|  | /* | 
|  | * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver | 
|  | * | 
|  | * Author: Timur Tabi <timur@freescale.com> | 
|  | * | 
|  | * Copyright 2007-2008 Freescale Semiconductor, Inc.  This file is licensed | 
|  | * under the terms of the GNU General Public License version 2.  This | 
|  | * program is licensed "as is" without any warranty of any kind, whether | 
|  | * express or implied. | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/delay.h> | 
|  |  | 
|  | #include <sound/core.h> | 
|  | #include <sound/pcm.h> | 
|  | #include <sound/pcm_params.h> | 
|  | #include <sound/initval.h> | 
|  | #include <sound/soc.h> | 
|  |  | 
|  | #include <asm/immap_86xx.h> | 
|  |  | 
|  | #include "fsl_ssi.h" | 
|  |  | 
|  | /** | 
|  | * FSLSSI_I2S_RATES: sample rates supported by the I2S | 
|  | * | 
|  | * This driver currently only supports the SSI running in I2S slave mode, | 
|  | * which means the codec determines the sample rate.  Therefore, we tell | 
|  | * ALSA that we support all rates and let the codec driver decide what rates | 
|  | * are really supported. | 
|  | */ | 
|  | #define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \ | 
|  | SNDRV_PCM_RATE_CONTINUOUS) | 
|  |  | 
|  | /** | 
|  | * FSLSSI_I2S_FORMATS: audio formats supported by the SSI | 
|  | * | 
|  | * This driver currently only supports the SSI running in I2S slave mode. | 
|  | * | 
|  | * The SSI has a limitation in that the samples must be in the same byte | 
|  | * order as the host CPU.  This is because when multiple bytes are written | 
|  | * to the STX register, the bytes and bits must be written in the same | 
|  | * order.  The STX is a shift register, so all the bits need to be aligned | 
|  | * (bit-endianness must match byte-endianness).  Processors typically write | 
|  | * the bits within a byte in the same order that the bytes of a word are | 
|  | * written in.  So if the host CPU is big-endian, then only big-endian | 
|  | * samples will be written to STX properly. | 
|  | */ | 
|  | #ifdef __BIG_ENDIAN | 
|  | #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \ | 
|  | SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \ | 
|  | SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE) | 
|  | #else | 
|  | #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \ | 
|  | SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \ | 
|  | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE) | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * fsl_ssi_private: per-SSI private data | 
|  | * | 
|  | * @name: short name for this device ("SSI0", "SSI1", etc) | 
|  | * @ssi: pointer to the SSI's registers | 
|  | * @ssi_phys: physical address of the SSI registers | 
|  | * @irq: IRQ of this SSI | 
|  | * @first_stream: pointer to the stream that was opened first | 
|  | * @second_stream: pointer to second stream | 
|  | * @dev: struct device pointer | 
|  | * @playback: the number of playback streams opened | 
|  | * @capture: the number of capture streams opened | 
|  | * @asynchronous: 0=synchronous mode, 1=asynchronous mode | 
|  | * @cpu_dai: the CPU DAI for this device | 
|  | * @dev_attr: the sysfs device attribute structure | 
|  | * @stats: SSI statistics | 
|  | */ | 
|  | struct fsl_ssi_private { | 
|  | char name[8]; | 
|  | struct ccsr_ssi __iomem *ssi; | 
|  | dma_addr_t ssi_phys; | 
|  | unsigned int irq; | 
|  | struct snd_pcm_substream *first_stream; | 
|  | struct snd_pcm_substream *second_stream; | 
|  | struct device *dev; | 
|  | unsigned int playback; | 
|  | unsigned int capture; | 
|  | int asynchronous; | 
|  | struct snd_soc_dai cpu_dai; | 
|  | struct device_attribute dev_attr; | 
|  |  | 
|  | struct { | 
|  | unsigned int rfrc; | 
|  | unsigned int tfrc; | 
|  | unsigned int cmdau; | 
|  | unsigned int cmddu; | 
|  | unsigned int rxt; | 
|  | unsigned int rdr1; | 
|  | unsigned int rdr0; | 
|  | unsigned int tde1; | 
|  | unsigned int tde0; | 
|  | unsigned int roe1; | 
|  | unsigned int roe0; | 
|  | unsigned int tue1; | 
|  | unsigned int tue0; | 
|  | unsigned int tfs; | 
|  | unsigned int rfs; | 
|  | unsigned int tls; | 
|  | unsigned int rls; | 
|  | unsigned int rff1; | 
|  | unsigned int rff0; | 
|  | unsigned int tfe1; | 
|  | unsigned int tfe0; | 
|  | } stats; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * fsl_ssi_isr: SSI interrupt handler | 
|  | * | 
|  | * Although it's possible to use the interrupt handler to send and receive | 
|  | * data to/from the SSI, we use the DMA instead.  Programming is more | 
|  | * complicated, but the performance is much better. | 
|  | * | 
|  | * This interrupt handler is used only to gather statistics. | 
|  | * | 
|  | * @irq: IRQ of the SSI device | 
|  | * @dev_id: pointer to the ssi_private structure for this SSI device | 
|  | */ | 
|  | static irqreturn_t fsl_ssi_isr(int irq, void *dev_id) | 
|  | { | 
|  | struct fsl_ssi_private *ssi_private = dev_id; | 
|  | struct ccsr_ssi __iomem *ssi = ssi_private->ssi; | 
|  | irqreturn_t ret = IRQ_NONE; | 
|  | __be32 sisr; | 
|  | __be32 sisr2 = 0; | 
|  |  | 
|  | /* We got an interrupt, so read the status register to see what we | 
|  | were interrupted for.  We mask it with the Interrupt Enable register | 
|  | so that we only check for events that we're interested in. | 
|  | */ | 
|  | sisr = in_be32(&ssi->sisr) & in_be32(&ssi->sier); | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_RFRC) { | 
|  | ssi_private->stats.rfrc++; | 
|  | sisr2 |= CCSR_SSI_SISR_RFRC; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_TFRC) { | 
|  | ssi_private->stats.tfrc++; | 
|  | sisr2 |= CCSR_SSI_SISR_TFRC; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_CMDAU) { | 
|  | ssi_private->stats.cmdau++; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_CMDDU) { | 
|  | ssi_private->stats.cmddu++; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_RXT) { | 
|  | ssi_private->stats.rxt++; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_RDR1) { | 
|  | ssi_private->stats.rdr1++; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_RDR0) { | 
|  | ssi_private->stats.rdr0++; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_TDE1) { | 
|  | ssi_private->stats.tde1++; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_TDE0) { | 
|  | ssi_private->stats.tde0++; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_ROE1) { | 
|  | ssi_private->stats.roe1++; | 
|  | sisr2 |= CCSR_SSI_SISR_ROE1; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_ROE0) { | 
|  | ssi_private->stats.roe0++; | 
|  | sisr2 |= CCSR_SSI_SISR_ROE0; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_TUE1) { | 
|  | ssi_private->stats.tue1++; | 
|  | sisr2 |= CCSR_SSI_SISR_TUE1; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_TUE0) { | 
|  | ssi_private->stats.tue0++; | 
|  | sisr2 |= CCSR_SSI_SISR_TUE0; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_TFS) { | 
|  | ssi_private->stats.tfs++; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_RFS) { | 
|  | ssi_private->stats.rfs++; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_TLS) { | 
|  | ssi_private->stats.tls++; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_RLS) { | 
|  | ssi_private->stats.rls++; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_RFF1) { | 
|  | ssi_private->stats.rff1++; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_RFF0) { | 
|  | ssi_private->stats.rff0++; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_TFE1) { | 
|  | ssi_private->stats.tfe1++; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (sisr & CCSR_SSI_SISR_TFE0) { | 
|  | ssi_private->stats.tfe0++; | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Clear the bits that we set */ | 
|  | if (sisr2) | 
|  | out_be32(&ssi->sisr, sisr2); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fsl_ssi_startup: create a new substream | 
|  | * | 
|  | * This is the first function called when a stream is opened. | 
|  | * | 
|  | * If this is the first stream open, then grab the IRQ and program most of | 
|  | * the SSI registers. | 
|  | */ | 
|  | static int fsl_ssi_startup(struct snd_pcm_substream *substream, | 
|  | struct snd_soc_dai *dai) | 
|  | { | 
|  | struct snd_soc_pcm_runtime *rtd = substream->private_data; | 
|  | struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; | 
|  |  | 
|  | /* | 
|  | * If this is the first stream opened, then request the IRQ | 
|  | * and initialize the SSI registers. | 
|  | */ | 
|  | if (!ssi_private->playback && !ssi_private->capture) { | 
|  | struct ccsr_ssi __iomem *ssi = ssi_private->ssi; | 
|  | int ret; | 
|  |  | 
|  | ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, | 
|  | ssi_private->name, ssi_private); | 
|  | if (ret < 0) { | 
|  | dev_err(substream->pcm->card->dev, | 
|  | "could not claim irq %u\n", ssi_private->irq); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Section 16.5 of the MPC8610 reference manual says that the | 
|  | * SSI needs to be disabled before updating the registers we set | 
|  | * here. | 
|  | */ | 
|  | clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); | 
|  |  | 
|  | /* | 
|  | * Program the SSI into I2S Slave Non-Network Synchronous mode. | 
|  | * Also enable the transmit and receive FIFO. | 
|  | * | 
|  | * FIXME: Little-endian samples require a different shift dir | 
|  | */ | 
|  | clrsetbits_be32(&ssi->scr, | 
|  | CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN, | 
|  | CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE | 
|  | | (ssi_private->asynchronous ? 0 : CCSR_SSI_SCR_SYN)); | 
|  |  | 
|  | out_be32(&ssi->stcr, | 
|  | CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 | | 
|  | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS | | 
|  | CCSR_SSI_STCR_TSCKP); | 
|  |  | 
|  | out_be32(&ssi->srcr, | 
|  | CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 | | 
|  | CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS | | 
|  | CCSR_SSI_SRCR_RSCKP); | 
|  |  | 
|  | /* | 
|  | * The DC and PM bits are only used if the SSI is the clock | 
|  | * master. | 
|  | */ | 
|  |  | 
|  | /* 4. Enable the interrupts and DMA requests */ | 
|  | out_be32(&ssi->sier, | 
|  | CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | | 
|  | CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | | 
|  | CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | | 
|  | CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | | 
|  | CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN); | 
|  |  | 
|  | /* | 
|  | * Set the watermark for transmit FIFI 0 and receive FIFO 0. We | 
|  | * don't use FIFO 1.  Since the SSI only supports stereo, the | 
|  | * watermark should never be an odd number. | 
|  | */ | 
|  | out_be32(&ssi->sfcsr, | 
|  | CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2)); | 
|  |  | 
|  | /* | 
|  | * We keep the SSI disabled because if we enable it, then the | 
|  | * DMA controller will start.  It's not supposed to start until | 
|  | * the SCR.TE (or SCR.RE) bit is set, but it does anyway.  The | 
|  | * DMA controller will transfer one "BWC" of data (i.e. the | 
|  | * amount of data that the MR.BWC bits are set to).  The reason | 
|  | * this is bad is because at this point, the PCM driver has not | 
|  | * finished initializing the DMA controller. | 
|  | */ | 
|  | } | 
|  |  | 
|  | if (!ssi_private->first_stream) | 
|  | ssi_private->first_stream = substream; | 
|  | else { | 
|  | /* This is the second stream open, so we need to impose sample | 
|  | * rate and maybe sample size constraints.  Note that this can | 
|  | * cause a race condition if the second stream is opened before | 
|  | * the first stream is fully initialized. | 
|  | * | 
|  | * We provide some protection by checking to make sure the first | 
|  | * stream is initialized, but it's not perfect.  ALSA sometimes | 
|  | * re-initializes the driver with a different sample rate or | 
|  | * size.  If the second stream is opened before the first stream | 
|  | * has received its final parameters, then the second stream may | 
|  | * be constrained to the wrong sample rate or size. | 
|  | * | 
|  | * FIXME: This code does not handle opening and closing streams | 
|  | * repeatedly.  If you open two streams and then close the first | 
|  | * one, you may not be able to open another stream until you | 
|  | * close the second one as well. | 
|  | */ | 
|  | struct snd_pcm_runtime *first_runtime = | 
|  | ssi_private->first_stream->runtime; | 
|  |  | 
|  | if (!first_runtime->rate || !first_runtime->sample_bits) { | 
|  | dev_err(substream->pcm->card->dev, | 
|  | "set sample rate and size in %s stream first\n", | 
|  | substream->stream == SNDRV_PCM_STREAM_PLAYBACK | 
|  | ? "capture" : "playback"); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | snd_pcm_hw_constraint_minmax(substream->runtime, | 
|  | SNDRV_PCM_HW_PARAM_RATE, | 
|  | first_runtime->rate, first_runtime->rate); | 
|  |  | 
|  | /* If we're in synchronous mode, then we need to constrain | 
|  | * the sample size as well.  We don't support independent sample | 
|  | * rates in asynchronous mode. | 
|  | */ | 
|  | if (!ssi_private->asynchronous) | 
|  | snd_pcm_hw_constraint_minmax(substream->runtime, | 
|  | SNDRV_PCM_HW_PARAM_SAMPLE_BITS, | 
|  | first_runtime->sample_bits, | 
|  | first_runtime->sample_bits); | 
|  |  | 
|  | ssi_private->second_stream = substream; | 
|  | } | 
|  |  | 
|  | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) | 
|  | ssi_private->playback++; | 
|  |  | 
|  | if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) | 
|  | ssi_private->capture++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fsl_ssi_hw_params - program the sample size | 
|  | * | 
|  | * Most of the SSI registers have been programmed in the startup function, | 
|  | * but the word length must be programmed here.  Unfortunately, programming | 
|  | * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can | 
|  | * cause a problem with supporting simultaneous playback and capture.  If | 
|  | * the SSI is already playing a stream, then that stream may be temporarily | 
|  | * stopped when you start capture. | 
|  | * | 
|  | * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the | 
|  | * clock master. | 
|  | */ | 
|  | static int fsl_ssi_hw_params(struct snd_pcm_substream *substream, | 
|  | struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai) | 
|  | { | 
|  | struct fsl_ssi_private *ssi_private = cpu_dai->private_data; | 
|  |  | 
|  | if (substream == ssi_private->first_stream) { | 
|  | struct ccsr_ssi __iomem *ssi = ssi_private->ssi; | 
|  | unsigned int sample_size = | 
|  | snd_pcm_format_width(params_format(hw_params)); | 
|  | u32 wl = CCSR_SSI_SxCCR_WL(sample_size); | 
|  |  | 
|  | /* The SSI should always be disabled at this points (SSIEN=0) */ | 
|  |  | 
|  | /* In synchronous mode, the SSI uses STCCR for capture */ | 
|  | if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) || | 
|  | !ssi_private->asynchronous) | 
|  | clrsetbits_be32(&ssi->stccr, | 
|  | CCSR_SSI_SxCCR_WL_MASK, wl); | 
|  | else | 
|  | clrsetbits_be32(&ssi->srccr, | 
|  | CCSR_SSI_SxCCR_WL_MASK, wl); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fsl_ssi_trigger: start and stop the DMA transfer. | 
|  | * | 
|  | * This function is called by ALSA to start, stop, pause, and resume the DMA | 
|  | * transfer of data. | 
|  | * | 
|  | * The DMA channel is in external master start and pause mode, which | 
|  | * means the SSI completely controls the flow of data. | 
|  | */ | 
|  | static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd, | 
|  | struct snd_soc_dai *dai) | 
|  | { | 
|  | struct snd_soc_pcm_runtime *rtd = substream->private_data; | 
|  | struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; | 
|  | struct ccsr_ssi __iomem *ssi = ssi_private->ssi; | 
|  |  | 
|  | switch (cmd) { | 
|  | case SNDRV_PCM_TRIGGER_START: | 
|  | clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); | 
|  | case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: | 
|  | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { | 
|  | setbits32(&ssi->scr, | 
|  | CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE); | 
|  | } else { | 
|  | long timeout = jiffies + 10; | 
|  |  | 
|  | setbits32(&ssi->scr, | 
|  | CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE); | 
|  |  | 
|  | /* Wait until the SSI has filled its FIFO. Without this | 
|  | * delay, ALSA complains about overruns.  When the FIFO | 
|  | * is full, the DMA controller initiates its first | 
|  | * transfer.  Until then, however, the DMA's DAR | 
|  | * register is zero, which translates to an | 
|  | * out-of-bounds pointer.  This makes ALSA think an | 
|  | * overrun has occurred. | 
|  | */ | 
|  | while (!(in_be32(&ssi->sisr) & CCSR_SSI_SISR_RFF0) && | 
|  | (jiffies < timeout)); | 
|  | if (!(in_be32(&ssi->sisr) & CCSR_SSI_SISR_RFF0)) | 
|  | return -EIO; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SNDRV_PCM_TRIGGER_STOP: | 
|  | case SNDRV_PCM_TRIGGER_PAUSE_PUSH: | 
|  | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) | 
|  | clrbits32(&ssi->scr, CCSR_SSI_SCR_TE); | 
|  | else | 
|  | clrbits32(&ssi->scr, CCSR_SSI_SCR_RE); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fsl_ssi_shutdown: shutdown the SSI | 
|  | * | 
|  | * Shutdown the SSI if there are no other substreams open. | 
|  | */ | 
|  | static void fsl_ssi_shutdown(struct snd_pcm_substream *substream, | 
|  | struct snd_soc_dai *dai) | 
|  | { | 
|  | struct snd_soc_pcm_runtime *rtd = substream->private_data; | 
|  | struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data; | 
|  |  | 
|  | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) | 
|  | ssi_private->playback--; | 
|  |  | 
|  | if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) | 
|  | ssi_private->capture--; | 
|  |  | 
|  | if (ssi_private->first_stream == substream) | 
|  | ssi_private->first_stream = ssi_private->second_stream; | 
|  |  | 
|  | ssi_private->second_stream = NULL; | 
|  |  | 
|  | /* | 
|  | * If this is the last active substream, disable the SSI and release | 
|  | * the IRQ. | 
|  | */ | 
|  | if (!ssi_private->playback && !ssi_private->capture) { | 
|  | struct ccsr_ssi __iomem *ssi = ssi_private->ssi; | 
|  |  | 
|  | clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); | 
|  |  | 
|  | free_irq(ssi_private->irq, ssi_private); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fsl_ssi_set_sysclk: set the clock frequency and direction | 
|  | * | 
|  | * This function is called by the machine driver to tell us what the clock | 
|  | * frequency and direction are. | 
|  | * | 
|  | * Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN), | 
|  | * and we don't care about the frequency.  Return an error if the direction | 
|  | * is not SND_SOC_CLOCK_IN. | 
|  | * | 
|  | * @clk_id: reserved, should be zero | 
|  | * @freq: the frequency of the given clock ID, currently ignored | 
|  | * @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master) | 
|  | */ | 
|  | static int fsl_ssi_set_sysclk(struct snd_soc_dai *cpu_dai, | 
|  | int clk_id, unsigned int freq, int dir) | 
|  | { | 
|  |  | 
|  | return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fsl_ssi_set_fmt: set the serial format. | 
|  | * | 
|  | * This function is called by the machine driver to tell us what serial | 
|  | * format to use. | 
|  | * | 
|  | * Currently, we only support I2S mode.  Return an error if the format is | 
|  | * not SND_SOC_DAIFMT_I2S. | 
|  | * | 
|  | * @format: one of SND_SOC_DAIFMT_xxx | 
|  | */ | 
|  | static int fsl_ssi_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int format) | 
|  | { | 
|  | return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fsl_ssi_dai_template: template CPU DAI for the SSI | 
|  | */ | 
|  | static struct snd_soc_dai_ops fsl_ssi_dai_ops = { | 
|  | .startup	= fsl_ssi_startup, | 
|  | .hw_params	= fsl_ssi_hw_params, | 
|  | .shutdown	= fsl_ssi_shutdown, | 
|  | .trigger	= fsl_ssi_trigger, | 
|  | .set_sysclk	= fsl_ssi_set_sysclk, | 
|  | .set_fmt	= fsl_ssi_set_fmt, | 
|  | }; | 
|  |  | 
|  | static struct snd_soc_dai fsl_ssi_dai_template = { | 
|  | .playback = { | 
|  | /* The SSI does not support monaural audio. */ | 
|  | .channels_min = 2, | 
|  | .channels_max = 2, | 
|  | .rates = FSLSSI_I2S_RATES, | 
|  | .formats = FSLSSI_I2S_FORMATS, | 
|  | }, | 
|  | .capture = { | 
|  | .channels_min = 2, | 
|  | .channels_max = 2, | 
|  | .rates = FSLSSI_I2S_RATES, | 
|  | .formats = FSLSSI_I2S_FORMATS, | 
|  | }, | 
|  | .ops = &fsl_ssi_dai_ops, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * fsl_sysfs_ssi_show: display SSI statistics | 
|  | * | 
|  | * Display the statistics for the current SSI device. | 
|  | */ | 
|  | static ssize_t fsl_sysfs_ssi_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct fsl_ssi_private *ssi_private = | 
|  | container_of(attr, struct fsl_ssi_private, dev_attr); | 
|  | ssize_t length; | 
|  |  | 
|  | length = sprintf(buf, "rfrc=%u", ssi_private->stats.rfrc); | 
|  | length += sprintf(buf + length, "\ttfrc=%u", ssi_private->stats.tfrc); | 
|  | length += sprintf(buf + length, "\tcmdau=%u", ssi_private->stats.cmdau); | 
|  | length += sprintf(buf + length, "\tcmddu=%u", ssi_private->stats.cmddu); | 
|  | length += sprintf(buf + length, "\trxt=%u", ssi_private->stats.rxt); | 
|  | length += sprintf(buf + length, "\trdr1=%u", ssi_private->stats.rdr1); | 
|  | length += sprintf(buf + length, "\trdr0=%u", ssi_private->stats.rdr0); | 
|  | length += sprintf(buf + length, "\ttde1=%u", ssi_private->stats.tde1); | 
|  | length += sprintf(buf + length, "\ttde0=%u", ssi_private->stats.tde0); | 
|  | length += sprintf(buf + length, "\troe1=%u", ssi_private->stats.roe1); | 
|  | length += sprintf(buf + length, "\troe0=%u", ssi_private->stats.roe0); | 
|  | length += sprintf(buf + length, "\ttue1=%u", ssi_private->stats.tue1); | 
|  | length += sprintf(buf + length, "\ttue0=%u", ssi_private->stats.tue0); | 
|  | length += sprintf(buf + length, "\ttfs=%u", ssi_private->stats.tfs); | 
|  | length += sprintf(buf + length, "\trfs=%u", ssi_private->stats.rfs); | 
|  | length += sprintf(buf + length, "\ttls=%u", ssi_private->stats.tls); | 
|  | length += sprintf(buf + length, "\trls=%u", ssi_private->stats.rls); | 
|  | length += sprintf(buf + length, "\trff1=%u", ssi_private->stats.rff1); | 
|  | length += sprintf(buf + length, "\trff0=%u", ssi_private->stats.rff0); | 
|  | length += sprintf(buf + length, "\ttfe1=%u", ssi_private->stats.tfe1); | 
|  | length += sprintf(buf + length, "\ttfe0=%u\n", ssi_private->stats.tfe0); | 
|  |  | 
|  | return length; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fsl_ssi_create_dai: create a snd_soc_dai structure | 
|  | * | 
|  | * This function is called by the machine driver to create a snd_soc_dai | 
|  | * structure.  The function creates an ssi_private object, which contains | 
|  | * the snd_soc_dai.  It also creates the sysfs statistics device. | 
|  | */ | 
|  | struct snd_soc_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info) | 
|  | { | 
|  | struct snd_soc_dai *fsl_ssi_dai; | 
|  | struct fsl_ssi_private *ssi_private; | 
|  | int ret = 0; | 
|  | struct device_attribute *dev_attr; | 
|  |  | 
|  | ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL); | 
|  | if (!ssi_private) { | 
|  | dev_err(ssi_info->dev, "could not allocate DAI object\n"); | 
|  | return NULL; | 
|  | } | 
|  | memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template, | 
|  | sizeof(struct snd_soc_dai)); | 
|  |  | 
|  | fsl_ssi_dai = &ssi_private->cpu_dai; | 
|  | dev_attr = &ssi_private->dev_attr; | 
|  |  | 
|  | sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id); | 
|  | ssi_private->ssi = ssi_info->ssi; | 
|  | ssi_private->ssi_phys = ssi_info->ssi_phys; | 
|  | ssi_private->irq = ssi_info->irq; | 
|  | ssi_private->dev = ssi_info->dev; | 
|  | ssi_private->asynchronous = ssi_info->asynchronous; | 
|  |  | 
|  | ssi_private->dev->driver_data = fsl_ssi_dai; | 
|  |  | 
|  | /* Initialize the the device_attribute structure */ | 
|  | dev_attr->attr.name = "ssi-stats"; | 
|  | dev_attr->attr.mode = S_IRUGO; | 
|  | dev_attr->show = fsl_sysfs_ssi_show; | 
|  |  | 
|  | ret = device_create_file(ssi_private->dev, dev_attr); | 
|  | if (ret) { | 
|  | dev_err(ssi_info->dev, "could not create sysfs %s file\n", | 
|  | ssi_private->dev_attr.attr.name); | 
|  | kfree(fsl_ssi_dai); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | fsl_ssi_dai->private_data = ssi_private; | 
|  | fsl_ssi_dai->name = ssi_private->name; | 
|  | fsl_ssi_dai->id = ssi_info->id; | 
|  | fsl_ssi_dai->dev = ssi_info->dev; | 
|  |  | 
|  | ret = snd_soc_register_dai(fsl_ssi_dai); | 
|  | if (ret != 0) { | 
|  | dev_err(ssi_info->dev, "failed to register DAI: %d\n", ret); | 
|  | kfree(fsl_ssi_dai); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return fsl_ssi_dai; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(fsl_ssi_create_dai); | 
|  |  | 
|  | /** | 
|  | * fsl_ssi_destroy_dai: destroy the snd_soc_dai object | 
|  | * | 
|  | * This function undoes the operations of fsl_ssi_create_dai() | 
|  | */ | 
|  | void fsl_ssi_destroy_dai(struct snd_soc_dai *fsl_ssi_dai) | 
|  | { | 
|  | struct fsl_ssi_private *ssi_private = | 
|  | container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai); | 
|  |  | 
|  | device_remove_file(ssi_private->dev, &ssi_private->dev_attr); | 
|  |  | 
|  | snd_soc_unregister_dai(&ssi_private->cpu_dai); | 
|  |  | 
|  | kfree(ssi_private); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai); | 
|  |  | 
|  | static int __init fsl_ssi_init(void) | 
|  | { | 
|  | printk(KERN_INFO "Freescale Synchronous Serial Interface (SSI) ASoC Driver\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | module_init(fsl_ssi_init); | 
|  |  | 
|  | MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); | 
|  | MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver"); | 
|  | MODULE_LICENSE("GPL"); |