| /* | 
 |  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) | 
 |  * Copyright 2003 PathScale, Inc. | 
 |  * Licensed under the GPL | 
 |  */ | 
 |  | 
 | #include "linux/stddef.h" | 
 | #include "linux/err.h" | 
 | #include "linux/hardirq.h" | 
 | #include "linux/mm.h" | 
 | #include "linux/personality.h" | 
 | #include "linux/proc_fs.h" | 
 | #include "linux/ptrace.h" | 
 | #include "linux/random.h" | 
 | #include "linux/sched.h" | 
 | #include "linux/tick.h" | 
 | #include "linux/threads.h" | 
 | #include "asm/pgtable.h" | 
 | #include "asm/uaccess.h" | 
 | #include "as-layout.h" | 
 | #include "kern_util.h" | 
 | #include "os.h" | 
 | #include "skas.h" | 
 | #include "tlb.h" | 
 |  | 
 | /* | 
 |  * This is a per-cpu array.  A processor only modifies its entry and it only | 
 |  * cares about its entry, so it's OK if another processor is modifying its | 
 |  * entry. | 
 |  */ | 
 | struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } }; | 
 |  | 
 | static inline int external_pid(struct task_struct *task) | 
 | { | 
 | 	/* FIXME: Need to look up userspace_pid by cpu */ | 
 | 	return userspace_pid[0]; | 
 | } | 
 |  | 
 | int pid_to_processor_id(int pid) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for(i = 0; i < ncpus; i++) { | 
 | 		if (cpu_tasks[i].pid == pid) | 
 | 			return i; | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 | void free_stack(unsigned long stack, int order) | 
 | { | 
 | 	free_pages(stack, order); | 
 | } | 
 |  | 
 | unsigned long alloc_stack(int order, int atomic) | 
 | { | 
 | 	unsigned long page; | 
 | 	gfp_t flags = GFP_KERNEL; | 
 |  | 
 | 	if (atomic) | 
 | 		flags = GFP_ATOMIC; | 
 | 	page = __get_free_pages(flags, order); | 
 | 	if (page == 0) | 
 | 		return 0; | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) | 
 | { | 
 | 	int pid; | 
 |  | 
 | 	current->thread.request.u.thread.proc = fn; | 
 | 	current->thread.request.u.thread.arg = arg; | 
 | 	pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0, | 
 | 		      ¤t->thread.regs, 0, NULL, NULL); | 
 | 	return pid; | 
 | } | 
 |  | 
 | static inline void set_current(struct task_struct *task) | 
 | { | 
 | 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task) | 
 | 		{ external_pid(task), task }); | 
 | } | 
 |  | 
 | extern void arch_switch_to(struct task_struct *from, struct task_struct *to); | 
 |  | 
 | void *_switch_to(void *prev, void *next, void *last) | 
 | { | 
 | 	struct task_struct *from = prev; | 
 | 	struct task_struct *to= next; | 
 |  | 
 | 	to->thread.prev_sched = from; | 
 | 	set_current(to); | 
 |  | 
 | 	do { | 
 | 		current->thread.saved_task = NULL; | 
 |  | 
 | 		switch_threads(&from->thread.switch_buf, | 
 | 			       &to->thread.switch_buf); | 
 |  | 
 | 		arch_switch_to(current->thread.prev_sched, current); | 
 |  | 
 | 		if (current->thread.saved_task) | 
 | 			show_regs(&(current->thread.regs)); | 
 | 		next= current->thread.saved_task; | 
 | 		prev= current; | 
 | 	} while(current->thread.saved_task); | 
 |  | 
 | 	return current->thread.prev_sched; | 
 |  | 
 | } | 
 |  | 
 | void interrupt_end(void) | 
 | { | 
 | 	if (need_resched()) | 
 | 		schedule(); | 
 | 	if (test_tsk_thread_flag(current, TIF_SIGPENDING)) | 
 | 		do_signal(); | 
 | } | 
 |  | 
 | void exit_thread(void) | 
 | { | 
 | } | 
 |  | 
 | void *get_current(void) | 
 | { | 
 | 	return current; | 
 | } | 
 |  | 
 | extern void schedule_tail(struct task_struct *prev); | 
 |  | 
 | /* | 
 |  * This is called magically, by its address being stuffed in a jmp_buf | 
 |  * and being longjmp-d to. | 
 |  */ | 
 | void new_thread_handler(void) | 
 | { | 
 | 	int (*fn)(void *), n; | 
 | 	void *arg; | 
 |  | 
 | 	if (current->thread.prev_sched != NULL) | 
 | 		schedule_tail(current->thread.prev_sched); | 
 | 	current->thread.prev_sched = NULL; | 
 |  | 
 | 	fn = current->thread.request.u.thread.proc; | 
 | 	arg = current->thread.request.u.thread.arg; | 
 |  | 
 | 	/* | 
 | 	 * The return value is 1 if the kernel thread execs a process, | 
 | 	 * 0 if it just exits | 
 | 	 */ | 
 | 	n = run_kernel_thread(fn, arg, ¤t->thread.exec_buf); | 
 | 	if (n == 1) { | 
 | 		/* Handle any immediate reschedules or signals */ | 
 | 		interrupt_end(); | 
 | 		userspace(¤t->thread.regs.regs); | 
 | 	} | 
 | 	else do_exit(0); | 
 | } | 
 |  | 
 | /* Called magically, see new_thread_handler above */ | 
 | void fork_handler(void) | 
 | { | 
 | 	force_flush_all(); | 
 | 	if (current->thread.prev_sched == NULL) | 
 | 		panic("blech"); | 
 |  | 
 | 	schedule_tail(current->thread.prev_sched); | 
 |  | 
 | 	/* | 
 | 	 * XXX: if interrupt_end() calls schedule, this call to | 
 | 	 * arch_switch_to isn't needed. We could want to apply this to | 
 | 	 * improve performance. -bb | 
 | 	 */ | 
 | 	arch_switch_to(current->thread.prev_sched, current); | 
 |  | 
 | 	current->thread.prev_sched = NULL; | 
 |  | 
 | 	/* Handle any immediate reschedules or signals */ | 
 | 	interrupt_end(); | 
 |  | 
 | 	userspace(¤t->thread.regs.regs); | 
 | } | 
 |  | 
 | int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, | 
 | 		unsigned long stack_top, struct task_struct * p, | 
 | 		struct pt_regs *regs) | 
 | { | 
 | 	void (*handler)(void); | 
 | 	int ret = 0; | 
 |  | 
 | 	p->thread = (struct thread_struct) INIT_THREAD; | 
 |  | 
 | 	if (current->thread.forking) { | 
 | 	  	memcpy(&p->thread.regs.regs, ®s->regs, | 
 | 		       sizeof(p->thread.regs.regs)); | 
 | 		REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0); | 
 | 		if (sp != 0) | 
 | 			REGS_SP(p->thread.regs.regs.gp) = sp; | 
 |  | 
 | 		handler = fork_handler; | 
 |  | 
 | 		arch_copy_thread(¤t->thread.arch, &p->thread.arch); | 
 | 	} | 
 | 	else { | 
 | 		init_thread_registers(&p->thread.regs.regs); | 
 | 		p->thread.request.u.thread = current->thread.request.u.thread; | 
 | 		handler = new_thread_handler; | 
 | 	} | 
 |  | 
 | 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler); | 
 |  | 
 | 	if (current->thread.forking) { | 
 | 		clear_flushed_tls(p); | 
 |  | 
 | 		/* | 
 | 		 * Set a new TLS for the child thread? | 
 | 		 */ | 
 | 		if (clone_flags & CLONE_SETTLS) | 
 | 			ret = arch_copy_tls(p); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void initial_thread_cb(void (*proc)(void *), void *arg) | 
 | { | 
 | 	int save_kmalloc_ok = kmalloc_ok; | 
 |  | 
 | 	kmalloc_ok = 0; | 
 | 	initial_thread_cb_skas(proc, arg); | 
 | 	kmalloc_ok = save_kmalloc_ok; | 
 | } | 
 |  | 
 | void default_idle(void) | 
 | { | 
 | 	unsigned long long nsecs; | 
 |  | 
 | 	while(1) { | 
 | 		/* endless idle loop with no priority at all */ | 
 |  | 
 | 		/* | 
 | 		 * although we are an idle CPU, we do not want to | 
 | 		 * get into the scheduler unnecessarily. | 
 | 		 */ | 
 | 		if (need_resched()) | 
 | 			schedule(); | 
 |  | 
 | 		tick_nohz_stop_sched_tick(); | 
 | 		nsecs = disable_timer(); | 
 | 		idle_sleep(nsecs); | 
 | 		tick_nohz_restart_sched_tick(); | 
 | 	} | 
 | } | 
 |  | 
 | void cpu_idle(void) | 
 | { | 
 | 	cpu_tasks[current_thread->cpu].pid = os_getpid(); | 
 | 	default_idle(); | 
 | } | 
 |  | 
 | void *um_virt_to_phys(struct task_struct *task, unsigned long addr, | 
 | 		      pte_t *pte_out) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 | 	pte_t ptent; | 
 |  | 
 | 	if (task->mm == NULL) | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	pgd = pgd_offset(task->mm, addr); | 
 | 	if (!pgd_present(*pgd)) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	pud = pud_offset(pgd, addr); | 
 | 	if (!pud_present(*pud)) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	if (!pmd_present(*pmd)) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	pte = pte_offset_kernel(pmd, addr); | 
 | 	ptent = *pte; | 
 | 	if (!pte_present(ptent)) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	if (pte_out != NULL) | 
 | 		*pte_out = ptent; | 
 | 	return (void *) (pte_val(ptent) & PAGE_MASK) + (addr & ~PAGE_MASK); | 
 | } | 
 |  | 
 | char *current_cmd(void) | 
 | { | 
 | #if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM) | 
 | 	return "(Unknown)"; | 
 | #else | 
 | 	void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL); | 
 | 	return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr); | 
 | #endif | 
 | } | 
 |  | 
 | void dump_thread(struct pt_regs *regs, struct user *u) | 
 | { | 
 | } | 
 |  | 
 | int __cant_sleep(void) { | 
 | 	return in_atomic() || irqs_disabled() || in_interrupt(); | 
 | 	/* Is in_interrupt() really needed? */ | 
 | } | 
 |  | 
 | int user_context(unsigned long sp) | 
 | { | 
 | 	unsigned long stack; | 
 |  | 
 | 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER); | 
 | 	return stack != (unsigned long) current_thread; | 
 | } | 
 |  | 
 | extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end; | 
 |  | 
 | void do_uml_exitcalls(void) | 
 | { | 
 | 	exitcall_t *call; | 
 |  | 
 | 	call = &__uml_exitcall_end; | 
 | 	while (--call >= &__uml_exitcall_begin) | 
 | 		(*call)(); | 
 | } | 
 |  | 
 | char *uml_strdup(char *string) | 
 | { | 
 | 	return kstrdup(string, GFP_KERNEL); | 
 | } | 
 |  | 
 | int copy_to_user_proc(void __user *to, void *from, int size) | 
 | { | 
 | 	return copy_to_user(to, from, size); | 
 | } | 
 |  | 
 | int copy_from_user_proc(void *to, void __user *from, int size) | 
 | { | 
 | 	return copy_from_user(to, from, size); | 
 | } | 
 |  | 
 | int clear_user_proc(void __user *buf, int size) | 
 | { | 
 | 	return clear_user(buf, size); | 
 | } | 
 |  | 
 | int strlen_user_proc(char __user *str) | 
 | { | 
 | 	return strlen_user(str); | 
 | } | 
 |  | 
 | int smp_sigio_handler(void) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	int cpu = current_thread->cpu; | 
 | 	IPI_handler(cpu); | 
 | 	if (cpu != 0) | 
 | 		return 1; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | int cpu(void) | 
 | { | 
 | 	return current_thread->cpu; | 
 | } | 
 |  | 
 | static atomic_t using_sysemu = ATOMIC_INIT(0); | 
 | int sysemu_supported; | 
 |  | 
 | void set_using_sysemu(int value) | 
 | { | 
 | 	if (value > sysemu_supported) | 
 | 		return; | 
 | 	atomic_set(&using_sysemu, value); | 
 | } | 
 |  | 
 | int get_using_sysemu(void) | 
 | { | 
 | 	return atomic_read(&using_sysemu); | 
 | } | 
 |  | 
 | static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data) | 
 | { | 
 | 	if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size) | 
 | 		/* No overflow */ | 
 | 		*eof = 1; | 
 |  | 
 | 	return strlen(buf); | 
 | } | 
 |  | 
 | static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data) | 
 | { | 
 | 	char tmp[2]; | 
 |  | 
 | 	if (copy_from_user(tmp, buf, 1)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (tmp[0] >= '0' && tmp[0] <= '2') | 
 | 		set_using_sysemu(tmp[0] - '0'); | 
 | 	/* We use the first char, but pretend to write everything */ | 
 | 	return count; | 
 | } | 
 |  | 
 | int __init make_proc_sysemu(void) | 
 | { | 
 | 	struct proc_dir_entry *ent; | 
 | 	if (!sysemu_supported) | 
 | 		return 0; | 
 |  | 
 | 	ent = create_proc_entry("sysemu", 0600, &proc_root); | 
 |  | 
 | 	if (ent == NULL) | 
 | 	{ | 
 | 		printk(KERN_WARNING "Failed to register /proc/sysemu\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ent->read_proc  = proc_read_sysemu; | 
 | 	ent->write_proc = proc_write_sysemu; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | late_initcall(make_proc_sysemu); | 
 |  | 
 | int singlestepping(void * t) | 
 | { | 
 | 	struct task_struct *task = t ? t : current; | 
 |  | 
 | 	if ( ! (task->ptrace & PT_DTRACE) ) | 
 | 		return 0; | 
 |  | 
 | 	if (task->thread.singlestep_syscall) | 
 | 		return 1; | 
 |  | 
 | 	return 2; | 
 | } | 
 |  | 
 | /* | 
 |  * Only x86 and x86_64 have an arch_align_stack(). | 
 |  * All other arches have "#define arch_align_stack(x) (x)" | 
 |  * in their asm/system.h | 
 |  * As this is included in UML from asm-um/system-generic.h, | 
 |  * we can use it to behave as the subarch does. | 
 |  */ | 
 | #ifndef arch_align_stack | 
 | unsigned long arch_align_stack(unsigned long sp) | 
 | { | 
 | 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) | 
 | 		sp -= get_random_int() % 8192; | 
 | 	return sp & ~0xf; | 
 | } | 
 | #endif |