, | 
|  | DEV_NAME, | 
|  | HostAdapter) ) | 
|  | { | 
|  | printk(KERN_WARNING "cpqfc: IRQ %u already used\n", HostAdapter->irq); | 
|  | goto err_unregister; | 
|  | } | 
|  |  | 
|  | // Since we have two 256-byte I/O port ranges (upper | 
|  | // and lower), check them both | 
|  | if( !request_region( cpqfcHBAdata->fcChip.Registers.IOBaseU, | 
|  | 0xff, DEV_NAME ) ) | 
|  | { | 
|  | printk(KERN_WARNING "cpqfc: address in use: %x\n", | 
|  | cpqfcHBAdata->fcChip.Registers.IOBaseU); | 
|  | goto err_free_irq; | 
|  | } | 
|  |  | 
|  | if( !request_region( cpqfcHBAdata->fcChip.Registers.IOBaseL, | 
|  | 0xff, DEV_NAME ) ) | 
|  | { | 
|  | printk(KERN_WARNING "cpqfc: address in use: %x\n", | 
|  | cpqfcHBAdata->fcChip.Registers.IOBaseL); | 
|  | goto err_release_region_U; | 
|  | } | 
|  |  | 
|  | // OK, we have grabbed everything we need now. | 
|  | DEBUG_PCI(printk("  Reserved 255 I/O addresses @ %x\n", | 
|  | cpqfcHBAdata->fcChip.Registers.IOBaseL )); | 
|  | DEBUG_PCI(printk("  Reserved 255 I/O addresses @ %x\n", | 
|  | cpqfcHBAdata->fcChip.Registers.IOBaseU )); | 
|  |  | 
|  |  | 
|  |  | 
|  | // start our kernel worker thread | 
|  |  | 
|  | spin_lock_irq(HostAdapter->host_lock); | 
|  | launch_FCworker_thread(HostAdapter); | 
|  |  | 
|  |  | 
|  | // start our TimerTask... | 
|  |  | 
|  | cpqfcTStimer = &cpqfcHBAdata->cpqfcTStimer; | 
|  |  | 
|  | init_timer( cpqfcTStimer); // Linux clears next/prev values | 
|  | cpqfcTStimer->expires = jiffies + HZ; // one second | 
|  | cpqfcTStimer->data = (unsigned long)cpqfcHBAdata; // this adapter | 
|  | cpqfcTStimer->function = cpqfcTSheartbeat; // handles timeouts, housekeeping | 
|  |  | 
|  | add_timer( cpqfcTStimer);  // give it to Linux | 
|  |  | 
|  |  | 
|  | // now initialize our hardware... | 
|  | if (cpqfcHBAdata->fcChip.InitializeTachyon( cpqfcHBAdata, 1,1)) { | 
|  | printk(KERN_WARNING "cpqfc: initialization of HBA hardware failed.\n"); | 
|  | goto err_release_region_L; | 
|  | } | 
|  |  | 
|  | cpqfcHBAdata->fcStatsTime = jiffies;  // (for FC Statistics delta) | 
|  |  | 
|  | // give our HBA time to initialize and login current devices... | 
|  | { | 
|  | // The Brocade switch (e.g. 2400, 2010, etc.) as of March 2000, | 
|  | // has the following algorithm for FL_Port startup: | 
|  | // Time(sec) Action | 
|  | // 0:        Device Plugin and LIP(F7,F7) transmission | 
|  | // 1.0       LIP incoming | 
|  | // 1.027     LISA incoming, no CLS! (link not up) | 
|  | // 1.028     NOS incoming (switch test for N_Port) | 
|  | // 1.577     ED_TOV expired, transmit LIPs again | 
|  | // 3.0       LIP(F8,F7) incoming (switch passes Tach Prim.Sig) | 
|  | // 3.028     LILP received, link up, FLOGI starts | 
|  | // slowest(worst) case, measured on 1Gb Finisar GT analyzer | 
|  |  | 
|  | unsigned long stop_time; | 
|  |  | 
|  | spin_unlock_irq(HostAdapter->host_lock); | 
|  | stop_time = jiffies + 4*HZ; | 
|  | while ( time_before(jiffies, stop_time) ) | 
|  | schedule();  // (our worker task needs to run) | 
|  |  | 
|  | } | 
|  |  | 
|  | spin_lock_irq(HostAdapter->host_lock); | 
|  | NumberOfAdapters++; | 
|  | spin_unlock_irq(HostAdapter->host_lock); | 
|  |  | 
|  | continue; | 
|  |  | 
|  | err_release_region_L: | 
|  | release_region( cpqfcHBAdata->fcChip.Registers.IOBaseL, 0xff ); | 
|  | err_release_region_U: | 
|  | release_region( cpqfcHBAdata->fcChip.Registers.IOBaseU, 0xff ); | 
|  | err_free_irq: | 
|  | free_irq( HostAdapter->irq, HostAdapter); | 
|  | err_unregister: | 
|  | scsi_unregister( HostAdapter); | 
|  | err_disable_dev: | 
|  | pci_disable_device( PciDev ); | 
|  | err_continue: | 
|  | continue; | 
|  | } // end of while() | 
|  | } | 
|  |  | 
|  | LEAVE("cpqfcTS_detect"); | 
|  |  | 
|  | return NumberOfAdapters; | 
|  | } | 
|  |  | 
|  | #ifdef SUPPORT_RESET | 
|  | static void my_ioctl_done (Scsi_Cmnd * SCpnt) | 
|  | { | 
|  | struct request * req; | 
|  |  | 
|  | req = SCpnt->request; | 
|  | req->rq_status = RQ_SCSI_DONE; /* Busy, but indicate request done */ | 
|  |  | 
|  | if (req->CPQFC_WAITING != NULL) | 
|  | CPQFC_COMPLETE(req->CPQFC_WAITING); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int cpqfc_alloc_private_data_pool(CPQFCHBA *hba) | 
|  | { | 
|  | hba->private_data_bits = NULL; | 
|  | hba->private_data_pool = NULL; | 
|  | hba->private_data_bits = | 
|  | kmalloc(((CPQFC_MAX_PASSTHRU_CMDS+BITS_PER_LONG-1) / | 
|  | BITS_PER_LONG)*sizeof(unsigned long), | 
|  | GFP_KERNEL); | 
|  | if (hba->private_data_bits == NULL) | 
|  | return -1; | 
|  | memset(hba->private_data_bits, 0, | 
|  | ((CPQFC_MAX_PASSTHRU_CMDS+BITS_PER_LONG-1) / | 
|  | BITS_PER_LONG)*sizeof(unsigned long)); | 
|  | hba->private_data_pool = kmalloc(sizeof(cpqfc_passthru_private_t) * | 
|  | CPQFC_MAX_PASSTHRU_CMDS, GFP_KERNEL); | 
|  | if (hba->private_data_pool == NULL) { | 
|  | kfree(hba->private_data_bits); | 
|  | hba->private_data_bits = NULL; | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cpqfc_free_private_data_pool(CPQFCHBA *hba) | 
|  | { | 
|  | kfree(hba->private_data_bits); | 
|  | kfree(hba->private_data_pool); | 
|  | } | 
|  |  | 
|  | int is_private_data_of_cpqfc(CPQFCHBA *hba, void *pointer) | 
|  | { | 
|  | /* Is pointer within our private data pool? | 
|  | We use Scsi_Request->upper_private_data (normally | 
|  | reserved for upper layer drivers, e.g. the sg driver) | 
|  | We check to see if the pointer is ours by looking at | 
|  | its address.  Is this ok?   Hmm, it occurs to me that | 
|  | a user app might do something bad by using sg to send | 
|  | a cpqfc passthrough ioctl with upper_data_private | 
|  | forged to be somewhere in our pool..., though they'd | 
|  | normally have to be root already to do this.  */ | 
|  |  | 
|  | return (pointer != NULL && | 
|  | pointer >= (void *) hba->private_data_pool && | 
|  | pointer < (void *) hba->private_data_pool + | 
|  | sizeof(*hba->private_data_pool) * | 
|  | CPQFC_MAX_PASSTHRU_CMDS); | 
|  | } | 
|  |  | 
|  | cpqfc_passthru_private_t *cpqfc_alloc_private_data(CPQFCHBA *hba) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | do { | 
|  | i = find_first_zero_bit(hba->private_data_bits, | 
|  | CPQFC_MAX_PASSTHRU_CMDS); | 
|  | if (i == CPQFC_MAX_PASSTHRU_CMDS) | 
|  | return NULL; | 
|  | } while ( test_and_set_bit(i & (BITS_PER_LONG - 1), | 
|  | hba->private_data_bits+(i/BITS_PER_LONG)) != 0); | 
|  | return &hba->private_data_pool[i]; | 
|  | } | 
|  |  | 
|  | void cpqfc_free_private_data(CPQFCHBA *hba, cpqfc_passthru_private_t *data) | 
|  | { | 
|  | int i; | 
|  | i = data - hba->private_data_pool; | 
|  | clear_bit(i&(BITS_PER_LONG-1), | 
|  | hba->private_data_bits+(i/BITS_PER_LONG)); | 
|  | } | 
|  |  | 
|  | int cpqfcTS_ioctl( struct scsi_device *ScsiDev, int Cmnd, void *arg) | 
|  | { | 
|  | int result = 0; | 
|  | struct Scsi_Host *HostAdapter = ScsiDev->host; | 
|  | CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; | 
|  | PTACHYON fcChip = &cpqfcHBAdata->fcChip; | 
|  | PFC_LOGGEDIN_PORT pLoggedInPort = NULL; | 
|  | struct scsi_cmnd *DumCmnd; | 
|  | int i, j; | 
|  | VENDOR_IOCTL_REQ ioc; | 
|  | cpqfc_passthru_t *vendor_cmd; | 
|  | Scsi_Device *SDpnt; | 
|  | Scsi_Request *ScsiPassThruReq; | 
|  | cpqfc_passthru_private_t *privatedata; | 
|  |  | 
|  | ENTER("cpqfcTS_ioctl "); | 
|  |  | 
|  | // printk("ioctl CMND %d", Cmnd); | 
|  | switch (Cmnd) { | 
|  | // Passthrough provides a mechanism to bypass the RAID | 
|  | // or other controller and talk directly to the devices | 
|  | // (e.g. physical disk drive) | 
|  | // Passthrough commands, unfortunately, tend to be vendor | 
|  | // specific; this is tailored to COMPAQ's RAID (RA4x00) | 
|  | case CPQFCTS_SCSI_PASSTHRU: | 
|  | { | 
|  | void *buf = NULL; // for kernel space buffer for user data | 
|  |  | 
|  | /* Check that our pool got allocated ok. */ | 
|  | if (cpqfcHBAdata->private_data_pool == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if( !arg) | 
|  | return -EINVAL; | 
|  |  | 
|  | // must be super user to send stuff directly to the | 
|  | // controller and/or physical drives... | 
|  | if( !capable(CAP_SYS_RAWIO) ) | 
|  | return -EPERM; | 
|  |  | 
|  | // copy the caller's struct to our space. | 
|  | if( copy_from_user( &ioc, arg, sizeof( VENDOR_IOCTL_REQ))) | 
|  | return( -EFAULT); | 
|  |  | 
|  | vendor_cmd = ioc.argp;  // i.e., CPQ specific command struct | 
|  |  | 
|  | // If necessary, grab a kernel/DMA buffer | 
|  | if( vendor_cmd->len) | 
|  | { | 
|  | buf = kmalloc( vendor_cmd->len, GFP_KERNEL); | 
|  | if( !buf) | 
|  | return -ENOMEM; | 
|  | } | 
|  | // Now build a Scsi_Request to pass down... | 
|  | ScsiPassThruReq = scsi_allocate_request(ScsiDev, GFP_KERNEL); | 
|  | if (ScsiPassThruReq == NULL) { | 
|  | kfree(buf); | 
|  | return -ENOMEM; | 
|  | } | 
|  | ScsiPassThruReq->upper_private_data = | 
|  | cpqfc_alloc_private_data(cpqfcHBAdata); | 
|  | if (ScsiPassThruReq->upper_private_data == NULL) { | 
|  | kfree(buf); | 
|  | scsi_release_request(ScsiPassThruReq); // "de-allocate" | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (vendor_cmd->rw_flag == VENDOR_WRITE_OPCODE) { | 
|  | if (vendor_cmd->len) { // Need data from user? | 
|  | if (copy_from_user(buf, vendor_cmd->bufp, | 
|  | vendor_cmd->len)) { | 
|  | kfree(buf); | 
|  | cpqfc_free_private_data(cpqfcHBAdata, | 
|  | ScsiPassThruReq->upper_private_data); | 
|  | scsi_release_request(ScsiPassThruReq); | 
|  | return( -EFAULT); | 
|  | } | 
|  | } | 
|  | ScsiPassThruReq->sr_data_direction = DMA_TO_DEVICE; | 
|  | } else if (vendor_cmd->rw_flag == VENDOR_READ_OPCODE) { | 
|  | ScsiPassThruReq->sr_data_direction = DMA_FROM_DEVICE; | 
|  | } else | 
|  | // maybe this means a bug in the user app | 
|  | ScsiPassThruReq->sr_data_direction = DMA_BIDIRECTIONAL; | 
|  |  | 
|  | ScsiPassThruReq->sr_cmd_len = 0; // set correctly by scsi_do_req() | 
|  | ScsiPassThruReq->sr_sense_buffer[0] = 0; | 
|  | ScsiPassThruReq->sr_sense_buffer[2] = 0; | 
|  |  | 
|  | // We copy the scheme used by sd.c:spinup_disk() to submit commands | 
|  | // to our own HBA.  We do this in order to stall the | 
|  | // thread calling the IOCTL until it completes, and use | 
|  | // the same "_quecommand" function for synchronizing | 
|  | // FC Link events with our "worker thread". | 
|  |  | 
|  | privatedata = ScsiPassThruReq->upper_private_data; | 
|  | privatedata->bus = vendor_cmd->bus; | 
|  | privatedata->pdrive = vendor_cmd->pdrive; | 
|  |  | 
|  | // eventually gets us to our own _quecommand routine | 
|  | scsi_wait_req(ScsiPassThruReq, | 
|  | &vendor_cmd->cdb[0], buf, vendor_cmd->len, | 
|  | 10*HZ,  // timeout | 
|  | 1);	// retries | 
|  | result = ScsiPassThruReq->sr_result; | 
|  |  | 
|  | // copy any sense data back to caller | 
|  | if( result != 0 ) | 
|  | { | 
|  | memcpy( vendor_cmd->sense_data, // see struct def - size=40 | 
|  | ScsiPassThruReq->sr_sense_buffer, | 
|  | sizeof(ScsiPassThruReq->sr_sense_buffer) < | 
|  | sizeof(vendor_cmd->sense_data)           ? | 
|  | sizeof(ScsiPassThruReq->sr_sense_buffer) : | 
|  | sizeof(vendor_cmd->sense_data) | 
|  | ); | 
|  | } | 
|  | SDpnt = ScsiPassThruReq->sr_device; | 
|  | /* upper_private_data is already freed in call_scsi_done() */ | 
|  | scsi_release_request(ScsiPassThruReq); // "de-allocate" | 
|  | ScsiPassThruReq = NULL; | 
|  |  | 
|  | // need to pass data back to user (space)? | 
|  | if( (vendor_cmd->rw_flag == VENDOR_READ_OPCODE) && | 
|  | vendor_cmd->len ) | 
|  | if(  copy_to_user( vendor_cmd->bufp, buf, vendor_cmd->len)) | 
|  | result = -EFAULT; | 
|  |  | 
|  | kfree(buf); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | case CPQFCTS_GETPCIINFO: | 
|  | { | 
|  | cpqfc_pci_info_struct pciinfo; | 
|  |  | 
|  | if( !arg) | 
|  | return -EINVAL; | 
|  |  | 
|  |  | 
|  |  | 
|  | pciinfo.bus = cpqfcHBAdata->PciDev->bus->number; | 
|  | pciinfo.dev_fn = cpqfcHBAdata->PciDev->devfn; | 
|  | pciinfo.board_id = cpqfcHBAdata->PciDev->device | | 
|  | (cpqfcHBAdata->PciDev->vendor <<16); | 
|  |  | 
|  | if(copy_to_user( arg, &pciinfo, sizeof(cpqfc_pci_info_struct))) | 
|  | return( -EFAULT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case CPQFCTS_GETDRIVVER: | 
|  | { | 
|  | DriverVer_type DriverVer = | 
|  | CPQFCTS_DRIVER_VER( VER_MAJOR,VER_MINOR,VER_SUBMINOR); | 
|  |  | 
|  | if( !arg) | 
|  | return -EINVAL; | 
|  |  | 
|  | if(copy_to_user( arg, &DriverVer, sizeof(DriverVer))) | 
|  | return( -EFAULT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | case CPQFC_IOCTL_FC_TARGET_ADDRESS: | 
|  | // can we find an FC device mapping to this SCSI target? | 
|  | /* 	DumCmnd.channel = ScsiDev->channel; */		// For searching | 
|  | /* 	DumCmnd.target  = ScsiDev->id; */ | 
|  | /* 	DumCmnd.lun     = ScsiDev->lun; */ | 
|  |  | 
|  | DumCmnd = scsi_get_command (ScsiDev, GFP_KERNEL); | 
|  | if (!DumCmnd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pLoggedInPort = fcFindLoggedInPort( fcChip, | 
|  | DumCmnd, // search Scsi Nexus | 
|  | 0,        // DON'T search linked list for FC port id | 
|  | NULL,     // DON'T search linked list for FC WWN | 
|  | NULL);    // DON'T care about end of list | 
|  | scsi_put_command (DumCmnd); | 
|  | if (pLoggedInPort == NULL) { | 
|  | result = -ENXIO; | 
|  | break; | 
|  | } | 
|  | result = access_ok(VERIFY_WRITE, arg, sizeof(Scsi_FCTargAddress)) ? 0 : -EFAULT; | 
|  | if (result) break; | 
|  |  | 
|  | put_user(pLoggedInPort->port_id, | 
|  | &((Scsi_FCTargAddress *) arg)->host_port_id); | 
|  |  | 
|  | for( i=3,j=0; i>=0; i--)   	// copy the LOGIN port's WWN | 
|  | put_user(pLoggedInPort->u.ucWWN[i], | 
|  | &((Scsi_FCTargAddress *) arg)->host_wwn[j++]); | 
|  | for( i=7; i>3; i--)		// copy the LOGIN port's WWN | 
|  | put_user(pLoggedInPort->u.ucWWN[i], | 
|  | &((Scsi_FCTargAddress *) arg)->host_wwn[j++]); | 
|  | break; | 
|  |  | 
|  |  | 
|  | case CPQFC_IOCTL_FC_TDR: | 
|  |  | 
|  | result = cpqfcTS_TargetDeviceReset( ScsiDev, 0); | 
|  |  | 
|  | break; | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | default: | 
|  | result = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | LEAVE("cpqfcTS_ioctl"); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* "Release" the Host Bus Adapter... | 
|  | disable interrupts, stop the HBA, release the interrupt, | 
|  | and free all resources */ | 
|  |  | 
|  | int cpqfcTS_release(struct Scsi_Host *HostAdapter) | 
|  | { | 
|  | CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; | 
|  |  | 
|  |  | 
|  | ENTER("cpqfcTS_release"); | 
|  |  | 
|  | DEBUG_PCI( printk(" cpqfcTS: delete timer...\n")); | 
|  | del_timer( &cpqfcHBAdata->cpqfcTStimer); | 
|  |  | 
|  | // disable the hardware... | 
|  | DEBUG_PCI( printk(" disable hardware, destroy queues, free mem\n")); | 
|  | cpqfcHBAdata->fcChip.ResetTachyon( cpqfcHBAdata, CLEAR_FCPORTS); | 
|  |  | 
|  | // kill kernel thread | 
|  | if( cpqfcHBAdata->worker_thread ) // (only if exists) | 
|  | { | 
|  | DECLARE_MUTEX_LOCKED(sem);  // synchronize thread kill | 
|  |  | 
|  | cpqfcHBAdata->notify_wt = &sem; | 
|  | DEBUG_PCI( printk(" killing kernel thread\n")); | 
|  | send_sig( SIGKILL, cpqfcHBAdata->worker_thread, 1); | 
|  | down( &sem); | 
|  | cpqfcHBAdata->notify_wt = NULL; | 
|  |  | 
|  | } | 
|  |  | 
|  | cpqfc_free_private_data_pool(cpqfcHBAdata); | 
|  | // free Linux resources | 
|  | DEBUG_PCI( printk(" cpqfcTS: freeing resources...\n")); | 
|  | free_irq( HostAdapter->irq, HostAdapter); | 
|  | scsi_unregister( HostAdapter); | 
|  | release_region( cpqfcHBAdata->fcChip.Registers.IOBaseL, 0xff); | 
|  | release_region( cpqfcHBAdata->fcChip.Registers.IOBaseU, 0xff); | 
|  | /* we get "vfree: bad address" executing this - need to investigate... | 
|  | if( (void*)((unsigned long)cpqfcHBAdata->fcChip.Registers.MemBase) != | 
|  | cpqfcHBAdata->fcChip.Registers.ReMapMemBase) | 
|  | vfree( cpqfcHBAdata->fcChip.Registers.ReMapMemBase); | 
|  | */ | 
|  | pci_disable_device( cpqfcHBAdata->PciDev); | 
|  |  | 
|  | LEAVE("cpqfcTS_release"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | const char * cpqfcTS_info(struct Scsi_Host *HostAdapter) | 
|  | { | 
|  | static char buf[300]; | 
|  | CPQFCHBA *cpqfcHBA; | 
|  | int BusSpeed, BusWidth; | 
|  |  | 
|  | // get the pointer to our Scsi layer HBA buffer | 
|  | cpqfcHBA = (CPQFCHBA *)HostAdapter->hostdata; | 
|  |  | 
|  | BusWidth = (cpqfcHBA->fcChip.Registers.PCIMCTR &0x4) > 0 ? | 
|  | 64 : 32; | 
|  |  | 
|  | if( cpqfcHBA->fcChip.Registers.TYconfig.value & 0x80000000) | 
|  | BusSpeed = 66; | 
|  | else | 
|  | BusSpeed = 33; | 
|  |  | 
|  | sprintf(buf, | 
|  | "%s: WWN %08X%08X\n on PCI bus %d device 0x%02x irq %d IObaseL 0x%x, MEMBASE 0x%x\nPCI bus width %d bits, bus speed %d MHz\nFCP-SCSI Driver v%d.%d.%d", | 
|  | cpqfcHBA->fcChip.Name, | 
|  | cpqfcHBA->fcChip.Registers.wwn_hi, | 
|  | cpqfcHBA->fcChip.Registers.wwn_lo, | 
|  | cpqfcHBA->PciDev->bus->number, | 
|  | cpqfcHBA->PciDev->device, | 
|  | HostAdapter->irq, | 
|  | cpqfcHBA->fcChip.Registers.IOBaseL, | 
|  | cpqfcHBA->fcChip.Registers.MemBase, | 
|  | BusWidth, | 
|  | BusSpeed, | 
|  | VER_MAJOR, VER_MINOR, VER_SUBMINOR | 
|  | ); | 
|  |  | 
|  |  | 
|  | cpqfcTSDecodeGBICtype( &cpqfcHBA->fcChip, &buf[ strlen(buf)]); | 
|  | cpqfcTSGetLPSM( &cpqfcHBA->fcChip, &buf[ strlen(buf)]); | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | // | 
|  | // /proc/scsi support. The following routines allow us to do 'normal' | 
|  | // sprintf like calls to return the currently requested piece (buflenght | 
|  | // chars, starting at bufoffset) of the file. Although procfs allows for | 
|  | // a 1 Kb bytes overflow after te supplied buffer, I consider it bad | 
|  | // programming to use it to make programming a little simpler. This piece | 
|  | // of coding is borrowed from ncr53c8xx.c with some modifications | 
|  | // | 
|  | struct info_str | 
|  | { | 
|  | char *buffer;			// Pointer to output buffer | 
|  | int buflength;			// It's length | 
|  | int bufoffset;			// File offset corresponding with buf[0] | 
|  | int buffillen;			// Current filled length | 
|  | int filpos;			// Current file offset | 
|  | }; | 
|  |  | 
|  | static void copy_mem_info(struct info_str *info, char *data, int datalen) | 
|  | { | 
|  |  | 
|  | if (info->filpos < info->bufoffset) {	// Current offset before buffer offset | 
|  | if (info->filpos + datalen <= info->bufoffset) { | 
|  | info->filpos += datalen; 		// Discard if completely before buffer | 
|  | return; | 
|  | } else {				// Partial copy, set to begin | 
|  | data += (info->bufoffset - info->filpos); | 
|  | datalen  -= (info->bufoffset - info->filpos); | 
|  | info->filpos = info->bufoffset; | 
|  | } | 
|  | } | 
|  |  | 
|  | info->filpos += datalen;		// Update current offset | 
|  |  | 
|  | if (info->buffillen == info->buflength) // Buffer full, discard | 
|  | return; | 
|  |  | 
|  | if (info->buflength - info->buffillen < datalen)  // Overflows buffer ? | 
|  | datalen = info->buflength - info->buffillen; | 
|  |  | 
|  | memcpy(info->buffer + info->buffillen, data, datalen); | 
|  | info->buffillen += datalen; | 
|  | } | 
|  |  | 
|  | static int copy_info(struct info_str *info, char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  | char buf[400]; | 
|  | int len; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | len = vsprintf(buf, fmt, args); | 
|  | va_end(args); | 
|  |  | 
|  | copy_mem_info(info, buf, len); | 
|  | return len; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Routine to get data for /proc RAM filesystem | 
|  | // | 
|  | int cpqfcTS_proc_info (struct Scsi_Host *host, char *buffer, char **start, off_t offset, int length, | 
|  | int inout) | 
|  | { | 
|  | struct scsi_cmnd *DumCmnd; | 
|  | struct scsi_device *ScsiDev; | 
|  | int Chan, Targ, i; | 
|  | struct info_str info; | 
|  | CPQFCHBA *cpqfcHBA; | 
|  | PTACHYON fcChip; | 
|  | PFC_LOGGEDIN_PORT pLoggedInPort; | 
|  | char buf[81]; | 
|  |  | 
|  | if (inout) return -EINVAL; | 
|  |  | 
|  | // get the pointer to our Scsi layer HBA buffer | 
|  | cpqfcHBA = (CPQFCHBA *)host->hostdata; | 
|  | fcChip = &cpqfcHBA->fcChip; | 
|  |  | 
|  | *start 	  = buffer; | 
|  |  | 
|  | info.buffer     = buffer; | 
|  | info.buflength  = length; | 
|  | info.bufoffset  = offset; | 
|  | info.filpos     = 0; | 
|  | info.buffillen  = 0; | 
|  | copy_info(&info, "Driver version = %d.%d.%d", VER_MAJOR, VER_MINOR, VER_SUBMINOR); | 
|  | cpqfcTSDecodeGBICtype( &cpqfcHBA->fcChip, &buf[0]); | 
|  | cpqfcTSGetLPSM( &cpqfcHBA->fcChip, &buf[ strlen(buf)]); | 
|  | copy_info(&info, "%s\n", buf); | 
|  |  | 
|  | #define DISPLAY_WWN_INFO | 
|  | #ifdef DISPLAY_WWN_INFO | 
|  | ScsiDev = scsi_get_host_dev (host); | 
|  | if (!ScsiDev) | 
|  | return -ENOMEM; | 
|  | DumCmnd = scsi_get_command (ScsiDev, GFP_KERNEL); | 
|  | if (!DumCmnd) { | 
|  | scsi_free_host_dev (ScsiDev); | 
|  | return -ENOMEM; | 
|  | } | 
|  | copy_info(&info, "WWN database: (\"port_id: 000000\" means disconnected)\n"); | 
|  | for ( Chan=0; Chan <= host->max_channel; Chan++) { | 
|  | DumCmnd->device->channel = Chan; | 
|  | for (Targ=0; Targ <= host->max_id; Targ++) { | 
|  | DumCmnd->device->id = Targ; | 
|  | if ((pLoggedInPort = fcFindLoggedInPort( fcChip, | 
|  | DumCmnd,  // search Scsi Nexus | 
|  | 0,        // DON'T search list for FC port id | 
|  | NULL,     // DON'T search list for FC WWN | 
|  | NULL))){   // DON'T care about end of list | 
|  | copy_info(&info, "Host: scsi%d Channel: %02d TargetId: %02d -> WWN: ", | 
|  | host->host_no, Chan, Targ); | 
|  | for( i=3; i>=0; i--)        // copy the LOGIN port's WWN | 
|  | copy_info(&info, "%02X", pLoggedInPort->u.ucWWN[i]); | 
|  | for( i=7; i>3; i--)             // copy the LOGIN port's WWN | 
|  | copy_info(&info, "%02X", pLoggedInPort->u.ucWWN[i]); | 
|  | copy_info(&info, " port_id: %06X\n", pLoggedInPort->port_id); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | scsi_put_command (DumCmnd); | 
|  | scsi_free_host_dev (ScsiDev); | 
|  | #endif | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | // Unfortunately, the proc_info buffer isn't big enough | 
|  | // for everything we would like... | 
|  | // For FC stats, compile this and turn off WWN stuff above | 
|  | //#define DISPLAY_FC_STATS | 
|  | #ifdef DISPLAY_FC_STATS | 
|  | // get the Fibre Channel statistics | 
|  | { | 
|  | int DeltaSecs = (jiffies - cpqfcHBA->fcStatsTime) / HZ; | 
|  | int days,hours,minutes,secs; | 
|  |  | 
|  | days = DeltaSecs / (3600*24); // days | 
|  | hours = (DeltaSecs% (3600*24)) / 3600; // hours | 
|  | minutes = (DeltaSecs%3600 /60); // minutes | 
|  | secs =  DeltaSecs%60;  // secs | 
|  | copy_info( &info, "Fibre Channel Stats (time dd:hh:mm:ss %02u:%02u:%02u:%02u\n", | 
|  | days, hours, minutes, secs); | 
|  | } | 
|  |  | 
|  | cpqfcHBA->fcStatsTime = jiffies;  // (for next delta) | 
|  |  | 
|  | copy_info( &info, "  LinkUp           %9u     LinkDown      %u\n", | 
|  | fcChip->fcStats.linkUp, fcChip->fcStats.linkDown); | 
|  |  | 
|  | copy_info( &info, "  Loss of Signal   %9u     Loss of Sync  %u\n", | 
|  | fcChip->fcStats.LossofSignal, fcChip->fcStats.LossofSync); | 
|  |  | 
|  | copy_info( &info, "  Discarded Frames %9u     Bad CRC Frame %u\n", | 
|  | fcChip->fcStats.Dis_Frm, fcChip->fcStats.Bad_CRC); | 
|  |  | 
|  | copy_info( &info, "  TACH LinkFailTX  %9u     TACH LinkFailRX     %u\n", | 
|  | fcChip->fcStats.linkFailTX, fcChip->fcStats.linkFailRX); | 
|  |  | 
|  | copy_info( &info, "  TACH RxEOFa      %9u     TACH Elastic Store  %u\n", | 
|  | fcChip->fcStats.Rx_EOFa, fcChip->fcStats.e_stores); | 
|  |  | 
|  | copy_info( &info, "  BufferCreditWait %9uus   TACH FM Inits %u\n", | 
|  | fcChip->fcStats.BB0_Timer*10, fcChip->fcStats.FMinits ); | 
|  |  | 
|  | copy_info( &info, "  FC-2 Timeouts    %9u     FC-2 Logouts  %u\n", | 
|  | fcChip->fcStats.timeouts, fcChip->fcStats.logouts); | 
|  |  | 
|  | copy_info( &info, "  FC-2 Aborts      %9u     FC-4 Aborts   %u\n", | 
|  | fcChip->fcStats.FC2aborted, fcChip->fcStats.FC4aborted); | 
|  |  | 
|  | // clear the counters | 
|  | cpqfcTSClearLinkStatusCounters( fcChip); | 
|  | #endif | 
|  |  | 
|  | return info.buffillen; | 
|  | } | 
|  |  | 
|  |  | 
|  | #if DEBUG_CMND | 
|  |  | 
|  | UCHAR *ScsiToAscii( UCHAR ScsiCommand) | 
|  | { | 
|  |  | 
|  | /*++ | 
|  |  | 
|  | Routine Description: | 
|  |  | 
|  | Converts a SCSI command to a text string for debugging purposes. | 
|  |  | 
|  |  | 
|  | Arguments: | 
|  |  | 
|  | ScsiCommand -- hex value SCSI Command | 
|  |  | 
|  |  | 
|  | Return Value: | 
|  |  | 
|  | An ASCII, null-terminated string if found, else returns NULL. | 
|  |  | 
|  | Original code from M. McGowen, Compaq | 
|  | --*/ | 
|  |  | 
|  |  | 
|  | switch (ScsiCommand) | 
|  | { | 
|  | case 0x00: | 
|  | return( "Test Unit Ready" ); | 
|  |  | 
|  | case 0x01: | 
|  | return( "Rezero Unit or Rewind" ); | 
|  |  | 
|  | case 0x02: | 
|  | return( "Request Block Address" ); | 
|  |  | 
|  | case 0x03: | 
|  | return( "Requese Sense" ); | 
|  |  | 
|  | case 0x04: | 
|  | return( "Format Unit" ); | 
|  |  | 
|  | case 0x05: | 
|  | return( "Read Block Limits" ); | 
|  |  | 
|  | case 0x07: | 
|  | return( "Reassign Blocks" ); | 
|  |  | 
|  | case 0x08: | 
|  | return( "Read (6)" ); | 
|  |  | 
|  | case 0x0a: | 
|  | return( "Write (6)" ); | 
|  |  | 
|  | case 0x0b: | 
|  | return( "Seek (6)" ); | 
|  |  | 
|  | case 0x12: | 
|  | return( "Inquiry" ); | 
|  |  | 
|  | case 0x15: | 
|  | return( "Mode Select (6)" ); | 
|  |  | 
|  | case 0x16: | 
|  | return( "Reserve" ); | 
|  |  | 
|  | case 0x17: | 
|  | return( "Release" ); | 
|  |  | 
|  | case 0x1a: | 
|  | return( "ModeSen(6)" ); | 
|  |  | 
|  | case 0x1b: | 
|  | return( "Start/Stop Unit" ); | 
|  |  | 
|  | case 0x1c: | 
|  | return( "Receive Diagnostic Results" ); | 
|  |  | 
|  | case 0x1d: | 
|  | return( "Send Diagnostic" ); | 
|  |  | 
|  | case 0x25: | 
|  | return( "Read Capacity" ); | 
|  |  | 
|  | case 0x28: | 
|  | return( "Read (10)" ); | 
|  |  | 
|  | case 0x2a: | 
|  | return( "Write (10)" ); | 
|  |  | 
|  | case 0x2b: | 
|  | return( "Seek (10)" ); | 
|  |  | 
|  | case 0x2e: | 
|  | return( "Write and Verify" ); | 
|  |  | 
|  | case 0x2f: | 
|  | return( "Verify" ); | 
|  |  | 
|  | case 0x34: | 
|  | return( "Pre-Fetch" ); | 
|  |  | 
|  | case 0x35: | 
|  | return( "Synchronize Cache" ); | 
|  |  | 
|  | case 0x37: | 
|  | return( "Read Defect Data (10)" ); | 
|  |  | 
|  | case 0x3b: | 
|  | return( "Write Buffer" ); | 
|  |  | 
|  | case 0x3c: | 
|  | return( "Read Buffer" ); | 
|  |  | 
|  | case 0x3e: | 
|  | return( "Read Long" ); | 
|  |  | 
|  | case 0x3f: | 
|  | return( "Write Long" ); | 
|  |  | 
|  | case 0x41: | 
|  | return( "Write Same" ); | 
|  |  | 
|  | case 0x4c: | 
|  | return( "Log Select" ); | 
|  |  | 
|  | case 0x4d: | 
|  | return( "Log Sense" ); | 
|  |  | 
|  | case 0x56: | 
|  | return( "Reserve (10)" ); | 
|  |  | 
|  | case 0x57: | 
|  | return( "Release (10)" ); | 
|  |  | 
|  | case 0xa0: | 
|  | return( "ReportLuns" ); | 
|  |  | 
|  | case 0xb7: | 
|  | return( "Read Defect Data (12)" ); | 
|  |  | 
|  | case 0xca: | 
|  | return( "Peripheral Device Addressing SCSI Passthrough" ); | 
|  |  | 
|  | case 0xcb: | 
|  | return( "Compaq Array Firmware Passthrough" ); | 
|  |  | 
|  | default: | 
|  | return( NULL ); | 
|  | } | 
|  |  | 
|  | } // end ScsiToAscii() | 
|  |  | 
|  | void cpqfcTS_print_scsi_cmd(Scsi_Cmnd * cmd) | 
|  | { | 
|  |  | 
|  | printk("cpqfcTS: (%s) chnl 0x%02x, trgt = 0x%02x, lun = 0x%02x, cmd_len = 0x%02x\n", | 
|  | ScsiToAscii( cmd->cmnd[0]), cmd->channel, cmd->target, cmd->lun, cmd->cmd_len); | 
|  |  | 
|  | if( cmd->cmnd[0] == 0)   // Test Unit Ready? | 
|  | { | 
|  | int i; | 
|  |  | 
|  | printk("Cmnd->request_bufflen = 0x%X, ->use_sg = %d, ->bufflen = %d\n", | 
|  | cmd->request_bufflen, cmd->use_sg, cmd->bufflen); | 
|  | printk("Cmnd->request_buffer = %p, ->sglist_len = %d, ->buffer = %p\n", | 
|  | cmd->request_buffer, cmd->sglist_len, cmd->buffer); | 
|  | for (i = 0; i < cmd->cmd_len; i++) | 
|  | printk("0x%02x ", cmd->cmnd[i]); | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | #endif				/* DEBUG_CMND */ | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | static void QueCmndOnBoardLock( CPQFCHBA *cpqfcHBAdata, Scsi_Cmnd *Cmnd) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for( i=0; i< CPQFCTS_REQ_QUEUE_LEN; i++) | 
|  | {    // find spare slot | 
|  | if( cpqfcHBAdata->BoardLockCmnd[i] == NULL ) | 
|  | { | 
|  | cpqfcHBAdata->BoardLockCmnd[i] = Cmnd; | 
|  | //      printk(" BoardLockCmnd[%d] %p Queued, chnl/target/lun %d/%d/%d\n", | 
|  | //        i,Cmnd, Cmnd->channel, Cmnd->target, Cmnd->lun); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if( i >= CPQFCTS_REQ_QUEUE_LEN) | 
|  | { | 
|  | printk(" cpqfcTS WARNING: Lost Cmnd %p on BoardLock Q full!", Cmnd); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | static void QueLinkDownCmnd( CPQFCHBA *cpqfcHBAdata, Scsi_Cmnd *Cmnd) | 
|  | { | 
|  | int indx; | 
|  |  | 
|  | // Remember the command ptr so we can return; we'll complete when | 
|  | // the device comes back, causing immediate retry | 
|  | for( indx=0; indx < CPQFCTS_REQ_QUEUE_LEN; indx++)//, SCptr++) | 
|  | { | 
|  | if( cpqfcHBAdata->LinkDnCmnd[indx] == NULL ) // available? | 
|  | { | 
|  | #ifdef DUMMYCMND_DBG | 
|  | printk(" @add Cmnd %p to LnkDnCmnd[%d]@ ", Cmnd,indx); | 
|  | #endif | 
|  | cpqfcHBAdata->LinkDnCmnd[indx] = Cmnd; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if( indx >= CPQFCTS_REQ_QUEUE_LEN ) // no space for Cmnd?? | 
|  | { | 
|  | // this will result in an _abort call later (with possible trouble) | 
|  | printk("no buffer for LinkDnCmnd!! %p\n", Cmnd); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | // The file <scsi/scsi_host.h> says not to call scsi_done from | 
|  | // inside _queuecommand, so we'll do it from the heartbeat timer | 
|  | // (clarification: Turns out it's ok to call scsi_done from queuecommand | 
|  | // for cases that don't go to the hardware like scsi cmds destined | 
|  | // for LUNs we know don't exist, so this code might be simplified...) | 
|  |  | 
|  | static void QueBadTargetCmnd( CPQFCHBA *cpqfcHBAdata, Scsi_Cmnd *Cmnd) | 
|  | { | 
|  | int i; | 
|  | //    printk(" can't find target %d\n", Cmnd->target); | 
|  |  | 
|  | for( i=0; i< CPQFCTS_MAX_TARGET_ID; i++) | 
|  | {    // find spare slot | 
|  | if( cpqfcHBAdata->BadTargetCmnd[i] == NULL ) | 
|  | { | 
|  | cpqfcHBAdata->BadTargetCmnd[i] = Cmnd; | 
|  | //      printk(" BadTargetCmnd[%d] %p Queued, chnl/target/lun %d/%d/%d\n", | 
|  | //          i,Cmnd, Cmnd->channel, Cmnd->target, Cmnd->lun); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // This is the "main" entry point for Linux Scsi commands -- | 
|  | // it all starts here. | 
|  |  | 
|  | int cpqfcTS_queuecommand(Scsi_Cmnd *Cmnd, void (* done)(Scsi_Cmnd *)) | 
|  | { | 
|  | struct Scsi_Host *HostAdapter = Cmnd->device->host; | 
|  | CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; | 
|  | PTACHYON fcChip = &cpqfcHBAdata->fcChip; | 
|  | TachFCHDR_GCMND fchs;  // only use for FC destination id field | 
|  | PFC_LOGGEDIN_PORT pLoggedInPort; | 
|  | ULONG ulStatus, SESTtype; | 
|  | LONG ExchangeID; | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | ENTER("cpqfcTS_queuecommand"); | 
|  |  | 
|  | PCI_TRACEO( (ULONG)Cmnd, 0x98) | 
|  |  | 
|  |  | 
|  | Cmnd->scsi_done = done; | 
|  | #ifdef DEBUG_CMND | 
|  | cpqfcTS_print_scsi_cmd( Cmnd); | 
|  | #endif | 
|  |  | 
|  | // prevent board contention with kernel thread... | 
|  |  | 
|  | if( cpqfcHBAdata->BoardLock ) | 
|  | { | 
|  | //    printk(" @BrdLck Hld@ "); | 
|  | QueCmndOnBoardLock( cpqfcHBAdata, Cmnd); | 
|  | } | 
|  |  | 
|  | else | 
|  | { | 
|  |  | 
|  | // in the current system (2.2.12), this routine is called | 
|  | // after spin_lock_irqsave(), so INTs are disabled. However, | 
|  | // we might have something pending in the LinkQ, which | 
|  | // might cause the WorkerTask to run.  In case that | 
|  | // happens, make sure we lock it out. | 
|  |  | 
|  |  | 
|  |  | 
|  | PCI_TRACE( 0x98) | 
|  | CPQ_SPINLOCK_HBA( cpqfcHBAdata) | 
|  | PCI_TRACE( 0x98) | 
|  |  | 
|  | // can we find an FC device mapping to this SCSI target? | 
|  | pLoggedInPort = fcFindLoggedInPort( fcChip, | 
|  | Cmnd,     // search Scsi Nexus | 
|  | 0,        // DON'T search linked list for FC port id | 
|  | NULL,     // DON'T search linked list for FC WWN | 
|  | NULL);    // DON'T care about end of list | 
|  |  | 
|  | if( pLoggedInPort == NULL )      // not found! | 
|  | { | 
|  | //    printk(" @Q bad targ cmnd %p@ ", Cmnd); | 
|  | QueBadTargetCmnd( cpqfcHBAdata, Cmnd); | 
|  | } | 
|  | else if (Cmnd->device->lun >= CPQFCTS_MAX_LUN) | 
|  | { | 
|  | printk(KERN_WARNING "cpqfc: Invalid LUN: %d\n", Cmnd->device->lun); | 
|  | QueBadTargetCmnd( cpqfcHBAdata, Cmnd); | 
|  | } | 
|  |  | 
|  | else  // we know what FC device to send to... | 
|  | { | 
|  |  | 
|  | // does this device support FCP target functions? | 
|  | // (determined by PRLI field) | 
|  |  | 
|  | if( !(pLoggedInPort->fcp_info & TARGET_FUNCTION) ) | 
|  | { | 
|  | printk(" Doesn't support TARGET functions port_id %Xh\n", | 
|  | pLoggedInPort->port_id ); | 
|  | QueBadTargetCmnd( cpqfcHBAdata, Cmnd); | 
|  | } | 
|  |  | 
|  | // In this case (previous login OK), the device is temporarily | 
|  | // unavailable waiting for re-login, in which case we expect it | 
|  | // to be back in between 25 - 500ms. | 
|  | // If the FC port doesn't log back in within several seconds | 
|  | // (i.e. implicit "logout"), or we get an explicit logout, | 
|  | // we set "device_blocked" in Scsi_Device struct; in this | 
|  | // case 30 seconds will elapse before Linux/Scsi sends another | 
|  | // command to the device. | 
|  | else if( pLoggedInPort->prli != TRUE ) | 
|  | { | 
|  | //      printk("Device (Chnl/Target %d/%d) invalid PRLI, port_id %06lXh\n", | 
|  | //        Cmnd->channel, Cmnd->target, pLoggedInPort->port_id); | 
|  | QueLinkDownCmnd( cpqfcHBAdata, Cmnd); | 
|  | //    Need to use "blocked" flag?? | 
|  | //	Cmnd->device->device_blocked = TRUE; // just let it timeout | 
|  | } | 
|  | else  // device supports TARGET functions, and is logged in... | 
|  | { | 
|  | // (context of fchs is to "reply" to...) | 
|  | fchs.s_id = pLoggedInPort->port_id; // destination FC address | 
|  |  | 
|  | // what is the data direction?  For data TO the device, | 
|  | // we need IWE (Intiator Write Entry).  Otherwise, IRE. | 
|  |  | 
|  | if( Cmnd->cmnd[0] == WRITE_10 || | 
|  | Cmnd->cmnd[0] == WRITE_6 || | 
|  | Cmnd->cmnd[0] == WRITE_BUFFER || | 
|  | Cmnd->cmnd[0] == VENDOR_WRITE_OPCODE ||  // CPQ specific | 
|  | Cmnd->cmnd[0] == MODE_SELECT ) | 
|  | { | 
|  | SESTtype = SCSI_IWE; // data from HBA to Device | 
|  | } | 
|  | else | 
|  | SESTtype = SCSI_IRE; // data from Device to HBA | 
|  |  | 
|  | ulStatus = cpqfcTSBuildExchange( | 
|  | cpqfcHBAdata, | 
|  | SESTtype,     // e.g. Initiator Read Entry (IRE) | 
|  | &fchs,        // we are originator; only use d_id | 
|  | Cmnd,         // Linux SCSI command (with scatter/gather list) | 
|  | &ExchangeID );// fcController->fcExchanges index, -1 if failed | 
|  |  | 
|  | if( !ulStatus ) // Exchange setup? | 
|  |  | 
|  | { | 
|  | if( cpqfcHBAdata->BoardLock ) | 
|  | { | 
|  | TriggerHBA( fcChip->Registers.ReMapMemBase, 0); | 
|  | printk(" @bl! %d, xID %Xh@ ", current->pid, ExchangeID); | 
|  | } | 
|  |  | 
|  | ulStatus = cpqfcTSStartExchange( cpqfcHBAdata, ExchangeID ); | 
|  | if( !ulStatus ) | 
|  | { | 
|  | PCI_TRACEO( ExchangeID, 0xB8) | 
|  | // submitted to Tach's Outbound Que (ERQ PI incremented) | 
|  | // waited for completion for ELS type (Login frames issued | 
|  | // synchronously) | 
|  | } | 
|  | else | 
|  | // check reason for Exchange not being started - we might | 
|  | // want to Queue and start later, or fail with error | 
|  | { | 
|  | printk("quecommand: cpqfcTSStartExchange failed: %Xh\n", ulStatus ); | 
|  | } | 
|  | }            // end good BuildExchange status | 
|  |  | 
|  | else  // SEST table probably full  -- why? hardware hang? | 
|  | { | 
|  | printk("quecommand: cpqfcTSBuildExchange faild: %Xh\n", ulStatus); | 
|  | } | 
|  | }  // end can't do FCP-SCSI target functions | 
|  | } // end can't find target (FC device) | 
|  |  | 
|  | CPQ_SPINUNLOCK_HBA( cpqfcHBAdata) | 
|  | } | 
|  |  | 
|  | PCI_TRACEO( (ULONG)Cmnd, 0x9C) | 
|  | LEAVE("cpqfcTS_queuecommand"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Entry point for upper Scsi layer intiated abort.  Typically | 
|  | // this is called if the command (for hard disk) fails to complete | 
|  | // in 30 seconds.  This driver intends to complete all disk commands | 
|  | // within Exchange ".timeOut" seconds (now 7) with target status, or | 
|  | // in case of ".timeOut" expiration, a DID_SOFT_ERROR which causes | 
|  | // immediate retry. | 
|  | // If any disk commands get the _abort call, except for the case that | 
|  | // the physical device was removed or unavailable due to hardware | 
|  | // errors, it should be considered a driver error and reported to | 
|  | // the author. | 
|  |  | 
|  | int cpqfcTS_abort(Scsi_Cmnd *Cmnd) | 
|  | { | 
|  | //	printk(" cpqfcTS_abort called?? \n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cpqfcTS_eh_abort(Scsi_Cmnd *Cmnd) | 
|  | { | 
|  |  | 
|  | struct Scsi_Host *HostAdapter = Cmnd->device->host; | 
|  | // get the pointer to our Scsi layer HBA buffer | 
|  | CPQFCHBA *cpqfcHBAdata = (CPQFCHBA *)HostAdapter->hostdata; | 
|  | PTACHYON fcChip = &cpqfcHBAdata->fcChip; | 
|  | FC_EXCHANGES *Exchanges = fcChip->Exchanges; | 
|  | int i; | 
|  | ENTER("cpqfcTS_eh_abort"); | 
|  |  | 
|  | Cmnd->result = DID_ABORT <<16;  // assume we'll find it | 
|  |  | 
|  | printk(" @Linux _abort Scsi_Cmnd %p ", Cmnd); | 
|  | // See if we can find a Cmnd pointer that matches... | 
|  | // The most likely case is we accepted the command | 
|  | // from Linux Scsi (e.g. ceated a SEST entry) and it | 
|  | // got lost somehow.  If we can't find any reference | 
|  | // to the passed pointer, we can only presume it | 
|  | // got completed as far as our driver is concerned. | 
|  | // If we found it, we will try to abort it through | 
|  | // common mechanism.  If FC ABTS is successful (ACC) | 
|  | // or is rejected (RJT) by target, we will call | 
|  | // Scsi "done" quickly.  Otherwise, the ABTS will timeout | 
|  | // and we'll call "done" later. | 
|  |  | 
|  | // Search the SEST exchanges for a matching Cmnd ptr. | 
|  | for( i=0; i< TACH_SEST_LEN; i++) | 
|  | { | 
|  | if( Exchanges->fcExchange[i].Cmnd == Cmnd ) | 
|  | { | 
|  |  | 
|  | // found it! | 
|  | printk(" x_ID %Xh, type %Xh\n", i, Exchanges->fcExchange[i].type); | 
|  |  | 
|  | Exchanges->fcExchange[i].status = INITIATOR_ABORT; // seconds default | 
|  | Exchanges->fcExchange[i].timeOut = 10; // seconds default (changed later) | 
|  |  | 
|  | // Since we need to immediately return the aborted Cmnd to Scsi | 
|  | // upper layers, we can't make future reference to any of its | 
|  | // fields (e.g the Nexus). | 
|  |  | 
|  | cpqfcTSPutLinkQue( cpqfcHBAdata, BLS_ABTS, &i); | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if( i >= TACH_SEST_LEN ) // didn't find Cmnd ptr in chip's SEST? | 
|  | { | 
|  | // now search our non-SEST buffers (i.e. Cmnd waiting to | 
|  | // start on the HBA or waiting to complete with error for retry). | 
|  |  | 
|  | // first check BadTargetCmnd | 
|  | for( i=0; i< CPQFCTS_MAX_TARGET_ID; i++) | 
|  | { | 
|  | if( cpqfcHBAdata->BadTargetCmnd[i] == Cmnd ) | 
|  | { | 
|  | cpqfcHBAdata->BadTargetCmnd[i] = NULL; | 
|  | printk("in BadTargetCmnd Q\n"); | 
|  | goto Done; // exit | 
|  | } | 
|  | } | 
|  |  | 
|  | // if not found above... | 
|  |  | 
|  | for( i=0; i < CPQFCTS_REQ_QUEUE_LEN; i++) | 
|  | { | 
|  | if( cpqfcHBAdata->LinkDnCmnd[i] == Cmnd ) | 
|  | { | 
|  | cpqfcHBAdata->LinkDnCmnd[i] = NULL; | 
|  | printk("in LinkDnCmnd Q\n"); | 
|  | goto Done; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | for( i=0; i< CPQFCTS_REQ_QUEUE_LEN; i++) | 
|  | {    // find spare slot | 
|  | if( cpqfcHBAdata->BoardLockCmnd[i] == Cmnd ) | 
|  | { | 
|  | cpqfcHBAdata->BoardLockCmnd[i] = NULL; | 
|  | printk("in BoardLockCmnd Q\n"); | 
|  | goto Done; | 
|  | } | 
|  | } | 
|  |  | 
|  | Cmnd->result = DID_ERROR <<16;  // Hmmm... | 
|  | printk("Not found! "); | 
|  | //    panic("_abort"); | 
|  | } | 
|  |  | 
|  | Done: | 
|  |  | 
|  | //    panic("_abort"); | 
|  | LEAVE("cpqfcTS_eh_abort"); | 
|  | return 0;  // (see scsi.h) | 
|  | } | 
|  |  | 
|  |  | 
|  | // FCP-SCSI Target Device Reset | 
|  | // See dpANS Fibre Channel Protocol for SCSI | 
|  | // X3.269-199X revision 12, pg 25 | 
|  |  | 
|  | #ifdef SUPPORT_RESET | 
|  |  | 
|  | int cpqfcTS_TargetDeviceReset( Scsi_Device *ScsiDev, | 
|  | unsigned int reset_flags) | 
|  | { | 
|  | int timeout = 10*HZ; | 
|  | int retries = 1; | 
|  | char scsi_cdb[12]; | 
|  | int result; | 
|  | Scsi_Cmnd * SCpnt; | 
|  | Scsi_Device * SDpnt; | 
|  |  | 
|  | // FIXME, cpqfcTS_TargetDeviceReset needs to be fixed | 
|  | // similarly to how the passthrough ioctl was fixed | 
|  | // around the 2.5.30 kernel.  Scsi_Cmnd replaced with | 
|  | // Scsi_Request, etc. | 
|  | // For now, so people don't fall into a hole... | 
|  |  | 
|  | // printk("   ENTERING cpqfcTS_TargetDeviceReset() - flag=%d \n",reset_flags); | 
|  |  | 
|  | if (ScsiDev->host->eh_active) return FAILED; | 
|  |  | 
|  | memset( scsi_cdb, 0, sizeof( scsi_cdb)); | 
|  |  | 
|  | scsi_cdb[0] = RELEASE; | 
|  |  | 
|  | SCpnt = scsi_get_command(ScsiDev, GFP_KERNEL); | 
|  | { | 
|  | CPQFC_DECLARE_COMPLETION(wait); | 
|  |  | 
|  | SCpnt->SCp.buffers_residual = FCP_TARGET_RESET; | 
|  |  | 
|  | // FIXME: this would panic, SCpnt->request would be NULL. | 
|  | SCpnt->request->CPQFC_WAITING = &wait; | 
|  | scsi_do_cmd(SCpnt,  scsi_cdb, NULL,  0, my_ioctl_done,  timeout, retries); | 
|  | CPQFC_WAIT_FOR_COMPLETION(&wait); | 
|  | SCpnt->request->CPQFC_WAITING = NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | if(driver_byte(SCpnt->result) != 0) | 
|  | switch(SCpnt->sense_buffer[2] & 0xf) { | 
|  | case ILLEGAL_REQUEST: | 
|  | if(cmd[0] == ALLOW_MEDIUM_REMOVAL) dev->lockable = 0; | 
|  | else printk("SCSI device (ioctl) reports ILLEGAL REQUEST.\n"); | 
|  | break; | 
|  | case NOT_READY: // This happens if there is no disc in drive | 
|  | if(dev->removable && (cmd[0] != TEST_UNIT_READY)){ | 
|  | printk(KERN_INFO "Device not ready.  Make sure there is a disc in the drive.\n"); | 
|  | break; | 
|  | } | 
|  | case UNIT_ATTENTION: | 
|  | if (dev->removable){ | 
|  | dev->changed = 1; | 
|  | SCpnt->result = 0; // This is no longer considered an error | 
|  | // gag this error, VFS will log it anyway /axboe | 
|  | // printk(KERN_INFO "Disc change detected.\n"); | 
|  | break; | 
|  | }; | 
|  | default: // Fall through for non-removable media | 
|  | printk("SCSI error: host %d id %d lun %d return code = %x\n", | 
|  | dev->host->host_no, | 
|  | dev->id, | 
|  | dev->lun, | 
|  | SCpnt->result); | 
|  | printk("\tSense class %x, sense error %x, extended sense %x\n", | 
|  | sense_class(SCpnt->sense_buffer[0]), | 
|  | sense_error(SCpnt->sense_buffer[0]), | 
|  | SCpnt->sense_buffer[2] & 0xf); | 
|  |  | 
|  | }; | 
|  | result = SCpnt->result; | 
|  |  | 
|  | SDpnt = SCpnt->device; | 
|  | scsi_put_command(SCpnt); | 
|  | SCpnt = NULL; | 
|  |  | 
|  | // printk("   LEAVING cpqfcTS_TargetDeviceReset() - return SUCCESS \n"); | 
|  | return SUCCESS; | 
|  | } | 
|  |  | 
|  | #else | 
|  | int cpqfcTS_TargetDeviceReset( Scsi_Device *ScsiDev, | 
|  | unsigned int reset_flags) | 
|  | { | 
|  | return -ENOTSUPP; | 
|  | } | 
|  |  | 
|  | #endif /* SUPPORT_RESET */ | 
|  |  | 
|  | int cpqfcTS_eh_device_reset(Scsi_Cmnd *Cmnd) | 
|  | { | 
|  | int retval; | 
|  | Scsi_Device *SDpnt = Cmnd->device; | 
|  | // printk("   ENTERING cpqfcTS_eh_device_reset() \n"); | 
|  | spin_unlock_irq(Cmnd->device->host->host_lock); | 
|  | retval = cpqfcTS_TargetDeviceReset( SDpnt, 0); | 
|  | spin_lock_irq(Cmnd->device->host->host_lock); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  |  | 
|  | int cpqfcTS_reset(Scsi_Cmnd *Cmnd, unsigned int reset_flags) | 
|  | { | 
|  |  | 
|  | ENTER("cpqfcTS_reset"); | 
|  |  | 
|  | LEAVE("cpqfcTS_reset"); | 
|  | return SCSI_RESET_ERROR;      /* Bus Reset Not supported */ | 
|  | } | 
|  |  | 
|  | /* This function determines the bios parameters for a given | 
|  | harddisk. These tend to be numbers that are made up by the | 
|  | host adapter.  Parameters: | 
|  | size, device number, list (heads, sectors,cylinders). | 
|  | (from hosts.h) | 
|  | */ | 
|  |  | 
|  | int cpqfcTS_biosparam(struct scsi_device *sdev, struct block_device *n, | 
|  | sector_t capacity, int ip[]) | 
|  | { | 
|  | int size = capacity; | 
|  |  | 
|  | ENTER("cpqfcTS_biosparam"); | 
|  | ip[0] = 64; | 
|  | ip[1] = 32; | 
|  | ip[2] = size >> 11; | 
|  |  | 
|  | if( ip[2] > 1024 ) | 
|  | { | 
|  | ip[0] = 255; | 
|  | ip[1] = 63; | 
|  | ip[2] = size / (ip[0] * ip[1]); | 
|  | } | 
|  |  | 
|  | LEAVE("cpqfcTS_biosparam"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | irqreturn_t cpqfcTS_intr_handler( int irq, | 
|  | void *dev_id, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  |  | 
|  | unsigned long flags, InfLoopBrk=0; | 
|  | struct Scsi_Host *HostAdapter = dev_id; | 
|  | CPQFCHBA *cpqfcHBA = (CPQFCHBA *)HostAdapter->hostdata; | 
|  | int MoreMessages = 1; // assume we have something to do | 
|  | UCHAR IntPending; | 
|  | int handled = 0; | 
|  |  | 
|  | ENTER("intr_handler"); | 
|  | spin_lock_irqsave( HostAdapter->host_lock, flags); | 
|  | // is this our INT? | 
|  | IntPending = readb( cpqfcHBA->fcChip.Registers.INTPEND.address); | 
|  |  | 
|  | // broken boards can generate messages forever, so | 
|  | // prevent the infinite loop | 
|  | #define INFINITE_IMQ_BREAK 10000 | 
|  | if( IntPending ) | 
|  | { | 
|  | handled = 1; | 
|  | // mask our HBA interrupts until we handle it... | 
|  | writeb( 0, cpqfcHBA->fcChip.Registers.INTEN.address); | 
|  |  | 
|  | if( IntPending & 0x4) // "INT" - Tach wrote to IMQ | 
|  | { | 
|  | while( (++InfLoopBrk < INFINITE_IMQ_BREAK) && (MoreMessages ==1) ) | 
|  | { | 
|  | MoreMessages = CpqTsProcessIMQEntry( HostAdapter); // ret 0 when done | 
|  | } | 
|  | if( InfLoopBrk >= INFINITE_IMQ_BREAK ) | 
|  | { | 
|  | printk("WARNING: Compaq FC adapter generating excessive INTs -REPLACE\n"); | 
|  | printk("or investigate alternate causes (e.g. physical FC layer)\n"); | 
|  | } | 
|  |  | 
|  | else  // working normally - re-enable INTs and continue | 
|  | writeb( 0x1F, cpqfcHBA->fcChip.Registers.INTEN.address); | 
|  |  | 
|  | }  // (...ProcessIMQEntry() clears INT by writing IMQ consumer) | 
|  | else  // indications of errors or problems... | 
|  | // these usually indicate critical system hardware problems. | 
|  | { | 
|  | if( IntPending & 0x10 ) | 
|  | printk(" cpqfcTS adapter external memory parity error detected\n"); | 
|  | if( IntPending & 0x8 ) | 
|  | printk(" cpqfcTS adapter PCI master address crossed 45-bit boundary\n"); | 
|  | if( IntPending & 0x2 ) | 
|  | printk(" cpqfcTS adapter DMA error detected\n"); | 
|  | if( IntPending & 0x1 ) { | 
|  | UCHAR IntStat; | 
|  | printk(" cpqfcTS adapter PCI error detected\n"); | 
|  | IntStat = readb( cpqfcHBA->fcChip.Registers.INTSTAT.address); | 
|  | printk("cpqfc: ISR = 0x%02x\n", IntStat); | 
|  | if (IntStat & 0x1) { | 
|  | __u16 pcistat; | 
|  | /* read the pci status register */ | 
|  | pci_read_config_word(cpqfcHBA->PciDev, 0x06, &pcistat); | 
|  | printk("PCI status register is 0x%04x\n", pcistat); | 
|  | if (pcistat & 0x8000) printk("Parity Error Detected.\n"); | 
|  | if (pcistat & 0x4000) printk("Signalled System Error\n"); | 
|  | if (pcistat & 0x2000) printk("Received Master Abort\n"); | 
|  | if (pcistat & 0x1000) printk("Received Target Abort\n"); | 
|  | if (pcistat & 0x0800) printk("Signalled Target Abort\n"); | 
|  | } | 
|  | if (IntStat & 0x4) printk("(INT)\n"); | 
|  | if (IntStat & 0x8) | 
|  | printk("CRS: PCI master address crossed 46 bit bouandary\n"); | 
|  | if (IntStat & 0x10) printk("MRE: external memory parity error.\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore( HostAdapter->host_lock, flags); | 
|  | LEAVE("intr_handler"); | 
|  | return IRQ_RETVAL(handled); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | int cpqfcTSDecodeGBICtype( PTACHYON fcChip, char cErrorString[]) | 
|  | { | 
|  | // Verify GBIC type (if any) and correct Tachyon Port State Machine | 
|  | // (GBIC) module definition is: | 
|  | // GPIO1, GPIO0, GPIO4 for MD2, MD1, MD0.  The input states appear | 
|  | // to be inverted -- i.e., a setting of 111 is read when there is NO | 
|  | // GBIC present.  The Module Def (MD) spec says 000 is "no GBIC" | 
|  | // Hard code the bit states to detect Copper, | 
|  | // Long wave (single mode), Short wave (multi-mode), and absent GBIC | 
|  |  | 
|  | ULONG ulBuff; | 
|  |  | 
|  | sprintf( cErrorString, "\nGBIC detected: "); | 
|  |  | 
|  | ulBuff = fcChip->Registers.TYstatus.value & 0x13; | 
|  | switch( ulBuff ) | 
|  | { | 
|  | case 0x13:  // GPIO4, GPIO1, GPIO0 = 111; no GBIC! | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], | 
|  | "NONE! "); | 
|  | return FALSE; | 
|  |  | 
|  |  | 
|  | case 0x11:   // Copper GBIC detected | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], | 
|  | "Copper. "); | 
|  | break; | 
|  |  | 
|  | case 0x10:   // Long-wave (single mode) GBIC detected | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], | 
|  | "Long-wave. "); | 
|  | break; | 
|  | case 0x1:    // Short-wave (multi mode) GBIC detected | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], | 
|  | "Short-wave. "); | 
|  | break; | 
|  | default:     // unknown GBIC - presumably it will work (?) | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], | 
|  | "Unknown. "); | 
|  |  | 
|  | break; | 
|  | }  // end switch GBIC detection | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | int cpqfcTSGetLPSM( PTACHYON fcChip, char cErrorString[]) | 
|  | { | 
|  | // Tachyon's Frame Manager LPSM in LinkDown state? | 
|  | // (For non-loop port, check PSM instead.) | 
|  | // return string with state and FALSE is Link Down | 
|  |  | 
|  | int LinkUp; | 
|  |  | 
|  | if( fcChip->Registers.FMstatus.value & 0x80 ) | 
|  | LinkUp = FALSE; | 
|  | else | 
|  | LinkUp = TRUE; | 
|  |  | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], | 
|  | " LPSM %Xh ", | 
|  | (fcChip->Registers.FMstatus.value >>4) & 0xf ); | 
|  |  | 
|  |  | 
|  | switch( fcChip->Registers.FMstatus.value & 0xF0) | 
|  | { | 
|  | // bits set in LPSM | 
|  | case 0x10: | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], "ARB"); | 
|  | break; | 
|  | case 0x20: | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], "ARBwon"); | 
|  | break; | 
|  | case 0x30: | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], "OPEN"); | 
|  | break; | 
|  | case 0x40: | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], "OPENed"); | 
|  | break; | 
|  | case 0x50: | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], "XmitCLS"); | 
|  | break; | 
|  | case 0x60: | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], "RxCLS"); | 
|  | break; | 
|  | case 0x70: | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], "Xfer"); | 
|  | break; | 
|  | case 0x80: | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], "Init"); | 
|  | break; | 
|  | case 0x90: | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], "O-IInitFin"); | 
|  | break; | 
|  | case 0xa0: | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], "O-IProtocol"); | 
|  | break; | 
|  | case 0xb0: | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], "O-ILipRcvd"); | 
|  | break; | 
|  | case 0xc0: | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], "HostControl"); | 
|  | break; | 
|  | case 0xd0: | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], "LoopFail"); | 
|  | break; | 
|  | case 0xe0: | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], "Offline"); | 
|  | break; | 
|  | case 0xf0: | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], "OldPort"); | 
|  | break; | 
|  | case 0: | 
|  | default: | 
|  | sprintf( &cErrorString[ strlen( cErrorString)], "Monitor"); | 
|  | break; | 
|  |  | 
|  | } | 
|  |  | 
|  | return LinkUp; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | #include "linux/slab.h" | 
|  |  | 
|  | // Dynamic memory allocation alignment routines | 
|  | // HP's Tachyon Fibre Channel Controller chips require | 
|  | // certain memory queues and register pointers to be aligned | 
|  | // on various boundaries, usually the size of the Queue in question. | 
|  | // Alignment might be on 2, 4, 8, ... or even 512 byte boundaries. | 
|  | // Since most O/Ss don't allow this (usually only Cache aligned - | 
|  | // 32-byte boundary), these routines provide generic alignment (after | 
|  | // O/S allocation) at any boundary, and store the original allocated | 
|  | // pointer for deletion (O/S free function).  Typically, we expect | 
|  | // these functions to only be called at HBA initialization and | 
|  | // removal time (load and unload times) | 
|  | // ALGORITHM notes: | 
|  | // Memory allocation varies by compiler and platform.  In the worst case, | 
|  | // we are only assured BYTE alignment, but in the best case, we can | 
|  | // request allocation on any desired boundary.  Our strategy: pad the | 
|  | // allocation request size (i.e. waste memory) so that we are assured | 
|  | // of passing desired boundary near beginning of contiguous space, then | 
|  | // mask out lower address bits. | 
|  | // We define the following algorithm: | 
|  | //   allocBoundary - compiler/platform specific address alignment | 
|  | //                   in number of bytes (default is single byte; i.e. 1) | 
|  | //   n_alloc       - number of bytes application wants @ aligned address | 
|  | //   ab            - alignment boundary, in bytes (e.g. 4, 32, ...) | 
|  | //   t_alloc       - total allocation needed to ensure desired boundary | 
|  | //   mask          - to clear least significant address bits for boundary | 
|  | //   Compute: | 
|  | //   t_alloc = n_alloc + (ab - allocBoundary) | 
|  | //   allocate t_alloc bytes @ alloc_address | 
|  | //   mask =  NOT (ab - 1) | 
|  | //       (e.g. if ab=32  _0001 1111  -> _1110 0000 | 
|  | //   aligned_address = alloc_address & mask | 
|  | //   set n_alloc bytes to 0 | 
|  | //   return aligned_address (NULL if failed) | 
|  | // | 
|  | // If u32_AlignedAddress is non-zero, then search for BaseAddress (stored | 
|  | // from previous allocation).  If found, invoke call to FREE the memory. | 
|  | // Return NULL if BaseAddress not found | 
|  |  | 
|  | // we need about 8 allocations per HBA.  Figuring at most 10 HBAs per server | 
|  | // size the dynamic_mem array at 80. | 
|  |  | 
|  | void* fcMemManager( struct pci_dev *pdev, ALIGNED_MEM *dynamic_mem, | 
|  | ULONG n_alloc, ULONG ab, ULONG u32_AlignedAddress, | 
|  | dma_addr_t *dma_handle) | 
|  | { | 
|  | USHORT allocBoundary=1;   // compiler specific - worst case 1 | 
|  | // best case - replace malloc() call | 
|  | // with function that allocates exactly | 
|  | // at desired boundary | 
|  |  | 
|  | unsigned long ulAddress; | 
|  | ULONG t_alloc, i; | 
|  | void *alloc_address = 0;  // def. error code / address not found | 
|  | LONG mask;                // must be 32-bits wide! | 
|  |  | 
|  | ENTER("fcMemManager"); | 
|  | if( u32_AlignedAddress )          // are we freeing existing memory? | 
|  | { | 
|  | //    printk(" freeing AlignedAddress %Xh\n", u32_AlignedAddress); | 
|  | for( i=0; i<DYNAMIC_ALLOCATIONS; i++) // look for the base address | 
|  | { | 
|  | //    printk("dynamic_mem[%u].AlignedAddress %lX\n", i, dynamic_mem[i].AlignedAddress); | 
|  | if( dynamic_mem[i].AlignedAddress == u32_AlignedAddress ) | 
|  | { | 
|  | alloc_address = dynamic_mem[i].BaseAllocated; // 'success' status | 
|  | pci_free_consistent(pdev,dynamic_mem[i].size, | 
|  | alloc_address, | 
|  | dynamic_mem[i].dma_handle); | 
|  | dynamic_mem[i].BaseAllocated = 0;   // clear for next use | 
|  | dynamic_mem[i].AlignedAddress = 0; | 
|  | dynamic_mem[i].size = 0; | 
|  | break;                        // quit for loop; done | 
|  | } | 
|  | } | 
|  | } | 
|  | else if( n_alloc )                   // want new memory? | 
|  | { | 
|  | dma_addr_t handle; | 
|  | t_alloc = n_alloc + (ab - allocBoundary); // pad bytes for alignment | 
|  | //    printk("pci_alloc_consistent() for Tach alignment: %ld bytes\n", t_alloc); | 
|  |  | 
|  | // (would like to) allow thread block to free pages | 
|  | alloc_address =                  // total bytes (NumberOfBytes) | 
|  | pci_alloc_consistent(pdev, t_alloc, &handle); | 
|  |  | 
|  | // now mask off least sig. bits of address | 
|  | if( alloc_address )           // (only if non-NULL) | 
|  | { | 
|  | // find place to store ptr, so we | 
|  | // can free it later... | 
|  |  | 
|  | mask = (LONG)(ab - 1);            // mask all low-order bits | 
|  | mask = ~mask;                            // invert bits | 
|  | for( i=0; i<DYNAMIC_ALLOCATIONS; i++) // look for free slot | 
|  | { | 
|  | if( dynamic_mem[i].BaseAllocated == 0) // take 1st available | 
|  | { | 
|  | dynamic_mem[i].BaseAllocated = alloc_address;// address from O/S | 
|  | dynamic_mem[i].dma_handle = handle; | 
|  | if (dma_handle != NULL) | 
|  | { | 
|  | //             printk("handle = %p, ab=%d, boundary = %d, mask=0x%08x\n", | 
|  | //			handle, ab, allocBoundary, mask); | 
|  | *dma_handle = (dma_addr_t) | 
|  | ((((ULONG)handle) + (ab - allocBoundary)) & mask); | 
|  | } | 
|  | dynamic_mem[i].size = t_alloc; | 
|  | break; | 
|  | } | 
|  | } | 
|  | ulAddress = (unsigned long)alloc_address; | 
|  |  | 
|  | ulAddress += (ab - allocBoundary);    // add the alignment bytes- | 
|  | // then truncate address... | 
|  | alloc_address = (void*)(ulAddress & mask); | 
|  |  | 
|  | dynamic_mem[i].AlignedAddress = | 
|  | (ULONG)(ulAddress & mask); // 32bit Tach address | 
|  | memset( alloc_address, 0, n_alloc );  // clear new memory | 
|  | } | 
|  | else  // O/S dynamic mem alloc failed! | 
|  | alloc_address = 0;  // (for debugging breakpt) | 
|  |  | 
|  | } | 
|  |  | 
|  | LEAVE("fcMemManager"); | 
|  | return alloc_address;  // good (or NULL) address | 
|  | } | 
|  |  | 
|  |  | 
|  | static Scsi_Host_Template driver_template = { | 
|  | .detect                 = cpqfcTS_detect, | 
|  | .release                = cpqfcTS_release, | 
|  | .info                   = cpqfcTS_info, | 
|  | .proc_info              = cpqfcTS_proc_info, | 
|  | .ioctl                  = cpqfcTS_ioctl, | 
|  | .queuecommand           = cpqfcTS_queuecommand, | 
|  | .eh_device_reset_handler   = cpqfcTS_eh_device_reset, | 
|  | .eh_abort_handler       = cpqfcTS_eh_abort, | 
|  | .bios_param             = cpqfcTS_biosparam, | 
|  | .can_queue              = CPQFCTS_REQ_QUEUE_LEN, | 
|  | .this_id                = -1, | 
|  | .sg_tablesize           = SG_ALL, | 
|  | .cmd_per_lun            = CPQFCTS_CMD_PER_LUN, | 
|  | .use_clustering         = ENABLE_CLUSTERING, | 
|  | }; | 
|  | #include "scsi_module.c" | 
|  |  |