| /* | 
 |  * Architecture-specific setup. | 
 |  * | 
 |  * Copyright (C) 1998-2003 Hewlett-Packard Co | 
 |  *	David Mosberger-Tang <davidm@hpl.hp.com> | 
 |  * 04/11/17 Ashok Raj	<ashok.raj@intel.com> Added CPU Hotplug Support | 
 |  * | 
 |  * 2005-10-07 Keith Owens <kaos@sgi.com> | 
 |  *	      Add notify_die() hooks. | 
 |  */ | 
 | #include <linux/cpu.h> | 
 | #include <linux/pm.h> | 
 | #include <linux/elf.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/personality.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/stddef.h> | 
 | #include <linux/thread_info.h> | 
 | #include <linux/unistd.h> | 
 | #include <linux/efi.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/utsname.h> | 
 | #include <linux/tracehook.h> | 
 |  | 
 | #include <asm/cpu.h> | 
 | #include <asm/delay.h> | 
 | #include <asm/elf.h> | 
 | #include <asm/ia32.h> | 
 | #include <asm/irq.h> | 
 | #include <asm/kexec.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/sal.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/unwind.h> | 
 | #include <asm/user.h> | 
 |  | 
 | #include "entry.h" | 
 |  | 
 | #ifdef CONFIG_PERFMON | 
 | # include <asm/perfmon.h> | 
 | #endif | 
 |  | 
 | #include "sigframe.h" | 
 |  | 
 | void (*ia64_mark_idle)(int); | 
 |  | 
 | unsigned long boot_option_idle_override = 0; | 
 | EXPORT_SYMBOL(boot_option_idle_override); | 
 | unsigned long idle_halt; | 
 | EXPORT_SYMBOL(idle_halt); | 
 | unsigned long idle_nomwait; | 
 | EXPORT_SYMBOL(idle_nomwait); | 
 |  | 
 | void | 
 | ia64_do_show_stack (struct unw_frame_info *info, void *arg) | 
 | { | 
 | 	unsigned long ip, sp, bsp; | 
 | 	char buf[128];			/* don't make it so big that it overflows the stack! */ | 
 |  | 
 | 	printk("\nCall Trace:\n"); | 
 | 	do { | 
 | 		unw_get_ip(info, &ip); | 
 | 		if (ip == 0) | 
 | 			break; | 
 |  | 
 | 		unw_get_sp(info, &sp); | 
 | 		unw_get_bsp(info, &bsp); | 
 | 		snprintf(buf, sizeof(buf), | 
 | 			 " [<%016lx>] %%s\n" | 
 | 			 "                                sp=%016lx bsp=%016lx\n", | 
 | 			 ip, sp, bsp); | 
 | 		print_symbol(buf, ip); | 
 | 	} while (unw_unwind(info) >= 0); | 
 | } | 
 |  | 
 | void | 
 | show_stack (struct task_struct *task, unsigned long *sp) | 
 | { | 
 | 	if (!task) | 
 | 		unw_init_running(ia64_do_show_stack, NULL); | 
 | 	else { | 
 | 		struct unw_frame_info info; | 
 |  | 
 | 		unw_init_from_blocked_task(&info, task); | 
 | 		ia64_do_show_stack(&info, NULL); | 
 | 	} | 
 | } | 
 |  | 
 | void | 
 | dump_stack (void) | 
 | { | 
 | 	show_stack(NULL, NULL); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dump_stack); | 
 |  | 
 | void | 
 | show_regs (struct pt_regs *regs) | 
 | { | 
 | 	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; | 
 |  | 
 | 	print_modules(); | 
 | 	printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current), | 
 | 			smp_processor_id(), current->comm); | 
 | 	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n", | 
 | 	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(), | 
 | 	       init_utsname()->release); | 
 | 	print_symbol("ip is at %s\n", ip); | 
 | 	printk("unat: %016lx pfs : %016lx rsc : %016lx\n", | 
 | 	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc); | 
 | 	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n", | 
 | 	       regs->ar_rnat, regs->ar_bspstore, regs->pr); | 
 | 	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", | 
 | 	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr); | 
 | 	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); | 
 | 	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7); | 
 | 	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n", | 
 | 	       regs->f6.u.bits[1], regs->f6.u.bits[0], | 
 | 	       regs->f7.u.bits[1], regs->f7.u.bits[0]); | 
 | 	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n", | 
 | 	       regs->f8.u.bits[1], regs->f8.u.bits[0], | 
 | 	       regs->f9.u.bits[1], regs->f9.u.bits[0]); | 
 | 	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", | 
 | 	       regs->f10.u.bits[1], regs->f10.u.bits[0], | 
 | 	       regs->f11.u.bits[1], regs->f11.u.bits[0]); | 
 |  | 
 | 	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3); | 
 | 	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); | 
 | 	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); | 
 | 	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); | 
 | 	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); | 
 | 	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); | 
 | 	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); | 
 | 	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); | 
 | 	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); | 
 |  | 
 | 	if (user_mode(regs)) { | 
 | 		/* print the stacked registers */ | 
 | 		unsigned long val, *bsp, ndirty; | 
 | 		int i, sof, is_nat = 0; | 
 |  | 
 | 		sof = regs->cr_ifs & 0x7f;	/* size of frame */ | 
 | 		ndirty = (regs->loadrs >> 19); | 
 | 		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); | 
 | 		for (i = 0; i < sof; ++i) { | 
 | 			get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); | 
 | 			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, | 
 | 			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); | 
 | 		} | 
 | 	} else | 
 | 		show_stack(NULL, NULL); | 
 | } | 
 |  | 
 | /* local support for deprecated console_print */ | 
 | void | 
 | console_print(const char *s) | 
 | { | 
 | 	printk(KERN_EMERG "%s", s); | 
 | } | 
 |  | 
 | void | 
 | do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall) | 
 | { | 
 | 	if (fsys_mode(current, &scr->pt)) { | 
 | 		/* | 
 | 		 * defer signal-handling etc. until we return to | 
 | 		 * privilege-level 0. | 
 | 		 */ | 
 | 		if (!ia64_psr(&scr->pt)->lp) | 
 | 			ia64_psr(&scr->pt)->lp = 1; | 
 | 		return; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_PERFMON | 
 | 	if (current->thread.pfm_needs_checking) | 
 | 		/* | 
 | 		 * Note: pfm_handle_work() allow us to call it with interrupts | 
 | 		 * disabled, and may enable interrupts within the function. | 
 | 		 */ | 
 | 		pfm_handle_work(); | 
 | #endif | 
 |  | 
 | 	/* deal with pending signal delivery */ | 
 | 	if (test_thread_flag(TIF_SIGPENDING)) { | 
 | 		local_irq_enable();	/* force interrupt enable */ | 
 | 		ia64_do_signal(scr, in_syscall); | 
 | 	} | 
 |  | 
 | 	if (test_thread_flag(TIF_NOTIFY_RESUME)) { | 
 | 		clear_thread_flag(TIF_NOTIFY_RESUME); | 
 | 		tracehook_notify_resume(&scr->pt); | 
 | 		if (current->replacement_session_keyring) | 
 | 			key_replace_session_keyring(); | 
 | 	} | 
 |  | 
 | 	/* copy user rbs to kernel rbs */ | 
 | 	if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) { | 
 | 		local_irq_enable();	/* force interrupt enable */ | 
 | 		ia64_sync_krbs(); | 
 | 	} | 
 |  | 
 | 	local_irq_disable();	/* force interrupt disable */ | 
 | } | 
 |  | 
 | static int pal_halt        = 1; | 
 | static int can_do_pal_halt = 1; | 
 |  | 
 | static int __init nohalt_setup(char * str) | 
 | { | 
 | 	pal_halt = can_do_pal_halt = 0; | 
 | 	return 1; | 
 | } | 
 | __setup("nohalt", nohalt_setup); | 
 |  | 
 | void | 
 | update_pal_halt_status(int status) | 
 | { | 
 | 	can_do_pal_halt = pal_halt && status; | 
 | } | 
 |  | 
 | /* | 
 |  * We use this if we don't have any better idle routine.. | 
 |  */ | 
 | void | 
 | default_idle (void) | 
 | { | 
 | 	local_irq_enable(); | 
 | 	while (!need_resched()) { | 
 | 		if (can_do_pal_halt) { | 
 | 			local_irq_disable(); | 
 | 			if (!need_resched()) { | 
 | 				safe_halt(); | 
 | 			} | 
 | 			local_irq_enable(); | 
 | 		} else | 
 | 			cpu_relax(); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | /* We don't actually take CPU down, just spin without interrupts. */ | 
 | static inline void play_dead(void) | 
 | { | 
 | 	unsigned int this_cpu = smp_processor_id(); | 
 |  | 
 | 	/* Ack it */ | 
 | 	__get_cpu_var(cpu_state) = CPU_DEAD; | 
 |  | 
 | 	max_xtp(); | 
 | 	local_irq_disable(); | 
 | 	idle_task_exit(); | 
 | 	ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); | 
 | 	/* | 
 | 	 * The above is a point of no-return, the processor is | 
 | 	 * expected to be in SAL loop now. | 
 | 	 */ | 
 | 	BUG(); | 
 | } | 
 | #else | 
 | static inline void play_dead(void) | 
 | { | 
 | 	BUG(); | 
 | } | 
 | #endif /* CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | static void do_nothing(void *unused) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of | 
 |  * pm_idle and update to new pm_idle value. Required while changing pm_idle | 
 |  * handler on SMP systems. | 
 |  * | 
 |  * Caller must have changed pm_idle to the new value before the call. Old | 
 |  * pm_idle value will not be used by any CPU after the return of this function. | 
 |  */ | 
 | void cpu_idle_wait(void) | 
 | { | 
 | 	smp_mb(); | 
 | 	/* kick all the CPUs so that they exit out of pm_idle */ | 
 | 	smp_call_function(do_nothing, NULL, 1); | 
 | } | 
 | EXPORT_SYMBOL_GPL(cpu_idle_wait); | 
 |  | 
 | void __attribute__((noreturn)) | 
 | cpu_idle (void) | 
 | { | 
 | 	void (*mark_idle)(int) = ia64_mark_idle; | 
 |   	int cpu = smp_processor_id(); | 
 |  | 
 | 	/* endless idle loop with no priority at all */ | 
 | 	while (1) { | 
 | 		if (can_do_pal_halt) { | 
 | 			current_thread_info()->status &= ~TS_POLLING; | 
 | 			/* | 
 | 			 * TS_POLLING-cleared state must be visible before we | 
 | 			 * test NEED_RESCHED: | 
 | 			 */ | 
 | 			smp_mb(); | 
 | 		} else { | 
 | 			current_thread_info()->status |= TS_POLLING; | 
 | 		} | 
 |  | 
 | 		if (!need_resched()) { | 
 | 			void (*idle)(void); | 
 | #ifdef CONFIG_SMP | 
 | 			min_xtp(); | 
 | #endif | 
 | 			rmb(); | 
 | 			if (mark_idle) | 
 | 				(*mark_idle)(1); | 
 |  | 
 | 			idle = pm_idle; | 
 | 			if (!idle) | 
 | 				idle = default_idle; | 
 | 			(*idle)(); | 
 | 			if (mark_idle) | 
 | 				(*mark_idle)(0); | 
 | #ifdef CONFIG_SMP | 
 | 			normal_xtp(); | 
 | #endif | 
 | 		} | 
 | 		preempt_enable_no_resched(); | 
 | 		schedule(); | 
 | 		preempt_disable(); | 
 | 		check_pgt_cache(); | 
 | 		if (cpu_is_offline(cpu)) | 
 | 			play_dead(); | 
 | 	} | 
 | } | 
 |  | 
 | void | 
 | ia64_save_extra (struct task_struct *task) | 
 | { | 
 | #ifdef CONFIG_PERFMON | 
 | 	unsigned long info; | 
 | #endif | 
 |  | 
 | 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) | 
 | 		ia64_save_debug_regs(&task->thread.dbr[0]); | 
 |  | 
 | #ifdef CONFIG_PERFMON | 
 | 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) | 
 | 		pfm_save_regs(task); | 
 |  | 
 | 	info = __get_cpu_var(pfm_syst_info); | 
 | 	if (info & PFM_CPUINFO_SYST_WIDE) | 
 | 		pfm_syst_wide_update_task(task, info, 0); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_IA32_SUPPORT | 
 | 	if (IS_IA32_PROCESS(task_pt_regs(task))) | 
 | 		ia32_save_state(task); | 
 | #endif | 
 | } | 
 |  | 
 | void | 
 | ia64_load_extra (struct task_struct *task) | 
 | { | 
 | #ifdef CONFIG_PERFMON | 
 | 	unsigned long info; | 
 | #endif | 
 |  | 
 | 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) | 
 | 		ia64_load_debug_regs(&task->thread.dbr[0]); | 
 |  | 
 | #ifdef CONFIG_PERFMON | 
 | 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) | 
 | 		pfm_load_regs(task); | 
 |  | 
 | 	info = __get_cpu_var(pfm_syst_info); | 
 | 	if (info & PFM_CPUINFO_SYST_WIDE)  | 
 | 		pfm_syst_wide_update_task(task, info, 1); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_IA32_SUPPORT | 
 | 	if (IS_IA32_PROCESS(task_pt_regs(task))) | 
 | 		ia32_load_state(task); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Copy the state of an ia-64 thread. | 
 |  * | 
 |  * We get here through the following  call chain: | 
 |  * | 
 |  *	from user-level:	from kernel: | 
 |  * | 
 |  *	<clone syscall>	        <some kernel call frames> | 
 |  *	sys_clone		   : | 
 |  *	do_fork			do_fork | 
 |  *	copy_thread		copy_thread | 
 |  * | 
 |  * This means that the stack layout is as follows: | 
 |  * | 
 |  *	+---------------------+ (highest addr) | 
 |  *	|   struct pt_regs    | | 
 |  *	+---------------------+ | 
 |  *	| struct switch_stack | | 
 |  *	+---------------------+ | 
 |  *	|                     | | 
 |  *	|    memory stack     | | 
 |  *	|                     | <-- sp (lowest addr) | 
 |  *	+---------------------+ | 
 |  * | 
 |  * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an | 
 |  * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, | 
 |  * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the | 
 |  * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since | 
 |  * the stack is page aligned and the page size is at least 4KB, this is always the case, | 
 |  * so there is nothing to worry about. | 
 |  */ | 
 | int | 
 | copy_thread(unsigned long clone_flags, | 
 | 	     unsigned long user_stack_base, unsigned long user_stack_size, | 
 | 	     struct task_struct *p, struct pt_regs *regs) | 
 | { | 
 | 	extern char ia64_ret_from_clone, ia32_ret_from_clone; | 
 | 	struct switch_stack *child_stack, *stack; | 
 | 	unsigned long rbs, child_rbs, rbs_size; | 
 | 	struct pt_regs *child_ptregs; | 
 | 	int retval = 0; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * For SMP idle threads, fork_by_hand() calls do_fork with | 
 | 	 * NULL regs. | 
 | 	 */ | 
 | 	if (!regs) | 
 | 		return 0; | 
 | #endif | 
 |  | 
 | 	stack = ((struct switch_stack *) regs) - 1; | 
 |  | 
 | 	child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; | 
 | 	child_stack = (struct switch_stack *) child_ptregs - 1; | 
 |  | 
 | 	/* copy parent's switch_stack & pt_regs to child: */ | 
 | 	memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); | 
 |  | 
 | 	rbs = (unsigned long) current + IA64_RBS_OFFSET; | 
 | 	child_rbs = (unsigned long) p + IA64_RBS_OFFSET; | 
 | 	rbs_size = stack->ar_bspstore - rbs; | 
 |  | 
 | 	/* copy the parent's register backing store to the child: */ | 
 | 	memcpy((void *) child_rbs, (void *) rbs, rbs_size); | 
 |  | 
 | 	if (likely(user_mode(child_ptregs))) { | 
 | 		if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs)) | 
 | 			child_ptregs->r13 = regs->r16;	/* see sys_clone2() in entry.S */ | 
 | 		if (user_stack_base) { | 
 | 			child_ptregs->r12 = user_stack_base + user_stack_size - 16; | 
 | 			child_ptregs->ar_bspstore = user_stack_base; | 
 | 			child_ptregs->ar_rnat = 0; | 
 | 			child_ptregs->loadrs = 0; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * Note: we simply preserve the relative position of | 
 | 		 * the stack pointer here.  There is no need to | 
 | 		 * allocate a scratch area here, since that will have | 
 | 		 * been taken care of by the caller of sys_clone() | 
 | 		 * already. | 
 | 		 */ | 
 | 		child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */ | 
 | 		child_ptregs->r13 = (unsigned long) p;		/* set `current' pointer */ | 
 | 	} | 
 | 	child_stack->ar_bspstore = child_rbs + rbs_size; | 
 | 	if (IS_IA32_PROCESS(regs)) | 
 | 		child_stack->b0 = (unsigned long) &ia32_ret_from_clone; | 
 | 	else | 
 | 		child_stack->b0 = (unsigned long) &ia64_ret_from_clone; | 
 |  | 
 | 	/* copy parts of thread_struct: */ | 
 | 	p->thread.ksp = (unsigned long) child_stack - 16; | 
 |  | 
 | 	/* stop some PSR bits from being inherited. | 
 | 	 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() | 
 | 	 * therefore we must specify them explicitly here and not include them in | 
 | 	 * IA64_PSR_BITS_TO_CLEAR. | 
 | 	 */ | 
 | 	child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) | 
 | 				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); | 
 |  | 
 | 	/* | 
 | 	 * NOTE: The calling convention considers all floating point | 
 | 	 * registers in the high partition (fph) to be scratch.  Since | 
 | 	 * the only way to get to this point is through a system call, | 
 | 	 * we know that the values in fph are all dead.  Hence, there | 
 | 	 * is no need to inherit the fph state from the parent to the | 
 | 	 * child and all we have to do is to make sure that | 
 | 	 * IA64_THREAD_FPH_VALID is cleared in the child. | 
 | 	 * | 
 | 	 * XXX We could push this optimization a bit further by | 
 | 	 * clearing IA64_THREAD_FPH_VALID on ANY system call. | 
 | 	 * However, it's not clear this is worth doing.  Also, it | 
 | 	 * would be a slight deviation from the normal Linux system | 
 | 	 * call behavior where scratch registers are preserved across | 
 | 	 * system calls (unless used by the system call itself). | 
 | 	 */ | 
 | #	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ | 
 | 					 | IA64_THREAD_PM_VALID) | 
 | #	define THREAD_FLAGS_TO_SET	0 | 
 | 	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) | 
 | 			   | THREAD_FLAGS_TO_SET); | 
 | 	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */ | 
 | #ifdef CONFIG_IA32_SUPPORT | 
 | 	/* | 
 | 	 * If we're cloning an IA32 task then save the IA32 extra | 
 | 	 * state from the current task to the new task | 
 | 	 */ | 
 | 	if (IS_IA32_PROCESS(task_pt_regs(current))) { | 
 | 		ia32_save_state(p); | 
 | 		if (clone_flags & CLONE_SETTLS) | 
 | 			retval = ia32_clone_tls(p, child_ptregs); | 
 |  | 
 | 		/* Copy partially mapped page list */ | 
 | 		if (!retval) | 
 | 			retval = ia32_copy_ia64_partial_page_list(p, | 
 | 								clone_flags); | 
 | 	} | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PERFMON | 
 | 	if (current->thread.pfm_context) | 
 | 		pfm_inherit(p, child_ptregs); | 
 | #endif | 
 | 	return retval; | 
 | } | 
 |  | 
 | static void | 
 | do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) | 
 | { | 
 | 	unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm; | 
 | 	unsigned long uninitialized_var(ip);	/* GCC be quiet */ | 
 | 	elf_greg_t *dst = arg; | 
 | 	struct pt_regs *pt; | 
 | 	char nat; | 
 | 	int i; | 
 |  | 
 | 	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */ | 
 |  | 
 | 	if (unw_unwind_to_user(info) < 0) | 
 | 		return; | 
 |  | 
 | 	unw_get_sp(info, &sp); | 
 | 	pt = (struct pt_regs *) (sp + 16); | 
 |  | 
 | 	urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); | 
 |  | 
 | 	if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) | 
 | 		return; | 
 |  | 
 | 	ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), | 
 | 		  &ar_rnat); | 
 |  | 
 | 	/* | 
 | 	 * coredump format: | 
 | 	 *	r0-r31 | 
 | 	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) | 
 | 	 *	predicate registers (p0-p63) | 
 | 	 *	b0-b7 | 
 | 	 *	ip cfm user-mask | 
 | 	 *	ar.rsc ar.bsp ar.bspstore ar.rnat | 
 | 	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec | 
 | 	 */ | 
 |  | 
 | 	/* r0 is zero */ | 
 | 	for (i = 1, mask = (1UL << i); i < 32; ++i) { | 
 | 		unw_get_gr(info, i, &dst[i], &nat); | 
 | 		if (nat) | 
 | 			nat_bits |= mask; | 
 | 		mask <<= 1; | 
 | 	} | 
 | 	dst[32] = nat_bits; | 
 | 	unw_get_pr(info, &dst[33]); | 
 |  | 
 | 	for (i = 0; i < 8; ++i) | 
 | 		unw_get_br(info, i, &dst[34 + i]); | 
 |  | 
 | 	unw_get_rp(info, &ip); | 
 | 	dst[42] = ip + ia64_psr(pt)->ri; | 
 | 	dst[43] = cfm; | 
 | 	dst[44] = pt->cr_ipsr & IA64_PSR_UM; | 
 |  | 
 | 	unw_get_ar(info, UNW_AR_RSC, &dst[45]); | 
 | 	/* | 
 | 	 * For bsp and bspstore, unw_get_ar() would return the kernel | 
 | 	 * addresses, but we need the user-level addresses instead: | 
 | 	 */ | 
 | 	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */ | 
 | 	dst[47] = pt->ar_bspstore; | 
 | 	dst[48] = ar_rnat; | 
 | 	unw_get_ar(info, UNW_AR_CCV, &dst[49]); | 
 | 	unw_get_ar(info, UNW_AR_UNAT, &dst[50]); | 
 | 	unw_get_ar(info, UNW_AR_FPSR, &dst[51]); | 
 | 	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ | 
 | 	unw_get_ar(info, UNW_AR_LC, &dst[53]); | 
 | 	unw_get_ar(info, UNW_AR_EC, &dst[54]); | 
 | 	unw_get_ar(info, UNW_AR_CSD, &dst[55]); | 
 | 	unw_get_ar(info, UNW_AR_SSD, &dst[56]); | 
 | } | 
 |  | 
 | void | 
 | do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg) | 
 | { | 
 | 	elf_fpreg_t *dst = arg; | 
 | 	int i; | 
 |  | 
 | 	memset(dst, 0, sizeof(elf_fpregset_t));	/* don't leak any "random" bits */ | 
 |  | 
 | 	if (unw_unwind_to_user(info) < 0) | 
 | 		return; | 
 |  | 
 | 	/* f0 is 0.0, f1 is 1.0 */ | 
 |  | 
 | 	for (i = 2; i < 32; ++i) | 
 | 		unw_get_fr(info, i, dst + i); | 
 |  | 
 | 	ia64_flush_fph(task); | 
 | 	if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0) | 
 | 		memcpy(dst + 32, task->thread.fph, 96*16); | 
 | } | 
 |  | 
 | void | 
 | do_copy_regs (struct unw_frame_info *info, void *arg) | 
 | { | 
 | 	do_copy_task_regs(current, info, arg); | 
 | } | 
 |  | 
 | void | 
 | do_dump_fpu (struct unw_frame_info *info, void *arg) | 
 | { | 
 | 	do_dump_task_fpu(current, info, arg); | 
 | } | 
 |  | 
 | void | 
 | ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) | 
 | { | 
 | 	unw_init_running(do_copy_regs, dst); | 
 | } | 
 |  | 
 | int | 
 | dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) | 
 | { | 
 | 	unw_init_running(do_dump_fpu, dst); | 
 | 	return 1;	/* f0-f31 are always valid so we always return 1 */ | 
 | } | 
 |  | 
 | long | 
 | sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp, | 
 | 	    struct pt_regs *regs) | 
 | { | 
 | 	char *fname; | 
 | 	int error; | 
 |  | 
 | 	fname = getname(filename); | 
 | 	error = PTR_ERR(fname); | 
 | 	if (IS_ERR(fname)) | 
 | 		goto out; | 
 | 	error = do_execve(fname, argv, envp, regs); | 
 | 	putname(fname); | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | pid_t | 
 | kernel_thread (int (*fn)(void *), void *arg, unsigned long flags) | 
 | { | 
 | 	extern void start_kernel_thread (void); | 
 | 	unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread; | 
 | 	struct { | 
 | 		struct switch_stack sw; | 
 | 		struct pt_regs pt; | 
 | 	} regs; | 
 |  | 
 | 	memset(®s, 0, sizeof(regs)); | 
 | 	regs.pt.cr_iip = helper_fptr[0];	/* set entry point (IP) */ | 
 | 	regs.pt.r1 = helper_fptr[1];		/* set GP */ | 
 | 	regs.pt.r9 = (unsigned long) fn;	/* 1st argument */ | 
 | 	regs.pt.r11 = (unsigned long) arg;	/* 2nd argument */ | 
 | 	/* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read.  */ | 
 | 	regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; | 
 | 	regs.pt.cr_ifs = 1UL << 63;		/* mark as valid, empty frame */ | 
 | 	regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR); | 
 | 	regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET; | 
 | 	regs.sw.pr = (1 << PRED_KERNEL_STACK); | 
 | 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s.pt, 0, NULL, NULL); | 
 | } | 
 | EXPORT_SYMBOL(kernel_thread); | 
 |  | 
 | /* This gets called from kernel_thread() via ia64_invoke_thread_helper().  */ | 
 | int | 
 | kernel_thread_helper (int (*fn)(void *), void *arg) | 
 | { | 
 | #ifdef CONFIG_IA32_SUPPORT | 
 | 	if (IS_IA32_PROCESS(task_pt_regs(current))) { | 
 | 		/* A kernel thread is always a 64-bit process. */ | 
 | 		current->thread.map_base  = DEFAULT_MAP_BASE; | 
 | 		current->thread.task_size = DEFAULT_TASK_SIZE; | 
 | 		ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob); | 
 | 		ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1); | 
 | 	} | 
 | #endif | 
 | 	return (*fn)(arg); | 
 | } | 
 |  | 
 | /* | 
 |  * Flush thread state.  This is called when a thread does an execve(). | 
 |  */ | 
 | void | 
 | flush_thread (void) | 
 | { | 
 | 	/* drop floating-point and debug-register state if it exists: */ | 
 | 	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); | 
 | 	ia64_drop_fpu(current); | 
 | #ifdef CONFIG_IA32_SUPPORT | 
 | 	if (IS_IA32_PROCESS(task_pt_regs(current))) { | 
 | 		ia32_drop_ia64_partial_page_list(current); | 
 | 		current->thread.task_size = IA32_PAGE_OFFSET; | 
 | 		set_fs(USER_DS); | 
 | 		memset(current->thread.tls_array, 0, sizeof(current->thread.tls_array)); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Clean up state associated with current thread.  This is called when | 
 |  * the thread calls exit(). | 
 |  */ | 
 | void | 
 | exit_thread (void) | 
 | { | 
 |  | 
 | 	ia64_drop_fpu(current); | 
 | #ifdef CONFIG_PERFMON | 
 |        /* if needed, stop monitoring and flush state to perfmon context */ | 
 | 	if (current->thread.pfm_context) | 
 | 		pfm_exit_thread(current); | 
 |  | 
 | 	/* free debug register resources */ | 
 | 	if (current->thread.flags & IA64_THREAD_DBG_VALID) | 
 | 		pfm_release_debug_registers(current); | 
 | #endif | 
 | 	if (IS_IA32_PROCESS(task_pt_regs(current))) | 
 | 		ia32_drop_ia64_partial_page_list(current); | 
 | } | 
 |  | 
 | unsigned long | 
 | get_wchan (struct task_struct *p) | 
 | { | 
 | 	struct unw_frame_info info; | 
 | 	unsigned long ip; | 
 | 	int count = 0; | 
 |  | 
 | 	if (!p || p == current || p->state == TASK_RUNNING) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Note: p may not be a blocked task (it could be current or | 
 | 	 * another process running on some other CPU.  Rather than | 
 | 	 * trying to determine if p is really blocked, we just assume | 
 | 	 * it's blocked and rely on the unwind routines to fail | 
 | 	 * gracefully if the process wasn't really blocked after all. | 
 | 	 * --davidm 99/12/15 | 
 | 	 */ | 
 | 	unw_init_from_blocked_task(&info, p); | 
 | 	do { | 
 | 		if (p->state == TASK_RUNNING) | 
 | 			return 0; | 
 | 		if (unw_unwind(&info) < 0) | 
 | 			return 0; | 
 | 		unw_get_ip(&info, &ip); | 
 | 		if (!in_sched_functions(ip)) | 
 | 			return ip; | 
 | 	} while (count++ < 16); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void | 
 | cpu_halt (void) | 
 | { | 
 | 	pal_power_mgmt_info_u_t power_info[8]; | 
 | 	unsigned long min_power; | 
 | 	int i, min_power_state; | 
 |  | 
 | 	if (ia64_pal_halt_info(power_info) != 0) | 
 | 		return; | 
 |  | 
 | 	min_power_state = 0; | 
 | 	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; | 
 | 	for (i = 1; i < 8; ++i) | 
 | 		if (power_info[i].pal_power_mgmt_info_s.im | 
 | 		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { | 
 | 			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; | 
 | 			min_power_state = i; | 
 | 		} | 
 |  | 
 | 	while (1) | 
 | 		ia64_pal_halt(min_power_state); | 
 | } | 
 |  | 
 | void machine_shutdown(void) | 
 | { | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		if (cpu != smp_processor_id()) | 
 | 			cpu_down(cpu); | 
 | 	} | 
 | #endif | 
 | #ifdef CONFIG_KEXEC | 
 | 	kexec_disable_iosapic(); | 
 | #endif | 
 | } | 
 |  | 
 | void | 
 | machine_restart (char *restart_cmd) | 
 | { | 
 | 	(void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); | 
 | 	(*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL); | 
 | } | 
 |  | 
 | void | 
 | machine_halt (void) | 
 | { | 
 | 	(void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); | 
 | 	cpu_halt(); | 
 | } | 
 |  | 
 | void | 
 | machine_power_off (void) | 
 | { | 
 | 	if (pm_power_off) | 
 | 		pm_power_off(); | 
 | 	machine_halt(); | 
 | } | 
 |  |