|  | /* | 
|  | * Cryptographic API. | 
|  | * | 
|  | * Support for VIA PadLock hardware crypto engine. | 
|  | * | 
|  | * Copyright (c) 2004  Michal Ludvig <michal@logix.cz> | 
|  | * | 
|  | * Key expansion routine taken from crypto/aes.c | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * --------------------------------------------------------------------------- | 
|  | * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. | 
|  | * All rights reserved. | 
|  | * | 
|  | * LICENSE TERMS | 
|  | * | 
|  | * The free distribution and use of this software in both source and binary | 
|  | * form is allowed (with or without changes) provided that: | 
|  | * | 
|  | *   1. distributions of this source code include the above copyright | 
|  | *      notice, this list of conditions and the following disclaimer; | 
|  | * | 
|  | *   2. distributions in binary form include the above copyright | 
|  | *      notice, this list of conditions and the following disclaimer | 
|  | *      in the documentation and/or other associated materials; | 
|  | * | 
|  | *   3. the copyright holder's name is not used to endorse products | 
|  | *      built using this software without specific written permission. | 
|  | * | 
|  | * ALTERNATIVELY, provided that this notice is retained in full, this product | 
|  | * may be distributed under the terms of the GNU General Public License (GPL), | 
|  | * in which case the provisions of the GPL apply INSTEAD OF those given above. | 
|  | * | 
|  | * DISCLAIMER | 
|  | * | 
|  | * This software is provided 'as is' with no explicit or implied warranties | 
|  | * in respect of its properties, including, but not limited to, correctness | 
|  | * and/or fitness for purpose. | 
|  | * --------------------------------------------------------------------------- | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <asm/byteorder.h> | 
|  | #include "padlock.h" | 
|  |  | 
|  | #define AES_MIN_KEY_SIZE	16	/* in uint8_t units */ | 
|  | #define AES_MAX_KEY_SIZE	32	/* ditto */ | 
|  | #define AES_BLOCK_SIZE		16	/* ditto */ | 
|  | #define AES_EXTENDED_KEY_SIZE	64	/* in uint32_t units */ | 
|  | #define AES_EXTENDED_KEY_SIZE_B	(AES_EXTENDED_KEY_SIZE * sizeof(uint32_t)) | 
|  |  | 
|  | /* Whenever making any changes to the following | 
|  | * structure *make sure* you keep E, d_data | 
|  | * and cword aligned on 16 Bytes boundaries!!! */ | 
|  | struct aes_ctx { | 
|  | struct { | 
|  | struct cword encrypt; | 
|  | struct cword decrypt; | 
|  | } cword; | 
|  | u32 *D; | 
|  | int key_length; | 
|  | u32 E[AES_EXTENDED_KEY_SIZE] | 
|  | __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); | 
|  | u32 d_data[AES_EXTENDED_KEY_SIZE] | 
|  | __attribute__ ((__aligned__(PADLOCK_ALIGNMENT))); | 
|  | }; | 
|  |  | 
|  | /* ====== Key management routines ====== */ | 
|  |  | 
|  | static inline uint32_t | 
|  | generic_rotr32 (const uint32_t x, const unsigned bits) | 
|  | { | 
|  | const unsigned n = bits % 32; | 
|  | return (x >> n) | (x << (32 - n)); | 
|  | } | 
|  |  | 
|  | static inline uint32_t | 
|  | generic_rotl32 (const uint32_t x, const unsigned bits) | 
|  | { | 
|  | const unsigned n = bits % 32; | 
|  | return (x << n) | (x >> (32 - n)); | 
|  | } | 
|  |  | 
|  | #define rotl generic_rotl32 | 
|  | #define rotr generic_rotr32 | 
|  |  | 
|  | /* | 
|  | * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) | 
|  | */ | 
|  | static inline uint8_t | 
|  | byte(const uint32_t x, const unsigned n) | 
|  | { | 
|  | return x >> (n << 3); | 
|  | } | 
|  |  | 
|  | #define E_KEY ctx->E | 
|  | #define D_KEY ctx->D | 
|  |  | 
|  | static uint8_t pow_tab[256]; | 
|  | static uint8_t log_tab[256]; | 
|  | static uint8_t sbx_tab[256]; | 
|  | static uint8_t isb_tab[256]; | 
|  | static uint32_t rco_tab[10]; | 
|  | static uint32_t ft_tab[4][256]; | 
|  | static uint32_t it_tab[4][256]; | 
|  |  | 
|  | static uint32_t fl_tab[4][256]; | 
|  | static uint32_t il_tab[4][256]; | 
|  |  | 
|  | static inline uint8_t | 
|  | f_mult (uint8_t a, uint8_t b) | 
|  | { | 
|  | uint8_t aa = log_tab[a], cc = aa + log_tab[b]; | 
|  |  | 
|  | return pow_tab[cc + (cc < aa ? 1 : 0)]; | 
|  | } | 
|  |  | 
|  | #define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0) | 
|  |  | 
|  | #define f_rn(bo, bi, n, k)					\ | 
|  | bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\ | 
|  | ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\ | 
|  | ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\ | 
|  | ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) | 
|  |  | 
|  | #define i_rn(bo, bi, n, k)					\ | 
|  | bo[n] =  it_tab[0][byte(bi[n],0)] ^				\ | 
|  | it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\ | 
|  | it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\ | 
|  | it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) | 
|  |  | 
|  | #define ls_box(x)				\ | 
|  | ( fl_tab[0][byte(x, 0)] ^			\ | 
|  | fl_tab[1][byte(x, 1)] ^			\ | 
|  | fl_tab[2][byte(x, 2)] ^			\ | 
|  | fl_tab[3][byte(x, 3)] ) | 
|  |  | 
|  | #define f_rl(bo, bi, n, k)					\ | 
|  | bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\ | 
|  | fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\ | 
|  | fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\ | 
|  | fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) | 
|  |  | 
|  | #define i_rl(bo, bi, n, k)					\ | 
|  | bo[n] =  il_tab[0][byte(bi[n],0)] ^				\ | 
|  | il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\ | 
|  | il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\ | 
|  | il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) | 
|  |  | 
|  | static void | 
|  | gen_tabs (void) | 
|  | { | 
|  | uint32_t i, t; | 
|  | uint8_t p, q; | 
|  |  | 
|  | /* log and power tables for GF(2**8) finite field with | 
|  | 0x011b as modular polynomial - the simplest prmitive | 
|  | root is 0x03, used here to generate the tables */ | 
|  |  | 
|  | for (i = 0, p = 1; i < 256; ++i) { | 
|  | pow_tab[i] = (uint8_t) p; | 
|  | log_tab[p] = (uint8_t) i; | 
|  |  | 
|  | p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0); | 
|  | } | 
|  |  | 
|  | log_tab[1] = 0; | 
|  |  | 
|  | for (i = 0, p = 1; i < 10; ++i) { | 
|  | rco_tab[i] = p; | 
|  |  | 
|  | p = (p << 1) ^ (p & 0x80 ? 0x01b : 0); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 256; ++i) { | 
|  | p = (i ? pow_tab[255 - log_tab[i]] : 0); | 
|  | q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2)); | 
|  | p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2)); | 
|  | sbx_tab[i] = p; | 
|  | isb_tab[p] = (uint8_t) i; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 256; ++i) { | 
|  | p = sbx_tab[i]; | 
|  |  | 
|  | t = p; | 
|  | fl_tab[0][i] = t; | 
|  | fl_tab[1][i] = rotl (t, 8); | 
|  | fl_tab[2][i] = rotl (t, 16); | 
|  | fl_tab[3][i] = rotl (t, 24); | 
|  |  | 
|  | t = ((uint32_t) ff_mult (2, p)) | | 
|  | ((uint32_t) p << 8) | | 
|  | ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24); | 
|  |  | 
|  | ft_tab[0][i] = t; | 
|  | ft_tab[1][i] = rotl (t, 8); | 
|  | ft_tab[2][i] = rotl (t, 16); | 
|  | ft_tab[3][i] = rotl (t, 24); | 
|  |  | 
|  | p = isb_tab[i]; | 
|  |  | 
|  | t = p; | 
|  | il_tab[0][i] = t; | 
|  | il_tab[1][i] = rotl (t, 8); | 
|  | il_tab[2][i] = rotl (t, 16); | 
|  | il_tab[3][i] = rotl (t, 24); | 
|  |  | 
|  | t = ((uint32_t) ff_mult (14, p)) | | 
|  | ((uint32_t) ff_mult (9, p) << 8) | | 
|  | ((uint32_t) ff_mult (13, p) << 16) | | 
|  | ((uint32_t) ff_mult (11, p) << 24); | 
|  |  | 
|  | it_tab[0][i] = t; | 
|  | it_tab[1][i] = rotl (t, 8); | 
|  | it_tab[2][i] = rotl (t, 16); | 
|  | it_tab[3][i] = rotl (t, 24); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b) | 
|  |  | 
|  | #define imix_col(y,x)       \ | 
|  | u   = star_x(x);        \ | 
|  | v   = star_x(u);        \ | 
|  | w   = star_x(v);        \ | 
|  | t   = w ^ (x);          \ | 
|  | (y)  = u ^ v ^ w;        \ | 
|  | (y) ^= rotr(u ^ t,  8) ^ \ | 
|  | rotr(v ^ t, 16) ^ \ | 
|  | rotr(t,24) | 
|  |  | 
|  | /* initialise the key schedule from the user supplied key */ | 
|  |  | 
|  | #define loop4(i)                                    \ | 
|  | {   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \ | 
|  | t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \ | 
|  | t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \ | 
|  | t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \ | 
|  | t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \ | 
|  | } | 
|  |  | 
|  | #define loop6(i)                                    \ | 
|  | {   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \ | 
|  | t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \ | 
|  | t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \ | 
|  | t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \ | 
|  | t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \ | 
|  | t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \ | 
|  | t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \ | 
|  | } | 
|  |  | 
|  | #define loop8(i)                                    \ | 
|  | {   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \ | 
|  | t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \ | 
|  | t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \ | 
|  | t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \ | 
|  | t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \ | 
|  | t  = E_KEY[8 * i + 4] ^ ls_box(t);    \ | 
|  | E_KEY[8 * i + 12] = t;                \ | 
|  | t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \ | 
|  | t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \ | 
|  | t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \ | 
|  | } | 
|  |  | 
|  | /* Tells whether the ACE is capable to generate | 
|  | the extended key for a given key_len. */ | 
|  | static inline int | 
|  | aes_hw_extkey_available(uint8_t key_len) | 
|  | { | 
|  | /* TODO: We should check the actual CPU model/stepping | 
|  | as it's possible that the capability will be | 
|  | added in the next CPU revisions. */ | 
|  | if (key_len == 16) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm) | 
|  | { | 
|  | unsigned long addr = (unsigned long)crypto_tfm_ctx(tfm); | 
|  | unsigned long align = PADLOCK_ALIGNMENT; | 
|  |  | 
|  | if (align <= crypto_tfm_ctx_alignment()) | 
|  | align = 1; | 
|  | return (struct aes_ctx *)ALIGN(addr, align); | 
|  | } | 
|  |  | 
|  | static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, | 
|  | unsigned int key_len, u32 *flags) | 
|  | { | 
|  | struct aes_ctx *ctx = aes_ctx(tfm); | 
|  | const __le32 *key = (const __le32 *)in_key; | 
|  | uint32_t i, t, u, v, w; | 
|  | uint32_t P[AES_EXTENDED_KEY_SIZE]; | 
|  | uint32_t rounds; | 
|  |  | 
|  | if (key_len != 16 && key_len != 24 && key_len != 32) { | 
|  | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ctx->key_length = key_len; | 
|  |  | 
|  | /* | 
|  | * If the hardware is capable of generating the extended key | 
|  | * itself we must supply the plain key for both encryption | 
|  | * and decryption. | 
|  | */ | 
|  | ctx->D = ctx->E; | 
|  |  | 
|  | E_KEY[0] = le32_to_cpu(key[0]); | 
|  | E_KEY[1] = le32_to_cpu(key[1]); | 
|  | E_KEY[2] = le32_to_cpu(key[2]); | 
|  | E_KEY[3] = le32_to_cpu(key[3]); | 
|  |  | 
|  | /* Prepare control words. */ | 
|  | memset(&ctx->cword, 0, sizeof(ctx->cword)); | 
|  |  | 
|  | ctx->cword.decrypt.encdec = 1; | 
|  | ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4; | 
|  | ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds; | 
|  | ctx->cword.encrypt.ksize = (key_len - 16) / 8; | 
|  | ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize; | 
|  |  | 
|  | /* Don't generate extended keys if the hardware can do it. */ | 
|  | if (aes_hw_extkey_available(key_len)) | 
|  | return 0; | 
|  |  | 
|  | ctx->D = ctx->d_data; | 
|  | ctx->cword.encrypt.keygen = 1; | 
|  | ctx->cword.decrypt.keygen = 1; | 
|  |  | 
|  | switch (key_len) { | 
|  | case 16: | 
|  | t = E_KEY[3]; | 
|  | for (i = 0; i < 10; ++i) | 
|  | loop4 (i); | 
|  | break; | 
|  |  | 
|  | case 24: | 
|  | E_KEY[4] = le32_to_cpu(key[4]); | 
|  | t = E_KEY[5] = le32_to_cpu(key[5]); | 
|  | for (i = 0; i < 8; ++i) | 
|  | loop6 (i); | 
|  | break; | 
|  |  | 
|  | case 32: | 
|  | E_KEY[4] = le32_to_cpu(key[4]); | 
|  | E_KEY[5] = le32_to_cpu(key[5]); | 
|  | E_KEY[6] = le32_to_cpu(key[6]); | 
|  | t = E_KEY[7] = le32_to_cpu(key[7]); | 
|  | for (i = 0; i < 7; ++i) | 
|  | loop8 (i); | 
|  | break; | 
|  | } | 
|  |  | 
|  | D_KEY[0] = E_KEY[0]; | 
|  | D_KEY[1] = E_KEY[1]; | 
|  | D_KEY[2] = E_KEY[2]; | 
|  | D_KEY[3] = E_KEY[3]; | 
|  |  | 
|  | for (i = 4; i < key_len + 24; ++i) { | 
|  | imix_col (D_KEY[i], E_KEY[i]); | 
|  | } | 
|  |  | 
|  | /* PadLock needs a different format of the decryption key. */ | 
|  | rounds = 10 + (key_len - 16) / 4; | 
|  |  | 
|  | for (i = 0; i < rounds; i++) { | 
|  | P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0]; | 
|  | P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1]; | 
|  | P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2]; | 
|  | P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3]; | 
|  | } | 
|  |  | 
|  | P[0] = E_KEY[(rounds * 4) + 0]; | 
|  | P[1] = E_KEY[(rounds * 4) + 1]; | 
|  | P[2] = E_KEY[(rounds * 4) + 2]; | 
|  | P[3] = E_KEY[(rounds * 4) + 3]; | 
|  |  | 
|  | memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* ====== Encryption/decryption routines ====== */ | 
|  |  | 
|  | /* These are the real call to PadLock. */ | 
|  | static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key, | 
|  | void *control_word, u32 count) | 
|  | { | 
|  | asm volatile ("pushfl; popfl");		/* enforce key reload. */ | 
|  | asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */ | 
|  | : "+S"(input), "+D"(output) | 
|  | : "d"(control_word), "b"(key), "c"(count)); | 
|  | } | 
|  |  | 
|  | static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key, | 
|  | u8 *iv, void *control_word, u32 count) | 
|  | { | 
|  | /* Enforce key reload. */ | 
|  | asm volatile ("pushfl; popfl"); | 
|  | /* rep xcryptcbc */ | 
|  | asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" | 
|  | : "+S" (input), "+D" (output), "+a" (iv) | 
|  | : "d" (control_word), "b" (key), "c" (count)); | 
|  | return iv; | 
|  | } | 
|  |  | 
|  | static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | 
|  | { | 
|  | struct aes_ctx *ctx = aes_ctx(tfm); | 
|  | padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt, 1); | 
|  | } | 
|  |  | 
|  | static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | 
|  | { | 
|  | struct aes_ctx *ctx = aes_ctx(tfm); | 
|  | padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt, 1); | 
|  | } | 
|  |  | 
|  | static unsigned int aes_encrypt_ecb(const struct cipher_desc *desc, u8 *out, | 
|  | const u8 *in, unsigned int nbytes) | 
|  | { | 
|  | struct aes_ctx *ctx = aes_ctx(desc->tfm); | 
|  | padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt, | 
|  | nbytes / AES_BLOCK_SIZE); | 
|  | return nbytes & ~(AES_BLOCK_SIZE - 1); | 
|  | } | 
|  |  | 
|  | static unsigned int aes_decrypt_ecb(const struct cipher_desc *desc, u8 *out, | 
|  | const u8 *in, unsigned int nbytes) | 
|  | { | 
|  | struct aes_ctx *ctx = aes_ctx(desc->tfm); | 
|  | padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt, | 
|  | nbytes / AES_BLOCK_SIZE); | 
|  | return nbytes & ~(AES_BLOCK_SIZE - 1); | 
|  | } | 
|  |  | 
|  | static unsigned int aes_encrypt_cbc(const struct cipher_desc *desc, u8 *out, | 
|  | const u8 *in, unsigned int nbytes) | 
|  | { | 
|  | struct aes_ctx *ctx = aes_ctx(desc->tfm); | 
|  | u8 *iv; | 
|  |  | 
|  | iv = padlock_xcrypt_cbc(in, out, ctx->E, desc->info, | 
|  | &ctx->cword.encrypt, nbytes / AES_BLOCK_SIZE); | 
|  | memcpy(desc->info, iv, AES_BLOCK_SIZE); | 
|  |  | 
|  | return nbytes & ~(AES_BLOCK_SIZE - 1); | 
|  | } | 
|  |  | 
|  | static unsigned int aes_decrypt_cbc(const struct cipher_desc *desc, u8 *out, | 
|  | const u8 *in, unsigned int nbytes) | 
|  | { | 
|  | struct aes_ctx *ctx = aes_ctx(desc->tfm); | 
|  | padlock_xcrypt_cbc(in, out, ctx->D, desc->info, &ctx->cword.decrypt, | 
|  | nbytes / AES_BLOCK_SIZE); | 
|  | return nbytes & ~(AES_BLOCK_SIZE - 1); | 
|  | } | 
|  |  | 
|  | static struct crypto_alg aes_alg = { | 
|  | .cra_name		=	"aes", | 
|  | .cra_driver_name	=	"aes-padlock", | 
|  | .cra_priority		=	300, | 
|  | .cra_flags		=	CRYPTO_ALG_TYPE_CIPHER, | 
|  | .cra_blocksize		=	AES_BLOCK_SIZE, | 
|  | .cra_ctxsize		=	sizeof(struct aes_ctx), | 
|  | .cra_alignmask		=	PADLOCK_ALIGNMENT - 1, | 
|  | .cra_module		=	THIS_MODULE, | 
|  | .cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list), | 
|  | .cra_u			=	{ | 
|  | .cipher = { | 
|  | .cia_min_keysize	=	AES_MIN_KEY_SIZE, | 
|  | .cia_max_keysize	=	AES_MAX_KEY_SIZE, | 
|  | .cia_setkey	   	= 	aes_set_key, | 
|  | .cia_encrypt	 	=	aes_encrypt, | 
|  | .cia_decrypt	  	=	aes_decrypt, | 
|  | .cia_encrypt_ecb 	=	aes_encrypt_ecb, | 
|  | .cia_decrypt_ecb  	=	aes_decrypt_ecb, | 
|  | .cia_encrypt_cbc 	=	aes_encrypt_cbc, | 
|  | .cia_decrypt_cbc  	=	aes_decrypt_cbc, | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | int __init padlock_init_aes(void) | 
|  | { | 
|  | printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n"); | 
|  |  | 
|  | gen_tabs(); | 
|  | return crypto_register_alg(&aes_alg); | 
|  | } | 
|  |  | 
|  | void __exit padlock_fini_aes(void) | 
|  | { | 
|  | crypto_unregister_alg(&aes_alg); | 
|  | } |