|  | /* | 
|  | * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README | 
|  | */ | 
|  |  | 
|  | /** | 
|  | ** old_item_num | 
|  | ** old_entry_num | 
|  | ** set_entry_sizes | 
|  | ** create_virtual_node | 
|  | ** check_left | 
|  | ** check_right | 
|  | ** directory_part_size | 
|  | ** get_num_ver | 
|  | ** set_parameters | 
|  | ** is_leaf_removable | 
|  | ** are_leaves_removable | 
|  | ** get_empty_nodes | 
|  | ** get_lfree | 
|  | ** get_rfree | 
|  | ** is_left_neighbor_in_cache | 
|  | ** decrement_key | 
|  | ** get_far_parent | 
|  | ** get_parents | 
|  | ** can_node_be_removed | 
|  | ** ip_check_balance | 
|  | ** dc_check_balance_internal | 
|  | ** dc_check_balance_leaf | 
|  | ** dc_check_balance | 
|  | ** check_balance | 
|  | ** get_direct_parent | 
|  | ** get_neighbors | 
|  | ** fix_nodes | 
|  | ** | 
|  | ** | 
|  | **/ | 
|  |  | 
|  | #include <linux/time.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/reiserfs_fs.h> | 
|  | #include <linux/buffer_head.h> | 
|  |  | 
|  | /* To make any changes in the tree we find a node, that contains item | 
|  | to be changed/deleted or position in the node we insert a new item | 
|  | to. We call this node S. To do balancing we need to decide what we | 
|  | will shift to left/right neighbor, or to a new node, where new item | 
|  | will be etc. To make this analysis simpler we build virtual | 
|  | node. Virtual node is an array of items, that will replace items of | 
|  | node S. (For instance if we are going to delete an item, virtual | 
|  | node does not contain it). Virtual node keeps information about | 
|  | item sizes and types, mergeability of first and last items, sizes | 
|  | of all entries in directory item. We use this array of items when | 
|  | calculating what we can shift to neighbors and how many nodes we | 
|  | have to have if we do not any shiftings, if we shift to left/right | 
|  | neighbor or to both. */ | 
|  |  | 
|  | /* taking item number in virtual node, returns number of item, that it has in source buffer */ | 
|  | static inline int old_item_num(int new_num, int affected_item_num, int mode) | 
|  | { | 
|  | if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num) | 
|  | return new_num; | 
|  |  | 
|  | if (mode == M_INSERT) { | 
|  |  | 
|  | RFALSE(new_num == 0, | 
|  | "vs-8005: for INSERT mode and item number of inserted item"); | 
|  |  | 
|  | return new_num - 1; | 
|  | } | 
|  |  | 
|  | RFALSE(mode != M_DELETE, | 
|  | "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'", | 
|  | mode); | 
|  | /* delete mode */ | 
|  | return new_num + 1; | 
|  | } | 
|  |  | 
|  | static void create_virtual_node(struct tree_balance *tb, int h) | 
|  | { | 
|  | struct item_head *ih; | 
|  | struct virtual_node *vn = tb->tb_vn; | 
|  | int new_num; | 
|  | struct buffer_head *Sh;	/* this comes from tb->S[h] */ | 
|  |  | 
|  | Sh = PATH_H_PBUFFER(tb->tb_path, h); | 
|  |  | 
|  | /* size of changed node */ | 
|  | vn->vn_size = | 
|  | MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h]; | 
|  |  | 
|  | /* for internal nodes array if virtual items is not created */ | 
|  | if (h) { | 
|  | vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* number of items in virtual node  */ | 
|  | vn->vn_nr_item = | 
|  | B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) - | 
|  | ((vn->vn_mode == M_DELETE) ? 1 : 0); | 
|  |  | 
|  | /* first virtual item */ | 
|  | vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1); | 
|  | memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item)); | 
|  | vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item); | 
|  |  | 
|  | /* first item in the node */ | 
|  | ih = B_N_PITEM_HEAD(Sh, 0); | 
|  |  | 
|  | /* define the mergeability for 0-th item (if it is not being deleted) */ | 
|  | if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size) | 
|  | && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num)) | 
|  | vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE; | 
|  |  | 
|  | /* go through all items those remain in the virtual node (except for the new (inserted) one) */ | 
|  | for (new_num = 0; new_num < vn->vn_nr_item; new_num++) { | 
|  | int j; | 
|  | struct virtual_item *vi = vn->vn_vi + new_num; | 
|  | int is_affected = | 
|  | ((new_num != vn->vn_affected_item_num) ? 0 : 1); | 
|  |  | 
|  | if (is_affected && vn->vn_mode == M_INSERT) | 
|  | continue; | 
|  |  | 
|  | /* get item number in source node */ | 
|  | j = old_item_num(new_num, vn->vn_affected_item_num, | 
|  | vn->vn_mode); | 
|  |  | 
|  | vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE; | 
|  | vi->vi_ih = ih + j; | 
|  | vi->vi_item = B_I_PITEM(Sh, ih + j); | 
|  | vi->vi_uarea = vn->vn_free_ptr; | 
|  |  | 
|  | // FIXME: there is no check, that item operation did not | 
|  | // consume too much memory | 
|  | vn->vn_free_ptr += | 
|  | op_create_vi(vn, vi, is_affected, tb->insert_size[0]); | 
|  | if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr) | 
|  | reiserfs_panic(tb->tb_sb, | 
|  | "vs-8030: create_virtual_node: " | 
|  | "virtual node space consumed"); | 
|  |  | 
|  | if (!is_affected) | 
|  | /* this is not being changed */ | 
|  | continue; | 
|  |  | 
|  | if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) { | 
|  | vn->vn_vi[new_num].vi_item_len += tb->insert_size[0]; | 
|  | vi->vi_new_data = vn->vn_data;	// pointer to data which is going to be pasted | 
|  | } | 
|  | } | 
|  |  | 
|  | /* virtual inserted item is not defined yet */ | 
|  | if (vn->vn_mode == M_INSERT) { | 
|  | struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num; | 
|  |  | 
|  | RFALSE(vn->vn_ins_ih == 0, | 
|  | "vs-8040: item header of inserted item is not specified"); | 
|  | vi->vi_item_len = tb->insert_size[0]; | 
|  | vi->vi_ih = vn->vn_ins_ih; | 
|  | vi->vi_item = vn->vn_data; | 
|  | vi->vi_uarea = vn->vn_free_ptr; | 
|  |  | 
|  | op_create_vi(vn, vi, 0 /*not pasted or cut */ , | 
|  | tb->insert_size[0]); | 
|  | } | 
|  |  | 
|  | /* set right merge flag we take right delimiting key and check whether it is a mergeable item */ | 
|  | if (tb->CFR[0]) { | 
|  | struct reiserfs_key *key; | 
|  |  | 
|  | key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]); | 
|  | if (op_is_left_mergeable(key, Sh->b_size) | 
|  | && (vn->vn_mode != M_DELETE | 
|  | || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) | 
|  | vn->vn_vi[vn->vn_nr_item - 1].vi_type |= | 
|  | VI_TYPE_RIGHT_MERGEABLE; | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | if (op_is_left_mergeable(key, Sh->b_size) && | 
|  | !(vn->vn_mode != M_DELETE | 
|  | || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) { | 
|  | /* we delete last item and it could be merged with right neighbor's first item */ | 
|  | if (! | 
|  | (B_NR_ITEMS(Sh) == 1 | 
|  | && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0)) | 
|  | && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) { | 
|  | /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */ | 
|  | print_block(Sh, 0, -1, -1); | 
|  | reiserfs_panic(tb->tb_sb, | 
|  | "vs-8045: create_virtual_node: rdkey %k, affected item==%d (mode==%c) Must be %c", | 
|  | key, vn->vn_affected_item_num, | 
|  | vn->vn_mode, M_DELETE); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | /* using virtual node check, how many items can be shifted to left | 
|  | neighbor */ | 
|  | static void check_left(struct tree_balance *tb, int h, int cur_free) | 
|  | { | 
|  | int i; | 
|  | struct virtual_node *vn = tb->tb_vn; | 
|  | struct virtual_item *vi; | 
|  | int d_size, ih_size; | 
|  |  | 
|  | RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free); | 
|  |  | 
|  | /* internal level */ | 
|  | if (h > 0) { | 
|  | tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* leaf level */ | 
|  |  | 
|  | if (!cur_free || !vn->vn_nr_item) { | 
|  | /* no free space or nothing to move */ | 
|  | tb->lnum[h] = 0; | 
|  | tb->lbytes = -1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | RFALSE(!PATH_H_PPARENT(tb->tb_path, 0), | 
|  | "vs-8055: parent does not exist or invalid"); | 
|  |  | 
|  | vi = vn->vn_vi; | 
|  | if ((unsigned int)cur_free >= | 
|  | (vn->vn_size - | 
|  | ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) { | 
|  | /* all contents of S[0] fits into L[0] */ | 
|  |  | 
|  | RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, | 
|  | "vs-8055: invalid mode or balance condition failed"); | 
|  |  | 
|  | tb->lnum[0] = vn->vn_nr_item; | 
|  | tb->lbytes = -1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | d_size = 0, ih_size = IH_SIZE; | 
|  |  | 
|  | /* first item may be merge with last item in left neighbor */ | 
|  | if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE) | 
|  | d_size = -((int)IH_SIZE), ih_size = 0; | 
|  |  | 
|  | tb->lnum[0] = 0; | 
|  | for (i = 0; i < vn->vn_nr_item; | 
|  | i++, ih_size = IH_SIZE, d_size = 0, vi++) { | 
|  | d_size += vi->vi_item_len; | 
|  | if (cur_free >= d_size) { | 
|  | /* the item can be shifted entirely */ | 
|  | cur_free -= d_size; | 
|  | tb->lnum[0]++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* the item cannot be shifted entirely, try to split it */ | 
|  | /* check whether L[0] can hold ih and at least one byte of the item body */ | 
|  | if (cur_free <= ih_size) { | 
|  | /* cannot shift even a part of the current item */ | 
|  | tb->lbytes = -1; | 
|  | return; | 
|  | } | 
|  | cur_free -= ih_size; | 
|  |  | 
|  | tb->lbytes = op_check_left(vi, cur_free, 0, 0); | 
|  | if (tb->lbytes != -1) | 
|  | /* count partially shifted item */ | 
|  | tb->lnum[0]++; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* using virtual node check, how many items can be shifted to right | 
|  | neighbor */ | 
|  | static void check_right(struct tree_balance *tb, int h, int cur_free) | 
|  | { | 
|  | int i; | 
|  | struct virtual_node *vn = tb->tb_vn; | 
|  | struct virtual_item *vi; | 
|  | int d_size, ih_size; | 
|  |  | 
|  | RFALSE(cur_free < 0, "vs-8070: cur_free < 0"); | 
|  |  | 
|  | /* internal level */ | 
|  | if (h > 0) { | 
|  | tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* leaf level */ | 
|  |  | 
|  | if (!cur_free || !vn->vn_nr_item) { | 
|  | /* no free space  */ | 
|  | tb->rnum[h] = 0; | 
|  | tb->rbytes = -1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | RFALSE(!PATH_H_PPARENT(tb->tb_path, 0), | 
|  | "vs-8075: parent does not exist or invalid"); | 
|  |  | 
|  | vi = vn->vn_vi + vn->vn_nr_item - 1; | 
|  | if ((unsigned int)cur_free >= | 
|  | (vn->vn_size - | 
|  | ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) { | 
|  | /* all contents of S[0] fits into R[0] */ | 
|  |  | 
|  | RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, | 
|  | "vs-8080: invalid mode or balance condition failed"); | 
|  |  | 
|  | tb->rnum[h] = vn->vn_nr_item; | 
|  | tb->rbytes = -1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | d_size = 0, ih_size = IH_SIZE; | 
|  |  | 
|  | /* last item may be merge with first item in right neighbor */ | 
|  | if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) | 
|  | d_size = -(int)IH_SIZE, ih_size = 0; | 
|  |  | 
|  | tb->rnum[0] = 0; | 
|  | for (i = vn->vn_nr_item - 1; i >= 0; | 
|  | i--, d_size = 0, ih_size = IH_SIZE, vi--) { | 
|  | d_size += vi->vi_item_len; | 
|  | if (cur_free >= d_size) { | 
|  | /* the item can be shifted entirely */ | 
|  | cur_free -= d_size; | 
|  | tb->rnum[0]++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* check whether R[0] can hold ih and at least one byte of the item body */ | 
|  | if (cur_free <= ih_size) {	/* cannot shift even a part of the current item */ | 
|  | tb->rbytes = -1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* R[0] can hold the header of the item and at least one byte of its body */ | 
|  | cur_free -= ih_size;	/* cur_free is still > 0 */ | 
|  |  | 
|  | tb->rbytes = op_check_right(vi, cur_free); | 
|  | if (tb->rbytes != -1) | 
|  | /* count partially shifted item */ | 
|  | tb->rnum[0]++; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * from - number of items, which are shifted to left neighbor entirely | 
|  | * to - number of item, which are shifted to right neighbor entirely | 
|  | * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor | 
|  | * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */ | 
|  | static int get_num_ver(int mode, struct tree_balance *tb, int h, | 
|  | int from, int from_bytes, | 
|  | int to, int to_bytes, short *snum012, int flow) | 
|  | { | 
|  | int i; | 
|  | int cur_free; | 
|  | //    int bytes; | 
|  | int units; | 
|  | struct virtual_node *vn = tb->tb_vn; | 
|  | //    struct virtual_item * vi; | 
|  |  | 
|  | int total_node_size, max_node_size, current_item_size; | 
|  | int needed_nodes; | 
|  | int start_item,		/* position of item we start filling node from */ | 
|  | end_item,		/* position of item we finish filling node by */ | 
|  | start_bytes,		/* number of first bytes (entries for directory) of start_item-th item | 
|  | we do not include into node that is being filled */ | 
|  | end_bytes;		/* number of last bytes (entries for directory) of end_item-th item | 
|  | we do node include into node that is being filled */ | 
|  | int split_item_positions[2];	/* these are positions in virtual item of | 
|  | items, that are split between S[0] and | 
|  | S1new and S1new and S2new */ | 
|  |  | 
|  | split_item_positions[0] = -1; | 
|  | split_item_positions[1] = -1; | 
|  |  | 
|  | /* We only create additional nodes if we are in insert or paste mode | 
|  | or we are in replace mode at the internal level. If h is 0 and | 
|  | the mode is M_REPLACE then in fix_nodes we change the mode to | 
|  | paste or insert before we get here in the code.  */ | 
|  | RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE), | 
|  | "vs-8100: insert_size < 0 in overflow"); | 
|  |  | 
|  | max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h)); | 
|  |  | 
|  | /* snum012 [0-2] - number of items, that lay | 
|  | to S[0], first new node and second new node */ | 
|  | snum012[3] = -1;	/* s1bytes */ | 
|  | snum012[4] = -1;	/* s2bytes */ | 
|  |  | 
|  | /* internal level */ | 
|  | if (h > 0) { | 
|  | i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE); | 
|  | if (i == max_node_size) | 
|  | return 1; | 
|  | return (i / max_node_size + 1); | 
|  | } | 
|  |  | 
|  | /* leaf level */ | 
|  | needed_nodes = 1; | 
|  | total_node_size = 0; | 
|  | cur_free = max_node_size; | 
|  |  | 
|  | // start from 'from'-th item | 
|  | start_item = from; | 
|  | // skip its first 'start_bytes' units | 
|  | start_bytes = ((from_bytes != -1) ? from_bytes : 0); | 
|  |  | 
|  | // last included item is the 'end_item'-th one | 
|  | end_item = vn->vn_nr_item - to - 1; | 
|  | // do not count last 'end_bytes' units of 'end_item'-th item | 
|  | end_bytes = (to_bytes != -1) ? to_bytes : 0; | 
|  |  | 
|  | /* go through all item beginning from the start_item-th item and ending by | 
|  | the end_item-th item. Do not count first 'start_bytes' units of | 
|  | 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */ | 
|  |  | 
|  | for (i = start_item; i <= end_item; i++) { | 
|  | struct virtual_item *vi = vn->vn_vi + i; | 
|  | int skip_from_end = ((i == end_item) ? end_bytes : 0); | 
|  |  | 
|  | RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed"); | 
|  |  | 
|  | /* get size of current item */ | 
|  | current_item_size = vi->vi_item_len; | 
|  |  | 
|  | /* do not take in calculation head part (from_bytes) of from-th item */ | 
|  | current_item_size -= | 
|  | op_part_size(vi, 0 /*from start */ , start_bytes); | 
|  |  | 
|  | /* do not take in calculation tail part of last item */ | 
|  | current_item_size -= | 
|  | op_part_size(vi, 1 /*from end */ , skip_from_end); | 
|  |  | 
|  | /* if item fits into current node entierly */ | 
|  | if (total_node_size + current_item_size <= max_node_size) { | 
|  | snum012[needed_nodes - 1]++; | 
|  | total_node_size += current_item_size; | 
|  | start_bytes = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (current_item_size > max_node_size) { | 
|  | /* virtual item length is longer, than max size of item in | 
|  | a node. It is impossible for direct item */ | 
|  | RFALSE(is_direct_le_ih(vi->vi_ih), | 
|  | "vs-8110: " | 
|  | "direct item length is %d. It can not be longer than %d", | 
|  | current_item_size, max_node_size); | 
|  | /* we will try to split it */ | 
|  | flow = 1; | 
|  | } | 
|  |  | 
|  | if (!flow) { | 
|  | /* as we do not split items, take new node and continue */ | 
|  | needed_nodes++; | 
|  | i--; | 
|  | total_node_size = 0; | 
|  | continue; | 
|  | } | 
|  | // calculate number of item units which fit into node being | 
|  | // filled | 
|  | { | 
|  | int free_space; | 
|  |  | 
|  | free_space = max_node_size - total_node_size - IH_SIZE; | 
|  | units = | 
|  | op_check_left(vi, free_space, start_bytes, | 
|  | skip_from_end); | 
|  | if (units == -1) { | 
|  | /* nothing fits into current node, take new node and continue */ | 
|  | needed_nodes++, i--, total_node_size = 0; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* something fits into the current node */ | 
|  | //if (snum012[3] != -1 || needed_nodes != 1) | 
|  | //  reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required"); | 
|  | //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units; | 
|  | start_bytes += units; | 
|  | snum012[needed_nodes - 1 + 3] = units; | 
|  |  | 
|  | if (needed_nodes > 2) | 
|  | reiserfs_warning(tb->tb_sb, "vs-8111: get_num_ver: " | 
|  | "split_item_position is out of boundary"); | 
|  | snum012[needed_nodes - 1]++; | 
|  | split_item_positions[needed_nodes - 1] = i; | 
|  | needed_nodes++; | 
|  | /* continue from the same item with start_bytes != -1 */ | 
|  | start_item = i; | 
|  | i--; | 
|  | total_node_size = 0; | 
|  | } | 
|  |  | 
|  | // sum012[4] (if it is not -1) contains number of units of which | 
|  | // are to be in S1new, snum012[3] - to be in S0. They are supposed | 
|  | // to be S1bytes and S2bytes correspondingly, so recalculate | 
|  | if (snum012[4] > 0) { | 
|  | int split_item_num; | 
|  | int bytes_to_r, bytes_to_l; | 
|  | int bytes_to_S1new; | 
|  |  | 
|  | split_item_num = split_item_positions[1]; | 
|  | bytes_to_l = | 
|  | ((from == split_item_num | 
|  | && from_bytes != -1) ? from_bytes : 0); | 
|  | bytes_to_r = | 
|  | ((end_item == split_item_num | 
|  | && end_bytes != -1) ? end_bytes : 0); | 
|  | bytes_to_S1new = | 
|  | ((split_item_positions[0] == | 
|  | split_item_positions[1]) ? snum012[3] : 0); | 
|  |  | 
|  | // s2bytes | 
|  | snum012[4] = | 
|  | op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] - | 
|  | bytes_to_r - bytes_to_l - bytes_to_S1new; | 
|  |  | 
|  | if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY && | 
|  | vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT) | 
|  | reiserfs_warning(tb->tb_sb, "vs-8115: get_num_ver: not " | 
|  | "directory or indirect item"); | 
|  | } | 
|  |  | 
|  | /* now we know S2bytes, calculate S1bytes */ | 
|  | if (snum012[3] > 0) { | 
|  | int split_item_num; | 
|  | int bytes_to_r, bytes_to_l; | 
|  | int bytes_to_S2new; | 
|  |  | 
|  | split_item_num = split_item_positions[0]; | 
|  | bytes_to_l = | 
|  | ((from == split_item_num | 
|  | && from_bytes != -1) ? from_bytes : 0); | 
|  | bytes_to_r = | 
|  | ((end_item == split_item_num | 
|  | && end_bytes != -1) ? end_bytes : 0); | 
|  | bytes_to_S2new = | 
|  | ((split_item_positions[0] == split_item_positions[1] | 
|  | && snum012[4] != -1) ? snum012[4] : 0); | 
|  |  | 
|  | // s1bytes | 
|  | snum012[3] = | 
|  | op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] - | 
|  | bytes_to_r - bytes_to_l - bytes_to_S2new; | 
|  | } | 
|  |  | 
|  | return needed_nodes; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | extern struct tree_balance *cur_tb; | 
|  | #endif | 
|  |  | 
|  | /* Set parameters for balancing. | 
|  | * Performs write of results of analysis of balancing into structure tb, | 
|  | * where it will later be used by the functions that actually do the balancing. | 
|  | * Parameters: | 
|  | *	tb	tree_balance structure; | 
|  | *	h	current level of the node; | 
|  | *	lnum	number of items from S[h] that must be shifted to L[h]; | 
|  | *	rnum	number of items from S[h] that must be shifted to R[h]; | 
|  | *	blk_num	number of blocks that S[h] will be splitted into; | 
|  | *	s012	number of items that fall into splitted nodes. | 
|  | *	lbytes	number of bytes which flow to the left neighbor from the item that is not | 
|  | *		not shifted entirely | 
|  | *	rbytes	number of bytes which flow to the right neighbor from the item that is not | 
|  | *		not shifted entirely | 
|  | *	s1bytes	number of bytes which flow to the first  new node when S[0] splits (this number is contained in s012 array) | 
|  | */ | 
|  |  | 
|  | static void set_parameters(struct tree_balance *tb, int h, int lnum, | 
|  | int rnum, int blk_num, short *s012, int lb, int rb) | 
|  | { | 
|  |  | 
|  | tb->lnum[h] = lnum; | 
|  | tb->rnum[h] = rnum; | 
|  | tb->blknum[h] = blk_num; | 
|  |  | 
|  | if (h == 0) {		/* only for leaf level */ | 
|  | if (s012 != NULL) { | 
|  | tb->s0num = *s012++, | 
|  | tb->s1num = *s012++, tb->s2num = *s012++; | 
|  | tb->s1bytes = *s012++; | 
|  | tb->s2bytes = *s012; | 
|  | } | 
|  | tb->lbytes = lb; | 
|  | tb->rbytes = rb; | 
|  | } | 
|  | PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum); | 
|  | PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum); | 
|  |  | 
|  | PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb); | 
|  | PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb); | 
|  | } | 
|  |  | 
|  | /* check, does node disappear if we shift tb->lnum[0] items to left | 
|  | neighbor and tb->rnum[0] to the right one. */ | 
|  | static int is_leaf_removable(struct tree_balance *tb) | 
|  | { | 
|  | struct virtual_node *vn = tb->tb_vn; | 
|  | int to_left, to_right; | 
|  | int size; | 
|  | int remain_items; | 
|  |  | 
|  | /* number of items, that will be shifted to left (right) neighbor | 
|  | entirely */ | 
|  | to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0); | 
|  | to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0); | 
|  | remain_items = vn->vn_nr_item; | 
|  |  | 
|  | /* how many items remain in S[0] after shiftings to neighbors */ | 
|  | remain_items -= (to_left + to_right); | 
|  |  | 
|  | if (remain_items < 1) { | 
|  | /* all content of node can be shifted to neighbors */ | 
|  | set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0, | 
|  | NULL, -1, -1); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1) | 
|  | /* S[0] is not removable */ | 
|  | return 0; | 
|  |  | 
|  | /* check, whether we can divide 1 remaining item between neighbors */ | 
|  |  | 
|  | /* get size of remaining item (in item units) */ | 
|  | size = op_unit_num(&(vn->vn_vi[to_left])); | 
|  |  | 
|  | if (tb->lbytes + tb->rbytes >= size) { | 
|  | set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL, | 
|  | tb->lbytes, -1); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check whether L, S, R can be joined in one node */ | 
|  | static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree) | 
|  | { | 
|  | struct virtual_node *vn = tb->tb_vn; | 
|  | int ih_size; | 
|  | struct buffer_head *S0; | 
|  |  | 
|  | S0 = PATH_H_PBUFFER(tb->tb_path, 0); | 
|  |  | 
|  | ih_size = 0; | 
|  | if (vn->vn_nr_item) { | 
|  | if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE) | 
|  | ih_size += IH_SIZE; | 
|  |  | 
|  | if (vn->vn_vi[vn->vn_nr_item - 1]. | 
|  | vi_type & VI_TYPE_RIGHT_MERGEABLE) | 
|  | ih_size += IH_SIZE; | 
|  | } else { | 
|  | /* there was only one item and it will be deleted */ | 
|  | struct item_head *ih; | 
|  |  | 
|  | RFALSE(B_NR_ITEMS(S0) != 1, | 
|  | "vs-8125: item number must be 1: it is %d", | 
|  | B_NR_ITEMS(S0)); | 
|  |  | 
|  | ih = B_N_PITEM_HEAD(S0, 0); | 
|  | if (tb->CFR[0] | 
|  | && !comp_short_le_keys(&(ih->ih_key), | 
|  | B_N_PDELIM_KEY(tb->CFR[0], | 
|  | tb->rkey[0]))) | 
|  | if (is_direntry_le_ih(ih)) { | 
|  | /* Directory must be in correct state here: that is | 
|  | somewhere at the left side should exist first directory | 
|  | item. But the item being deleted can not be that first | 
|  | one because its right neighbor is item of the same | 
|  | directory. (But first item always gets deleted in last | 
|  | turn). So, neighbors of deleted item can be merged, so | 
|  | we can save ih_size */ | 
|  | ih_size = IH_SIZE; | 
|  |  | 
|  | /* we might check that left neighbor exists and is of the | 
|  | same directory */ | 
|  | RFALSE(le_ih_k_offset(ih) == DOT_OFFSET, | 
|  | "vs-8130: first directory item can not be removed until directory is not empty"); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) { | 
|  | set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1); | 
|  | PROC_INFO_INC(tb->tb_sb, leaves_removable); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* when we do not split item, lnum and rnum are numbers of entire items */ | 
|  | #define SET_PAR_SHIFT_LEFT \ | 
|  | if (h)\ | 
|  | {\ | 
|  | int to_l;\ | 
|  | \ | 
|  | to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\ | 
|  | (MAX_NR_KEY(Sh) + 1 - lpar);\ | 
|  | \ | 
|  | set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\ | 
|  | }\ | 
|  | else \ | 
|  | {\ | 
|  | if (lset==LEFT_SHIFT_FLOW)\ | 
|  | set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\ | 
|  | tb->lbytes, -1);\ | 
|  | else\ | 
|  | set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\ | 
|  | -1, -1);\ | 
|  | } | 
|  |  | 
|  | #define SET_PAR_SHIFT_RIGHT \ | 
|  | if (h)\ | 
|  | {\ | 
|  | int to_r;\ | 
|  | \ | 
|  | to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\ | 
|  | \ | 
|  | set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\ | 
|  | }\ | 
|  | else \ | 
|  | {\ | 
|  | if (rset==RIGHT_SHIFT_FLOW)\ | 
|  | set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\ | 
|  | -1, tb->rbytes);\ | 
|  | else\ | 
|  | set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\ | 
|  | -1, -1);\ | 
|  | } | 
|  |  | 
|  | static void free_buffers_in_tb(struct tree_balance *p_s_tb) | 
|  | { | 
|  | int n_counter; | 
|  |  | 
|  | decrement_counters_in_path(p_s_tb->tb_path); | 
|  |  | 
|  | for (n_counter = 0; n_counter < MAX_HEIGHT; n_counter++) { | 
|  | decrement_bcount(p_s_tb->L[n_counter]); | 
|  | p_s_tb->L[n_counter] = NULL; | 
|  | decrement_bcount(p_s_tb->R[n_counter]); | 
|  | p_s_tb->R[n_counter] = NULL; | 
|  | decrement_bcount(p_s_tb->FL[n_counter]); | 
|  | p_s_tb->FL[n_counter] = NULL; | 
|  | decrement_bcount(p_s_tb->FR[n_counter]); | 
|  | p_s_tb->FR[n_counter] = NULL; | 
|  | decrement_bcount(p_s_tb->CFL[n_counter]); | 
|  | p_s_tb->CFL[n_counter] = NULL; | 
|  | decrement_bcount(p_s_tb->CFR[n_counter]); | 
|  | p_s_tb->CFR[n_counter] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Get new buffers for storing new nodes that are created while balancing. | 
|  | * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked; | 
|  | *	        CARRY_ON - schedule didn't occur while the function worked; | 
|  | *	        NO_DISK_SPACE - no disk space. | 
|  | */ | 
|  | /* The function is NOT SCHEDULE-SAFE! */ | 
|  | static int get_empty_nodes(struct tree_balance *p_s_tb, int n_h) | 
|  | { | 
|  | struct buffer_head *p_s_new_bh, | 
|  | *p_s_Sh = PATH_H_PBUFFER(p_s_tb->tb_path, n_h); | 
|  | b_blocknr_t *p_n_blocknr, a_n_blocknrs[MAX_AMOUNT_NEEDED] = { 0, }; | 
|  | int n_counter, n_number_of_freeblk, n_amount_needed,	/* number of needed empty blocks */ | 
|  | n_retval = CARRY_ON; | 
|  | struct super_block *p_s_sb = p_s_tb->tb_sb; | 
|  |  | 
|  | /* number_of_freeblk is the number of empty blocks which have been | 
|  | acquired for use by the balancing algorithm minus the number of | 
|  | empty blocks used in the previous levels of the analysis, | 
|  | number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs | 
|  | after empty blocks are acquired, and the balancing analysis is | 
|  | then restarted, amount_needed is the number needed by this level | 
|  | (n_h) of the balancing analysis. | 
|  |  | 
|  | Note that for systems with many processes writing, it would be | 
|  | more layout optimal to calculate the total number needed by all | 
|  | levels and then to run reiserfs_new_blocks to get all of them at once.  */ | 
|  |  | 
|  | /* Initiate number_of_freeblk to the amount acquired prior to the restart of | 
|  | the analysis or 0 if not restarted, then subtract the amount needed | 
|  | by all of the levels of the tree below n_h. */ | 
|  | /* blknum includes S[n_h], so we subtract 1 in this calculation */ | 
|  | for (n_counter = 0, n_number_of_freeblk = p_s_tb->cur_blknum; | 
|  | n_counter < n_h; n_counter++) | 
|  | n_number_of_freeblk -= | 
|  | (p_s_tb->blknum[n_counter]) ? (p_s_tb->blknum[n_counter] - | 
|  | 1) : 0; | 
|  |  | 
|  | /* Allocate missing empty blocks. */ | 
|  | /* if p_s_Sh == 0  then we are getting a new root */ | 
|  | n_amount_needed = (p_s_Sh) ? (p_s_tb->blknum[n_h] - 1) : 1; | 
|  | /*  Amount_needed = the amount that we need more than the amount that we have. */ | 
|  | if (n_amount_needed > n_number_of_freeblk) | 
|  | n_amount_needed -= n_number_of_freeblk; | 
|  | else			/* If we have enough already then there is nothing to do. */ | 
|  | return CARRY_ON; | 
|  |  | 
|  | /* No need to check quota - is not allocated for blocks used for formatted nodes */ | 
|  | if (reiserfs_new_form_blocknrs(p_s_tb, a_n_blocknrs, | 
|  | n_amount_needed) == NO_DISK_SPACE) | 
|  | return NO_DISK_SPACE; | 
|  |  | 
|  | /* for each blocknumber we just got, get a buffer and stick it on FEB */ | 
|  | for (p_n_blocknr = a_n_blocknrs, n_counter = 0; | 
|  | n_counter < n_amount_needed; p_n_blocknr++, n_counter++) { | 
|  |  | 
|  | RFALSE(!*p_n_blocknr, | 
|  | "PAP-8135: reiserfs_new_blocknrs failed when got new blocks"); | 
|  |  | 
|  | p_s_new_bh = sb_getblk(p_s_sb, *p_n_blocknr); | 
|  | RFALSE(buffer_dirty(p_s_new_bh) || | 
|  | buffer_journaled(p_s_new_bh) || | 
|  | buffer_journal_dirty(p_s_new_bh), | 
|  | "PAP-8140: journlaled or dirty buffer %b for the new block", | 
|  | p_s_new_bh); | 
|  |  | 
|  | /* Put empty buffers into the array. */ | 
|  | RFALSE(p_s_tb->FEB[p_s_tb->cur_blknum], | 
|  | "PAP-8141: busy slot for new buffer"); | 
|  |  | 
|  | set_buffer_journal_new(p_s_new_bh); | 
|  | p_s_tb->FEB[p_s_tb->cur_blknum++] = p_s_new_bh; | 
|  | } | 
|  |  | 
|  | if (n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB(p_s_tb)) | 
|  | n_retval = REPEAT_SEARCH; | 
|  |  | 
|  | return n_retval; | 
|  | } | 
|  |  | 
|  | /* Get free space of the left neighbor, which is stored in the parent | 
|  | * node of the left neighbor.  */ | 
|  | static int get_lfree(struct tree_balance *tb, int h) | 
|  | { | 
|  | struct buffer_head *l, *f; | 
|  | int order; | 
|  |  | 
|  | if ((f = PATH_H_PPARENT(tb->tb_path, h)) == 0 || (l = tb->FL[h]) == 0) | 
|  | return 0; | 
|  |  | 
|  | if (f == l) | 
|  | order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1; | 
|  | else { | 
|  | order = B_NR_ITEMS(l); | 
|  | f = l; | 
|  | } | 
|  |  | 
|  | return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order))); | 
|  | } | 
|  |  | 
|  | /* Get free space of the right neighbor, | 
|  | * which is stored in the parent node of the right neighbor. | 
|  | */ | 
|  | static int get_rfree(struct tree_balance *tb, int h) | 
|  | { | 
|  | struct buffer_head *r, *f; | 
|  | int order; | 
|  |  | 
|  | if ((f = PATH_H_PPARENT(tb->tb_path, h)) == 0 || (r = tb->FR[h]) == 0) | 
|  | return 0; | 
|  |  | 
|  | if (f == r) | 
|  | order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1; | 
|  | else { | 
|  | order = 0; | 
|  | f = r; | 
|  | } | 
|  |  | 
|  | return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order))); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Check whether left neighbor is in memory. */ | 
|  | static int is_left_neighbor_in_cache(struct tree_balance *p_s_tb, int n_h) | 
|  | { | 
|  | struct buffer_head *p_s_father, *left; | 
|  | struct super_block *p_s_sb = p_s_tb->tb_sb; | 
|  | b_blocknr_t n_left_neighbor_blocknr; | 
|  | int n_left_neighbor_position; | 
|  |  | 
|  | if (!p_s_tb->FL[n_h])	/* Father of the left neighbor does not exist. */ | 
|  | return 0; | 
|  |  | 
|  | /* Calculate father of the node to be balanced. */ | 
|  | p_s_father = PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1); | 
|  |  | 
|  | RFALSE(!p_s_father || | 
|  | !B_IS_IN_TREE(p_s_father) || | 
|  | !B_IS_IN_TREE(p_s_tb->FL[n_h]) || | 
|  | !buffer_uptodate(p_s_father) || | 
|  | !buffer_uptodate(p_s_tb->FL[n_h]), | 
|  | "vs-8165: F[h] (%b) or FL[h] (%b) is invalid", | 
|  | p_s_father, p_s_tb->FL[n_h]); | 
|  |  | 
|  | /* Get position of the pointer to the left neighbor into the left father. */ | 
|  | n_left_neighbor_position = (p_s_father == p_s_tb->FL[n_h]) ? | 
|  | p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb->FL[n_h]); | 
|  | /* Get left neighbor block number. */ | 
|  | n_left_neighbor_blocknr = | 
|  | B_N_CHILD_NUM(p_s_tb->FL[n_h], n_left_neighbor_position); | 
|  | /* Look for the left neighbor in the cache. */ | 
|  | if ((left = sb_find_get_block(p_s_sb, n_left_neighbor_blocknr))) { | 
|  |  | 
|  | RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left), | 
|  | "vs-8170: left neighbor (%b %z) is not in the tree", | 
|  | left, left); | 
|  | put_bh(left); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define LEFT_PARENTS  'l' | 
|  | #define RIGHT_PARENTS 'r' | 
|  |  | 
|  | static void decrement_key(struct cpu_key *p_s_key) | 
|  | { | 
|  | // call item specific function for this key | 
|  | item_ops[cpu_key_k_type(p_s_key)]->decrement_key(p_s_key); | 
|  | } | 
|  |  | 
|  | /* Calculate far left/right parent of the left/right neighbor of the current node, that | 
|  | * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h]. | 
|  | * Calculate left/right common parent of the current node and L[h]/R[h]. | 
|  | * Calculate left/right delimiting key position. | 
|  | * Returns:	PATH_INCORRECT   - path in the tree is not correct; | 
|  | SCHEDULE_OCCURRED - schedule occurred while the function worked; | 
|  | *	        CARRY_ON         - schedule didn't occur while the function worked; | 
|  | */ | 
|  | static int get_far_parent(struct tree_balance *p_s_tb, | 
|  | int n_h, | 
|  | struct buffer_head **pp_s_father, | 
|  | struct buffer_head **pp_s_com_father, char c_lr_par) | 
|  | { | 
|  | struct buffer_head *p_s_parent; | 
|  | INITIALIZE_PATH(s_path_to_neighbor_father); | 
|  | struct path *p_s_path = p_s_tb->tb_path; | 
|  | struct cpu_key s_lr_father_key; | 
|  | int n_counter, | 
|  | n_position = INT_MAX, | 
|  | n_first_last_position = 0, | 
|  | n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h); | 
|  |  | 
|  | /* Starting from F[n_h] go upwards in the tree, and look for the common | 
|  | ancestor of F[n_h], and its neighbor l/r, that should be obtained. */ | 
|  |  | 
|  | n_counter = n_path_offset; | 
|  |  | 
|  | RFALSE(n_counter < FIRST_PATH_ELEMENT_OFFSET, | 
|  | "PAP-8180: invalid path length"); | 
|  |  | 
|  | for (; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter--) { | 
|  | /* Check whether parent of the current buffer in the path is really parent in the tree. */ | 
|  | if (!B_IS_IN_TREE | 
|  | (p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1))) | 
|  | return REPEAT_SEARCH; | 
|  | /* Check whether position in the parent is correct. */ | 
|  | if ((n_position = | 
|  | PATH_OFFSET_POSITION(p_s_path, | 
|  | n_counter - 1)) > | 
|  | B_NR_ITEMS(p_s_parent)) | 
|  | return REPEAT_SEARCH; | 
|  | /* Check whether parent at the path really points to the child. */ | 
|  | if (B_N_CHILD_NUM(p_s_parent, n_position) != | 
|  | PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr) | 
|  | return REPEAT_SEARCH; | 
|  | /* Return delimiting key if position in the parent is not equal to first/last one. */ | 
|  | if (c_lr_par == RIGHT_PARENTS) | 
|  | n_first_last_position = B_NR_ITEMS(p_s_parent); | 
|  | if (n_position != n_first_last_position) { | 
|  | *pp_s_com_father = p_s_parent; | 
|  | get_bh(*pp_s_com_father); | 
|  | /*(*pp_s_com_father = p_s_parent)->b_count++; */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if we are in the root of the tree, then there is no common father */ | 
|  | if (n_counter == FIRST_PATH_ELEMENT_OFFSET) { | 
|  | /* Check whether first buffer in the path is the root of the tree. */ | 
|  | if (PATH_OFFSET_PBUFFER | 
|  | (p_s_tb->tb_path, | 
|  | FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == | 
|  | SB_ROOT_BLOCK(p_s_tb->tb_sb)) { | 
|  | *pp_s_father = *pp_s_com_father = NULL; | 
|  | return CARRY_ON; | 
|  | } | 
|  | return REPEAT_SEARCH; | 
|  | } | 
|  |  | 
|  | RFALSE(B_LEVEL(*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL, | 
|  | "PAP-8185: (%b %z) level too small", | 
|  | *pp_s_com_father, *pp_s_com_father); | 
|  |  | 
|  | /* Check whether the common parent is locked. */ | 
|  |  | 
|  | if (buffer_locked(*pp_s_com_father)) { | 
|  | __wait_on_buffer(*pp_s_com_father); | 
|  | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { | 
|  | decrement_bcount(*pp_s_com_father); | 
|  | return REPEAT_SEARCH; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* So, we got common parent of the current node and its left/right neighbor. | 
|  | Now we are geting the parent of the left/right neighbor. */ | 
|  |  | 
|  | /* Form key to get parent of the left/right neighbor. */ | 
|  | le_key2cpu_key(&s_lr_father_key, | 
|  | B_N_PDELIM_KEY(*pp_s_com_father, | 
|  | (c_lr_par == | 
|  | LEFT_PARENTS) ? (p_s_tb->lkey[n_h - 1] = | 
|  | n_position - | 
|  | 1) : (p_s_tb->rkey[n_h - | 
|  | 1] = | 
|  | n_position))); | 
|  |  | 
|  | if (c_lr_par == LEFT_PARENTS) | 
|  | decrement_key(&s_lr_father_key); | 
|  |  | 
|  | if (search_by_key | 
|  | (p_s_tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father, | 
|  | n_h + 1) == IO_ERROR) | 
|  | // path is released | 
|  | return IO_ERROR; | 
|  |  | 
|  | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { | 
|  | decrement_counters_in_path(&s_path_to_neighbor_father); | 
|  | decrement_bcount(*pp_s_com_father); | 
|  | return REPEAT_SEARCH; | 
|  | } | 
|  |  | 
|  | *pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father); | 
|  |  | 
|  | RFALSE(B_LEVEL(*pp_s_father) != n_h + 1, | 
|  | "PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father); | 
|  | RFALSE(s_path_to_neighbor_father.path_length < | 
|  | FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small"); | 
|  |  | 
|  | s_path_to_neighbor_father.path_length--; | 
|  | decrement_counters_in_path(&s_path_to_neighbor_father); | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* Get parents of neighbors of node in the path(S[n_path_offset]) and common parents of | 
|  | * S[n_path_offset] and L[n_path_offset]/R[n_path_offset]: F[n_path_offset], FL[n_path_offset], | 
|  | * FR[n_path_offset], CFL[n_path_offset], CFR[n_path_offset]. | 
|  | * Calculate numbers of left and right delimiting keys position: lkey[n_path_offset], rkey[n_path_offset]. | 
|  | * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked; | 
|  | *	        CARRY_ON - schedule didn't occur while the function worked; | 
|  | */ | 
|  | static int get_parents(struct tree_balance *p_s_tb, int n_h) | 
|  | { | 
|  | struct path *p_s_path = p_s_tb->tb_path; | 
|  | int n_position, | 
|  | n_ret_value, | 
|  | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); | 
|  | struct buffer_head *p_s_curf, *p_s_curcf; | 
|  |  | 
|  | /* Current node is the root of the tree or will be root of the tree */ | 
|  | if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) { | 
|  | /* The root can not have parents. | 
|  | Release nodes which previously were obtained as parents of the current node neighbors. */ | 
|  | decrement_bcount(p_s_tb->FL[n_h]); | 
|  | decrement_bcount(p_s_tb->CFL[n_h]); | 
|  | decrement_bcount(p_s_tb->FR[n_h]); | 
|  | decrement_bcount(p_s_tb->CFR[n_h]); | 
|  | p_s_tb->FL[n_h] = p_s_tb->CFL[n_h] = p_s_tb->FR[n_h] = | 
|  | p_s_tb->CFR[n_h] = NULL; | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* Get parent FL[n_path_offset] of L[n_path_offset]. */ | 
|  | if ((n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1))) { | 
|  | /* Current node is not the first child of its parent. */ | 
|  | /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */ | 
|  | p_s_curf = p_s_curcf = | 
|  | PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); | 
|  | get_bh(p_s_curf); | 
|  | get_bh(p_s_curf); | 
|  | p_s_tb->lkey[n_h] = n_position - 1; | 
|  | } else { | 
|  | /* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node. | 
|  | Calculate current common parent of L[n_path_offset] and the current node. Note that | 
|  | CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset]. | 
|  | Calculate lkey[n_path_offset]. */ | 
|  | if ((n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf, | 
|  | &p_s_curcf, | 
|  | LEFT_PARENTS)) != CARRY_ON) | 
|  | return n_ret_value; | 
|  | } | 
|  |  | 
|  | decrement_bcount(p_s_tb->FL[n_h]); | 
|  | p_s_tb->FL[n_h] = p_s_curf;	/* New initialization of FL[n_h]. */ | 
|  | decrement_bcount(p_s_tb->CFL[n_h]); | 
|  | p_s_tb->CFL[n_h] = p_s_curcf;	/* New initialization of CFL[n_h]. */ | 
|  |  | 
|  | RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) || | 
|  | (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)), | 
|  | "PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf); | 
|  |  | 
|  | /* Get parent FR[n_h] of R[n_h]. */ | 
|  |  | 
|  | /* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */ | 
|  | if (n_position == B_NR_ITEMS(PATH_H_PBUFFER(p_s_path, n_h + 1))) { | 
|  | /* Calculate current parent of R[n_h], which is the right neighbor of F[n_h]. | 
|  | Calculate current common parent of R[n_h] and current node. Note that CFR[n_h] | 
|  | not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */ | 
|  | if ((n_ret_value = | 
|  | get_far_parent(p_s_tb, n_h + 1, &p_s_curf, &p_s_curcf, | 
|  | RIGHT_PARENTS)) != CARRY_ON) | 
|  | return n_ret_value; | 
|  | } else { | 
|  | /* Current node is not the last child of its parent F[n_h]. */ | 
|  | /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */ | 
|  | p_s_curf = p_s_curcf = | 
|  | PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); | 
|  | get_bh(p_s_curf); | 
|  | get_bh(p_s_curf); | 
|  | p_s_tb->rkey[n_h] = n_position; | 
|  | } | 
|  |  | 
|  | decrement_bcount(p_s_tb->FR[n_h]); | 
|  | p_s_tb->FR[n_h] = p_s_curf;	/* New initialization of FR[n_path_offset]. */ | 
|  |  | 
|  | decrement_bcount(p_s_tb->CFR[n_h]); | 
|  | p_s_tb->CFR[n_h] = p_s_curcf;	/* New initialization of CFR[n_path_offset]. */ | 
|  |  | 
|  | RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) || | 
|  | (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)), | 
|  | "PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf); | 
|  |  | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* it is possible to remove node as result of shiftings to | 
|  | neighbors even when we insert or paste item. */ | 
|  | static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree, | 
|  | struct tree_balance *tb, int h) | 
|  | { | 
|  | struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h); | 
|  | int levbytes = tb->insert_size[h]; | 
|  | struct item_head *ih; | 
|  | struct reiserfs_key *r_key = NULL; | 
|  |  | 
|  | ih = B_N_PITEM_HEAD(Sh, 0); | 
|  | if (tb->CFR[h]) | 
|  | r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]); | 
|  |  | 
|  | if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes | 
|  | /* shifting may merge items which might save space */ | 
|  | - | 
|  | ((!h | 
|  | && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0) | 
|  | - | 
|  | ((!h && r_key | 
|  | && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0) | 
|  | + ((h) ? KEY_SIZE : 0)) { | 
|  | /* node can not be removed */ | 
|  | if (sfree >= levbytes) {	/* new item fits into node S[h] without any shifting */ | 
|  | if (!h) | 
|  | tb->s0num = | 
|  | B_NR_ITEMS(Sh) + | 
|  | ((mode == M_INSERT) ? 1 : 0); | 
|  | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | 
|  | return NO_BALANCING_NEEDED; | 
|  | } | 
|  | } | 
|  | PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]); | 
|  | return !NO_BALANCING_NEEDED; | 
|  | } | 
|  |  | 
|  | /* Check whether current node S[h] is balanced when increasing its size by | 
|  | * Inserting or Pasting. | 
|  | * Calculate parameters for balancing for current level h. | 
|  | * Parameters: | 
|  | *	tb	tree_balance structure; | 
|  | *	h	current level of the node; | 
|  | *	inum	item number in S[h]; | 
|  | *	mode	i - insert, p - paste; | 
|  | * Returns:	1 - schedule occurred; | 
|  | *	        0 - balancing for higher levels needed; | 
|  | *	       -1 - no balancing for higher levels needed; | 
|  | *	       -2 - no disk space. | 
|  | */ | 
|  | /* ip means Inserting or Pasting */ | 
|  | static int ip_check_balance(struct tree_balance *tb, int h) | 
|  | { | 
|  | struct virtual_node *vn = tb->tb_vn; | 
|  | int levbytes,		/* Number of bytes that must be inserted into (value | 
|  | is negative if bytes are deleted) buffer which | 
|  | contains node being balanced.  The mnemonic is | 
|  | that the attempted change in node space used level | 
|  | is levbytes bytes. */ | 
|  | n_ret_value; | 
|  |  | 
|  | int lfree, sfree, rfree /* free space in L, S and R */ ; | 
|  |  | 
|  | /* nver is short for number of vertixes, and lnver is the number if | 
|  | we shift to the left, rnver is the number if we shift to the | 
|  | right, and lrnver is the number if we shift in both directions. | 
|  | The goal is to minimize first the number of vertixes, and second, | 
|  | the number of vertixes whose contents are changed by shifting, | 
|  | and third the number of uncached vertixes whose contents are | 
|  | changed by shifting and must be read from disk.  */ | 
|  | int nver, lnver, rnver, lrnver; | 
|  |  | 
|  | /* used at leaf level only, S0 = S[0] is the node being balanced, | 
|  | sInum [ I = 0,1,2 ] is the number of items that will | 
|  | remain in node SI after balancing.  S1 and S2 are new | 
|  | nodes that might be created. */ | 
|  |  | 
|  | /* we perform 8 calls to get_num_ver().  For each call we calculate five parameters. | 
|  | where 4th parameter is s1bytes and 5th - s2bytes | 
|  | */ | 
|  | short snum012[40] = { 0, };	/* s0num, s1num, s2num for 8 cases | 
|  | 0,1 - do not shift and do not shift but bottle | 
|  | 2 - shift only whole item to left | 
|  | 3 - shift to left and bottle as much as possible | 
|  | 4,5 - shift to right (whole items and as much as possible | 
|  | 6,7 - shift to both directions (whole items and as much as possible) | 
|  | */ | 
|  |  | 
|  | /* Sh is the node whose balance is currently being checked */ | 
|  | struct buffer_head *Sh; | 
|  |  | 
|  | Sh = PATH_H_PBUFFER(tb->tb_path, h); | 
|  | levbytes = tb->insert_size[h]; | 
|  |  | 
|  | /* Calculate balance parameters for creating new root. */ | 
|  | if (!Sh) { | 
|  | if (!h) | 
|  | reiserfs_panic(tb->tb_sb, | 
|  | "vs-8210: ip_check_balance: S[0] can not be 0"); | 
|  | switch (n_ret_value = get_empty_nodes(tb, h)) { | 
|  | case CARRY_ON: | 
|  | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | 
|  | return NO_BALANCING_NEEDED;	/* no balancing for higher levels needed */ | 
|  |  | 
|  | case NO_DISK_SPACE: | 
|  | case REPEAT_SEARCH: | 
|  | return n_ret_value; | 
|  | default: | 
|  | reiserfs_panic(tb->tb_sb, | 
|  | "vs-8215: ip_check_balance: incorrect return value of get_empty_nodes"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((n_ret_value = get_parents(tb, h)) != CARRY_ON)	/* get parents of S[h] neighbors. */ | 
|  | return n_ret_value; | 
|  |  | 
|  | sfree = B_FREE_SPACE(Sh); | 
|  |  | 
|  | /* get free space of neighbors */ | 
|  | rfree = get_rfree(tb, h); | 
|  | lfree = get_lfree(tb, h); | 
|  |  | 
|  | if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) == | 
|  | NO_BALANCING_NEEDED) | 
|  | /* and new item fits into node S[h] without any shifting */ | 
|  | return NO_BALANCING_NEEDED; | 
|  |  | 
|  | create_virtual_node(tb, h); | 
|  |  | 
|  | /* | 
|  | determine maximal number of items we can shift to the left neighbor (in tb structure) | 
|  | and the maximal number of bytes that can flow to the left neighbor | 
|  | from the left most liquid item that cannot be shifted from S[0] entirely (returned value) | 
|  | */ | 
|  | check_left(tb, h, lfree); | 
|  |  | 
|  | /* | 
|  | determine maximal number of items we can shift to the right neighbor (in tb structure) | 
|  | and the maximal number of bytes that can flow to the right neighbor | 
|  | from the right most liquid item that cannot be shifted from S[0] entirely (returned value) | 
|  | */ | 
|  | check_right(tb, h, rfree); | 
|  |  | 
|  | /* all contents of internal node S[h] can be moved into its | 
|  | neighbors, S[h] will be removed after balancing */ | 
|  | if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) { | 
|  | int to_r; | 
|  |  | 
|  | /* Since we are working on internal nodes, and our internal | 
|  | nodes have fixed size entries, then we can balance by the | 
|  | number of items rather than the space they consume.  In this | 
|  | routine we set the left node equal to the right node, | 
|  | allowing a difference of less than or equal to 1 child | 
|  | pointer. */ | 
|  | to_r = | 
|  | ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] + | 
|  | vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - | 
|  | tb->rnum[h]); | 
|  | set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, | 
|  | -1, -1); | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* this checks balance condition, that any two neighboring nodes can not fit in one node */ | 
|  | RFALSE(h && | 
|  | (tb->lnum[h] >= vn->vn_nr_item + 1 || | 
|  | tb->rnum[h] >= vn->vn_nr_item + 1), | 
|  | "vs-8220: tree is not balanced on internal level"); | 
|  | RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) || | 
|  | (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))), | 
|  | "vs-8225: tree is not balanced on leaf level"); | 
|  |  | 
|  | /* all contents of S[0] can be moved into its neighbors | 
|  | S[0] will be removed after balancing. */ | 
|  | if (!h && is_leaf_removable(tb)) | 
|  | return CARRY_ON; | 
|  |  | 
|  | /* why do we perform this check here rather than earlier?? | 
|  | Answer: we can win 1 node in some cases above. Moreover we | 
|  | checked it above, when we checked, that S[0] is not removable | 
|  | in principle */ | 
|  | if (sfree >= levbytes) {	/* new item fits into node S[h] without any shifting */ | 
|  | if (!h) | 
|  | tb->s0num = vn->vn_nr_item; | 
|  | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | 
|  | return NO_BALANCING_NEEDED; | 
|  | } | 
|  |  | 
|  | { | 
|  | int lpar, rpar, nset, lset, rset, lrset; | 
|  | /* | 
|  | * regular overflowing of the node | 
|  | */ | 
|  |  | 
|  | /* get_num_ver works in 2 modes (FLOW & NO_FLOW) | 
|  | lpar, rpar - number of items we can shift to left/right neighbor (including splitting item) | 
|  | nset, lset, rset, lrset - shows, whether flowing items give better packing | 
|  | */ | 
|  | #define FLOW 1 | 
|  | #define NO_FLOW 0		/* do not any splitting */ | 
|  |  | 
|  | /* we choose one the following */ | 
|  | #define NOTHING_SHIFT_NO_FLOW	0 | 
|  | #define NOTHING_SHIFT_FLOW	5 | 
|  | #define LEFT_SHIFT_NO_FLOW	10 | 
|  | #define LEFT_SHIFT_FLOW		15 | 
|  | #define RIGHT_SHIFT_NO_FLOW	20 | 
|  | #define RIGHT_SHIFT_FLOW	25 | 
|  | #define LR_SHIFT_NO_FLOW	30 | 
|  | #define LR_SHIFT_FLOW		35 | 
|  |  | 
|  | lpar = tb->lnum[h]; | 
|  | rpar = tb->rnum[h]; | 
|  |  | 
|  | /* calculate number of blocks S[h] must be split into when | 
|  | nothing is shifted to the neighbors, | 
|  | as well as number of items in each part of the split node (s012 numbers), | 
|  | and number of bytes (s1bytes) of the shared drop which flow to S1 if any */ | 
|  | nset = NOTHING_SHIFT_NO_FLOW; | 
|  | nver = get_num_ver(vn->vn_mode, tb, h, | 
|  | 0, -1, h ? vn->vn_nr_item : 0, -1, | 
|  | snum012, NO_FLOW); | 
|  |  | 
|  | if (!h) { | 
|  | int nver1; | 
|  |  | 
|  | /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */ | 
|  | nver1 = get_num_ver(vn->vn_mode, tb, h, | 
|  | 0, -1, 0, -1, | 
|  | snum012 + NOTHING_SHIFT_FLOW, FLOW); | 
|  | if (nver > nver1) | 
|  | nset = NOTHING_SHIFT_FLOW, nver = nver1; | 
|  | } | 
|  |  | 
|  | /* calculate number of blocks S[h] must be split into when | 
|  | l_shift_num first items and l_shift_bytes of the right most | 
|  | liquid item to be shifted are shifted to the left neighbor, | 
|  | as well as number of items in each part of the splitted node (s012 numbers), | 
|  | and number of bytes (s1bytes) of the shared drop which flow to S1 if any | 
|  | */ | 
|  | lset = LEFT_SHIFT_NO_FLOW; | 
|  | lnver = get_num_ver(vn->vn_mode, tb, h, | 
|  | lpar - ((h || tb->lbytes == -1) ? 0 : 1), | 
|  | -1, h ? vn->vn_nr_item : 0, -1, | 
|  | snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW); | 
|  | if (!h) { | 
|  | int lnver1; | 
|  |  | 
|  | lnver1 = get_num_ver(vn->vn_mode, tb, h, | 
|  | lpar - | 
|  | ((tb->lbytes != -1) ? 1 : 0), | 
|  | tb->lbytes, 0, -1, | 
|  | snum012 + LEFT_SHIFT_FLOW, FLOW); | 
|  | if (lnver > lnver1) | 
|  | lset = LEFT_SHIFT_FLOW, lnver = lnver1; | 
|  | } | 
|  |  | 
|  | /* calculate number of blocks S[h] must be split into when | 
|  | r_shift_num first items and r_shift_bytes of the left most | 
|  | liquid item to be shifted are shifted to the right neighbor, | 
|  | as well as number of items in each part of the splitted node (s012 numbers), | 
|  | and number of bytes (s1bytes) of the shared drop which flow to S1 if any | 
|  | */ | 
|  | rset = RIGHT_SHIFT_NO_FLOW; | 
|  | rnver = get_num_ver(vn->vn_mode, tb, h, | 
|  | 0, -1, | 
|  | h ? (vn->vn_nr_item - rpar) : (rpar - | 
|  | ((tb-> | 
|  | rbytes != | 
|  | -1) ? 1 : | 
|  | 0)), -1, | 
|  | snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW); | 
|  | if (!h) { | 
|  | int rnver1; | 
|  |  | 
|  | rnver1 = get_num_ver(vn->vn_mode, tb, h, | 
|  | 0, -1, | 
|  | (rpar - | 
|  | ((tb->rbytes != -1) ? 1 : 0)), | 
|  | tb->rbytes, | 
|  | snum012 + RIGHT_SHIFT_FLOW, FLOW); | 
|  |  | 
|  | if (rnver > rnver1) | 
|  | rset = RIGHT_SHIFT_FLOW, rnver = rnver1; | 
|  | } | 
|  |  | 
|  | /* calculate number of blocks S[h] must be split into when | 
|  | items are shifted in both directions, | 
|  | as well as number of items in each part of the splitted node (s012 numbers), | 
|  | and number of bytes (s1bytes) of the shared drop which flow to S1 if any | 
|  | */ | 
|  | lrset = LR_SHIFT_NO_FLOW; | 
|  | lrnver = get_num_ver(vn->vn_mode, tb, h, | 
|  | lpar - ((h || tb->lbytes == -1) ? 0 : 1), | 
|  | -1, | 
|  | h ? (vn->vn_nr_item - rpar) : (rpar - | 
|  | ((tb-> | 
|  | rbytes != | 
|  | -1) ? 1 : | 
|  | 0)), -1, | 
|  | snum012 + LR_SHIFT_NO_FLOW, NO_FLOW); | 
|  | if (!h) { | 
|  | int lrnver1; | 
|  |  | 
|  | lrnver1 = get_num_ver(vn->vn_mode, tb, h, | 
|  | lpar - | 
|  | ((tb->lbytes != -1) ? 1 : 0), | 
|  | tb->lbytes, | 
|  | (rpar - | 
|  | ((tb->rbytes != -1) ? 1 : 0)), | 
|  | tb->rbytes, | 
|  | snum012 + LR_SHIFT_FLOW, FLOW); | 
|  | if (lrnver > lrnver1) | 
|  | lrset = LR_SHIFT_FLOW, lrnver = lrnver1; | 
|  | } | 
|  |  | 
|  | /* Our general shifting strategy is: | 
|  | 1) to minimized number of new nodes; | 
|  | 2) to minimized number of neighbors involved in shifting; | 
|  | 3) to minimized number of disk reads; */ | 
|  |  | 
|  | /* we can win TWO or ONE nodes by shifting in both directions */ | 
|  | if (lrnver < lnver && lrnver < rnver) { | 
|  | RFALSE(h && | 
|  | (tb->lnum[h] != 1 || | 
|  | tb->rnum[h] != 1 || | 
|  | lrnver != 1 || rnver != 2 || lnver != 2 | 
|  | || h != 1), "vs-8230: bad h"); | 
|  | if (lrset == LR_SHIFT_FLOW) | 
|  | set_parameters(tb, h, tb->lnum[h], tb->rnum[h], | 
|  | lrnver, snum012 + lrset, | 
|  | tb->lbytes, tb->rbytes); | 
|  | else | 
|  | set_parameters(tb, h, | 
|  | tb->lnum[h] - | 
|  | ((tb->lbytes == -1) ? 0 : 1), | 
|  | tb->rnum[h] - | 
|  | ((tb->rbytes == -1) ? 0 : 1), | 
|  | lrnver, snum012 + lrset, -1, -1); | 
|  |  | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* if shifting doesn't lead to better packing then don't shift */ | 
|  | if (nver == lrnver) { | 
|  | set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1, | 
|  | -1); | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* now we know that for better packing shifting in only one | 
|  | direction either to the left or to the right is required */ | 
|  |  | 
|  | /*  if shifting to the left is better than shifting to the right */ | 
|  | if (lnver < rnver) { | 
|  | SET_PAR_SHIFT_LEFT; | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* if shifting to the right is better than shifting to the left */ | 
|  | if (lnver > rnver) { | 
|  | SET_PAR_SHIFT_RIGHT; | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* now shifting in either direction gives the same number | 
|  | of nodes and we can make use of the cached neighbors */ | 
|  | if (is_left_neighbor_in_cache(tb, h)) { | 
|  | SET_PAR_SHIFT_LEFT; | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* shift to the right independently on whether the right neighbor in cache or not */ | 
|  | SET_PAR_SHIFT_RIGHT; | 
|  | return CARRY_ON; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check whether current node S[h] is balanced when Decreasing its size by | 
|  | * Deleting or Cutting for INTERNAL node of S+tree. | 
|  | * Calculate parameters for balancing for current level h. | 
|  | * Parameters: | 
|  | *	tb	tree_balance structure; | 
|  | *	h	current level of the node; | 
|  | *	inum	item number in S[h]; | 
|  | *	mode	i - insert, p - paste; | 
|  | * Returns:	1 - schedule occurred; | 
|  | *	        0 - balancing for higher levels needed; | 
|  | *	       -1 - no balancing for higher levels needed; | 
|  | *	       -2 - no disk space. | 
|  | * | 
|  | * Note: Items of internal nodes have fixed size, so the balance condition for | 
|  | * the internal part of S+tree is as for the B-trees. | 
|  | */ | 
|  | static int dc_check_balance_internal(struct tree_balance *tb, int h) | 
|  | { | 
|  | struct virtual_node *vn = tb->tb_vn; | 
|  |  | 
|  | /* Sh is the node whose balance is currently being checked, | 
|  | and Fh is its father.  */ | 
|  | struct buffer_head *Sh, *Fh; | 
|  | int maxsize, n_ret_value; | 
|  | int lfree, rfree /* free space in L and R */ ; | 
|  |  | 
|  | Sh = PATH_H_PBUFFER(tb->tb_path, h); | 
|  | Fh = PATH_H_PPARENT(tb->tb_path, h); | 
|  |  | 
|  | maxsize = MAX_CHILD_SIZE(Sh); | 
|  |  | 
|  | /*   using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */ | 
|  | /*   new_nr_item = number of items node would have if operation is */ | 
|  | /* 	performed without balancing (new_nr_item); */ | 
|  | create_virtual_node(tb, h); | 
|  |  | 
|  | if (!Fh) {		/* S[h] is the root. */ | 
|  | if (vn->vn_nr_item > 0) { | 
|  | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | 
|  | return NO_BALANCING_NEEDED;	/* no balancing for higher levels needed */ | 
|  | } | 
|  | /* new_nr_item == 0. | 
|  | * Current root will be deleted resulting in | 
|  | * decrementing the tree height. */ | 
|  | set_parameters(tb, h, 0, 0, 0, NULL, -1, -1); | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | if ((n_ret_value = get_parents(tb, h)) != CARRY_ON) | 
|  | return n_ret_value; | 
|  |  | 
|  | /* get free space of neighbors */ | 
|  | rfree = get_rfree(tb, h); | 
|  | lfree = get_lfree(tb, h); | 
|  |  | 
|  | /* determine maximal number of items we can fit into neighbors */ | 
|  | check_left(tb, h, lfree); | 
|  | check_right(tb, h, rfree); | 
|  |  | 
|  | if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {	/* Balance condition for the internal node is valid. | 
|  | * In this case we balance only if it leads to better packing. */ | 
|  | if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {	/* Here we join S[h] with one of its neighbors, | 
|  | * which is impossible with greater values of new_nr_item. */ | 
|  | if (tb->lnum[h] >= vn->vn_nr_item + 1) { | 
|  | /* All contents of S[h] can be moved to L[h]. */ | 
|  | int n; | 
|  | int order_L; | 
|  |  | 
|  | order_L = | 
|  | ((n = | 
|  | PATH_H_B_ITEM_ORDER(tb->tb_path, | 
|  | h)) == | 
|  | 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; | 
|  | n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / | 
|  | (DC_SIZE + KEY_SIZE); | 
|  | set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, | 
|  | -1); | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | if (tb->rnum[h] >= vn->vn_nr_item + 1) { | 
|  | /* All contents of S[h] can be moved to R[h]. */ | 
|  | int n; | 
|  | int order_R; | 
|  |  | 
|  | order_R = | 
|  | ((n = | 
|  | PATH_H_B_ITEM_ORDER(tb->tb_path, | 
|  | h)) == | 
|  | B_NR_ITEMS(Fh)) ? 0 : n + 1; | 
|  | n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / | 
|  | (DC_SIZE + KEY_SIZE); | 
|  | set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, | 
|  | -1); | 
|  | return CARRY_ON; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) { | 
|  | /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ | 
|  | int to_r; | 
|  |  | 
|  | to_r = | 
|  | ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - | 
|  | tb->rnum[h] + vn->vn_nr_item + 1) / 2 - | 
|  | (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); | 
|  | set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, | 
|  | 0, NULL, -1, -1); | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* Balancing does not lead to better packing. */ | 
|  | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | 
|  | return NO_BALANCING_NEEDED; | 
|  | } | 
|  |  | 
|  | /* Current node contain insufficient number of items. Balancing is required. */ | 
|  | /* Check whether we can merge S[h] with left neighbor. */ | 
|  | if (tb->lnum[h] >= vn->vn_nr_item + 1) | 
|  | if (is_left_neighbor_in_cache(tb, h) | 
|  | || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) { | 
|  | int n; | 
|  | int order_L; | 
|  |  | 
|  | order_L = | 
|  | ((n = | 
|  | PATH_H_B_ITEM_ORDER(tb->tb_path, | 
|  | h)) == | 
|  | 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; | 
|  | n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE + | 
|  | KEY_SIZE); | 
|  | set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1); | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* Check whether we can merge S[h] with right neighbor. */ | 
|  | if (tb->rnum[h] >= vn->vn_nr_item + 1) { | 
|  | int n; | 
|  | int order_R; | 
|  |  | 
|  | order_R = | 
|  | ((n = | 
|  | PATH_H_B_ITEM_ORDER(tb->tb_path, | 
|  | h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1); | 
|  | n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE + | 
|  | KEY_SIZE); | 
|  | set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1); | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ | 
|  | if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) { | 
|  | int to_r; | 
|  |  | 
|  | to_r = | 
|  | ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] + | 
|  | vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - | 
|  | tb->rnum[h]); | 
|  | set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, | 
|  | -1, -1); | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* For internal nodes try to borrow item from a neighbor */ | 
|  | RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root"); | 
|  |  | 
|  | /* Borrow one or two items from caching neighbor */ | 
|  | if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) { | 
|  | int from_l; | 
|  |  | 
|  | from_l = | 
|  | (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item + | 
|  | 1) / 2 - (vn->vn_nr_item + 1); | 
|  | set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1); | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | set_parameters(tb, h, 0, | 
|  | -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item + | 
|  | 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1); | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* Check whether current node S[h] is balanced when Decreasing its size by | 
|  | * Deleting or Truncating for LEAF node of S+tree. | 
|  | * Calculate parameters for balancing for current level h. | 
|  | * Parameters: | 
|  | *	tb	tree_balance structure; | 
|  | *	h	current level of the node; | 
|  | *	inum	item number in S[h]; | 
|  | *	mode	i - insert, p - paste; | 
|  | * Returns:	1 - schedule occurred; | 
|  | *	        0 - balancing for higher levels needed; | 
|  | *	       -1 - no balancing for higher levels needed; | 
|  | *	       -2 - no disk space. | 
|  | */ | 
|  | static int dc_check_balance_leaf(struct tree_balance *tb, int h) | 
|  | { | 
|  | struct virtual_node *vn = tb->tb_vn; | 
|  |  | 
|  | /* Number of bytes that must be deleted from | 
|  | (value is negative if bytes are deleted) buffer which | 
|  | contains node being balanced.  The mnemonic is that the | 
|  | attempted change in node space used level is levbytes bytes. */ | 
|  | int levbytes; | 
|  | /* the maximal item size */ | 
|  | int maxsize, n_ret_value; | 
|  | /* S0 is the node whose balance is currently being checked, | 
|  | and F0 is its father.  */ | 
|  | struct buffer_head *S0, *F0; | 
|  | int lfree, rfree /* free space in L and R */ ; | 
|  |  | 
|  | S0 = PATH_H_PBUFFER(tb->tb_path, 0); | 
|  | F0 = PATH_H_PPARENT(tb->tb_path, 0); | 
|  |  | 
|  | levbytes = tb->insert_size[h]; | 
|  |  | 
|  | maxsize = MAX_CHILD_SIZE(S0);	/* maximal possible size of an item */ | 
|  |  | 
|  | if (!F0) {		/* S[0] is the root now. */ | 
|  |  | 
|  | RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0), | 
|  | "vs-8240: attempt to create empty buffer tree"); | 
|  |  | 
|  | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | 
|  | return NO_BALANCING_NEEDED; | 
|  | } | 
|  |  | 
|  | if ((n_ret_value = get_parents(tb, h)) != CARRY_ON) | 
|  | return n_ret_value; | 
|  |  | 
|  | /* get free space of neighbors */ | 
|  | rfree = get_rfree(tb, h); | 
|  | lfree = get_lfree(tb, h); | 
|  |  | 
|  | create_virtual_node(tb, h); | 
|  |  | 
|  | /* if 3 leaves can be merge to one, set parameters and return */ | 
|  | if (are_leaves_removable(tb, lfree, rfree)) | 
|  | return CARRY_ON; | 
|  |  | 
|  | /* determine maximal number of items we can shift to the left/right  neighbor | 
|  | and the maximal number of bytes that can flow to the left/right neighbor | 
|  | from the left/right most liquid item that cannot be shifted from S[0] entirely | 
|  | */ | 
|  | check_left(tb, h, lfree); | 
|  | check_right(tb, h, rfree); | 
|  |  | 
|  | /* check whether we can merge S with left neighbor. */ | 
|  | if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1) | 
|  | if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) ||	/* S can not be merged with R */ | 
|  | !tb->FR[h]) { | 
|  |  | 
|  | RFALSE(!tb->FL[h], | 
|  | "vs-8245: dc_check_balance_leaf: FL[h] must exist"); | 
|  |  | 
|  | /* set parameter to merge S[0] with its left neighbor */ | 
|  | set_parameters(tb, h, -1, 0, 0, NULL, -1, -1); | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* check whether we can merge S[0] with right neighbor. */ | 
|  | if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) { | 
|  | set_parameters(tb, h, 0, -1, 0, NULL, -1, -1); | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */ | 
|  | if (is_leaf_removable(tb)) | 
|  | return CARRY_ON; | 
|  |  | 
|  | /* Balancing is not required. */ | 
|  | tb->s0num = vn->vn_nr_item; | 
|  | set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); | 
|  | return NO_BALANCING_NEEDED; | 
|  | } | 
|  |  | 
|  | /* Check whether current node S[h] is balanced when Decreasing its size by | 
|  | * Deleting or Cutting. | 
|  | * Calculate parameters for balancing for current level h. | 
|  | * Parameters: | 
|  | *	tb	tree_balance structure; | 
|  | *	h	current level of the node; | 
|  | *	inum	item number in S[h]; | 
|  | *	mode	d - delete, c - cut. | 
|  | * Returns:	1 - schedule occurred; | 
|  | *	        0 - balancing for higher levels needed; | 
|  | *	       -1 - no balancing for higher levels needed; | 
|  | *	       -2 - no disk space. | 
|  | */ | 
|  | static int dc_check_balance(struct tree_balance *tb, int h) | 
|  | { | 
|  | RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)), | 
|  | "vs-8250: S is not initialized"); | 
|  |  | 
|  | if (h) | 
|  | return dc_check_balance_internal(tb, h); | 
|  | else | 
|  | return dc_check_balance_leaf(tb, h); | 
|  | } | 
|  |  | 
|  | /* Check whether current node S[h] is balanced. | 
|  | * Calculate parameters for balancing for current level h. | 
|  | * Parameters: | 
|  | * | 
|  | *	tb	tree_balance structure: | 
|  | * | 
|  | *              tb is a large structure that must be read about in the header file | 
|  | *              at the same time as this procedure if the reader is to successfully | 
|  | *              understand this procedure | 
|  | * | 
|  | *	h	current level of the node; | 
|  | *	inum	item number in S[h]; | 
|  | *	mode	i - insert, p - paste, d - delete, c - cut. | 
|  | * Returns:	1 - schedule occurred; | 
|  | *	        0 - balancing for higher levels needed; | 
|  | *	       -1 - no balancing for higher levels needed; | 
|  | *	       -2 - no disk space. | 
|  | */ | 
|  | static int check_balance(int mode, | 
|  | struct tree_balance *tb, | 
|  | int h, | 
|  | int inum, | 
|  | int pos_in_item, | 
|  | struct item_head *ins_ih, const void *data) | 
|  | { | 
|  | struct virtual_node *vn; | 
|  |  | 
|  | vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf); | 
|  | vn->vn_free_ptr = (char *)(tb->tb_vn + 1); | 
|  | vn->vn_mode = mode; | 
|  | vn->vn_affected_item_num = inum; | 
|  | vn->vn_pos_in_item = pos_in_item; | 
|  | vn->vn_ins_ih = ins_ih; | 
|  | vn->vn_data = data; | 
|  |  | 
|  | RFALSE(mode == M_INSERT && !vn->vn_ins_ih, | 
|  | "vs-8255: ins_ih can not be 0 in insert mode"); | 
|  |  | 
|  | if (tb->insert_size[h] > 0) | 
|  | /* Calculate balance parameters when size of node is increasing. */ | 
|  | return ip_check_balance(tb, h); | 
|  |  | 
|  | /* Calculate balance parameters when  size of node is decreasing. */ | 
|  | return dc_check_balance(tb, h); | 
|  | } | 
|  |  | 
|  | /* Check whether parent at the path is the really parent of the current node.*/ | 
|  | static int get_direct_parent(struct tree_balance *p_s_tb, int n_h) | 
|  | { | 
|  | struct buffer_head *p_s_bh; | 
|  | struct path *p_s_path = p_s_tb->tb_path; | 
|  | int n_position, | 
|  | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); | 
|  |  | 
|  | /* We are in the root or in the new root. */ | 
|  | if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) { | 
|  |  | 
|  | RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1, | 
|  | "PAP-8260: invalid offset in the path"); | 
|  |  | 
|  | if (PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)-> | 
|  | b_blocknr == SB_ROOT_BLOCK(p_s_tb->tb_sb)) { | 
|  | /* Root is not changed. */ | 
|  | PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL; | 
|  | PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0; | 
|  | return CARRY_ON; | 
|  | } | 
|  | return REPEAT_SEARCH;	/* Root is changed and we must recalculate the path. */ | 
|  | } | 
|  |  | 
|  | if (!B_IS_IN_TREE | 
|  | (p_s_bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))) | 
|  | return REPEAT_SEARCH;	/* Parent in the path is not in the tree. */ | 
|  |  | 
|  | if ((n_position = | 
|  | PATH_OFFSET_POSITION(p_s_path, | 
|  | n_path_offset - 1)) > B_NR_ITEMS(p_s_bh)) | 
|  | return REPEAT_SEARCH; | 
|  |  | 
|  | if (B_N_CHILD_NUM(p_s_bh, n_position) != | 
|  | PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr) | 
|  | /* Parent in the path is not parent of the current node in the tree. */ | 
|  | return REPEAT_SEARCH; | 
|  |  | 
|  | if (buffer_locked(p_s_bh)) { | 
|  | __wait_on_buffer(p_s_bh); | 
|  | if (FILESYSTEM_CHANGED_TB(p_s_tb)) | 
|  | return REPEAT_SEARCH; | 
|  | } | 
|  |  | 
|  | return CARRY_ON;	/* Parent in the path is unlocked and really parent of the current node.  */ | 
|  | } | 
|  |  | 
|  | /* Using lnum[n_h] and rnum[n_h] we should determine what neighbors | 
|  | * of S[n_h] we | 
|  | * need in order to balance S[n_h], and get them if necessary. | 
|  | * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked; | 
|  | *	        CARRY_ON - schedule didn't occur while the function worked; | 
|  | */ | 
|  | static int get_neighbors(struct tree_balance *p_s_tb, int n_h) | 
|  | { | 
|  | int n_child_position, | 
|  | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h + 1); | 
|  | unsigned long n_son_number; | 
|  | struct super_block *p_s_sb = p_s_tb->tb_sb; | 
|  | struct buffer_head *p_s_bh; | 
|  |  | 
|  | PROC_INFO_INC(p_s_sb, get_neighbors[n_h]); | 
|  |  | 
|  | if (p_s_tb->lnum[n_h]) { | 
|  | /* We need left neighbor to balance S[n_h]. */ | 
|  | PROC_INFO_INC(p_s_sb, need_l_neighbor[n_h]); | 
|  | p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); | 
|  |  | 
|  | RFALSE(p_s_bh == p_s_tb->FL[n_h] && | 
|  | !PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset), | 
|  | "PAP-8270: invalid position in the parent"); | 
|  |  | 
|  | n_child_position = | 
|  | (p_s_bh == | 
|  | p_s_tb->FL[n_h]) ? p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb-> | 
|  | FL[n_h]); | 
|  | n_son_number = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position); | 
|  | p_s_bh = sb_bread(p_s_sb, n_son_number); | 
|  | if (!p_s_bh) | 
|  | return IO_ERROR; | 
|  | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { | 
|  | decrement_bcount(p_s_bh); | 
|  | PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]); | 
|  | return REPEAT_SEARCH; | 
|  | } | 
|  |  | 
|  | RFALSE(!B_IS_IN_TREE(p_s_tb->FL[n_h]) || | 
|  | n_child_position > B_NR_ITEMS(p_s_tb->FL[n_h]) || | 
|  | B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position) != | 
|  | p_s_bh->b_blocknr, "PAP-8275: invalid parent"); | 
|  | RFALSE(!B_IS_IN_TREE(p_s_bh), "PAP-8280: invalid child"); | 
|  | RFALSE(!n_h && | 
|  | B_FREE_SPACE(p_s_bh) != | 
|  | MAX_CHILD_SIZE(p_s_bh) - | 
|  | dc_size(B_N_CHILD(p_s_tb->FL[0], n_child_position)), | 
|  | "PAP-8290: invalid child size of left neighbor"); | 
|  |  | 
|  | decrement_bcount(p_s_tb->L[n_h]); | 
|  | p_s_tb->L[n_h] = p_s_bh; | 
|  | } | 
|  |  | 
|  | if (p_s_tb->rnum[n_h]) {	/* We need right neighbor to balance S[n_path_offset]. */ | 
|  | PROC_INFO_INC(p_s_sb, need_r_neighbor[n_h]); | 
|  | p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); | 
|  |  | 
|  | RFALSE(p_s_bh == p_s_tb->FR[n_h] && | 
|  | PATH_OFFSET_POSITION(p_s_tb->tb_path, | 
|  | n_path_offset) >= | 
|  | B_NR_ITEMS(p_s_bh), | 
|  | "PAP-8295: invalid position in the parent"); | 
|  |  | 
|  | n_child_position = | 
|  | (p_s_bh == p_s_tb->FR[n_h]) ? p_s_tb->rkey[n_h] + 1 : 0; | 
|  | n_son_number = B_N_CHILD_NUM(p_s_tb->FR[n_h], n_child_position); | 
|  | p_s_bh = sb_bread(p_s_sb, n_son_number); | 
|  | if (!p_s_bh) | 
|  | return IO_ERROR; | 
|  | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { | 
|  | decrement_bcount(p_s_bh); | 
|  | PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]); | 
|  | return REPEAT_SEARCH; | 
|  | } | 
|  | decrement_bcount(p_s_tb->R[n_h]); | 
|  | p_s_tb->R[n_h] = p_s_bh; | 
|  |  | 
|  | RFALSE(!n_h | 
|  | && B_FREE_SPACE(p_s_bh) != | 
|  | MAX_CHILD_SIZE(p_s_bh) - | 
|  | dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position)), | 
|  | "PAP-8300: invalid child size of right neighbor (%d != %d - %d)", | 
|  | B_FREE_SPACE(p_s_bh), MAX_CHILD_SIZE(p_s_bh), | 
|  | dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position))); | 
|  |  | 
|  | } | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh) | 
|  | { | 
|  | int max_num_of_items; | 
|  | int max_num_of_entries; | 
|  | unsigned long blocksize = sb->s_blocksize; | 
|  |  | 
|  | #define MIN_NAME_LEN 1 | 
|  |  | 
|  | max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN); | 
|  | max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) / | 
|  | (DEH_SIZE + MIN_NAME_LEN); | 
|  |  | 
|  | return sizeof(struct virtual_node) + | 
|  | max(max_num_of_items * sizeof(struct virtual_item), | 
|  | sizeof(struct virtual_item) + sizeof(struct direntry_uarea) + | 
|  | (max_num_of_entries - 1) * sizeof(__u16)); | 
|  | } | 
|  |  | 
|  | /* maybe we should fail balancing we are going to perform when kmalloc | 
|  | fails several times. But now it will loop until kmalloc gets | 
|  | required memory */ | 
|  | static int get_mem_for_virtual_node(struct tree_balance *tb) | 
|  | { | 
|  | int check_fs = 0; | 
|  | int size; | 
|  | char *buf; | 
|  |  | 
|  | size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path)); | 
|  |  | 
|  | if (size > tb->vn_buf_size) { | 
|  | /* we have to allocate more memory for virtual node */ | 
|  | if (tb->vn_buf) { | 
|  | /* free memory allocated before */ | 
|  | kfree(tb->vn_buf); | 
|  | /* this is not needed if kfree is atomic */ | 
|  | check_fs = 1; | 
|  | } | 
|  |  | 
|  | /* virtual node requires now more memory */ | 
|  | tb->vn_buf_size = size; | 
|  |  | 
|  | /* get memory for virtual item */ | 
|  | buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN); | 
|  | if (!buf) { | 
|  | /* getting memory with GFP_KERNEL priority may involve | 
|  | balancing now (due to indirect_to_direct conversion on | 
|  | dcache shrinking). So, release path and collected | 
|  | resources here */ | 
|  | free_buffers_in_tb(tb); | 
|  | buf = kmalloc(size, GFP_NOFS); | 
|  | if (!buf) { | 
|  | tb->vn_buf_size = 0; | 
|  | } | 
|  | tb->vn_buf = buf; | 
|  | schedule(); | 
|  | return REPEAT_SEARCH; | 
|  | } | 
|  |  | 
|  | tb->vn_buf = buf; | 
|  | } | 
|  |  | 
|  | if (check_fs && FILESYSTEM_CHANGED_TB(tb)) | 
|  | return REPEAT_SEARCH; | 
|  |  | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | static void tb_buffer_sanity_check(struct super_block *p_s_sb, | 
|  | struct buffer_head *p_s_bh, | 
|  | const char *descr, int level) | 
|  | { | 
|  | if (p_s_bh) { | 
|  | if (atomic_read(&(p_s_bh->b_count)) <= 0) { | 
|  |  | 
|  | reiserfs_panic(p_s_sb, | 
|  | "jmacd-1: tb_buffer_sanity_check(): negative or zero reference counter for buffer %s[%d] (%b)\n", | 
|  | descr, level, p_s_bh); | 
|  | } | 
|  |  | 
|  | if (!buffer_uptodate(p_s_bh)) { | 
|  | reiserfs_panic(p_s_sb, | 
|  | "jmacd-2: tb_buffer_sanity_check(): buffer is not up to date %s[%d] (%b)\n", | 
|  | descr, level, p_s_bh); | 
|  | } | 
|  |  | 
|  | if (!B_IS_IN_TREE(p_s_bh)) { | 
|  | reiserfs_panic(p_s_sb, | 
|  | "jmacd-3: tb_buffer_sanity_check(): buffer is not in tree %s[%d] (%b)\n", | 
|  | descr, level, p_s_bh); | 
|  | } | 
|  |  | 
|  | if (p_s_bh->b_bdev != p_s_sb->s_bdev) { | 
|  | reiserfs_panic(p_s_sb, | 
|  | "jmacd-4: tb_buffer_sanity_check(): buffer has wrong device %s[%d] (%b)\n", | 
|  | descr, level, p_s_bh); | 
|  | } | 
|  |  | 
|  | if (p_s_bh->b_size != p_s_sb->s_blocksize) { | 
|  | reiserfs_panic(p_s_sb, | 
|  | "jmacd-5: tb_buffer_sanity_check(): buffer has wrong blocksize %s[%d] (%b)\n", | 
|  | descr, level, p_s_bh); | 
|  | } | 
|  |  | 
|  | if (p_s_bh->b_blocknr > SB_BLOCK_COUNT(p_s_sb)) { | 
|  | reiserfs_panic(p_s_sb, | 
|  | "jmacd-6: tb_buffer_sanity_check(): buffer block number too high %s[%d] (%b)\n", | 
|  | descr, level, p_s_bh); | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void tb_buffer_sanity_check(struct super_block *p_s_sb, | 
|  | struct buffer_head *p_s_bh, | 
|  | const char *descr, int level) | 
|  | {; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh) | 
|  | { | 
|  | return reiserfs_prepare_for_journal(s, bh, 0); | 
|  | } | 
|  |  | 
|  | static int wait_tb_buffers_until_unlocked(struct tree_balance *p_s_tb) | 
|  | { | 
|  | struct buffer_head *locked; | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | int repeat_counter = 0; | 
|  | #endif | 
|  | int i; | 
|  |  | 
|  | do { | 
|  |  | 
|  | locked = NULL; | 
|  |  | 
|  | for (i = p_s_tb->tb_path->path_length; | 
|  | !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) { | 
|  | if (PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) { | 
|  | /* if I understand correctly, we can only be sure the last buffer | 
|  | ** in the path is in the tree --clm | 
|  | */ | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | if (PATH_PLAST_BUFFER(p_s_tb->tb_path) == | 
|  | PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) { | 
|  | tb_buffer_sanity_check(p_s_tb->tb_sb, | 
|  | PATH_OFFSET_PBUFFER | 
|  | (p_s_tb->tb_path, | 
|  | i), "S", | 
|  | p_s_tb->tb_path-> | 
|  | path_length - i); | 
|  | } | 
|  | #endif | 
|  | if (!clear_all_dirty_bits(p_s_tb->tb_sb, | 
|  | PATH_OFFSET_PBUFFER | 
|  | (p_s_tb->tb_path, | 
|  | i))) { | 
|  | locked = | 
|  | PATH_OFFSET_PBUFFER(p_s_tb->tb_path, | 
|  | i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; !locked && i < MAX_HEIGHT && p_s_tb->insert_size[i]; | 
|  | i++) { | 
|  |  | 
|  | if (p_s_tb->lnum[i]) { | 
|  |  | 
|  | if (p_s_tb->L[i]) { | 
|  | tb_buffer_sanity_check(p_s_tb->tb_sb, | 
|  | p_s_tb->L[i], | 
|  | "L", i); | 
|  | if (!clear_all_dirty_bits | 
|  | (p_s_tb->tb_sb, p_s_tb->L[i])) | 
|  | locked = p_s_tb->L[i]; | 
|  | } | 
|  |  | 
|  | if (!locked && p_s_tb->FL[i]) { | 
|  | tb_buffer_sanity_check(p_s_tb->tb_sb, | 
|  | p_s_tb->FL[i], | 
|  | "FL", i); | 
|  | if (!clear_all_dirty_bits | 
|  | (p_s_tb->tb_sb, p_s_tb->FL[i])) | 
|  | locked = p_s_tb->FL[i]; | 
|  | } | 
|  |  | 
|  | if (!locked && p_s_tb->CFL[i]) { | 
|  | tb_buffer_sanity_check(p_s_tb->tb_sb, | 
|  | p_s_tb->CFL[i], | 
|  | "CFL", i); | 
|  | if (!clear_all_dirty_bits | 
|  | (p_s_tb->tb_sb, p_s_tb->CFL[i])) | 
|  | locked = p_s_tb->CFL[i]; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | if (!locked && (p_s_tb->rnum[i])) { | 
|  |  | 
|  | if (p_s_tb->R[i]) { | 
|  | tb_buffer_sanity_check(p_s_tb->tb_sb, | 
|  | p_s_tb->R[i], | 
|  | "R", i); | 
|  | if (!clear_all_dirty_bits | 
|  | (p_s_tb->tb_sb, p_s_tb->R[i])) | 
|  | locked = p_s_tb->R[i]; | 
|  | } | 
|  |  | 
|  | if (!locked && p_s_tb->FR[i]) { | 
|  | tb_buffer_sanity_check(p_s_tb->tb_sb, | 
|  | p_s_tb->FR[i], | 
|  | "FR", i); | 
|  | if (!clear_all_dirty_bits | 
|  | (p_s_tb->tb_sb, p_s_tb->FR[i])) | 
|  | locked = p_s_tb->FR[i]; | 
|  | } | 
|  |  | 
|  | if (!locked && p_s_tb->CFR[i]) { | 
|  | tb_buffer_sanity_check(p_s_tb->tb_sb, | 
|  | p_s_tb->CFR[i], | 
|  | "CFR", i); | 
|  | if (!clear_all_dirty_bits | 
|  | (p_s_tb->tb_sb, p_s_tb->CFR[i])) | 
|  | locked = p_s_tb->CFR[i]; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* as far as I can tell, this is not required.  The FEB list seems | 
|  | ** to be full of newly allocated nodes, which will never be locked, | 
|  | ** dirty, or anything else. | 
|  | ** To be safe, I'm putting in the checks and waits in.  For the moment, | 
|  | ** they are needed to keep the code in journal.c from complaining | 
|  | ** about the buffer.  That code is inside CONFIG_REISERFS_CHECK as well. | 
|  | ** --clm | 
|  | */ | 
|  | for (i = 0; !locked && i < MAX_FEB_SIZE; i++) { | 
|  | if (p_s_tb->FEB[i]) { | 
|  | if (!clear_all_dirty_bits | 
|  | (p_s_tb->tb_sb, p_s_tb->FEB[i])) | 
|  | locked = p_s_tb->FEB[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (locked) { | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | repeat_counter++; | 
|  | if ((repeat_counter % 10000) == 0) { | 
|  | reiserfs_warning(p_s_tb->tb_sb, | 
|  | "wait_tb_buffers_until_released(): too many " | 
|  | "iterations waiting for buffer to unlock " | 
|  | "(%b)", locked); | 
|  |  | 
|  | /* Don't loop forever.  Try to recover from possible error. */ | 
|  |  | 
|  | return (FILESYSTEM_CHANGED_TB(p_s_tb)) ? | 
|  | REPEAT_SEARCH : CARRY_ON; | 
|  | } | 
|  | #endif | 
|  | __wait_on_buffer(locked); | 
|  | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { | 
|  | return REPEAT_SEARCH; | 
|  | } | 
|  | } | 
|  |  | 
|  | } while (locked); | 
|  |  | 
|  | return CARRY_ON; | 
|  | } | 
|  |  | 
|  | /* Prepare for balancing, that is | 
|  | *	get all necessary parents, and neighbors; | 
|  | *	analyze what and where should be moved; | 
|  | *	get sufficient number of new nodes; | 
|  | * Balancing will start only after all resources will be collected at a time. | 
|  | * | 
|  | * When ported to SMP kernels, only at the last moment after all needed nodes | 
|  | * are collected in cache, will the resources be locked using the usual | 
|  | * textbook ordered lock acquisition algorithms.  Note that ensuring that | 
|  | * this code neither write locks what it does not need to write lock nor locks out of order | 
|  | * will be a pain in the butt that could have been avoided.  Grumble grumble. -Hans | 
|  | * | 
|  | * fix is meant in the sense of render unchanging | 
|  | * | 
|  | * Latency might be improved by first gathering a list of what buffers are needed | 
|  | * and then getting as many of them in parallel as possible? -Hans | 
|  | * | 
|  | * Parameters: | 
|  | *	op_mode	i - insert, d - delete, c - cut (truncate), p - paste (append) | 
|  | *	tb	tree_balance structure; | 
|  | *	inum	item number in S[h]; | 
|  | *      pos_in_item - comment this if you can | 
|  | *      ins_ih & ins_sd are used when inserting | 
|  | * Returns:	1 - schedule occurred while the function worked; | 
|  | *	        0 - schedule didn't occur while the function worked; | 
|  | *             -1 - if no_disk_space | 
|  | */ | 
|  |  | 
|  | int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb, struct item_head *p_s_ins_ih,	// item head of item being inserted | 
|  | const void *data	// inserted item or data to be pasted | 
|  | ) | 
|  | { | 
|  | int n_ret_value, n_h, n_item_num = PATH_LAST_POSITION(p_s_tb->tb_path); | 
|  | int n_pos_in_item; | 
|  |  | 
|  | /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared | 
|  | ** during wait_tb_buffers_run | 
|  | */ | 
|  | int wait_tb_buffers_run = 0; | 
|  | struct buffer_head *p_s_tbS0 = PATH_PLAST_BUFFER(p_s_tb->tb_path); | 
|  |  | 
|  | ++REISERFS_SB(p_s_tb->tb_sb)->s_fix_nodes; | 
|  |  | 
|  | n_pos_in_item = p_s_tb->tb_path->pos_in_item; | 
|  |  | 
|  | p_s_tb->fs_gen = get_generation(p_s_tb->tb_sb); | 
|  |  | 
|  | /* we prepare and log the super here so it will already be in the | 
|  | ** transaction when do_balance needs to change it. | 
|  | ** This way do_balance won't have to schedule when trying to prepare | 
|  | ** the super for logging | 
|  | */ | 
|  | reiserfs_prepare_for_journal(p_s_tb->tb_sb, | 
|  | SB_BUFFER_WITH_SB(p_s_tb->tb_sb), 1); | 
|  | journal_mark_dirty(p_s_tb->transaction_handle, p_s_tb->tb_sb, | 
|  | SB_BUFFER_WITH_SB(p_s_tb->tb_sb)); | 
|  | if (FILESYSTEM_CHANGED_TB(p_s_tb)) | 
|  | return REPEAT_SEARCH; | 
|  |  | 
|  | /* if it possible in indirect_to_direct conversion */ | 
|  | if (buffer_locked(p_s_tbS0)) { | 
|  | __wait_on_buffer(p_s_tbS0); | 
|  | if (FILESYSTEM_CHANGED_TB(p_s_tb)) | 
|  | return REPEAT_SEARCH; | 
|  | } | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | if (cur_tb) { | 
|  | print_cur_tb("fix_nodes"); | 
|  | reiserfs_panic(p_s_tb->tb_sb, | 
|  | "PAP-8305: fix_nodes:  there is pending do_balance"); | 
|  | } | 
|  |  | 
|  | if (!buffer_uptodate(p_s_tbS0) || !B_IS_IN_TREE(p_s_tbS0)) { | 
|  | reiserfs_panic(p_s_tb->tb_sb, | 
|  | "PAP-8320: fix_nodes: S[0] (%b %z) is not uptodate " | 
|  | "at the beginning of fix_nodes or not in tree (mode %c)", | 
|  | p_s_tbS0, p_s_tbS0, n_op_mode); | 
|  | } | 
|  |  | 
|  | /* Check parameters. */ | 
|  | switch (n_op_mode) { | 
|  | case M_INSERT: | 
|  | if (n_item_num <= 0 || n_item_num > B_NR_ITEMS(p_s_tbS0)) | 
|  | reiserfs_panic(p_s_tb->tb_sb, | 
|  | "PAP-8330: fix_nodes: Incorrect item number %d (in S0 - %d) in case of insert", | 
|  | n_item_num, B_NR_ITEMS(p_s_tbS0)); | 
|  | break; | 
|  | case M_PASTE: | 
|  | case M_DELETE: | 
|  | case M_CUT: | 
|  | if (n_item_num < 0 || n_item_num >= B_NR_ITEMS(p_s_tbS0)) { | 
|  | print_block(p_s_tbS0, 0, -1, -1); | 
|  | reiserfs_panic(p_s_tb->tb_sb, | 
|  | "PAP-8335: fix_nodes: Incorrect item number(%d); mode = %c insert_size = %d\n", | 
|  | n_item_num, n_op_mode, | 
|  | p_s_tb->insert_size[0]); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | reiserfs_panic(p_s_tb->tb_sb, | 
|  | "PAP-8340: fix_nodes: Incorrect mode of operation"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (get_mem_for_virtual_node(p_s_tb) == REPEAT_SEARCH) | 
|  | // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat | 
|  | return REPEAT_SEARCH; | 
|  |  | 
|  | /* Starting from the leaf level; for all levels n_h of the tree. */ | 
|  | for (n_h = 0; n_h < MAX_HEIGHT && p_s_tb->insert_size[n_h]; n_h++) { | 
|  | if ((n_ret_value = get_direct_parent(p_s_tb, n_h)) != CARRY_ON) { | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | if ((n_ret_value = | 
|  | check_balance(n_op_mode, p_s_tb, n_h, n_item_num, | 
|  | n_pos_in_item, p_s_ins_ih, | 
|  | data)) != CARRY_ON) { | 
|  | if (n_ret_value == NO_BALANCING_NEEDED) { | 
|  | /* No balancing for higher levels needed. */ | 
|  | if ((n_ret_value = | 
|  | get_neighbors(p_s_tb, n_h)) != CARRY_ON) { | 
|  | goto repeat; | 
|  | } | 
|  | if (n_h != MAX_HEIGHT - 1) | 
|  | p_s_tb->insert_size[n_h + 1] = 0; | 
|  | /* ok, analysis and resource gathering are complete */ | 
|  | break; | 
|  | } | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | if ((n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON) { | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | if ((n_ret_value = get_empty_nodes(p_s_tb, n_h)) != CARRY_ON) { | 
|  | goto repeat;	/* No disk space, or schedule occurred and | 
|  | analysis may be invalid and needs to be redone. */ | 
|  | } | 
|  |  | 
|  | if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h)) { | 
|  | /* We have a positive insert size but no nodes exist on this | 
|  | level, this means that we are creating a new root. */ | 
|  |  | 
|  | RFALSE(p_s_tb->blknum[n_h] != 1, | 
|  | "PAP-8350: creating new empty root"); | 
|  |  | 
|  | if (n_h < MAX_HEIGHT - 1) | 
|  | p_s_tb->insert_size[n_h + 1] = 0; | 
|  | } else if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1)) { | 
|  | if (p_s_tb->blknum[n_h] > 1) { | 
|  | /* The tree needs to be grown, so this node S[n_h] | 
|  | which is the root node is split into two nodes, | 
|  | and a new node (S[n_h+1]) will be created to | 
|  | become the root node.  */ | 
|  |  | 
|  | RFALSE(n_h == MAX_HEIGHT - 1, | 
|  | "PAP-8355: attempt to create too high of a tree"); | 
|  |  | 
|  | p_s_tb->insert_size[n_h + 1] = | 
|  | (DC_SIZE + | 
|  | KEY_SIZE) * (p_s_tb->blknum[n_h] - 1) + | 
|  | DC_SIZE; | 
|  | } else if (n_h < MAX_HEIGHT - 1) | 
|  | p_s_tb->insert_size[n_h + 1] = 0; | 
|  | } else | 
|  | p_s_tb->insert_size[n_h + 1] = | 
|  | (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1); | 
|  | } | 
|  |  | 
|  | if ((n_ret_value = wait_tb_buffers_until_unlocked(p_s_tb)) == CARRY_ON) { | 
|  | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { | 
|  | wait_tb_buffers_run = 1; | 
|  | n_ret_value = REPEAT_SEARCH; | 
|  | goto repeat; | 
|  | } else { | 
|  | return CARRY_ON; | 
|  | } | 
|  | } else { | 
|  | wait_tb_buffers_run = 1; | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | repeat: | 
|  | // fix_nodes was unable to perform its calculation due to | 
|  | // filesystem got changed under us, lack of free disk space or i/o | 
|  | // failure. If the first is the case - the search will be | 
|  | // repeated. For now - free all resources acquired so far except | 
|  | // for the new allocated nodes | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Release path buffers. */ | 
|  | if (wait_tb_buffers_run) { | 
|  | pathrelse_and_restore(p_s_tb->tb_sb, p_s_tb->tb_path); | 
|  | } else { | 
|  | pathrelse(p_s_tb->tb_path); | 
|  | } | 
|  | /* brelse all resources collected for balancing */ | 
|  | for (i = 0; i < MAX_HEIGHT; i++) { | 
|  | if (wait_tb_buffers_run) { | 
|  | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | 
|  | p_s_tb->L[i]); | 
|  | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | 
|  | p_s_tb->R[i]); | 
|  | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | 
|  | p_s_tb->FL[i]); | 
|  | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | 
|  | p_s_tb->FR[i]); | 
|  | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | 
|  | p_s_tb-> | 
|  | CFL[i]); | 
|  | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, | 
|  | p_s_tb-> | 
|  | CFR[i]); | 
|  | } | 
|  |  | 
|  | brelse(p_s_tb->L[i]); | 
|  | p_s_tb->L[i] = NULL; | 
|  | brelse(p_s_tb->R[i]); | 
|  | p_s_tb->R[i] = NULL; | 
|  | brelse(p_s_tb->FL[i]); | 
|  | p_s_tb->FL[i] = NULL; | 
|  | brelse(p_s_tb->FR[i]); | 
|  | p_s_tb->FR[i] = NULL; | 
|  | brelse(p_s_tb->CFL[i]); | 
|  | p_s_tb->CFL[i] = NULL; | 
|  | brelse(p_s_tb->CFR[i]); | 
|  | p_s_tb->CFR[i] = NULL; | 
|  | } | 
|  |  | 
|  | if (wait_tb_buffers_run) { | 
|  | for (i = 0; i < MAX_FEB_SIZE; i++) { | 
|  | if (p_s_tb->FEB[i]) { | 
|  | reiserfs_restore_prepared_buffer | 
|  | (p_s_tb->tb_sb, p_s_tb->FEB[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  | return n_ret_value; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Anatoly will probably forgive me renaming p_s_tb to tb. I just | 
|  | wanted to make lines shorter */ | 
|  | void unfix_nodes(struct tree_balance *tb) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Release path buffers. */ | 
|  | pathrelse_and_restore(tb->tb_sb, tb->tb_path); | 
|  |  | 
|  | /* brelse all resources collected for balancing */ | 
|  | for (i = 0; i < MAX_HEIGHT; i++) { | 
|  | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]); | 
|  | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]); | 
|  | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]); | 
|  | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]); | 
|  | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]); | 
|  | reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]); | 
|  |  | 
|  | brelse(tb->L[i]); | 
|  | brelse(tb->R[i]); | 
|  | brelse(tb->FL[i]); | 
|  | brelse(tb->FR[i]); | 
|  | brelse(tb->CFL[i]); | 
|  | brelse(tb->CFR[i]); | 
|  | } | 
|  |  | 
|  | /* deal with list of allocated (used and unused) nodes */ | 
|  | for (i = 0; i < MAX_FEB_SIZE; i++) { | 
|  | if (tb->FEB[i]) { | 
|  | b_blocknr_t blocknr = tb->FEB[i]->b_blocknr; | 
|  | /* de-allocated block which was not used by balancing and | 
|  | bforget about buffer for it */ | 
|  | brelse(tb->FEB[i]); | 
|  | reiserfs_free_block(tb->transaction_handle, NULL, | 
|  | blocknr, 0); | 
|  | } | 
|  | if (tb->used[i]) { | 
|  | /* release used as new nodes including a new root */ | 
|  | brelse(tb->used[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(tb->vn_buf); | 
|  |  | 
|  | } |